
Fuzzy Mining – Adaptive Process Simplification
Based on Multi-Perspective Metrics

Christian W. Günther and Wil M.P. van der Aalst

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
{c.w.gunther, w.m.p.v.d.aalst}@tue.nl

Abstract. Process Mining is a technique for extracting process models from ex-
ecution logs. This is particularly useful in situations where people have an ide-
alized view of reality. Real-life processes turn out to be less structured than peo-
ple tend to believe. Unfortunately, traditional process mining approaches have
problems dealing with unstructured processes. The discovered models are often
“spaghetti-like”, showing all details without distinguishing what is important and
what is not. This paper proposes a new process mining approach to overcome this
problem. The approach is configurable and allows for different faithfully simpli-
fied views of a particular process. To do this, the concept of a roadmap is used as
a metaphor. Just like different roadmaps provide suitable abstractions of reality,
process models should provide meaningful abstractions of operational processes
encountered in domains ranging from healthcare and logistics to web services
and public administration.

1 Introduction

Business processes, whether defined and prescribed or implicit and ad-hoc, drive and
support most of the functions and services in enterprises and administrative bodies of
today’s world. For describing such processes, modeling them as graphs has proven to
be a useful and intuitive tool. While modeling is well-established in process design, it
is complicated to do for monitoring and documentation purposes. However, especially
for monitoring, process models are valuable artifacts, because they allow us to commu-
nicate complex knowledge in intuitive, compact, and high-level form.

Process mining is a line of research which attempts to extract such abstract, compact
representations of processes from their logs, i.e. execution histories [1–3, 5–7, 10, 14].
The α-algorithm, for example, can create a Petri net process model from an execution
log [2]. In the last years, a number of process mining approaches have been developed,
which address the various perspectives of a process (e.g., control flow, social network),
and use various techniques to generalize from the log (e.g., genetic algorithms, theory
of regions [12, 4]). Applied to explicitly designed, well-structured, and rigidly enforced
processes, these techniques are able to deliver an impressive set of information, yet their
purpose is somewhat limited to verifying the compliant execution. However, most pro-
cesses in real life have not been purposefully designed and optimized, but have evolved
over time or are not even explicitly defined. In such situations, the application of pro-
cess mining is far more interesting, as it is not limited to re-discovering what we already
know, but it can be used to unveil previously hidden knowledge.

2

Over the last couple of years we obtained much experience in applying the tried-
and-tested set of mining algorithms to real-life processes. Existing algorithms tend to
perform well on structured processes, but often fail to provide insightful models for less
structured processes. The phrase “spaghetti models” is often used to refer to the results
of such efforts. The problem is not that existing techniques produce incorrect results.
In fact, some of the more robust process mining techniques guarantee that the resulting
model is “correct” in the sense that reality fits into the model. The problem is that the
resulting model shows all details without providing a suitable abstraction. This is com-
parable to looking at the map of a country where all cities and towns are represented by
identical nodes and all roads are depicted in the same manner. The resulting map is cor-
rect, but not very suitable. Therefore, the concept of a roadmap is used as a metaphor to
visualize the resulting models. Based on an analysis of the log, the importance of activ-
ities and relations among activities are taken into account. Activities and their relations
can be clustered or removed depending on their role in the process. Moreover, certain
aspects can be emphasized graphically just like a roadmap emphasizes highways and
large cities over dirt roads and small towns. As will be demonstrated in this paper, the
roadmap metaphor allows for meaningful process models.

In this paper we analyze the problems traditional mining algorithms have with less-
structured processes (Section 2), and use the metaphor of maps to derive a novel, more
appropriate approach from these lessons (Section 3). We abandon the idea of perform-
ing process mining confined to one perspective only, and propose a multi-perspective
set of log-based process metrics (Section 4). Based on these, we have developed a flexi-
ble approach for Fuzzy Mining, i.e. adaptively simplifying mined process models (Sec-
tion 5).

2 Less-Structured Processes – The Infamous Spaghetti Affair

The fundamental idea of process mining is both simple and persuasive: There is a pro-
cess which is unknown to us, but we can follow the traces of its behavior, i.e. we have
access to enactment logs. Feeding those into a process mining technique will yield an
aggregate description of that observed behavior, e.g. in form of a process model.

In the beginning of process mining research, mostly artificially generated logs were
used to develop and verify mining algorithms. Then, also logs from real-life work-
flow management systems, e.g. Staffware, could be successfully mined with these tech-
niques. Early mining algorithms had high requirements towards the qualities of log files,
e.g. they were supposed to be complete and limited to events of interest. Yet, most of
the resulting problems could be easily remedied with more data, filtering the log and
tuning the algorithm to better cope with problematic data.

While these successes were certainly convincing, most real-life processes are not
executed within rigid, inflexible workflow management systems and the like, which en-
force correct, predictive behavior. It is the inherent inflexibility of these systems which
drove the majority of process owners (i.e., organizations having the need to support
processes) to choose more flexible or ad-hoc solutions. Concepts like Adaptive Work-
flow or Case Handling either allow users to change the process at runtime, or define
processes in a somewhat more “loose” manner which does not strictly define a specific

3

path of execution. Yet the most popular solutions for supporting processes do not en-
force any defined behavior at all, but merely offer functionality like sharing data and
passing messages between users and resources. Examples for these systems are ERP
(Enterprise Resource Planning) and CSCW (Computer-Supported Cooperative Work)
systems, custom-built solutions, or plain E-Mail.

It is obvious that executing a process within such less restrictive environments will
lead to more diverse and less-structured behavior. This abundance of observed behav-
ior, however, unveiled a fundamental weakness in most of the early process mining
algorithms. When these are used to mine logs from less-structured processes, the result
is usually just as unstructured and hard to understand. These “spaghetti” process mod-
els do not provide any meaningful abstraction from the event logs themselves, and are
therefore useless to process analysts. It is important to note that these “spaghetti” mod-
els are not incorrect. The problem is that the processes themselves are really “spaghetti-
like”, i.e., the model is an accurate reflection of reality.

PYSY
(complete)

108

 0.971

 47

PYWZ
(complete)

316

 0.917

 39

DSYE
(complete)

69

 0.667

 3

LEWP
(complete)

2
 0

 1

 0.917

 27

 0.994

 197

OSYW
(complete)

181

 0.833

 41

OSCW
(complete)

94

 0.667

 31

YWNB
(complete)

84

 0.833

 19

DSWZ
(complete)

31

 0.667

 11

ZEZR
(complete)

1
 0.5

 1

IWLH
(complete)

252

 0.99

 162

IWNP
(complete)

303

 0.527

 75

 0.986

 159

UNYK
(complete)

35

 0.667

 18

CEOI
(complete)

450

 0.88

 61

ONIX
(complete)

12

 0.8

 12

IWOL
(complete)

230

 0.968

 99

IWDB
(complete)

64

 0.588

 43

 0.75

 60

VPMO
(complete)

4

 0.5

 2

IWOW
(complete)

144

 0.857

 24

 0.964

 61

OSIX
(complete)

20

 0.5

 4

ONXB
(complete)

169

 0.75

 19

KZWZ
(complete)

224

 0.75

 15

LEYW
(complete)

115

 0.75

 14

PYSK
(complete)

83

 0.971

 38

OSWZ
(complete)

78

 0.667

 14

YWNA
(complete)
1651

 0.75

 26

 0.968

 46

ONWZ
(complete)

34 0.75

 7

YWZP
(complete)

23 0.667

 10

 0.987

 125

OSZY
(complete)

28

 0.8

 10

AHCW
(complete)

1

 0.5

 1

 0.955

 52

OSVO
(complete)

210

 0.769

 29

OSIO
(complete)

5

 0.667

 2

 0.991

 149

ONYW
(complete)

55

 0.8

 25

OSPD
(complete)

17

 0.5

 9

 0.923

 17

 0.5

 5

UNHL
(complete)

91

 0.979

 74

VPPQ
(complete)

184

 0.667

 11

UNEL
(complete)

155

 0.977

 86

UNLE
(complete)

41

 0.545

 18

 0.881

 36

 0.5

 16

UNEN
(complete)

44

NEOI
(complete)

15
 0.75

 9

DNEZ
(complete)

6

 0.833

 6

 0.978

 50

YWHY
(complete)

