
On Petri-net synthesis and attribute-based
visualization

H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

Technische Universiteit Eindhoven
PO Box 513, 5600 MB Eindhoven, The Netherlands

{h.m.w.verbeek, a.j.pretorius, w.m.p.v.d.aalst, j.j.v.wijk}@tue.nl

Abstract. State space visualization is important for a good understand-
ing of the system’s behavior. Unfortunately, today’s visualization tools
typically ignore the fact that states might have attributes. Based on these
attributes, some states can be considered equivalent after abstraction,
and can thus be clustered, which simplifies the state space. Attribute-
based visualization tools are the exception to this rule. These tools can
deal with attributes. In this paper, we investigate an approach based on
Petri nets. Places in a Petri net correspond in a straightforward way to
attributes. Furthermore, we can use existing techniques to automatically
derive a Petri net from some state space, that is, to automatically add
attributes to that state space. As a result, we can use attribute-based
visualization tools for any state space. Unfortunately, the approach is
hampered by the fact that not every state space results in a usable Petri
net.

1 Introduction

State spaces are popular for the representation and verification of complex sys-
tems [4]. System behavior is modeled as a number of states that evolve over time
by following transitions. Transitions are “source-action-target” triplets where the
execution of an action triggers a change of state. By analyzing state spaces more
insights can be gained into the systems they describe.

In this paper, we assume the presence of state spaces that are obtained
via model-based state space generation or through process mining [1]. Given a
process model expressed in some language with formal semantics (e.g., Petri
nets, process algebras, state charts, EPCs, UML-ADs, MSCs, BPEL, YAWL,
etc.), it is possible to construct a state space (assuming it is finite). Often the
operational semantics of these languages are given in terms of transition systems,
making the state space generation trivial.

State spaces describe system behavior at a low level of detail. A popular
analysis approach is to specify and check requirements by inspecting the state
space, e.g., model checking approaches [7]. For this approach to be successful,
the premise is that all requirements are known. When this is not the case, the
system cannot be verified.

Interactive visualization is another technique for studying state spaces. We
argue that it offers three advantages:



2 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

1. By giving visual form to an abstract notion, communication among analysts
and with other stakeholders is enhanced.

2. Users often do not have precise questions about the systems they study, they
simply want to “get a feeling” for their behavior. Visualization allows them
to start formulating hypotheses about system behavior.

3. Interactivity provides the user with a mechanism for analyzing particular
features and for answering questions about state spaces and the behavior
they describe.

Attribute-based visualization enables users to analyze state spaces in terms of
attributes associated with every state. Users typically understand the meaning
of this data and can use this as a starting point for gaining further insights. For
example, by clustering on certain data, the user can obtain an abstract view
(details on the non-clustered data have been left out) on the entire state space.
Based on such a view, the user can come to understand how the originating
system behaves with respect to the clustered data. In this paper we investigate
the possibility of automatically deriving attribute information for visualization
purposes. To do so, we use existing synthesis techniques to generate a Petri net
from a given state space. The places of this Petri net are considered as new
derived state attributes.

The remainder of the paper is structured as follows. Section 2 provides a
concise overview of Petri nets, the Petrify tool, and the DiaGraphica tool. The
Petrify tool implements the state-of-the-art techniques to derive a Petri net
from a state space, whereas DiaGraphica is a state-of-the-art attribute-based
visualization tool. Section 3 discusses the approach using both Petrify and Dia-
Graphica. Section 4 shows, using a small example, how the approach could work,
whereas Section 5 discusses the challenges we faced while using the approach.
Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Petri nets

A classical Petri net can represented as a triplet (P, T, F ) where P is the set of
places, T is the set of Petri net transitions1, and F ⊆ (P × T )∪ (T ×P ) the set
of arcs. For the state of a Petri net only the set of places P is relevant, because
the network structure of a Petri net does not change and only the distribution
of tokens over places changes. A state, also referred to as marking, corresponds
to a mapping from places to natural numbers. Any state s can be presented as
s ∈ P → {0, 1, 2, . . .}, i.e., a state can be considered as a multiset, function, or
vector. The combination of a Petri net (P, T, F ) and an initial state s is called

1 The transitions in a Petri net should not be confused with transitions in a state space,
i.e., one Petri net transition may correspond to many transitions in the corresponding
state space. For example, many transitions in Fig. 2 refer to the Petri net transition
t1 in Fig. 3.



