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Abstract. Grid computing refers to the deployment of a widely dis-
tributed architecture for the execution of computationally challenging
tasks. The grid provides a set of distributed resources which can be
used for “computing on demand” or for constructing a “virtual super-
computer”. Recently, several researchers started to look at the relation
between workflow management and grid computing. The flow of work
through a grid can be seen as a classical “workflow”. However, as op-
posed to the classical workflows, the resources are not humans and are
not managed by some centralized client-server architecture. Instead, the
grid is highly distributed and the resources are computing power, mem-
ory, etc. Currently, there is no conceptual framework for grid computing
and the role of workflows in grids is unclear. This paper provides ini-
tial steps towards a conceptual framework expressed in terms of Colored
Petri Nets. CPN Tools is used to model grids while focusing on the work-
flow aspects. The resulting model can be analyzed to detect deadlocks,
etc. The framework is illustrated using process mining as an application.
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1 Introduction

Grid computing [21] is concerned with the development and advancement of
technologies that provide seamless and scalable access to wide-area distributed
resources. Currently, many researchers and practitioners are developing software
to support grid computing. A well-known example is the Globus Toolkit which
provides an open source software toolkit for building grids [17]. Within the grid
community several research groups have made attempts to adopt ideas from
workflow management and apply them in a grid context [15, 18, 19, 23, 25]. For
many grid applications the workflow-paradigm is quite natural, e.g., complex
scientific computations can be modeled as workflows. However, unlike classi-
cal workflows the control is decentralized and resources are computing power,
memory, etc. rather than people.

⋆ This research is supported by the GLANCE NWO project “Workflow Management
for Large Parallel and Distributed Applications”.



Despite the current interest in grids and workflow, a good conceptual model
of grids is missing and most researchers are focusing on the practical realization
of grids. Terms like “resource”, “job”, and “workflow” are subject to multiple
interpretations. Therefore, in this paper, we model the basic grid concepts in
terms of Colored Petri Nets (CPNs, [20]). The main purpose is to clarify the
basic concepts. Moreover, we also show that the mapping of grids onto CPNs
allows for all kinds of analysis. Given the fact that the allocation and deallocation
of resources in grids is done in a distributed manner and that multiple resources
may be involved in some task, a grid workflow may easily deadlock. Therefore,
this paper will focus on the use of state-space analysis to discover deadlocks.

Grids are often used in areas where there is a need for a lot of (preferably
inexpensive) computing power. Examples can be found in scientific comput-
ing, e.g., SETI@home searches for possible evidence of radio transmissions from
extraterrestrial intelligence using data from radio telescopes. SETI@home uses
CPU-scavenging for this, i.e., a grid of unused desktop computers is exploited
to analyze the radio transmissions. This particular form of grid use is also called
“voluntary computing” because the resources are made available without a clear
economic motive for the participants. Another interesting application domain
is the use of grids for data mining to analyse the large volumes of data gener-
ated today (cf. the DataMiningGrid project [2]). In this paper, we will focus on
a particular application: the utilization of grid computing for process mining.
The goal of process mining is to extract models (e.g. Petri nets) from event logs
[9]. This is possible because many systems ranging from enterprise information
systems and web applications to embedded and high-tech systems are collecting
enormous volumes of audit trails. To deal with these large amounts of data and
computationally expensive process mining algorithms, grids are particularly use-
ful. High-level process mining tasks can easily be described as workflows where
the activities correspond to the execution of particular process mining algo-
rithms. Therefore, process mining is an interesting application domain for grid
computing.

The remainder of the paper is organized as follows. In Section 2 we present
a running example and motivate the utilization of grid computing for process
mining. Section 3 introduces the basic grid concepts which are mapped onto
CPNs in Section 4. Related work is discussed in Section 6 and Section 7 concludes
the paper.

2 Running Example: Applying Grid Technology to

Process Mining

As indicated in the introduction, in this paper we focus on using grid technology
for large process mining tasks. In recent years, process mining has emerged
as a way to analyze systems and their actual use based on the event logs they
produce [11]. Note that, unlike classical data mining, the focus of process mining
is on concurrent processes and not on static or mainly sequential structures. A



classical example is the α-algorithm [11] which automatically constructs a Petri
net based on a set of observed system traces.