44

 0.75

 27
YWWY

(complete)
94

 0.889

 32

 0.8

 29

YWLY
(complete)

138
 0.886

 53

HQOQ
(complete)
6163

 0.667

 53

ONOW
(complete)

5

 0.5

 2

ONZY
(complete)

394

 0.992

 244

ONVL
(complete)

155

 0.756

 70

ONZO
(complete)

173

 0.956

 78

 0.955

 28

DSYN
(complete)

57
 0.921

 37

DSYV
(complete)

52

 0.939

 49

DSPY
(complete)

35

 0.8

 18

DSLQ
(complete)

30

 0.909

 16

 0.667

 10

 0.917

 13

OSYN
(complete)

106

 0.5

 7

 0.957

 52

OSDL
(complete)

80

 0.821

 28

OSAT
(complete)

8

 0.75

 5

 0.929

 19

DSSV
(complete)

234

 0.966

 50

OSAI
(complete)

8

 0.8

 5

OSHY
(complete)

224

 0.989

 153

AHZI
(complete)

68

 0.878

 50

 0.983

 88

DSSN
(complete)

304

 0.854

 129

OSVZ
(complete)

18

 0.5

 4

APPP
(complete)
9110

 0.794

 60

 0.8

 43

 0.9

 28

 1

 7387

AHHW
(complete)

197

 0.917

 76

ONVY
(complete)

160

 0.941

 53

ZEDS
(complete)

195

 0.828

 118

XIEO
(complete)
1038

 0.929

 366

DNLP
(complete)

264

 0.929

 117

AIVY
(complete)

552

 0.941

 178

HQQL
(complete)
1153

 0.909

 379

KZPA
(complete)

224

 0.941

 100

TUTC
(complete)

23

 0.667

 23

OSYR
(complete)

19 0.5

 11

OSXZ
(complete)

10

 0.5

 2

WSII
(complete)

13
 0.5

 6

YVYW
(complete)

1

 0.5

 1

AISB
(complete)

4

 0.5

 3

XIWW
(complete)
1422

 0.996

 770
YWSM

(complete)
648

 0.923

 123

AICK
(complete)

56
 0.936

 49

 0.984

 165

OSHB
(complete)

231

 0.944

 65

OSZO
(complete)

61
 0.8

 28

OSOS
(complete)

35

OSSP
(complete)

358

 0.667

 17

DSSA
(complete)

238

 0.98

 147

 0.969

 66

VPPN
(complete)

2

 0.5

 1

DSVM
(complete)

29

 0.833

 12
 0.756

 42

 0.984

 128

SVEI
(complete)

302

 0.825

 38

POZI
(complete)

263

 0.8

 20

 0.932

 51

 0.991

 173

SCEI
(complete)

449

 0.944

 126

OSOI
(complete)

291

 0.981

 110

POLA
(complete)
1255

 0.923

 169

OSLP
(complete)

75

 0.8

 5

ONCZ
(complete)

11

 0.5

 2

 0.5

 5

 0.923

 89

 0.998

 871

OSWL
(complete)

103

 0.877

 54

AISW
(complete)

430
 0.667

 34

ONPI
(complete)

264

 0.819

 104

LELY
(complete)

126

 0.667

 12

KZOL
(complete)

166

 0.8

 36

SPWV
(complete)

114

 0.929

 28

ONYZ
(complete)

7

 0.5

 6

OSPL
(complete)

4

 0.5

 1

 0.667

 20

 0.995

 281

YHLH
(complete)

749

 0.918

 127

 0.994

 437

AHHJ
(complete)

264

 0.972

 56

 0.942

 84

SPWB
(complete)

214

 0.938

 54

AHBL
(complete)

271

 0.981

 45

AISY
(complete)

845

 0.917

 43

DSYA
(complete)

3

 0.5

 2

 0.99

 154

AHCA
(complete)

206

 0.978

 51

 0.888

 51

 0.986

 114

 0.889

 58

DSNA
(complete)
1159

 0.833

 36

 0.857

 8

 0.997

 1054 DSCL
(complete)

3
 0.5

 3

DSIC
(complete)

20

 0.75

 11

LEOJ
(complete)

7

 0.667

 5

DSRY
(complete)

2

 0.5

 2

 0.5

 7

 0.667

 55

 0.986

 104

OONO
(complete)

28

 0.5

 6

 0.8

 5

 0.974

 71

ONAZ
(complete)

171

 0.909

 41

ONHL
(complete)

264

 0.974

 108

VPHT
(complete)

118

 0.975

 42

ONYN
(complete)

142

 0.942

 88

ONIZ
(complete)

23 0.75

 8

LEVN
(complete)

5

 0.5

 2

VPNY
(complete)

10

 0.5

 1

 0.982

 59

VPNH
(complete)

160

 0.854

 53

 0.983

 75

ONLW
(complete)

100

 0.978

 46

UNEA
(complete)

239

 0.941

 36

VPNE
(complete)

15

 0.667

 2

 0.957

 52

 0.75

 24

 0.909

 14

 0.985

 94

NEOW
(complete)

60

 0.923

 34

NEPL
(complete)

47

 0.885

 26

 0.909

 19

 0.667

 24

NEWN
(complete)

96

 0.667

 23

 0.958

 49

 0.985

 161

KZOO
(complete)

26

 0.8

 18

OVWZ
(complete)

21 0.5

 6

LEWO
(complete)

2

 0.5

 2

 0.941

 37

XISH
(complete)

866

 0.833

 59

OSEL
(complete)

1

 0.5

 1

 0.9

 65

 0.995

 285

 0.833

 29

 0.667

 29

 0.8

 46

 0.997

 729

AIVM
(complete)

130

 0.667

 44

YWOK
(complete)

856

 0.998

 604

YWVP
(complete)

469
 0.769

 134

AHMK
(complete)

1

 0.5

 1

 0.991

 112

 0.923

 46

 0.997

 407

YWXB
(complete)

257

 0.896

 92

 0.917

 64

 0.984

 69

SVPZ
(complete)

203

 0.98

 64

OSAX
(complete)

6

 0.833

 5

AHNP
(complete)

301

 0.993

 253

AHMI
(complete)

10

 0.875

 8

 0.997

 370

 0.8

 40

HDEI
(complete)

40

 0.5

 3

TUII
(complete)

90

 0.667

 9

 0.995

 245

 0.667

 27

 0.999

 1471

 0.812

 101

AISI
(complete)

842

 0.75

 27

IOII
(complete)

243
 0.872

 43

BKZV
(complete)

4

 0.5

 1

 0.993

 158

 0.881

 73

 0.9

 62

 0.976

 47
YWPZ

(complete)
92

 0.944

 54

CESO
(complete)

123

 0.82

 45

 0.875

 85

 0.977

 55

 0.921

 40

 0.989

 123

SCPZ
(complete)

154

 0.889

 28

DNWZ
(complete)

22

 0.667

 8

 0.994

 168

HNRN
(complete)

49

 0.944

 27

AHZE
(complete)

1

 0.5

 1

VPPK
(complete)

350

 0.904

 80

 0.986

 154

 0.9

 38

 0.909

 72

 0.964

 25

 0.984

 101

VPHA
(complete)

102
 0.9

 43

 0.981

 173

 0.978

 44

 0.909

 37

ONOI
(complete)

703

 0.667

 54

 0.941

 104

 0.966

 56

ONHI
(complete)

78

 0.947

 60

ONHB
(complete)

178

 0.952

 79

ONHY
(complete)

74

 0.983

 64

ONNY
(complete)

191

 0.938

 64

 0.988

 108

 0.75

 77

 0.75

 60

 0.998

 522

VPHN
(complete)

279

 0.867

 140

 0.985

 136

 0.75

 97

 0.985

 151

 0.75

 18

 0.985

 83

LEJO
(complete)

7 0.5

 5

LEJV
(complete)

2

 0.5

 1

AHLZ
(complete)

5

 0.5

 1

PONA
(complete)

65

 0.667

 11

 0.938

 38

 0.98

 91

ONIY
(complete)

117

 0.921

 70

 0.981

 70

 0.97

 43

HQWL
(complete)

221

 0.99

 165

HQXZ
(complete)

83

 0.759

 35

 0.75

 17

 1

 5207

INCY
(complete)

50

 0.812

 45

HQXB
(complete)

775

 0.909

 277

KZZL
(complete)
1427

 0.917

 270

HQOH
(complete)