On Petri-net synthesis and attribute-based visualization 3

a marked Petri net (P, T, F, s). In the context of state spaces, we use places as
attributes. In any state the value of each place attribute is known: s(p) is the
value of attribute p ∈ P in state s.

A Petri net also comes with an unambiguous visualization. Places are repre-
sented by circles or ovals, transitions by squares or rectangles, and arcs by lines.
Using existing layout algorithms, it is straightforward to generate a diagram for
this, for example, using dot [10].

2.2 Petrify

The Petrify [6] tool is based on the Theory of Regions [9, 11, 5]. Using regions
it is possible to synthesize a finite transition system (i.e., a state space) into a
Petri net.

A (labeled) transition system is a tuple TS = (S,E, T, si) where S is the set
of states, E is the set of events, T ⊆ S × E × S is the transition relation, and
si ∈ S is the initial state. Given a transition system TS = (S, E, T, si), a subset
of states S′ ⊆ S is a region if for all events e ∈ E one of the following properties
holds:

– all transitions with event e enter the region, i.e., for all s1, s2 ∈ S and
(s1, e, s2) ∈ T : s1 6∈ S′ and s2 ∈ S′,

– all transitions with event e exit the region, i.e., for all s1, s2 ∈ S and (s1, e, s2) ∈
T : s1 ∈ S′ and s2 6∈ S′, or

– all transitions with event e do not “cross” the region, i.e., for all s1, s2 ∈ S
and (s1, e, s2) ∈ T : s1, s2 ∈ S′ or s1, s2 6∈ S′.

The basic idea of using regions is that each region S′ corresponds to a place in
the corresponding Petri net and that each event corresponds to a transition in
the corresponding Petri net. Given a region all the events that enter the region
are the transitions producing tokens for this place and all the events that exit
the region are the transitions consuming tokens from this place. Fig. 1 illustrates
how regions translate to places. A region r referring to a set of states in the state
space is mapped onto a place: a and b enter the region, c and d exit the region,
and e and f do not cross the region.

In the original theory of regions many simplifying assumptions are made,
e.g., elementary transitions systems are assumed [9] and in the resulting Petri net
there is one transition for each event. Many transition systems do not satisfy such
assumptions. Hence many refinements have been developed and implemented in
tools like Petrify [5, 6]. As a result it is possible to synthesize a suitable Petri
net for any transition system. Moreover, tools such as Petrify provide different
settings to navigate between compactness and readability and one can specify
desirable properties of the target model. For example, one can specify that the
Petri net should be free-choice. For more information we refer to [5, 6].

With a state space as input Petrify derives a Petri net for which the reacha-
bility graph is bisimilar to the original state space. We already mentioned that
the Petri net shown in Fig. 3 can be synthesized from the state space depicted in



4 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

a

b

f

e

c

dr

r
enter

region

exit

region

do not cross 

region

a

b

a

a

b

c

d

d

d

c

f

e

f

e

e f

(a) State space with region r. (b) Petri net with place r.

Fig. 1. Translation of regions to places.

