
Linking Domain Models and Process Models for
Reference Model Configuration

Marcello La Rosa1, Florian Gottschalk2, Marlon Dumas1, Wil M.P. van der Aalst2,1

1 Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia

{m.larosa, m.dumas}@qut.edu.au
2 Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands

{f.gottschalk, w.m.p.v.d.aalst}@tue.nl

Abstract. Reference process models capture common practices in a given do-
main and variations thereof. Such models are intended to be configured in a
specific setting, leading to individualized process models. Although the advan-
tages of reference process models are widely accepted, their configuration still
requires a high degree of modeling expertise. Thus users not only need to be
domain experts, but also need to master the notation in which the reference
process model is captured. In this paper we propose a framework for reference
process modeling wherein the domain variability is represented separately from
the actual process model. Domain variability is captured as a questionnaire that
reflects the decisions that need to be made during configuration and their inter-
relationships. This questionnaire allows subject matter experts to configure the
process model without requiring them to understand the process modeling nota-
tion. The approach guarantees that the resulting process models are correct ac-
cording to certain constraints. To demonstrate the applicability of the proposal,
we have implemented a questionnaire toolset that guides users through the con-
figuration of reference process models captured in two different notations.

Keywords: reference model, process configuration, variability modeling.

1 Introduction

Business processes like purchasing, recruitment, or customer service processes, are
organized in similar ways across companies. To promote the reuse of such processes,
Enterprise System vendors provide generic reference process models [4, 16, 17] that
can be adapted to the needs of individual companies, thus enabling these companies
to leverage proven practices and to avoid designing processes from scratch.

Notations like Configurable Event-driven Process Chains (C-EPC) [13] address the
issue of representing and configuring reference process models. Such notations allow
users to incorporate multiple process variants into a single configurable process model
by means of variation points. By eliminating the undesired variants from the variation
points, one can get a configured process model that suits the individual requirements.

Unfortunately, the integration and adaptation of several process variants in such
notations often leads to an increase in the model's complexity. Thus, the configuration
of a reference process model requires a significant degree of modeling expertise in the
particular notation. Moreover, since these notations are designed to capture individual
variation points, it is difficult to estimate the impact of high-level configuration deci-
sions on the overall process model, i.e. to determine which variation points are af-
fected by a decision and to what extent. While it is normal to assume that the design-

ers who produce the reference process model itself are familiar with the notation in
question, it is less realistic to assume this from stakeholders who have to configure
these models (e.g. a logistics or a film production expert).

In this paper we outline a framework that allows users to configure reference proc-
ess models independently of the process modeling notation employed. We capture the
variability of a given domain (e.g. Supply Chain Management) via so-called domain
facts that form the answers to a set of questions. Questions and domain facts are ex-
pressed in natural language, thus facilitating the identification and configuration of
variants by non-modeling experts. From a given set of facts grouped into questions,
we are then able to generate an interactive questionnaire that guides the configuration.

Similarly, we represent this variability at the process level by identifying so-called
process facts, which relate to the variation points of the configurable process model
for the particular domain. We then link domain facts with process facts by means of a
mapping. In this way, process configuration can be performed by simply answering a
set of questions that mask the complexity of the underlying process model. The map-
ping ensures that the configured process model is semantically correct (e.g. no dead-
locks), and consistent with the domain configuration.

The reminder of the paper is structured as follows. In Section 2 we introduce the
approaches that are related to and inspired the development of our framework. In
Section 3 we present the framework and illustrate it using an application in the area of
the Screen Business. We apply the framework to a configurable process modeling
notation, namely C-EPC [13] and to a configurable workflow language, namely C-
YAWL (an extension of YAWL [1]). In Section 4 we present the approach to link
domain and process models and a toolset that supports this approach. Finally, in Sec-
tion 5 we draw conclusions.