Process mining is applicable to a wide range of systems. These systems may
be pure information systems (e.g., ERP systems) or systems where the hardware
plays a more prominent role (e.g., embedded systems). The only requirement is
that the system produces event logs, thus recording (parts of) the actual behav-
ior. Information systems such as classical workflow management systems (e.g.
Staffware) case handling systems (e.g. FLOWer), PDM systems (e.g. Windchill),
middleware (e.g., IBM’s WebSphere), hospital information systems (e.g., Chip-
soft) record detailed information about the activities that have been executed.
Other systems recording events are medical systems (e.g., X-ray machines), pro-
duction systems (e.g., wafer steppers), copiers, sensor networks, etc. An example
is the “CUSTOMerCARE Remote Services Network” of Philips Medical Systems
(PMS). This is a worldwide internet-based private network that links PMS equip-
ment to remote service centers. An event that occurs within an X-ray machine
(e.g., moving the table, setting the deflector, etc.) is recorded and analyzed. The
logging capabilities of the machines of PMS illustrate that event logs are widely
available.

The goal of process mining is to extract information (e.g., process models)
from these logs, i.e., process mining describes a family of a-posteriori analysis
techniques exploiting the information recorded in the event logs.

Simple algorithms such as the α-algorithm [11] are linear in the size of the
event log. However, such algorithms do not perform well on real-life data and
their simplicity is misleading for two reasons: (1) more advanced process min-
ing algorithms are needed that require lots of computing power and parameter
tuning and (2) the “process of process mining” consists of additional pre- and
post-processing steps (filtering, cleaning, merging, conformance checking, etc.).
It should be noted that event logs may be huge, e.g., there may be thousands of
different cases and there may be thousands of events per case. Logs such as the
ones produced by the machines of PMS illustrate the computational challenges.
Moreover, some process mining techniques require lots of computing power. Con-
sider for example the genetic process mining algorithms described in [24]. All
of the more advanced algorithms have lots of parameters that need to be set.
Typically, the algorithms are run with different parameter settings to achieve ac-
ceptable results. Hence, different process mining experiments are run iteratively
or in parallel. Besides running the core process mining algorithms several pre-
and post-processing steps need to conducted.

The main goal of grid computing is to offer wide distributed computing and
storage facilities for complex applications. From the observations just made,
process mining process can require challenging computational executions, and
also has to deal with a large amount of data. Therefore, process mining is an
interesting application domain for grid computing. On the one hand, there are
clear computational challenges that can be addressed through grid computing.
On the other hand, the “process of process mining” can be seen as a workflow
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Fig. 1. The process mining workflow expressed in terms of YAWL [6]

consisting of activities ranging from data preparation and filtering to discovery
and conformance checking.

To illustrate the application of grid computing to process mining, we use
a rather simple and abstract example as shown in Figure 1. It is kept simple
so that it is understandable by non-process mining experts and to allow for
understandable CPN models later in this paper.

Figure 1 describes a typical process mining scenario in terms of the workflow
language YAWL [6]. YAWL extends Petri nets with notations useful for repre-
senting workflows. The workflow at the top of Figure 1 shows that a high-level
process mining job starts with the preparation of the log (task prepare log). It
includes the scanning of the log for inconsistencies (e.g., descending timestamps,
missing event types, etc.) and the addition of dummy start and end events if
needed. Then the log is analyzed (task analyze log) and several characteristics
are collected, e.g., size, completeness, number of event types, distribution of ac-
tivities, etc. Based on this task select algorithm chooses a particular algorithm
that is expected to perform well given the characteristics of the log. If character-
istics indicate that the log is highly structured and has no noise, the α-algorithm
may be selected. If it contains some noise and is large, the heuristic miner [22]
may be selected. The genetic miner may be selected if the structure of the model
is complicated, there is noise, and the log is not too large. After running one of
the process mining algorithms, the quality of the result is checked (task check
conformance). If the quality is acceptable or there are no more alternatives,