s40

s39 s38

s37

s36s35

s34 s33

s32 s31

s30s29

s28 s27

s26 s25

s24s23

s22 s21

s20s19 s18

s17s16 s15

s14s13 s12

s11

s182

s181

s180

s179

s178 s177

s176

s175

s174

s173

s172 s171

s170s169

s168

s167s166

s165

s164

s163

s162

s161s160

s159

s158 s157

s156

s155

s154s153

s152

s151

s100

s99s98

s97

s96s95s150

s94

s149

s93

s148

s92

s147

s91

s146

s145s144

s143

s142s141

s90

s89s88

s87 s86

s85

s140

s84

s139

s83

s138

s82

s137

s81

s136

s135

s134

s133s132

s131

s80 s79

s78s77

s76

s75

s130

s74

s129

s73

s128

s72

s127

s71

s126

s125

s124

s123s122

s121

s70

s69s68

s67s66

s65

s120

s64

s119

s63

s118

s62

s117

s61

s10

s116

s9

s115

s8

s114

s7

s113

s6

s112

s5

s111

s4s3

s2

s1

s60 s59 s58

s57s56 s55

s110

s54

s109

s53

s108

s52s107 s51

s106

s105

s104

s103 s102

s101

s50

s49s48 s47 s46

s45s44 s43

s42s41

t3

t6

t7

t9

t7 t2

t9

t3

x1

t3

t6t12

t6

t8

t12

t7

t6

t3

t13

t12

x3

t12

x3

t10

t4

t3

t4

t14

t14

t8

t11

t4

t5

t1

t6

t1t5

t1

t7

t2

t12

t10t14t7

t5

t12 t6

t12

t1

x1

t14

t7

t4

t7

t7

t9

t14

t12

t7 t5

t12

t1t8

t8

t10

t11

t9

t11

t12

t2

t1

t13

t12

t10

t13

t2

x2

t6

t2

t14

t14

t6

t2

t3

t4

t11 t8

t14

t5

t8

t8

t3

t6

t1

t11

t10

t9

t8 t12

t4t2

t14

t11

t3

t12

t13

t10

t4t13

to

t1

t7

t14

t13

t11

t12

t5

t10

t3

t13

t13t13

t8

t3

t6

t3

t13

t6

x1

t1

t6

t14

t8

x2

t7

t8

t5

t7

t5

t13

t9

t8

t2

t10

t13

t12

t2

t11

t5

t11

t13

t8

t11

t5

t13

t14

t8

t9

t7

t1

t14

t2

x2

t9

t4

t10

t6

t4

t13

t13

t14

t4

t4

t4

t11

t4

t10

t11

t9

t2

t8

t12

t10

t1

t10

t12

t9

t6

t3

t12

t1

t14

t3

t6

t11

t13

t3

t10

t1

t3

t10

t1

t11

t12

t9

t1

t10

t6

t6

t6

t12

t4

t9

t4

t5

t2

t4

t7

t8

t4

t7

t3

t3

t8

t11

t14

t8

t13

t3

t14

t5

t3

t10

t3

t4

t9

t14

t11

t2

t10

t11t11 t2

t3t11

t11 t1

x3

t5

t2

t11

t10

t13

t2

t13

t4

t3

t14 t8

t2

t13

x3

t7

t2

t7t9

x1

t10 t11

t12

t8

t13

t7

t5

t10

t5

t12

t3t8

t9 t3

t12

t14

t7t2

t7

t6

t2

t5

t1

t5t3

t6 t13

t9

t4

t14 t3t11

t7

t12

t7

t14t7

t1

t6

t7

x2

t12

t7

t11

t6

t8

t13

t9

t2

t14

t11

t1t10

t8

t7

t10

t11

t9

t2

t10

t8

t12

t14

t1

t9 t6

t12

t4

t6

t5t9

t6

t8 t2

t6

t8

t5

t1t10

t12

t1

t11

t13t5

t5t9

t9 t4

t12

t1

t11

t14

t5

t4

t3

t11

t11

t13

t13

t3

t9

t9 t14

t7

t6

t8

t3

t11

t5

t2

t6

t1

t10

t14

t5

t1 t1

t14

t14

t4 t8

t13

t13

t8

t6 t14

x3

t9

t6

t4

t14

t7

t5

t2

t2

t13

t10

t1

t11

t9

t12

x3

t9

t13

t12

t7t12

t2

t14

t1

t9

t4

t13

t13

t4

t4

t11

t14t5

t5

x2

t2

t10

ti

t2

t2 t12

t13

t9

t3

t12 t13

t8

t9

x1

t12

t13

t11 t5

t14

t10

t4

t5

t4 t14

t1

t11

t11

t12

t7

t1

t14

t5

t10

t10

Fig. 2. State space visualization with off-the-shelf graph-drawing tools.

t5

t9

x3

t14

t3

t6

x2

to

t7

t2

x1

t10

t12

t8

t1

t11

ti

t13

t4

Fig. 3. Petri net synthesized from the state space in Fig. 2.