59

 0.848

 59

AIYW
(complete)

114

 0.941

 67

BLZI
(complete)

3

 0.5

 3

NWYA
(complete)

1

 0.5

 1

 0.968

 47

HQOZ
(complete)

601

 0.75

 13

HQHI
(complete)
4504

 1

 4245

INKY
(complete)

93

 0.963

 44

INLO
(complete)

119

 0.885

 35

KZOY
(complete)

122 0.875

 35

 0.982

 84

LEJE
(complete)

50

 0.923

 41

LEOO
(complete)

85

 0.914

 37

LELZ
(complete)

10

 0.75

 3

 0.917

 35

LEVL
(complete)

176

 0.786

 43

 0.967

 63

ZEPZ
(complete)

141

 0.955

 121

ZELC
(complete)

304

 0.988

 128

 0.9

 117

 0.975

 109

KZOI
(complete)

107

 0.909

 42

OVNA
(complete)

155

 0.909

 21

 0.929

 253

 0.998

 629

AIHT
(complete)

87

 0.978

 53

OVLE
(complete)

107

 0.875

 16

 0.932

 53

TURC
(complete)

53

 0.95

 26

BKXT
(complete)

1

 0.5

 1

 0.929

 152

 0.909

 37
 0.977

 111

 0.923

 15

OONV
(complete)

26

 0.667

 9

 0.667

 14

 0.909

 11

OPNO
(complete)

2

 0.5

 1

 0.762

 67

 0.75

 62

 0.99

 107

AIVJ
(complete)

7 0.5

 1

HQJW
(complete)

2

 0.5

 1

AIGP
(complete)

877

 0.983

 85

 0.996

 445

XISV
(complete)

418
 0.917

 149

 0.929

 32

CNNN
(complete)

60

 0.743

 46

HDEA
(complete)

243

 0.727

 18

HDWE
(complete)

43

 0.833

 6

TUGP
(complete)

73

 0.688

 19

DSCW
(complete)

20

 0.667

 4

 0.944

 95

 0.957

 47

 0.917

 15

 0.994

 230

AINO
(complete)

270

 0.872

 47

ZENC
(complete)

806

 0.933

 101

 0.909

 53

 0.75

 29

 0.976

 112

HQPI
(complete)

48

 0.667

 7

 0.8

 31

 0.909

 70

INOL
(complete)

53 0.909

 34

 0.955

 35

 0.917

 12

INOM
(complete)

44

 0.861

 38

 0.96

 27

HQEL
(complete)

256

 0.8

 16

 0.909

 385

 0.998

 390

 0.857

 50

 0.992

 205

 0.75

 14

 0.893

 42

 0.97

 30

 0.991

 187

 0.75

 32

 0.75

 37

INVW
(complete)

42

 0.727

 17 0.929

 22

 0.667

 5

 0.976

 41

 0.963

 47

OVNZ
(complete)

163

 0.828

 56

 0.983

 97

HQLE
(complete)
6010

 0.833

 66

 0.941

 250

 0.934

 160

 0.996

 285

OSOL
(complete)

28
 0.667

 6

TUXW
(complete)

1

 0.5

 1

HQQY
(complete)

185

 0.962

 83

HQLY
(complete)

80

 0.902

 62

HQLK
(complete)

1

 0.5

 1

 0.896

 79

 0.909

 425

 0.998

 682

 0.981

 56

 0.857

 30

 0.667

 10

 0.845

 96 1

 5791

TUWI
(complete)

43

 0.667

 27

KZEY
(complete)

43
 0.667

 18

HQXY
(complete)

12

 0.667

 4

LEOR
(complete)

4

 0.5

 3

 0.998

 651

ZENA
(complete)
1094

 0.795

 151

 0.939

 113
 0.999

 931

 0.941

 104

 0.904

 78

 0.99

 115

 0.711

 52

 0.998

 779

KZWN
(complete)

87

 0.964

 55

 0.516

 30

LGZI
(complete)

6

 0.5

 1

 0.917

 262

 0.75

 160

 0.999

 1124

TUJI
(complete)

296

 0.889

 13

HLPA
(complete)

122

 0.75

 21

AIHN
(complete)

23

 0.667

 3

 0.909

 98

DSPO
(complete)

3

 0.5

 1

 0.833

 30

HDOE
(complete)

10

 0.5

 1

CWNW
(complete)

782

 0.667

 15

BKZI
(complete)

8 0.5

 1

KZZO
(complete)

111

 0.955

 46

 0.929

 74

 0.998

 689

AINP
(complete)

7

 0.5

 2

OSIZ
(complete)

161

 0.917

 28

AIYB
(complete)

2

 0.667

 2

 0.875

 80

 0.995

 312

 0.987

 171

POZW
(complete)

103

 0.933

 75

 0.8

 43

 0.933

 15

 0.933

 27

 0.97

 72

OVBK
(complete)

84

 0.932

 53

 0.941

 29

 0.964

 22

 0.955

 29

YWWP
(complete)

226

 0.994

 173

ZEIN
(complete)

887

 0.923

 15

CWSW
(complete)

177
 0.971

 34

 0.889

 59

 0.998

 743

ZEBZ
(complete)

179

 0.917

 56

ZEWZ
(complete)

9

 0.5

 4

HQLI
(complete)

28

 0.75

 5

 0.909

 18

 0.993

 158

IOIK
(complete)

76
 0.617

 67

 0.938

 31

 0.952

 26

DSLI
(complete)

7 0.5

 3

 0.881

 51

 0.989

 121

 0.667

 18

TUMI
(complete)

409

 0.995

 310

 0.923

 10

HDPT
(complete)

145

 0.833

 10

BKMI
(complete)

195

 0.923

 60

TUMK
(complete)

40

 0.571

 16

 0.848

 39

 0.986

 97

SCNI
(complete)

4

 0.5

 1

 0.917

 20

 0.944

 73

CNAT
(complete)

65

 0.95

 24

CNNS
(complete)

68

 0.889

 40

 0.794

 29

CNIK
(complete)

43

 0.971

 42

 0.941

 16

 0.923

 18

 0.938

 17

TURI
(complete)

53

 0.839

 34

 0.909

 15

TURK
(complete)

42

 0.825

 38

 0.9

 20

TUSC
(complete)

166

 0.833

 17

 0.967

 36

SPWA
(complete)

129

 0.824

 72

 0.962

 45

SPWN
(complete)

120

 0.9

 74

 0.957

 45

SPWI
(complete)

99

 0.963

 72

 0.914

 46

 0.909

 27

TUZV
(complete)

308

 0.986

 119

TUZC
(complete)

390

 0.929

 148

TUJV
(complete)

92

 0.889

 28

 0.929

 14

 0.987

 101

TUZI
(complete)

395

 0.944

 252

TUWV
(complete)

5

 0.5

 1

TUTP
(complete)

24

 0.667

 4

 0.944

 2

 0.98

 119

TUOK
(complete)

44
 0.975

 42

TUPK
(complete)

66

 0.954

 65

TUZK
(complete)

207

 0.969

 156

 0.875

 43

 0.972

 34

TUPC
(complete)

18

 0.75

 8

BKYA
(complete)

153

 0.97

 55

BKYI
(complete)

160

 0.892

 93

KZAL
(complete)

2

 0.5

 2

 0.952

 37

BKYV
(complete)

144

 0.884

 109

TUSI
(complete)

306

 0.667

 10

LEBR
(complete)

1
 0.5

 1

 0.933

 21

BLYI
(complete)

128

 0.797

 120

 0.968

 56

 0.978

 50

 0.96

 80

 0.957

 84

 0.938

 49

BCCC
(complete)

82

 0.667

 18

TUEW
(complete)

154

 0.688

 35

TUIV
(complete)

1

 0.5

 1

 0.97

 82

 0.8

 16

HDWP
(complete)

11

 0.5

 1

TUSK
(complete)

88

 0.667

 13

 0.667

 32

 0.989

 209

 0.923

 10

 0.941

 25

 0.941

 66

 0.981

 46

 0.5

 7

 0.667

 23 0.667

 8

 0.941

 43

 0.962

 51

TUJC
(complete)

121

 0.857

 22

 0.9

 37

 0.955

 32

TUIC
(complete)

24

 0.667

 7

TUJP
(complete)