the results are returned. Otherwise, another algorithm is selected and the pro-
cess is repeated. Each of the process mining algorithms corresponds to a YAWL
subprocess. In Figure 1 only the subprocess genetic miner is described. The ge-
netic miner starts by setting the parameters. Genetic algorithms typically have
many different parameters that one can experiment with. The genetic miner has
parameters such as population size, number of generations, seed, elitism, muta-
tion rate, fitness function, crossover type, etc. Although not shown in Figure 1
different instances of the same algorithm could run in parallel with different pa-
rameters to improve response time. After task set parameters, the log is split and
replicated for 10-fold checking. k-fold cross validation divides the data set into k

subsets. Each time, one of the k subsets is used as the test set and the other k−1
subsets are put together to form a training set. Then the average error across
all k trials is computed. In this workflow the cases in the logs are split over 10
sets and each of the 10 parallel branches in Figure 1 takes 9 of these 10 sets to
construct a process model based on the genetic algorithm. After applying the
algorithm the result is evaluated using the remaining test set. Task check results
collects these results and decides whether a new experiment is needed, i.e., the
subprocess returns to task set parameters or ends with task return results.

Figure 1 also shows some annotations describing the use of resources. For
this simplified example, we assume that there are only two types of required
properties for task execution: CPU and disk space. Disk space is denoted by the
small tube and CPU power is denoted by a small hexagon. Disk space is typically
allocated for multiple subsequent tasks while CPUs are typically released after
each task. Task prepare log claims space for storing the entire log and the overall
results. This space is only returned at the end of the workflow. Since the genetic
algorithm is a more complex process, the algorithm has its own private data
space.

In the remainder of this paper, we will use process mining and in particular
the example shown in Figure 1 to illustrate our approach.

3 Grid Workflows

This section introduces the basic grid concepts relevant for the remainder of this
paper. As indicated, we will model grids in terms of CPNs and emphasize the
workflow aspect of grid computing.

The standard grid architecture [16] is composed of several layers: (1) the in-
frastructure layer composed of resources (e.g. databases, cluster computers), (2)
the application layer, where the grid user describes the processes to be submitted
to the grid, and (3) the middleware layer, which is in charge of finding a resource
for the user requirements and other management issues (e.g. monitoring, fault
recovery).

Infrastructure layer The grid infrastructure is a widely distributed infrastruc-
ture, composed of different resources, linked via the Internet. The resources allow
for the execution of different tasks. Examples of typical resources in a grid infras-
tructure are computing elements (e.g. cluster computers) and storage elements



(e.g databases) [3]. A computing element is usually described in terms of its com-
puting power and software available, e.g. number of CPU’s, installed software
packages, main memory size, operating system. A storage element is a resource
that allows grid users to store and manage files together with the space assigned
to them. The typical characteristics of a storage element are the software used to
manage the device, the allocated space, and, an identifier of the data contained.
A storage element typically contains multiple storage areas.

We define the resource capacity as a set of characteristics that we will refer
to as properties. Examples are the number of CPU’s and HDD size. The capacity
of a resource can be described as a multiset of properties, e.g., two CPU’s and
one disk of 1GB.

Because a resource may host applications according to the available capacity,
we split the capacity in free capacity (i.e., available computing power or stor-
age to be used by a grid job) and busy capacity (i.e., capacity that is already
allocated/reserved for the performance of certain jobs). We refer to the set of
resources composing a grid infrastructure as the resource pool. In the model pre-
sented in this paper, we assume that the resource pool is fixed and that the
resources are reliable, i.e. if an application was allocated on a resource, then the
resource will eventually perform it.

Application layer The upper level of a grid architecture is composed of user
applications. Such applications define the jobs to be executed using the grid
infrastructure. Since jobs may causally depend on one another, the application
level needs to specify the “flow of work”. Therefore, we use the term grid workflow
to refer to the processes specified at the application level. Note that there may
be different grid workflows using the same infrastructure and that there may be
multiple instances of the same grid workflow (referred to as process instances).
For each process instance, a partially ordered set of jobs needs to be executed.
The grid workflow defines the dependencies between jobs and the properties
required per job. In a grid workflow one can find the classical workflow patterns
[7] but also patterns focusing on resource allocation, e.g., allocating multiple
resources to the same job.