Fig. 2. This Petri net is indeed bisimilar to the state space. For the sake of com-
pleteness we mention that we used Petrify version 4.1 (www.lsi.upc.es/petrify/)
with the following options: -d2 (debug level 2), -opt (find the best result), -p



On Petri-net synthesis and attribute-based visualization 5

(generate a pure Petri net), -dead (do not check for the existence of deadlock
states), and -ip (show implicit places).

2.3 DiaGraphica

DiaGraphica is a prototype for the interactive visual analysis of state spaces with
attributes and can be downloaded from www.win.tue.nl/˜apretori/diagraphica/.
It builds on a previous work [12] and it primary purpose is to address the gap
between the semantics that users associate with attributes that describe states
and their visual representation. To do so, the user can define custom diagrams
that reflect associated semantics. These diagrams are incorporated into a number
of correlated visualizations.

Diagrams are composed of a number of shapes such as ellipses, rectangles and
lines. Every shape has a number of Degrees Of Freedom (DOFs) such as position
and color. It is possible to define a range of values for a DOF. Such a DOF is
then parameterized by linking it with a state attribute. For an attribute-DOF
pair the values for the DOF are calculated by considering the values assumed
by the attribute.

In the context of this paper this translates to the following. Suppose we have
a state space that has been annotated with attributes that describe the different
places in its associated Petri net. It is possible to represent this Petri net with
a diagram composed out of a number of circles, squares and lines corresponding
to its places, transitions and arcs. Now, we can parameterize all circles in this
diagram by linking one of more of their DOFs with the attributes representing
their corresponding places. For example, their colors can be parameterized such
that circles assume a specific color only when the corresponding place is marked.

DiaGraphica has a file format for representing parameterized diagrams. The
tool was originally developed with the aim of enabling users to edit and save
custom diagrams. However, this facility also makes it possible to import diagrams
regardless of where they originate from. Moreover, this allows us to import Petri
nets generated with Petrify as diagrams.

Parameterized diagrams are used in a number of correlated visualizations.
As starting point the user can perform attribute based clustering. The results
are visualized in the cluster view (see Fig. 4(a)). Here a node-link diagram,
a bar tree and an arc diagram are used to represent the clustering hierarchy,
the number of states in every cluster, and the aggregated state space [12]. By
clicking on clusters they are annotated with diagrams where the DOFs of shapes
are calculated as outlined above. A cluster can contain more than one state and
it is possible to step through the associated diagrams and transitions. Transitions
are visualized as arcs. The direction of transitions is encoded by the orientation
of the arcs which are interpreted clockwise.

The user can also load a diagram into the simulation view as shown in
Fig. 4(b). This visualization shows the “current” state as well as all incom-
ing and outgoing states as diagrams. This enables the user to explore a local
neighborhood around an area of interest. Transitions are visualized by arrows
and an overview of all action labels is provided. The user can navigate through



6 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

Fig. 4. DiaGraphica incorporates a number of correlated visualizations that use pa-
rameterized diagrams.

the state space by selecting any incoming our outgoing diagram, by using the
keyboard or by clicking on navigation icons. Consequently, this diagram slides
toward the center and all incoming and outgoing diagrams are updated.

The inspection view enables the user to inspect interesting diagrams more
closely and to temporarily store them (see Fig. 4(c)). First, it serves as a magni-
fying glass. Second, the user can use the temporary storage facility. Users may,
for instance, want to keep a history, store a number of diagrams from various
locations in the state space to compare, or keep diagrams as seeds for further
discussions with colleagues. These are visualized as a list of diagrams through
which the user can scroll.