203

 0.964

 99

 0.923

 86

TUGV
(complete)

39

 0.8

 13
 0.923

 56

 0.986

 100

TUJK
(complete)

131

 0.852

 124

TUMC
(complete)

192

 0.8

 49

LEBS
(complete)

197

 0.833

 38

TUAB
(complete)

12

 0.5

 2

TUYK
(complete)

1

 0.5

 1

TUKW
(complete)

73

 0.833

 12

 0.955

 45

 0.5

 1

 0.667

 7

 0.955

 28

 0.75

 12

 0.981

 100

HDPR
(complete)

35

 0.594

 31

 0.8

 8

BCCV
(complete)

55

 0.75

 22

TUGC
(complete)

79

 0.667

 20

 0.989

 134

 0.857

 19
 0.875

 21

 0.964

 36

 0.8

 18

 0.955

 41

 0.75

 27

 0.967

 49

TUGI
(complete)

152

 0.986

 119

TUGK
(complete)

40

 0.857

 21

HLPO
(complete)

4

 0.5

 3

BCCI
(complete)

177

 0.989

 139

BCCK
(complete)

63

 0.923

 30

 0.993

 231

 0.917

 54

TUTI
(complete)

26

 0.667

 7

 0.5

 8

 0.5

 4

 0.5

 1

 0.75

 21

 0.998

 744

 0.917

 56

 0.992

 122

DSLN
(complete)

30

 0.917

 13

DSLL
(complete)

36

 0.759

 28

DSZN
(complete)

25

 0.958

 25

DSLX
(complete)

48

 0.87

 20

 0.889

 26

 0.947

 20

DSZV
(complete)

22

 0.957

 22

DSLV
(complete)

26

 0.952

 20

 0.95

 15

HDOP
(complete)

7

 0.5

 6

 0.667

 3

 0.8

 30

TUMV
(complete)

96

 0.75

 41

 0.938

 38

AIWZ
(complete)

116

 0.75

 14

BKMA
(complete)

130

 0.8

 29

 0.944

 69

 0.875

 53

 0.99

 129

 0.923

 44

 0.96

 80

BKMV
(complete)

143

 0.912

 66

 0.75

 17

 0.923

 14

 0.917

 45

 0.7

 14
 0.955

 17

 0.923

 17

 0.929

 18

BCCW
(complete)

4

 0.4

 4

 0.75

 19

 0.667

 28

 0.8

 28

 0.5

 3

DSIY
(complete)

14

 0.667

 4

DSIT
(complete)

13
 0.727

 13

 0.875

 8

 0.533

 10

 0.5

 2

OSOW
(complete)

6

 0.5

 2

 0.833

 10

 0.941

 17

 0.5

 2

 0.667

 3

LECL
(complete)

211

 0.75

 23

 0.991

 159

 0.75

 37

 0.99

 135

TUIP
(complete)

39

 0.75

 28

 0.667

 20

 0.909

 86

SYPI
(complete)

6

 0.667

 5

 0.976

 85

HLPN
(complete)

99

 0.8

 33

 0.8

 2

 0.98

 66

TUIK
(complete)

24

 0.842

 21

 0.889

 43

 0.917

 50

BLOM
(complete)

22

 0.522

 20

BLAM
(complete)

63

HLPW
(complete)

32

 0.833

 11

TUQK
(complete)

1

 0.5

 1

 0.889

 18

 0.857

 26

 0.833

 26
 0.977

 76

BLBO
(complete)

10
 0.5

 2

 0.75

 15

 0.929

 19

TUWP
(complete)

39

 0.944

 19

 0.5

 7

 0.923

 20

 0.545

 17

TUWK
(complete)

23

 0.938

 22

 0.667

 2

 0.667

 12

 0.958

 64

 0.857

 15

 0.75

 27

HLPI
(complete)

6
 0.667

 4

 0.667

 7

BKZA
(complete)

1

 0.5

 1

TUTK
(complete)

13

 0.857

 13

 0.667

 7

 0.667

 12

 0.5

 2

 0.917

 31

 0.5

 2

 0.981

 111

 0.8

 11

OSHW
(complete)

4

 0.5

 1

OSXY
(complete)

10

 0.667

 2

 0.667

 40

 0.933

 30

AHWZ
(complete)

3

 0.5

 1

 0.5

 1

 0.864

 24

 0.964

 21

 0.75

 23

 0.667

 3

 0.5

 1

 0.5

 3

 0.938

 18

 0.909

 94

 0.989

 470

HQWP
(complete)

1

 0.5

 1

 0.5

 1

LEJC
(complete)

6

 0.667

 4

 0.75

 5

NEBI
(complete)

33

 0.917

 13

 0.947

 16

NEOO
(complete)

16
 0.562

 14

NEEK
(complete)

18

 0.9

 11

NELT
(complete)

11

 0.909

 11

NELO
(complete)

13

 0.909

 10

 0.667

 6

 0.5

 3

OSLL
(complete)

61

 0.75

 16

 0.941

 35

OSHD
(complete)

17

 0.667

 6

 0.5

 10

 0.812

 30

 0.667

 8

 0.667

 8

 0.933

 13

 0.5

 2

HLPJ
(complete)

1

 0.5

 1

ONWL
(complete)

21

 0.875

 7

 0.8

 10

 0.625

 6

 0.667

 4

 0.667

 5

 0.5

 2

BKXI
(complete)

1

 0.5

 1

BKXA
(complete)

1

 0.5

 1

 0.5

 1

 0.875

 17

 0.5

 1

 0.5

 2

 0.875

 21

 0.5

 1

 0.4

 4

 0.5

 1

 0.75

 3

 0.75

 4

 0.929

 14

 0.5

 3

 0.5

 2

 0.667

 2

 0.75

 2

 0.5

 1

 0

 1

 0.667

 7

TUAV
(complete)

5

 0.5

 7

 0.25

 4

TUAI
(complete)

1

 0.5

 1

TUAK
(complete)

2

 0.5

 1

 0.5

 2

 0.5

 1

 0.8

 6

 0.96

 22

 0.5

 2

 0.5

 2

 0.667

 2

 0.5

 4

 0.5

 1

AHMY
(complete)

10

 0.889

 8

HNWZ
(complete)

15

 0.25

 2

AHMH
(complete)

9

 0.727

 9

AHMW
(complete)

8

 0.889

 8

AHMO
(complete)

8

 0.889

 8 AHMZ
(complete)

8

 0.875

 8

AHMN
(complete)

8

 0.875

 8

 0.875

 6

 0.5

 1 0.917

 12

 0.5

 1

 0.5

 2

SCNA
(complete)

3

 0.5

 2

SCNK
(complete)

1
 0.5

 1

 0.5

 1

 0.5

 1

 0.5

 1

 0.667

 4

 0.75

 2

 0.5

 2

 0.5

 1

 0.5

 1

 0.5

 1

 0.5

 2

 0.5

 1

 0.5

 7

 0.5

 1

 0.5

 1

 0.5

 2

TUXK
(complete)

2

 0.5

 2

 0.5

 2
 0.5

 1

 0.5

 4

 0.833

 8

 0.833

 5

 0.75

 5 0.667

 2

 0.929

 17

 0.667

 4

 0.5

 1

 0.5

 1

 0.25

 2

PYYW
(complete)

1

 0

 1

 0.5

 3

 0.5

 1

 0.5

 1

 0.5

 1

Fig. 1. Excerpt of a typical “Spaghetti” process model (ca. 20% of complete model).

An example of such a “spaghetti” model is given in Figure 1. It is noteworthy that
this figure shows only a small excerpt (ca. 20%) of a highly unstructured process model.
It has been mined from machine test logs using the Heuristics Miner, one of the tradi-
tional process mining techniques which is most resilient towards noise in logs [14].
Although this result is rather useful, certainly in comparison with other early process
mining techniques, it is plain to see that deriving helpful information from it is not easy.

Event classes found in the log are interpreted as activity nodes in the process model.
Their sheer amount makes it difficult to focus on the interesting parts of the process. The
abundance of arcs in the model, which constitute the actual “spaghetti”, introduce an
even greater challenge for interpretation. Separating cause from effect, or the general
direction in which the process is executed, is not possible because virtually every node
is transitively connected to any other node in both directions. This mirrors the crux of
flexibility in process execution – when people are free to execute anything in any given
order they will usually make use of such feature, which renders monitoring business
activities an essentially infeasible task.