Middleware layer The linking between user jobs and resources is done by a
matchmaker (or broker). In this paper we restrict ourselves to middleware work-
ing according to a “just-in-time” strategy, i.e., at the moment job instance must
be executed, the matchmaker searches for an available resource matching the
job, and if it exists the job is allocated to that resource. After the allocation,
the free capacity of the resource and the busy capacity are updated according
to the job requirements.

In the next section we map the concepts mentioned onto CPNs with two
goals in mind: (1) to clarify the basic grid concepts and (2) to show that Petri-
net based analysis is useful and feasible in a grid context. Figure 2 illustrates
the grid model we aim to represent in terms of CPNs. The model is composed of
the grid workflows (i.e., application layer) submitted to the grid and a common
resource pool, containing all the infrastructure resources with their capacity (i.e.,



Fig. 2. Grid Model

infrastructure layer). The grid model assumes a very simple middleware layer
and will be represented by the allocation/deallocation of the jobs instances only.

4 Modeling Grids in Terms of CPNs

In the previous section, we have presented the main components of a grid model.
In this section, we describe how to model a grid using Colored Petri Nets (CPN)
[20] and present some basic design patterns [7] that support the modeling of
dependencies between grid jobs. We conclude the section by providing a CPN
model for the running example presented in Section 2.

4.1 Mapping the grid model onto CPNs

As we discussed in the previous section, a grid model is composed of a set of
grid workflows, a pool of resources, and allocation/deallocation mechanisms. In
our examples, we typically focus on a single grid workflow, however the same
approach can be used to model multiple grid workflows sharing a grid infras-
tructure.

We model the grid infrastructure in terms of a resource pool place. This place
contains tokens corresponding to the resources. Each resource has a unique id
modeled by the color set ResID. The capacity of a resource is expressed in
terms of available (free) capacity and allocated (busy) capacity. Both types of
capacity are modeled as a multiset of properties. Recall that a property refers to
a single resource characteristic, e.g., a capability like storage space, computing
power, bandwidth, etc. The color set Prop is used to model properties (e.g. CPU,
storage area), and color set Props represents a multiset of properties. Note that
Props is defined as a list of Prop elements to model multisets. The tokens of
the resource pool place are of the color set Res. This color set incorporates the
resource id, the available capacity, and allocated capacity.

The grid workflows are modeled as an extension of the classical workflow
nets [4] and there are also clear relations with the so-called colored workflow



Fig. 3. Color sets for a grid workflow

nets [8]. Like in a workflow net there is a single input start place and a single
output end place, and every node of the grid workflow is on a path from the
start place to the end place. However, we distinguish between two types of
places: job places and control places. Job places correspond to the execution of
jobs while using resources from the grid and control places are merely added for
the routing of process instances. Job places are mirrored by requirement places
indicating the resource requirements in terms of a multiset of properties. Another
difference with classical workflow nets is that transitions do not represent tasks
but correspond to the allocation or deallocation of resources, i.e., we are forced
to model the workflow at a finer level of granularity. Initially, all job places
and control places are empty and only the requirement places contain tokens.
Moreover, for each process instance a token is added to the start place.

Process instances are referred to using the color set PInst. All control places,
including the start and end place, are of type PInst. Job places are of type Job.
This color set is defined as the product of a process instance id (color set PInst)
and a resource id (color set ResID).1 Each requirement place contains one token
of type Props, i.e., the token holds a multiset of properties denoting the resource
requirements of the corresponding job place.

In the CPN model we assume a very simple middleware layer, therefore the
binding between the grid infrastructure and the grid workflows can be realized
through allocation and deallocation transitions. When a job is created, i.e., a
token is put on a job place, an allocation transition fires. If a job completes, i.e.,
a token is removed from a job place, a deallocation transition fires.

Figure 3 presents all the basic color sets defined for the grid model. In the
definitions, we define also the basic operations for multisets. These operations
will be used for modeling with allocating and deallocation capacity.