On Petri-net synthesis and attribute-based visualization 7

Diagrams can be seamlessly moved between different views by clicking on an
icon on the diagram. To maintain context, the current selection in the simulation
or inspection view is highlighted in the clustering hierarchy.

3 Using petrify to obtain attributed state spaces

Fig. 5 illustrates the approach. The behavior of systems can be captured in
many ways. For instance, as an event log, as a formal model or as a state space.
Typically, system behavior is not directly described as a state space. However,
as already mentioned in the introduction, it is possible to generate state spaces
from process models (i.e., model-based state space generation) and event logs
(i.e., process mining [1, 3]). This is shown by the two arrows in the lower left
and right of the figure. The arrow in the lower right shows that using model-
based state space generation the behavior of a (finite) model can be captured as
a state space. The arrow in the lower left shows that using process mining the
behavior extracted from an event log can be represented as a state space [2]. Note
that an event log provides execution sequences of a (possibly unknown) model.
The event log does not show explicit states. However, there are various ways to
construct a state representation for each state visited in the execution sequence,
e.g., the prefix or postfix of the execution sequence under consideration. Similarly
transitions can be distilled from the event log, resulting in a full state space. Fig. 5
also shows that there is a relation between event logs and models, i.e., a model
can be used to generate event logs with example behavior and based on an event
log there may be process mining techniques to directly extract models, e.g., using
the α-algorithm [3] a representative Petri net can be discovered based on an event
log with example behavior. Since the focus is on state space visualization, we do
not consider the double-headed arrow at the top and focus on the lower half of
the diagram.

We make a distinction between event logs, models and state spaces that have
descriptive attributes and those that do not (inner and outer sectors of Fig. 5).
For example, it is possible to model behavior simply in terms of transitions
without providing any further information that describes the different states
that a system can be in. Fig. 2 shows a state space where nodes and arcs have
labels but without any attributes associated to states. In some cases it is possible
to attach attributes to states. For example, in a state space generated from a
Petri net, the token count for each state can be seen as a state attribute. When
a state space is generated using process mining techniques, the state may have
state attributes referring to activities or documents recorded earlier.

It is far from trivial to generate state spaces that contain state attributes
from event logs or models where this information is absent. Moreover, there
may be an abundance of possible attributes making it is difficult to select the
attributes relevant for the behavior. For example, a variety of data elements
may be associated to a state, most of which do not influence the occurrence
of events. Fortunately, as the upward pointing arrow in Fig. 5 shows, tools like
Petrify can transform a state space without attributes into a state space with



8 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

with

attributes

attribute-based

visualization
standard

visualization

Petri

nets

Petrify

Fig. 5. The approach proposed in this paper.

attributes. Consider the state space in Fig. 2. Since it does not have any state
attributes, we cannot employ attribute-based visualization techniques. When we
perform synthesis, we derive a Petri net that is guaranteed to be bisimilar to
this state space. That is, the behavior described by the Petri net is equivalent
to that described by the state space [6]. Fig. 3 shows a Petri net derived using
Petrify.

Note that the approach, as illustrated in Fig. 5, does not require starting with
a state space. Any Petri net can also be handled as input, provided that its state
space can be constructed within reasonable time. For a bounded Petri net, this
state space is its reachability graph, which will be finite. The approach can also
be extended for unbounded nets by using the coverability graph. In this case,
s ∈ P → {0, 1, 2, . . .}∪{ω} where s(p) = ω denotes that the number of tokens in p
is unbounded. This can also be visualized in the Petri net representation. We also
argue that our technique is applicable to other graphical modeling languages with
some form of semantics, e.g., the various UML diagrams describing behavior. In
the context of this paper, we use state spaces as starting point since, in practice,
one will encounter a state space more easily than a Petri net.

4 Proof of concept

To illustrate how the approach can assist users, we now present a small case
study, using the implementation of the approach as sketched in [14]. Fig. 6 illus-
trates the route we have taken in terms of the strategy introduced in Section 3.
We started with an event log from the widely used workflow management system
Staffware. The log contained 28 process instances (cases) and 448 events. Fig. 7
shows a fragment of this log after importing it into the ProM framework[8, 13].