2 Background and Requirements

The separation of process configuration from the context domain has been investi-
gated, among others, by Becker et al. [2,3]. In this approach, adaptation parameters
and their possible values are linked to model elements to indicate which sections of
the model are relevant or not to a specific application scenario. By assigning values to
these parameters, a user can configure a reference model without looking at the proc-
ess flow. The approach can however be improved by offering guidance to users when
assigning values to the adaptation parameters. Moreover, although it is possible to
specify local constraints among parameters, no method is provided to check for
model-wide consistency that could, e.g., inhibit deadlocks in the process flow or deny
parameter settings that are practically not feasible.

To support consistency checking it is possible to use ideas from the CML2 lan-
guage, which was designed to capture configuration processes for the Linux kernel
[12]. It supports the definition of validity constraints based on propositional formulas
over so-called symbols. To guide the configuration process, a configuration model in
CML2 is composed of questions which lead to a given symbol being given a value.

The use of questions to steer the selection of process alternatives is advocated in
[15], where alternatives are depicted as process specializations and the activation of
these specializations is linked to conditions expressed as questions. However con-
straints over questions are not defined and no tool support is offered.

More generally, variability of large software systems has been studied in the field
of Software Product Line Engineering (SPLE) [11]. The idea of SPLE is to capture
how a collection of available options impact the way a software system is built from a

set of components. Parallels can be drawn between SPLE and reference models. A
detailed comparison between our proposal and SPLE approaches is given in [7].

In this paper, we follow up on the above approaches and develop an integrated
framework for reference process model configuration. The framework has been de-
veloped by following a design science approach [10]. By analyzing existing work, we
have identified requirements for such an integrated framework. Chief among these
requirements is that domain models should be represented separately from process
models, in line with the approach of Becker et al. Secondly, domain models should be
expressed in terms that are easily understandable by subject matter experts, and that
can be directly exploited to guide the configuration process. Following these require-
ments, we have designed a framework that allows modelers to capture the variability
of a given domain by means of a set of ordered questions. The framework provides
decision support guidance that helps subject matter experts to answer the question in a
way that leads to a valid configuration. An initial outline of this approach is reported
in [8]. In this paper, we further extend this initial proposal with concrete mechanisms
for linking domain models expressed as questionnaires, with process model elements.
We present two such mechanisms in the context of two different modelling languages.

In line with a design science method, we have validated the proposal by means of a
software tool implementation which has been tested on comprehensive examples, one
of which is shown below.

3 Questionnaire-based Variability Framework

This section presents our framework. First, we show how to represent domain con-
figurations. Then, we introduce process configurations, i.e., a way of capturing proc-
ess variability. The next section shows how to integrate both types of configurations.

3.1 Capturing Domain Variability

We propose to depict the variability of a given domain independently of specific
notations or languages, by means of a set of domain facts that form the space of pos-
sible answers to a set of questions. A domain fact is a boolean variable representing a
feature of the domain, e.g. “Tape shoot”, that can be enabled or disabled. Questions
group domain facts according to their content, so that all the facts of the same ques-
tion can be set at once by answering the question. For example, the question “Which
shoot media have been used?” allows users to choose the shoot medium between fact
“Tape shoot” and “Film shoot”. A fact may appear in more than one question: in this
case it is set the first time and its value is preserved in the subsequent questions. A
fact always has a default value (true or false), while it can be marked as ‘mandatory’
if it needs to be set explicitly. For example, fact “Tape shoot” is true by default as the
majority of production projects are shot on tape, which is less expensive than film. If
a non-mandatory fact is left unset, i.e. if the corresponding question is not answered,
the default value can be used instead. This way, each domain fact will always have a
value either set explicitly by an answer or by using its default.

To illustrate these concepts, we consider an exemplification of the Post-production
process in the area of Screen Business [14]. Fig. 1 presents a possible structure of
questions/domain facts to capture the variability in this field. All questions and facts
are assigned a unique identifier and a description.