Figure 4 shows a very simple example of a grid model which uses the color
sets mentioned before. There is one start and one end place and these are the
only two control places. There is just one job place j of type Job. The cor-
responding requirements place is named r and is of type Props. The resource

1 Note that this color set assumes that a job cannot use multiple resources. Later we
will relax this requirement.



i ireq

(i,rid)

req
t2t1

[en((rid,free,busy),req)]

j1

Job

r1

["cap1"]

Props PInst

PIinit

PInst

start end

take((rid,free,busy),req) return((rid,free,busy),req)

resources
(rid,free,busy) (rid,free,busy)

Res

ResInit

(i,rid)

Fig. 4. A simple job example

pool is modeled by the place resources. An allocation transition t1 precedes
the job place in Figure 4. The guard of this transition is given by the function
en((rid,free,busy),req). The transition is enabled if there exists at least one re-
source (rid) such that the token in r place (req) is a subset of the multiset free
(i.e. free resource capacity).

By the firing of transition t1, a token containing the process id (i) and the
allocated resource id (rid) is created for the job place j. At the same time,
the allocated resource characteristics are retrieved from the resource pool. The
token of the resource pool is modified by function take((rid,free,busy),req). The
function modifies the capacity occupied by the job as busy capacity.

When the job is finished, the deallocation transition fires (transition t2 in
Figure 4). The function return((rid,free,busy),req) modifies the token of the re-
source that the job releases, by updating the free capacity of the resource (i.e.
the new free capacity is the reunion of the free capacity with the capacity equal
with the job requirements).

4.2 Basic patterns

In the previous subsection we modeled a grid model containing just one grid
workflow and this grid workflow consisted of only one job. However, it is obvious
how these types and naming conventions can be used to represent larger grid
models. To illustrate this we define some basic patterns to help a grid user to
define his process. These are inspired by the workflow patterns in [7]. However,
we also provide a pattern dedicated to multiple resource allocation.

Atomic job In the previous section, we have presented a simple job example (see
Figure 4). The quadruple job place, requirement place, allocation transition,
and deallocation transition is the most simple pattern that we use in our model.
All the other patterns are composed of this pattern. Therefore, for simplicity
we define a subpage containing this pattern.The user can use this subpage in
different locations of his grid workflow, adapting the marking of the req place
according to the job description. Note that for each job type a different subpage
can be defined that is reused multiple times.
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Parallel pattern A common pattern in grid computing is the execution of differ-
ent jobs in parallel. Figure 5 presents the parallel pattern. Since the matchmaker
assumes all the jobs to be independent, two tokens are created so that the match-
maker allocates each job when it finds a suitable resource for this job. The jobs
can in principle be different, therefore they are mapped to two different Job sub-
pages. The process instance will wait till both jobs finish, and then the transition
t2 fires, which terminates the execution of the pattern.

Multiple resource allocation A typical scenario in grid computing is that multiple
resources are needed for the execution of a job. For example, a job requires
access to a storage area, that contains some data and, after some computation,
the result is written back to the same storage area. The storage area has to be
reserved till the computation is finished. Figure 6 illustrates one of the possible
patterns to realize this. This pattern creates a job to reserve one of the resources,
and then looking for a second resource. The first resource remains locked till the
second resource finishes the computation.
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The disadvantage of the pattern illustrated by Figure 6 is that it can lead to
deadlocks when a second resource is not available in the resource pool because
it is already locked by other jobs.

Figure 7 presents another pattern to realize the allocation of multiple re-
sources. For each of the required resources, the user creates a requirement place:
r1 and r2. From the resource pool the allocation transition retrieves two re-
sources, each one corresponding to one of the requirements places. In this case
the token of the job place contains one process instance id and two resources ids.
The deallocation transition will release both resources. In this second pattern,
there may be multiple resources involved in the same job. This makes the model
less simple and may lead to modeling errors such as releasing the wrong resource.

4.3 Process mining example mapped to CPN

Figure 8 shows the CPN model of the process mining example already described
in Section 2. In Figure 1 this grid model was introduced using a YAWL diagram.
Here we focus on the mapping of Figure 1 into Figure 8 using the patterns defined
before.

First, a storage area has to be allocated (places SA allocated and req for
SA). The storage area will be used to store and to retrieve the results of all the
executed computations. The allocated storage area will be released only when all
the other jobs of the same instance have finished. We choose to use the multiple
resource pattern shown in Figure 6 to model this behavior.