On Petri-net synthesis and attribute-based visualization 9

Staffware log

w/o attributes

state space 

w/o attributes

Petri net

state space 

w/ attributes

Fig. 6. The approach taken with the case study.

Fig. 7. A snapshot of ProM with the imported Staffware log.

Next, we generated a state space from the event log, using the Transition Sys-
tem Generator plug-in in ProM 2. The resulting state space is shown in Fig. 8.
From the state space, we derived a Petri net using Petrify (see Fig. 9). Finally,
all states in the state space were annotated with the places of this Petri net as
attributes.

It is possible to take different perspectives on the state space by clustering
based on different subsets of state attributes. For example, we were interested in
2 In ProM the following options were selected: Generate TS with Sets (Basic Al-

gorithm), Extend Strategy (Algorithm adds Additional Transitions), The Log has
Timestamps, Use IDs (numbers) as State Names, and Add Explicit End State [2].



10 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

22 78

19

50

14 29

12 27

9 24

6

4

2

1

0

A

D._C._B

H

F

F H._B

H._G

Case start

G

F

F._G

Case termination

HH

H._G

G

F

A._Case start

Case termination

D._A._C._B

C._B._E

F._G

Fig. 8. The state space generated from the Staffware log.

F

A

G Case termination

D._C._BCase start

H._GH

D._A._C._B

F._G

F._2 F._G._1

H._G._1

F._1

H._1

C._B._E

A._Case start

H._B

Fig. 9. The Petri net derived from the state space in Fig. 8.

studying it from the perspective of the places p3, p6, p7 and p10 (see Fig. 10).
When we clustered the state space based on these places we got the clustering
hierarchy shown at the top of Fig. 10.

Next, we clicked on the leaf clusters and considered the marked Petri nets
corresponding to these. From these diagrams we learned that p3, p6, p7 and p10
contain either no tokens (Fig. 10(a)) or exactly two of these places contain a token
(Fig. 10(b)–(f))3. By considering the clustering hierarchy and these diagrams we
also discover the following place invariant: (p3 + p10) = (p6 + p7). That is,
if p3 or p10 are marked, then either p6 or p7 is marked and vice versa.

By considering the arcs between the leaf nodes of the clustering hierarchy
we learned that there is no unrelated behavior possible in the net while one of

3 The tokens in these places may be hard to see in Fig. 10. However, using the fact
that a darker colored node means no tokens whereas a lighter colored node means
one token, we can simply derive the markings from the tree. As an example, in the
middle diagram (c), place p3 contains no tokens whereas place p6 contains one token.



On Petri-net synthesis and attribute-based visualization 11

Fig. 10. Visualizing event log behavior using a state space and Petri net.

the places p3, p6, p7 or p10 is marked: every possible behavior changes at least
one of these four places. This holds because the only leaf node that contains a
self-loop, represented by an arc looping back to its originating cluster, is the left-
most cluster. However, as we noted above, this cluster contains all states where
neither p3, p6, p7 nor p10 are marked. As an aside, by loading the current state
into the simulation view at the bottom right, we saw that this state has five
possible predecessors but only a single successor.

We also clustered on all places not selected in the previous clustering. This
results in the clustering in Fig. 11. In a sense this can be considered as the dual
of the previous clustering. Here we found an interesting result. Note the diagonal
line formed by the lighter colored clusters in Fig. 11. Below these clusters the
clustering tree does not branch any further. This means that only one of the
places, apart from those we considered above (p3, p6, p7 and p10), can be



12 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

Fig. 11. Visualizing the clustering dual of Fig. 10.

marked at the same time. Again, this observation is much more straightforward
when we consider the diagrams representing these clusters. The leaf clusters
below the diagonal contain no self loops. Similar to an earlier observation, this
means that there is no unrelated behavior possible in the net while any one of
the places we consider is marked.