4

We argue that the fault for these problems lies neither with less-structured pro-
cesses, nor with process mining itself. Rather, it is the result of a number of, mostly
implicit, assumptions which process mining has historically made, both with respect
to the event logs under consideration, and regarding the processes which have gener-
ated them. While being perfectly sound in structured, controlled environments, these
assumptions do not hold in less-structured, real-life environments, and thus ultimately
make traditional process mining fail there.

Assumption 1: All logs are reliable and trustworthy. Any event type found in the
log is assumed to have a corresponding logical activity in the process. However,
activities in real-life processes may raise a random number of seemingly unrelated
events. Activities may also go unrecorded, while other events do not correspond to
any activity at all.
The assumption that logs are well-formed and homogeneous is also often not true.
For example, a process found in the log is assumed to correspond to one logical
entity. In less-structured environments, however, there are often a number of “tacit”
process types which are executed, and thus logged, under the same name.
Also, the idea that all events are raised on the same level of abstraction, and are
thus equally important, is not true in real-life settings. Events on different levels are
“flattened” into the same event log, while there is also a high amount of informa-
tional events (e.g., debug messages from the system) which need to be disregarded.

Assumption 2: There exists an exact process which is reflected in the logs. This as-
sumption implies that there is the one perfect solution out there, which needs to
be found. Consequently, the mining result should model the process completely,
accurately, and precisely. However, as stated before, spaghetti models are not nec-
essarily incorrect – the models look like spaghetti, because they precisely describe
every detail of the less-structured behavior found in the log. A more high-level so-
lution, which is able to abstract from details, would thus be preferable.
Traditional mining algorithms have also been confined to a single perspective (e.g.,
control flow, data), as such isolated view is supposed to yield higher precision.
However, perspectives are interacting in less-structured processes, e.g. the data flow
may complement the control flow, and thus also needs to be taken into account.
In general, the assumption of a perfect solution is not well-suited for real-life appli-
cation. Reality often differs significantly from theory, in ways that had not been an-
ticipated. Consequently, useful tools for practical application must be explorative,
i.e. support the analyst to tweak results and thus capitalize on their knowledge.

We have conducted process mining case studies in organizations like Philips Med-
ical Systems, UWV, Rijkswaterstaat, the Catharina Hospital Eindhoven and the AMC
hospital Amsterdam, and the Dutch municipalities of Alkmaar and Heusden. Our ex-
periences in these case studies have shown the above assumptions to be violated in all
ways imaginable. Therefore, to make process mining a useful tool in practical, less-
structured settings, these assumptions need to be discarded. The next section introduces
the main concept of our mining approach, which takes these lessons into account.

5

3 An Adaptive Approach for Process Simplification

Process mining techniques which are suitable for less-structured environments need to
be able to provide a high-level view on the process, abstracting from undesired details.
The field of cartography has always been faced with a quite similar challenge, namely
to simplify highly complex and unstructured topologies. Activities in a process can be
related to locations in a topology (e.g. towns or road crossings) and precedence relations
to traffic connections between them (e.g., railways or motorways).

insignificant roads
are not shown.

parts of the city
are merged.

Focuses on the
intended use and
level of detail.

Highways are highlighted
by size, contrast and color.

Abstraction

Aggregation

Customization

Emphasis

Fig. 2. Example of a road map.

When one takes a closer look at maps (such as the example in Figure 2), the solution
cartography has come up with to simplify and present complex topologies, one can
derive a number of valuable concepts from them.

Aggregation: To limit the number of information items displayed, maps often show
coherent clusters of low-level detail information in an aggregated manner. One ex-
ample are cities in road maps, where particular houses and streets are combined
within the city’s transitive closure (e.g., the city of Eindhoven in Figure 2).

Abstraction: Lower-level information which is insignificant in the chosen context is
simply omitted from the visualization. Examples are bicycle paths, which are of no
interest in a motorist’s map.

Emphasis: More significant information is highlighted by visual means such as color,
contrast, saturation, and size. For example, maps emphasize more important roads
by displaying them as thicker, more colorful and contrasting lines (e.g., motorway
“E25” in Figure 2).

Customization: There is no one single map for the world. Maps are specialized on a
defined local context, have a specific level of detail (city maps vs highway maps),
and a dedicated purpose (interregional travel vs alpine hiking).

These concepts are universal, well-understood, and established. In this paper we ex-
plore how they can be used to simplify and properly visualize complex, less-structured
processes. To do that, we need to develop appropriate decision criteria on which to base
the simplification and visualization of process models. We have identified two funda-
mental metrics which can support such decisions: (1) significance and (2) correlation.

6

Significance, which can be determined both for event classes (i.e., activities) and
binary precedence relations over them (i.e., edges), measures the relative importance of
behavior. As such, it specifies the level of interest we have in events, or their occurring
after one another. One example for measuring significance is by frequency, i.e. events or
precedence relations which are observed more frequently are deemed more significant.

Correlation on the other hand is only relevant for precedence relations over events.
It measures how closely related two events following one another are. Examples for
measuring correlation include determining the overlap of data attributes associated to
two events following one another, or comparing the similarity of their event names.
More closely correlated events are assumed to share a large amount of their data, or have
their similarity expressed in their recorded names (e.g. “check customer application”
and “approve customer application”).

Based on these two metrics, which have been defined specially for this purpose, we
can sketch our approach for process simplification as follows.

– Highly significant behavior is preserved, i.e. contained in the simplified model.
– Less significant but highly correlated behavior is aggregated, i.e. hidden in clusters

within the simplified model.
– Less significant and lowly correlated behavior is abstracted from, i.e. removed from

the simplified model.

This approach can greatly reduce and focus the displayed behavior, by employing
the concepts of aggregation and abstraction. Based on such simplified model, we can
employ the concept of emphasis, by highlighting more significant behavior.

Fig. 3. Excerpt of a simplified and decorated process model.

Figure 3 shows an excerpt from a simplified process model, which has been cre-
ated using our approach. Bright square nodes represent significant activities, the darker
octagonal node is an aggregated cluster of three less-significant activities. All nodes
are labeled with their respective significance, with clusters displaying the mean sig-
nificance of their elements. The brightness of edges between nodes emphasizes their
significance, i.e. more significant relations are darker. Edges are also labeled with their
respective significance and correlation values. By either removing or hiding less signif-
icant information, this visualization enables the user to focus on the most interesting
behavior in the process.

7

Yet, the question of what constitutes “interesting” behavior can have a number of
answers, based on the process, the purpose of analysis, or the desired level of abstrac-
tion. In order to yield the most appropriate result, significance and correlation measures
need to be configurable. We have thus developed a set of metrics, which can each mea-
sure significance or correlation based on different perspectives (e.g., control flow or
data) of the process. By influencing the “mix” of these metrics and the simplification
procedure itself, the user can customize the produced results to a large degree.

The following section introduces some of the metrics we have developed for signif-
icance and correlation in more detail.

4 Log-Based Process Metrics

Significance and correlation, as introduced in the previous section, are suitable concepts
for describing the importance of behavior in a process in a compact manner. However,
because they represent very generalized, condensed metrics, it is important to mea-
sure them in an appropriate manner. Taking into account the wide variety of processes,
analysis questions and objectives, and levels of abstraction, it is necessary to make this
measurement adaptable to such parameters.

Our approach is based on a configurable and extensible framework for measuring
significance and correlation. The design of this framework is introduced in the next
subsection, followed by detailed introductions to the three primary types of metrics:
unary significance, binary significance, and binary correlation.

4.1 Metrics Framework

An important property of our measurement framework is that for each of the three pri-
mary types of metrics (unary significance, binary significance, and binary correlation)
different implementations may be used. A metric may either be measured directly from
the log (log-based metric), or it may be based on measurements of other, log-based
metrics (derivative metric).

When the log contains a large number of undesired events, which occur in between
desired ones, actual causal dependencies between the desired event classes may go un-
recorded. To counter this, our approach also measures long-term relations, i.e. when the
sequence A,B,C is found in the log, we will not only record the relations A→ B and
B → C, but also the length-2-relationship A → C. We allow measuring relationships
of arbitrary length, while the measured value will be attenuated, i.e. decreased, with
increasing length of relationship.