The sequence of jobs prepare log and analyze log follows the sequence pat-
tern. After, the analyze log, a choice between different mining algorithms should
be made. To model this choice we introduce a new color set ChAlg that can
take three values: AA, HM, and GM. Each of the three values corresponds to
the choice of one of the process mining tools: AA for the plug-in using the α-
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algorithm, HM for heuristic miner, and GM for genetic miner. Note that place
c5 has PIChAlg as color set. This color set is the product of PInst and ChAlg.

After the selected algorithm is executed, job check conformance is submitted
to the grid. According to the results one of the algorithms (re-)starts or the
process ends. To make this choice we use a variable from the color set Choice,
that can take two values: restart to (re-)do one of the algorithms and finish to
end the process. Note that place c10 has PIChoice as color set. This color set is
the product of PInst and Choice.

For the execution of the α-algorithm and heuristic miner, a resource with
free CPU capacity is needed. On the other hand, the use of genetic algorithms
requires a more complex process (cf. Figure 9). A new storage area is allocated
in order to store/retrieve intermediate results of the genetic miner. Then a com-
puting element is used to partition the log and to set the parameters. N different
threads are created inside subpage PartitionLogSetParam (not shown here), and
on each thread the genetic miner algorithm is performed (a grid job requiring a
computing element). When all threads have finished, the results of the threads
are combined and analyzed (job check results). After the job check results ends,
all the process re-runs or it stops (for this choice an element of color set Choice
is used).

The example CPN model shows that it is indeed possible to model complex
computations using a grid infrastructure. Using CPN Tools we were able to
clarify the basic terms used in grid computing. Moreover, the allocation and
deallocation of resources may lead to deadlock problems as will be shown in the
next section. Because of this, the CPN model is also useful from an analysis
point of view.

5 Analysis of Grid Workflows

The analysis of grid workflows may include validation (i.e. checks whether the
workflow behaves as expected), verification (i.e. workflow correctness) and per-



formance analysis (i.e. evaluating whether time or cost requirements are ful-
filled). In this section we focus on a specific type of analysis: verification. The
verification of grid workflow is related to the correctness properties such as ab-
sence of deadlocks, livelocks and resource conflicts (cf. [14]). To verify these
properties, we use the state space analysis functionality provided by CPN Tools.
The analysis is conducted in two steps. First, we perform a soundness check. For
this purpose, we will extend the soundness property [10] for traditional work-
flow such that it takes into account the grid workflow characteristics. In the
second step, we verify whether there are any resource conflicts between differ-
ent jobs originating from different grid workflows and their instances. We also
show a more efficient deadlock analysis technique which allows us to look at one
instance in isolation.

5.1 Soundness check

Since we are interested in soundness, we assume in this subsection that the
resource pool has an “infinite” amount of resources (i.e. whenever a job claims
resources, available resources exist in the resource pool).

The correctness property that we want to establish is soundness. A traditional
workflow is sound if it satisfies the following property: if we put a token in the
start place, there is a possible path to reach the end place with just one token
from each reachable state, and if the end place is reached no “garbage” tokens are
left behind (i.e. all the places except the end place are unmarked). In our case,
because the grid workflow contains also requirements places and a resource place,
we have to extend the soundness property with the following two conditions: (1)
the marking of the requirements places remains the same for all the reachable
markings and (2) the resource pool place marking in the final state has the same
value as in the initial state.

The necessary and sufficient conditions that ensure that a grid workflow is
sound using the state space report of CPN Tools are the following: (1) there
exists only one dead marking, this marking should also be a home marking
(i.e. a marking reachable from all other markings) and there are no other home
markings, moreover this dead marking is indeed the desired final marking (i.e.
the marking meets the soundness conditions) and (2) the lower and upper bounds
of a requirement place marking are equal.

For Figure 8, CPN Tools generated a full state space of 91 nodes and 139 arcs
in less than one second for an initial state with just one process instance and a re-
source pool tokens2: 1‘("CE",["CPU","CPU","CPU","CPU","CPU","CPU","CPU",
"CPU","CPU","CPU","CPU"],[])++ 1‘("SE",["SA","SA","SA"],[]).