5 Challenges

The synthesis of Petri nets from state spaces is a bottle-neck. More specifically,
we have found the space complexity to be an issue when attempting to derive
Petri nets from state spaces using Petrify . Petrify is unable to synthesize Petri
nets from large state spaces if there is little “true” concurrency. If a and b can
occur in parallel in state s1, there are transitions s1

a→ s2, s1
b→ s3, s2

b→ s4,
and s3

a→ s4 forming a so-called “diamond” in the state space. If there are fewer
“diamonds” in the state space, this results in a poor confluence and Petri nets
with many places.

Fig. 12 shows a Petri net obtained by synthesizing a relatively small state
space consisting of 96 nodes and 192 edges. The resulting net consists of 50
places and more than 100 transitions (due to label splitting) and is not very
usable and even less readable than the original state space. This is caused by
the poor confluence of the state space and the resulting net nicely shows the
limitations of applying regions to state spaces with little true concurrency.



On Petri-net synthesis and attribute-based visualization 13

tau._55

tau._54

tau._53

tau._52

tau._51

tau._50

tau._49

tau._48

tau._47

enter(F)._3

tau._46

tau._45

tau._44

tau._43

tau._42

tau._41

leave(F)._3

tau._40

tau._39

tau._38

tau._37

tau._36

tau._35

csetflag(F,F)._4

tau._34

csetflag(F,T)._4

enter(F)._2

leave(F)._2

tau._33

tau._32

enter(T)._3

tau._31

tau._30

csetflag(T,T)._3

tau._29

tau._28

csetflag(F,F)._3

tau

request(F)

leave(F)

request(T)

csetflag(T,T)

csetflag(F,F)

leave(T)

enter(T)

enter(F)

csetflag(T,F)

tau._27

tau._26

enter(T)._2

tau._25
tau._24

tau._23

tau._22

tau._21

enter(F)._1

tau._20tau._19

tau._18

csetflag(F,T)._3

tau._17

enter(T)._1

leave(T)._3

tau._16

csetflag(T,F)._4

request(T)._4

leave(T)._2

tau._15tau._14

tau._13

leave(F)._1

tau._12

tau._11

csetflag(F,F)._2

csetflag(T,T)._2

tau._10

leave(T)._1

tau._9

csetflag(T,F)._3

tau._8

csetflag(T,F)._2

request(T)._3

csetflag(T,T)._1

tau._7

csetflag(F,F)._1

csetflag(F,T)._2

tau._6

request(T)._2

csetflag(T,F)._1

csetflag(F,T)._1

request(T)._1

tau._5

tau._4

tau._3

tau._2

tau._1

csetflag(F,T)

Fig. 12. Suboptimal Petri net derived for a small state space.

Fig. 12 illustrates that the use of Petrify is not always suitable. If the system
does not allow for a compact and intuitive representation in terms of a labeled
Petri net, it is probably not useful to try and represent the system state in
full detail. Hence more abstract representations are needed when showing the
individual states. The abstraction does not need to be a Petri net. However,
even in the context of regions and Petri nets, there are several straightforward
abstraction mechanisms.

First of all, it is possible to split the sets of states and transitions into in-
teresting and less interesting. For example, in the context of process mining
states that are rarely visited and/or transitions that are rarely executed can
be left out using abstraction or encapsulation. There may be other reasons for
removing particular transitions, e.g., the analyst rates them as less interesting.
Using abstraction (transitions are hidden, i.e., renamed to τ and removed while
preserving branching bisimilarity) or encapsulation (paths containing particular
transitions are blocked), the state space is effectively reduced. The reduced state
space will be easier to inspect and allows for a simpler Petri net representation.

Another approach is not to simplify the state space but to generate a model
that serves as a simplified over-approximation of the state space. Consider for
example Fig. 12 where the complexity is mainly due to the non-trivial relations
between places and transitions. If places are removed from this model, the result-
ing Petri net is still able to reproduce the original state space (but most likely
also allows for more and infinite behavior). In terms of regions this corresponds to



14 H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk

only including the most “interesting” regions resulting in an over-approximation
of the state space. Future research aims at selecting the right abstractions and
over-approximations.