4.2 Unary Significance Metrics

Unary significance describes the relative importance of an event class, which will be
represented as a node in the process model. As our approach is based on removing less
significant behavior, and as removing a node implies removing all of its connected arcs,
unary significance is the primary driver of simplification.

8

One metric for unary significance is frequency significance, i.e. the more often a
certain event class was observed in the log, the more significant it is. Frequency is a log-
based metric, and is in fact the most intuitive of all metrics. Traditional process mining
techniques are built solely on the principle of measuring frequency, and it remains an
important foundation of our approach. However, real-life logs often contain a large
number of events which are in fact not very significant, e.g. an event which describes
saving the process state after every five activities. In such situations, frequency plays a
diminished role and can rather distort results.

Another, derivate metric for unary significance is routing significance. The idea
behind routing significance is that points, at which the process either forks (i.e., split
nodes) or synchronizes (i.e., join nodes), are interesting in that they substantially define
the structure of a process. The higher the number and significance of predecessors for a
node (i.e., its incoming arcs) differs from the number and significance of its successors
(i.e., outgoing arcs), the more important that node is for routing in the process. Routing
significance is important as amplifier metric, i.e. it helps separating important routing
nodes (whose significance it increases) from those less important.

4.3 Binary Significance Metrics

Binary significance describes the relative importance of a precedence relation between
two event classes, i.e. an edge in the process model. Its purpose is to amplify and to
isolate the observed behavior which is supposed to be of the greatest interest. In our
simplification approach, it primarily influences the selection of edges which will be
included in the simplified process model.

Like for unary significance, the log-based frequency significance metric is also
the most important implementation for binary significance. The more often two event
classes are observed after one another, the more significant their precedence relation.

The distance significance metric is a derivative implementation of binary signifi-
cance. The more the significance of a relation differs from its source and target nodes’
significances, the less its distance significance value. The rationale behind this metric is,
that globally important relations are also always the most important relations for their
endpoints. Distance significance locally amplifies crucial key relations between event
classes, and weakens already insignificant relations. Thereby, it can clarify ambiguous
situations in edge abstraction, where many relations “compete” over being included in
the simplified process model. Especially in very unstructured execution logs, this metric
is an indispensible tool for isolating behavior of interest.

4.4 Binary Correlation Metrics

Binary correlation measures the distance of events in a precedence relation, i.e. how
closely related two events following one another are. Distance, in the process domain,
can be equated to the magnitude of context change between two activity executions.
Subsequently occurring activities which have a more similar context (e.g., which are
executed by the same person or in a short timeframe) are thus evaluated to be higher
correlated. Binary correlation is the main driver of the decision between aggregation or
abstraction of less-significant behavior.

9

Proximity correlation evaluates event classes, which occur shortly after one another,
as highly correlated. This is important for identifying clusters of events which corre-
spond to one logical activity, as these are commonly executed within a short timeframe.

Another feature of such clusters of events occurring within the realm of one higher-
level activity is, that they are executed by the same person. Originator correlation be-
tween event classes is determined from the names of the persons, which have triggered
two subsequent events. The more similar these names, the higher correlated the respec-
tive event classes. In real applications, user names often include job titles or function
identifiers (e.g.“sales John” and “sales Paul”). Therefore, this metric implementation is
a valuable tool also for unveiling implicit correlation between events.

Endpoint correlation is quite similar, however, instead of resources it compares the
activity names of subsequent events. More similar names will be interpreted as higher
correlation. This is important for low-level logs including a large amount of less sig-
nificant events which are closely related. Most of the time, events which reflect similar
tasks also are given similar names (e.g., “open valve13” and “close valve13”), and this
metric can unveil these implicit dependencies.

In most logs, events also include additional attributes, containing snapshots from the
data perspective of the process (e.g., the value of an insurance claim). In such cases,
the selection of attributes logged for each event can be interpreted as its context. Thus,
the data type correlation metric evaluates event classes, where subsequent events share
a large amount of data types (i.e., attribute keys), as highly correlated. Data value cor-
relation is more specific, in that it also takes the values of these common attributes into
account. In that, it uses relative similarity, i.e. small changes of an attribute value will
compromise correlation less than a completely different value.

Currently, all implementations for binary correlation in our approach are log-based.
The next section introduces our approach for adaptive simplification and visualization
of complex process models, which is based on the aggregated measurements of all
metric implementations which have been introduced in this section.

5 Adaptive Graph Simplification

Most process mining techniques follow an interpretative approach, i.e. they attempt to
map behavior found in the log to typical process design patterns (e.g., whether a split
node has AND- or XOR-semantics). Our approach, in contrast, focuses on high-level
mapping of behavior found in the log, while not attempting to discover such patterns.
Thus, creating the initial (non-simplified) process model is straightforward: All event
classes found in the log are translated to activity nodes, whose importance is expressed
by unary significance. For every observed precedence relation between event classes, a
corresponding directed edge is added to the process model. This edge is described by
the binary significance and correlation of the ordering relation it represents.

Subsequently, we apply three transformation methods to the process model, which
will successively simplify specific aspects of it. The first two phases, conflict reso-
lution and edge filtering, remove edges (i.e., precedence relations) between activity
nodes, while the final aggregation and abstraction phase removes and/or clusters less-
significant nodes. Removing edges from the model first is important – due to the less-

10

structured nature of real-life processes and our measurement of long-term relationships,
the initial model contains deceptive ordering relations, which do not correspond to valid
behavior and need to be discarded. The following sections provide details about the
three phases of our simplification approach, given in the order in which they are applied
to the initial model.

5.1 Conflict Resolution in Binary Relations

Whenever two nodes in the initial process model are connected by edges in both direc-
tions, they are defined to be in conflict. Depending on their specific properties, conflicts
may represent one of three possible situations in the process:

– Length-2-loop: Two activities A and B constitute a loop in the process model,
i.e. after executing A and B in sequence, one may return to A and start over. In
this case, the conflicting ordering relations between these activities are explicitly
allowed in the original process, and thus need to be preserved.

– Exception: The process orders A → B in sequence, however, during real-life exe-
cution the exceptional case of B → A also occurs. Most of the time, the “normal”
behavior is clearly more significant. In such cases, the “weaker” relation needs to
be discarded to focus on the main behavior.

– Concurrency: A and B can be executed in any order (i.e., they are on two distinct,
parallel paths), the log will most likely record both possible cases, i.e. A → B
and B → A, which will create a conflict. In this case, both conflicting ordering
relations need to be removed from the process model.

Conflict resolution attempts to classify each conflict as one of these three cases, and
then resolves it accordingly. For that, it first determines the relative significance of both
conflicting relations.

A B
A → B

B → A

Ain

Aout

Bin

Bout

Fig. 4. Evaluating the relative significance of conflicting relations.

Figure 4 shows an example of two activities A and B in conflict. The relative sig-
nificance for an edge A→ B can be determined as follows.

Definition 1 (Relative significance). LetN be the set of nodes in a process model, and
let sig : N × N → R+

0 be a relation that assigns to each pair of nodes A,B ∈ N
the significance of a precedence relation over them. rel : N × N → R+

0 is a relation
which assigns to each pair of nodes A,B ∈ N the relative importance of their ordering
relation: rel(A,B) = 1

2 ·
sig(A,B)P

X∈N sig(A,X) + 1
2 ·

sig(A,B)P
X∈N sig(X,B)

11

Every ordering relationA→ B has a set of competing relationsCompAB = Aout∪
Bin. This set of competing relations is composed ofAout, i.e. all edges starting fromA,
and ofBin, i.e. all edges pointing toB (cf. Figure 4). Note that this set also contains the
reference relation itself, i.e. more specifically:Bin∩Aout = {A→ B}. By dividing the
significance of an ordering relation A→ B with the sum of all its competing relations’
significances, we get the importance of this relation in its local context.

If the relative significance of both conflicting relations, rel(A,B) and rel(B,A)
exceeds a specified preserve threshold value, this signifies that A and B are apparently
forming a length-2-loop, which is their most significant behavior in the process. Thus,
in this case, both A→ B and B → A will be preserved.

In case at least one conflicting relation’s relative significance is below this threshold,
the offset between both relations’ relative significances is determined, i.e. ofs(A,B) =
|rel(A,B)−rel(B,A)|. The larger this offset value, the more the relative significances
of both conflicting relations differ, i.e. one of them is clearly more important. Thus, if
the offset value exceeds a specified ratio threshold, we assume that the relatively less
significant relation is in fact an exception and remove it from the process model.