The state space report provided information about boundedness properties,
home properties and liveness properties as below3:

2 Note that we did not add infinitely many resources to the initial marking. However,
it is easy to check whether sufficient resources have been added by checking the multi
set bounds in the state space report.

3 We present a partial state space report that contains only the necessary information
to establish grid workflow soundness.



Boundedness Properties

-----------------------

Best Integer Bounds

Upper Lower

AlphaAlgorithm’r 1 1 1

AnalyzeLog’r 1 1 1

CheckConformance’r 1 1 1

CheckResults’r 1 1 1

GeneticMiner’req_for_SA 1 1

HeuristicMiner’r 1 1 1

PM’req_for_SA 1 1 1

PartitionLogSetParam’r 1 1

PrepareLog’r 1 1 1

RunAlg’r 1 1 1

Best Upper Multi-set Bounds

AlphaAlgorithm’r 1 1‘["CPU"]

AnalyzeLog’r 1 1‘["CPU"]

CheckConformance’r 1

1‘["CPU"]

CheckResults’r 1 1‘["CPU"]

GeneticMiner’req_for_SA 1

1‘["SA"]

HeuristicMiner’r 1 1‘["CPU"]

PM’req_for_SA 1 1‘["SA"]

PartitionLogSetParam’r 1

1‘["CPU"]

PrepareLog’r 1 1‘["CPU"]

RunAlg’r 1 1‘["CPU"]

Best Lower Multi-set Bounds

AlphaAlgorithm’r 1 1‘["CPU"]

AnalyzeLog’r 1 1‘["CPU"]

CheckConformance’r 1

1‘["CPU"]

CheckResults’r 1 1‘["CPU"]

GeneticMiner’req_for_SA 1

1‘["SA"]

HeuristicMiner’r 1 1‘["CPU"]

PM’req_for_SA 1 1‘["SA"]

PartitionLogSetParam’r 1

1‘["CPU"]

PrepareLog’r 1 1‘["CPU"]

RunAlg’r 1 1‘["CPU"]

Home Properties

-----------------------

Home Markings

[28]

Liveness Properties

-----------------------

Dead Markings

[28]

Dead Transition Instances

None

Live Transition Instances

None

From the boundedness properties, we observe that each of the requirement
places (i.e. r places) has a lower bound equal to the upper bound. Marking 28
is a home marking and a dead marking and it corresponds to the desired final
marking. Therefore, we conclude that the process mining grid workflow is sound.

5.2 Resource verification

The main problem in resource sharing is the potential of deadlocks when multiple
instances run in parallel and compete for the same resources step-by-step. There-
fore, we now look at the analysis of a grid model with multiple instances and a
limited set of resources. Using CPNTools we want to verify whether soundness
is jeopardized. We do this by looking for deadlocks.

Let us consider the process mining grid workflow again. For two process
instances and a resource pool containing the following tokens:

1‘("CE1",["CPU","CPU","CPU"],[])++1‘("SE1",["SA"],[])++1‘("SE2",["SA"],[])

CPN Tools generates a full state space with 1140 nodes and 2176 arcs in less
than 2 seconds. The state space report contains three dead markings and no
home markings.



Home Properties

-----------------------

Home Markings

None

Liveness Properties

-----------------------

Dead Markings

[420,456,952]

Dead marking 952 is the desired final marking (i.e. the grid model proper
terminates), and the other two (420,456) refer to instances where both of process
instances deploy the genetic miner concurrently. The deadlocks occur because
each of the instances needs an additional storage area, but the resource pool
depleted all available storage areas. Even if we increase the number of available
resources, the system will deadlock when the number of process instances running
in parallel is also increased.

In the following subsection, we propose a method to correct such a grid
workflow in order to ensure its proper termination independently from the num-
ber/type of available resources.

5.3 Correcting a resource constraint grid workflow

In [26], we studied resource-constraint processes with homogeneous resources
and we have shown that a necessary and sufficient condition that ensures proper
termination (i.e. absence of deadlocks violating e.g. the soundness property) is
that any path resulting in the claim of one or more resources should have a
successor path resulting in the release of some resources.