6 Conclusions and future work

In this paper we have investigated an approach for state space visualization with
Petri nets. Using existing techniques we derive Petri nets from state spaces in
an automated fashion. The places of these Petri are considered as newly derived
attributes that describe every state. Consequently, we append all states in the
original state space with these attributes. This allows us to apply a visualization
technique where attribute-based visualizations of state spaces are annotated with
Petri net diagrams.

The approach provides the user with two representations that describe the
same behavior: state spaces and Petri nets. These are integrated into a number
of correlated visualizations. By presenting a case study, we have shown that the
combination of state space visualization and Petri net diagrams assists users in
visually analyzing system behavior.

We argue that the combination of the above two visual representations is
more effective than any one of them in isolation. For example, using state space
visualization it is possible to identify all states that have a specific marking for
a subset of Petri net places. Using the Petri net representation the user can
consider how other places are marked for this configuration. If we suppose that
the user has identified an interesting marking of the Petri net, he or she can
identify all its predecessor states, again by using a visualization of the state
space. Once these are identified, they are easy to study by considering their
Petri net markings.

In this paper, we have taken a step toward state space visualization with
automatically generated Petri nets. As we have shown in Section 4, the ability
to combine both representations can lead to interesting discoveries. The approach
also illustrates the flexibility of parameterized diagrams to visualize state spaces.
In particular, we are quite excited about the prospect of annotating visualizations
of state spaces with other types of automatically generated diagrams.

Finally, as indicated in Section 5, current synthesis techniques are not al-
ways suitable: If not elegant Petri net exists for a given state space, than Petrify
will not be able to find such a net. In such a situation, allowing for some addi-
tional behavior in the Petri net, that is, by over-approximating the state space,
might result in a far more elegant net. Therefore, we are interested in automated
abstraction techniques and over-approximations of the state space. Of course,
there’s also a downside: The state space corresponding to the resulting Petri
net is not longer bisimilar to the original state space. Nevertheless, we feel that
having an elegant approximation is better than having an exact solution that is
of no use.



On Petri-net synthesis and attribute-based visualization 15

Acknowledgements

We are grateful to Jordi Cortadella for his kind support on issues related to the
Petrify tool. Hannes Pretorius is supported by the Netherlands Organization for
Scientific Research (NWO) under grant 612.065.410.

References

1. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

2. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther.
Process mining: A two-step approach using transition systems and regions. Tech-
nical Report, BPMcenter.org, 2006.

3. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

4. A. Arnold. Finite Transition Systems. Prentice Hall, 1994.
5. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing petri

nets from state-based models. In ICCAD ’95: Proceedings of the 1995 IEEE/ACM
international conference on Computer-aided design, pages 164–171, Washington,
DC, USA, 1995. IEEE Computer Society.

6. J. Cortadella, M. Kishinvesky, L. Lavagno, and A. Yakovlev. Deriving petri nets
from finite transition systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

7. D. Dams and R. Gerth. Abstract interpretation of reactive systems. ACM Trans-
actions on Programming Languages and Systems, 19(2):253–291, 1997.

8. B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, Applications and Theory of
Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–
454. Springer, Berlin, Germany, 2005.

9. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures - part 1 and part 2.
Acta Informatica, 27(4):315–368, 1989.

10. E.R. Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230, 1993.

11. M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary transition systems.
In Selected papers of the Second Workshop on Concurrency and compositionality,
pages 3–33, Essex, UK, 1992. Elsevier Science Publishers Ltd.

12. A.J. Pretorius and J.J. van Wijk. Visual analysis of multivariate state transition
graphs. IEEE Transactions on Visualization and Computer Graphics, 12(5):685–
692, 2006.

13. H.M.W. Verbeek, B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst. In-
teroperability in the ProM framework. In T. Latour and M. Petit, editors, Pro-
ceedings of the CAiSE’06 Workshops and Doctoral Consortium, pages 619–630,
Luxembourg, June 2006. Presses Universitaires de Namur.

14. H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk. Visu-
alizing state spaces with Petri nets. Computer Science Report 07/01, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2007.