Otherwise, i.e. if at least one of the relations has a relative significance below the
preserve threshold and their offset is smaller than the ratio threshold, this signifies that
bothA→ B andB → A are relations which are of no greater importance for both their
source and target activities. This low, yet balanced relative significance of conflicting
relations hints at A and B being executed concurrently, i.e. in two separate threads of
the process. Consequently, both edges are removed from the process model, as they do
not correspond to factual ordering relations.

5.2 Edge Filtering

Although conflict resolution removes a number of edges from the process model, the
model still contains a large amount of precedence relations. To infer further structure
from this model, it is necessary to remove most of these remaining edges by edge fil-
tering, which isolates the most important behavior. The obvious solution is to remove
the globally least significant edges, leaving only highly significant behavior. However,
this approach yields sub-optimal results, as it is prone to create small, disparate clusters
of highly frequent behavior. Also, in the subsequent aggregation step, highly corre-
lated relations play an important part in connecting clusters, even if they are not very
significant.

Therefore, our edge filtering approach evaluates each edge A → B by its utility
util(A,B), a weighed sum of its significance and correlation. A configurable utility
ratio ur ∈ [0, 1] determines the weight, such that util(A,B) = ur · sig(A,B) + (1−
ur) · cor(A,B). A larger value for ur will preserve more significant edges, while a
smaller value will favor highly correlated edges.

Figure 5 shows an example for processing the incoming arcs of a node A. Using
a utility ratio of 0.5, i.e. taking significance and correlation equally into account, the
utility value is calculated, which ranges from 0.4 to 1.0 in this example.

Filtering edges is performed on a local basis, i.e. for each node in the process model,
the algorithm preserves its incoming and outgoing edges with the highest utility value.
The decision of which edges get preserved is configured by the edge cutoff parameter

12

A

1.0P

Q

R

S

0.9

0.7

0.5

1.0

0.2

0.8

0.3

Sign. Corr.

1.0

0.55

0.75

0.4

1.0

0.25

0.58

0.0

Util. Normal.
Util.

ur = 0.5 co = 0.4
1.0

0.58

Preserve

A
Q

S

P

R

Fig. 5. Filtering the set of incoming edges for a node A.

co ∈ [0, 1]. For every node N , the utility values for each incoming edge X → N are
normalized to [0, 1], so that the weakest edge is assigned 0 and the strongest one 1. All
edges whose normalized utility value exceeds co are added to the preserved set. In the
example in Figure 5, only two of the original edges, are preserved, using a edge cutoff
value of 0.4: P → A (with normalized utility of 1.0) and R → A (norm. utility of
0.56). The outgoing edges are processed in the same manner for each node.

The edge cutoff parameter determines the aggressiveness of the algorithm, i.e. the
higher its value, the more likely the algorithm is to remove edges. In very unstructured
processes, where precedence relations are likely to have a balanced significance, it is
often useful to use a lower utility ratio, such that correlation will be taken more into
account and resolve such ambiguous situations. On top of that, a high edge cutoff will
act as an amplifier, helping to distinguish the most important edges.

Note that our edge filtering approach starts from an empty set of precedence rela-
tions, i.e. all edges are removed by default. Only if an edge is selected locally for at least
one node, it will be preserved. This approach keeps the process model connected, while
clarifying ambiguous situations. Whether an edge is preserved depends on its utility for
describing the behavior of the activities it connects – and not on global comparisons
with other parts of the model, which it does not even interact with.

top
complete
0.517

midtop
complete
0.406

0.795
0.815

sponsors
complete
0.473

0.049
0.697

toolbar
complete
0.408

0.082
0.697

layout_files/_root
complete
0.896

0.015
0.672

bottom
complete
0.417

0.041
0.638

wit
complete
0.657

0.051
0.660

zwart
complete
0.610

0.364
0.651

styles
complete
0.785

0.024
0.676

introduction
complete
0.430

0.157
0.653

subtop
complete
0.437

0.343
0.768

processmining/_root
complete
1.000

0.040
0.697

0.038
0.846

0.096
0.671

0.221
0.618

0.023
0.551

0.125
0.703

0.046
0.734

0.079
0.667

0.038
0.380

0.422
0.698

0.896
0.820

0.001
0.395

0.026
0.640

0.029
0.675

0.008
1.000

0.032
0.719

0.227
0.494

0.059
0.749

0.206
0.598

0.479
0.679

0.472
0.637

0.068
0.669

0.037
0.651

0.066
0.484

0.031
0.766

0.020
0.660

0.429
0.685

0.062
0.453

0.981
0.674

0.061
0.545

0.123
0.640

0.132
0.528

0.071
0.708

0.023
0.669

0.031
0.589

0.070
0.471

0.018
0.509

0.020
0.615

0.014
0.444

0.241
0.716

0.007
0.412

0.075
0.413

0.048
0.455

0.295
0.531

0.059
0.408

0.049
0.507

0.199
0.476

0.023
0.765

0.028
0.781

0.982
0.726

0.101
0.707

0.121
0.517

0.002
0.853

0.103
0.620

0.222
0.592

0.220
0.556

0.040
0.730

0.029
0.764

0.048
0.586

0.592
0.612

0.199
0.707

0.034
0.515

0.056
0.589

0.179
0.473

0.031
0.669

0.039
0.936

0.670
0.743

0.441
0.493

0.060
0.592

0.191
0.679

0.032
0.595

0.573
0.639

0.541
0.623

0.037
0.636

0.096
0.627

0.116
0.515

0.072
0.627

0.483
0.782

0.040
0.904

0.243
0.507

0.122
0.650

0.285
0.622

0.038
0.651

0.051
0.414

0.030
0.603

0.016
0.677

0.016
0.433

0.984
0.574

0.038
0.530

0.073
0.372

0.060
0.457

0.492
0.707

0.098
0.392

0.012
0.572

0.185
0.377

0.037
0.687

0.018
0.744

0.179
0.615

0.957
0.699

0.049
0.406

0.437
0.685

0.060
0.568

0.076
0.662

0.167
0.520

0.007
0.682

0.026
0.736

0.022
0.382

0.071
0.843

0.122
0.834

0.086
0.674

0.392
0.610

0.018
0.421

0.184
0.697

0.023
0.651

0.093
0.660

0.046
0.588

0.914
0.714

0.020
0.672

0.266
0.549

0.104
0.630

0.023
0.702

0.025
0.500

0.007
0.794

0.023
0.669

1.000
0.614

0.306
0.558

0.006
0.718

0.032
0.613

0.062
0.565

0.008
0.682

top
complete
0.517

midtop
complete
0.406

0.795
0.815

subtop
complete
0.437

0.896
0.820

sponsors
complete
0.473

0.008
1.000

zwart
complete
0.610

0.479
0.679

styles
complete
0.785

0.472
0.637

toolbar
complete
0.408

bottom
complete
0.417

0.981
0.674

layout_files/_root
complete
0.896

0.241
0.716

processmining/_root
complete
1.000

0.199
0.476

0.982
0.726

0.002
0.853

wit
complete
0.657

0.592
0.612

0.039
0.936

0.441
0.493

0.573
0.639

0.541
0.623

0.040
0.904

0.984
0.574

0.492
0.707

introduction
complete
0.430

0.957
0.699

0.007
0.682

0.914
0.714

1.000
0.614

0.008
0.682

Fig. 6. Example of a process model before (left) and after (right) edge filtering.

Figure 6 shows the effect of edge filtering applied to a small, but very unstructured
process. The number of nodes remains the same, while removing an appropriate subset
of edges clearly brings structure to the previously chaotic process model.

5.3 Node Aggregation and Abstraction

While removing edges brings structure to the process model, the most effective tool for
simplification is removing nodes. It enables the analyst to focus on an interesting subset

13

of activities. Our approach preserves highly correlated groups of less-significant nodes
as aggregated clusters, while removing isolated, less-significant nodes. Removing nodes
is based on the node cutoff parameter. Every node whose unary significance is below
this threshold becomes a victim, i.e. it will either be aggregated or abstracted from. The
first phase of our algorithm builds initial clusters of less-significant behavior as follows.