We verify the necessary and sufficient condition for each property type.
Therefore, we construct an automaton modeling the behavior of the system just
from the point of view of claiming and releasing of resources, abstracting from
all the the other possible events (i.e. those events are considered as silent steps).
Figure 10 presents the automaton for the process mining workflow. In state s1,
the system needs to reserve a computing element with a free CPU capacity, and
in state s3 a new storage area if the genetic miner algorithm is selected. The two
claims are made without being preceded by releases of resources providing the
same type of property. Therefore, the workflow does not satisfy the necessary

Fig. 10. Process mining automaton



Fig. 11. Modified process mining automaton

and sufficient condition (presented in [26]) neither for CPU property, neither for
SA property.

To avoid deadlocks the model shown in Figure 8 needs to be corrected. The
correction of the grid workflow is made by checking if there are enough resources
to execute all the jobs composing the workflow (cf. [26]). The resources are just
claimed and released, ensuring that the necessary and sufficient condition is
satisfied. The algorithm presented in [26] is applied for each property type.

For the running example, the corrected automaton, by joining the results
for each property type, is shown in Figure 11. The only modification made is
to claim and to release in state start two additional resources with properties
SA and CPU. For the corrected automaton, we observe that the necessary and
sufficient condition is fulfilled. We map the solution from the automaton to the

Fig. 12. The changed process mining workflow



CPN model, by changing the guard of the allocating transition of the first storage
area as shown in Figure 12. From the resource pool, three resources are required
(rid1, rid2 and rid3 ). Each of this resources must fulfill one of the requirements
of the jobs contained by the workflow. Just one resource is kept (rid1, as in the
original model), and the other two are released without any modification.

For the modified model, CPN Tools generates a full state space with 492
nodes and 664 arcs in less than one second. Just one marking is reported as
both a home marking and dead marking and it corresponds to the desired final
marking. Hence the grid model is sound.

6 Related Work

The idea of using grid workflows to model and enact complex scientific processes
and distributed resources such as computing elements and data has emerged
in the grid community in recent years. Grid workflow systems [1, 15, 25] have
been developed, but most of them support only directed acyclic graphs (DAGs)
as a modeling language. The disadvantage of using a DAG is that it does not
support loop patterns and choice patterns. Therefore, in the last years, Petri
Nets were introduced [12, 19] as a more powerful and suitable language to model
grid workflows. However, most of the work is focused on the practical realization
of grids, and less attention has been paid to providing a conceptual framework
to model grid workflows.

Many reseachers have applied Petri nets to workflow management [4, 27].
Note that these papers do not necessarily focus on grid workflows. Moreover,
these papers typically focus on a single aspect, e.g. control flow verification,
while ignoring the interplay between resources and workflows. However, there
have been some papers using CPNs to address other aspects of workflows, e.g.
[8]. To address the deadlock problem in grids we propose to use a variant of the
technique proposed in [26].

The running example comes from the process mining domain. In [13], the
authors proposed a process mining workflow that can call process mining algo-
rithms using a process engine. More details related to process mining concepts
and algorithms can be found in [11, 22, 24].

7 Conclusion

In this paper, we propose a conceptual framework to use CPN for modeling and
verifying of grid workflows. Grid concepts such as “job”, “grid workflow” and
“resource” have been explained in order to map them on CPNs.

We proposed some basic patterns in order to model common grid behavior
such as parallel execution and multiple resources allocation. Combining these
patterns, a complex grid workflow was build up.

Moreover, we showed that CPN Tools can be used to conduct soundness and
resource verification to find potential deadlocks. The state space analysis from



CPN Tools is able to discover deadlocks when multiple instances run in parallel
while incrementally claiming similar resources. Based on our previous work [26],
we have corrected the model such that all instances terminate properly.

This paper is mainly conceptual. However, it is good to mention that we
are in the process of connecting YAWL, Globus, and ProM. YAWL [6] is used
as a workflow engine taking care of the orchestration. Globus [17] is an open
source software toolkit used for building Grid systems and applications but is not
process-aware. ProM [5] is used to execute the actual process mining activities.
ProM provides a plugable architecture with dozens of process mining algorithms
and a lot of functionalities related to filtering, conversion, conformance checking,
etc. Currently, ProM [5] aims at interactive mining. However, as shown in [13],
ProM can be adapted such that its functionality can be invoked by a workflow
engine.
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