– For each victim, find the most highly correlated neighbor (i.e., connected node)
– If this neighbor is a cluster node, add the victim to this cluster.
– Otherwise, create a new cluster node, and add the victim as its first element.

Whenever a node is added to a cluster, the cluster will “inherit” the ordering rela-
tions of that node, i.e. its incoming and outgoing arcs, while the actual node will be
hidden. The second phase is merging the clusters, which is necessary as most clusters
will, at this stage, only consist of one single victim. The following routine is performed
to aggregate larger clusters and decrease their number.

– For each cluster, check whether all predecessors or all successors are also clusters.
– If all predecessor nodes are clusters as well, merge with the most highly correlated

one and move on to the next cluster.
– If all successors are clusters as well, merge with the most highly correlated one.
– Otherwise, i.e. if both the cluster’s pre- and postset contain regular nodes, the clus-

ter is left untouched.

X
start

0.507
Cluster B

2 primitives
~ 0.127

0.447
0.902

Cluster C
1 primitives

~ 0.156

0.447
0.902 Y

start
0.927

0.000
0.451Cluster A

2 primitives
~ 0.169

0.000
0.564

0.001
0.676

Fig. 7. Excerpt of a clustered model after the first aggregation phase.

It is important that clusters will only be merged, if the “victim” has only clusters in
his pre- or postset. Figure 7 shows an example of a process model after the first phase
of clustering. Cluster A cannot merge with cluster B, as they are also both connected
to node X . Otherwise, X would be connected to the merged cluster in both directions,
making the model less informative. However, clusters B and C can merge, as B’s post-
set consists only of C. This simplification of the model does not lessen the amount of
information, and is thus valid.

The last phase, which constitutes the abstraction, removes isolated and singular
clusters. Isolated clusters are detached parts of the process, which are less significant
and highly correlated, and which have thus been folded into one single, isolated cluster
node. It is obvious that such detached nodes do not contribute to the process model,
which is why they are simply removed. Singular clusters consist only of one, single
activity node. Thus, they represent less-significant behavior which is not highly corre-
lated to adjacent behavior. Singular clusters are undesired, because they do not simplify
the model. Therefore, they are removed from the model, while their most significant
precedence relations are transitively preserved (i.e., their predecessors are artificially
connected to their successors, if such edge does not already exist in the model).

14

6 Implementation and Application

We have implemented our approach as the Fuzzy Miner plugin for the ProM framework
[8]. All metrics introduced in Section 4 have been implemented, and can be configured
by the user. Figure 8 shows the result view of the Fuzzy Miner, with the simplified graph
view on the left, and a configuration pane for simplification parameters on the right.
Alternative views allow the user to inspect and verify measurements for all metrics,
which helps to tune these metrics to the log.

Fig. 8. Screenshot of the Fuzzy Miner, applied to the very large and unstructured log also used
for mining the model in Figure 1.

Note that this approach is the result of valuable lessons learnt from a great number of
case studies with real-life logs. As such, both the applied metrics and the simplification
algorithm have been optimized using large amounts actual, less-structured data. While
it is difficult to validate the approach formally, the Fuzzy Miner has already become
one of the most useful tools in case study applications.

For example, Figure 8 shows the result of applying the Fuzzy Miner to a large test
log of manufacturing machines (155.296 events in 16 cases, 826 event classes). The
approach has been shown to scale well and is of linear complexity. Deriving all metrics
from the mentioned log was performed in less than ten seconds, while simplifying the
resulting model took less than two seconds on a 1.8 GHz dual-core machine. While this
model has been created from the raw logs, Figure 1 has been mined with the Heuristics
Miner, after applying log filters [14]. It is obvious that the Fuzzy Miner is able to clean
up a large amount of confusing behavior, and to infer and extract structure from what
is chaotic. We have successfully used the Fuzzy Miner on various machinery test and
usage logs, development process logs, hospital patient treatment logs, logs from case

15

handling systems and web servers, among others. These are notoriously flexible and
unstructured environments, and we hold our approach to be one of the most useful tools
for analyzing them so far.

7 Related Work

While parting with some characteristics of traditional process mining techniques, such
as absolute precision and describing the complete behavior, it is obvious that the ap-
proach described in this paper is based on previous work in this domain, most specif-
ically control-flow mining algorithms [2, 14, 7]. The mining algorithm most related to
Fuzzy Mining is the Heuristics Miner, which also employs heuristics to limit the set of
precedence relations included in the model [14]. Our approach also incorporates con-
cepts from log filtering, i.e. removing less significant events from the logs [8]. However,
the foundation on multi-perspective metrics, i.e. looking at all aspects of the process at
once, its interactive and explorative nature, and the integrated simplification algorithm
clearly distinguishes Fuzzy Mining from all previous process mining techniques.

The adaptive simplification approach presented in Section 5 uses concepts from the
domains of data clustering and graph clustering. Data clustering attempts to find related
subsets of attributes, based on a binary distance metric inferred upon them [11]. Graph
clustering algorithms, on the other hand, are based on analyzing structural properties of
graphs, from which they derive partitioning strategies [13, 9]. Our approach, however,
is based on a unique combination of analyzing the significance and correlation of graph
elements, which are based on a wide set of process perspectives. It integrates abstraction
and aggregation, and is also more specialized towards the process domain.

8 Discussion and Future Work

We have described the problems traditional process mining techniques face when ap-
plied to large, less-structured processes, as often found in practice. Subsequently, we
have analyzed the causes for these problems, which lie in a mismatch between fun-
damental assumptions of traditional process mining, and the characteristics of real-life
processes. Based on this analysis, we have developed an adaptive simplification and vi-
sualization technique for process models, which is based on two novel metrics, signifi-
cance and correlation. We have described a framework for deriving these metrics from
an enactment log, which can be adjusted to particular situations and analysis questions.

While the fine-grained configurability of the algorithm and its metrics makes our
approach universally applicable, it is also one of its weaknesses, as finding the “right”
parameter settings can sometimes be time-consuming. Thus, our next steps will concen-
trate on deriving higher-level parameters and sensible default settings, while preserving
the full range of parameters for advanced users. Further work will concentrate on ex-
tending the set of metric implementations and improving the simplification algorithm.

It is our belief that process mining, in order to become more meaningful, and to
become applicable in a wider array of practical settings, needs to address the problems
it has with unstructured processes. We have shown that the traditional desire to model
the complete behavior of a process in a precise manner conflicts with the original goal,

16

i.e. to provide the user with understandable, high-level information. The success of
process mining will depend on whether it is able to balance these conflicting goals
sensibly. Fuzzy Mining is a first step in that direction.

Acknowledgements This research is supported by the Technology Foundation STW,
applied science division of NWO and the technology programme of the Dutch Ministry
of Economic Affairs.

References

1. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M.
Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge
Engineering, 47(2):237–267, 2003.

2. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.

3. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs.
In Sixth International Conference on Extending Database Technology, pages 469–483, 1998.

4. E. Badouel, L. Bernardinello, and P. Darondeau. The Synthesis Problem for Elementary Net
Systems is NP-complete. Theoretical Computer Science, 186(1-2):107–134, 1997.

5. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249, 1998.

6. A. Datta. Automating the Discovery of As-Is Business Process Models: Probabilistic and
Algorithmic Approaches. Information Systems Research, 9(3):275–301, 1998.

7. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building Instance
Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, International Con-
ference on Conceptual Modeling (ER 2004), volume 3288 of Lecture Notes in Computer
Science, pages 362–376. Springer-Verlag, Berlin, 2004.

8. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.
van der Aalst. The ProM framework: A New Era in Process Mining Tool Support. In
G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets 2005, volume
3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag, Berlin, 2005.

9. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht,
2000.

10. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings 11th
European Conference on Machine Learning, volume 1810 of Lecture Notes in Computer
Science, pages 183–194. Springer-Verlag, Berlin, 2000.

11. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Computing Surveys,
31(3):264–323, 1999.

12. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Process Mining:
A Basic Approach and its Challenges. In C. Bussler et al., editor, BPM 2005 Workshops
(Workshop on Business Process Intelligence), volume 3812 of Lecture Notes in Computer
Science, pages 203–215. Springer-Verlag, Berlin, 2006.

13. A. Pothen, H. D. Simon, and K. Liou. Partitioning sparse matrics with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl., 11(3):430–452, July 1990.

14. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-
Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162,
2003.