Post-production aims at the editing and technical completion of a screen business
project. Depending on the available budget, a project can be shot on tape, on film, or

on both the media. Of the two, film results in a more costly operation due to special
treatments for making it visible and permanent. In Fig. 1 this choice is modeled by
question q3 and its facts, while the facts of q6 and q7 capture the possible sub-formats
of tape, resp. film. The picture cut transfers the editing decisions that are taken on a

q7: What Film format has
been shot?

fD19: 16mm film

fD20: 35mm film

fD21: 65mm film

q4: How is the Picture Cut to
be performed?

fD12: Negmatching

fD11: Online

q5: Which are the expected
deliverables?

fD13: Tape finish

fD14: Film finish

fD15: New medium finish

q1: What is the allocated
budget for the project?

fD1: Low (≤ 250,000 US)

fD2: Medium (250,000 US, ≤ 1.5mil US)

fD3: High (1.5mil US)

q2: What are the primary
distribution channels?

fD4: Cinema

fD5: TV

fD6: Home

fD7: Mobile

fD8: Internet

q3: Which shoot media
have been used?

fD10: Film shoot

fD9: Tape shoot

q6: What Tape format
has been shot?

fD16: Analogue tape

fD17: SD digital tape

fD18: HD digital tape

T M

M

M

T

T

T

M

T M

T M

M

T M

T

x y
x y

T

M mandatory fact
fact true by default

x simply depends on y
x strictly depends on y

mapping question-fact
fact
question

Fig. 1. A possible structure of questions/domain facts for the Post-production example.

low-resolution format in the Offline, to a high resolution format. The cut can be per-
formed in an editing suite (Online), or on the original negative (Negmatching). This
choice is captured by the facts of question q4 and depends on the type of shoot me-
dium. A project can be finished for delivery on tape, film, new medium, or any com-
bination thereof. This is captured by the facts of q5. The overall finishing process
varies on the basis of the finishing media and may involve further tasks according to
the choices made for the picture cut. For example, if the cut is done in Negmatching,
the project must be finished at least on film. On the other hand, if the cut is only done
Online and a film finish is required, the editing results need to be transferred to film in
the so-called Record DFM. Similarly, a Telecine transfer is required to transfer the
edited film to tape or file if the cut is done only in Negmatching and the project is to
be finished on tape or on a new medium (e.g. DVD).

Interactions like these, which occur among the values of the domain facts, are
modeled by a set of domain constraints in propositional logic that prune the configu-
ration space. The constraints for the facts of Fig. 1 follow:1

C1: 1 2 3D D Df f f∨ ∨& & C2: 1 10 14()D D Df f f⇒¬ ∨ C3: 2 10D Df f⇒¬
C4: 4 5 6 7 8D D D D Df f f f f∨ ∨ ∨ ∨ C5: 4 14D Df f⇒ C6: 5 13D Df f⇒
C7: 6 13 15()D D Df f f⇒ ∨ C8: 7 8 15()D D Df f f∨ ⇒ C9: 9 10D Df f∨
C10: 11 12D Df f∨ C11: 10 12D Df f¬ ⇒¬ C12: 13 14 15D D Df f f∨ ∨
C13: 16 17 18 9()D D D Df f f f∨ ∨ ⇔& & C14: 16 17 18 9()D D D Df f f f¬ ∨ ∨ ⇔ ¬ C15: 12 14D Df f⇒
C16: 19 20 21 10()D D D Df f f f∨ ∨ ⇔& & C17: 19 20 21 10()D D D Df f f f¬ ∨ ∨ ⇔ ¬

1 indicates the exclusive disjunction (XOR), a commutative and associative relation.

For example, since it is possible to shoot both tape and film, the facts representing
these two features are bound by a logic OR (as per C9). Questions q1 and q3 capture
the contextual choices for a post-production project, namely the allocated budget and
the distribution channel. Their answers can affect the overall project, as shown by the
constraints over their facts (C1 to C8). Further on, Negmatching (fD12) cannot be
performed if the project has not been shot on film (C11), and since its handcraft style
makes it an expensive activity, Negmatching is worthwhile only if it is followed by a
film finish (C15). However shooting film (fD10) is only allowed for low/medium
budgets (C2, C3), thus limiting the possibility to carry out a Negmatching.

A domain configuration is a possible valuation over domain facts that does not vio-
late the constraints.

Order dependencies determine the order in which questions are presented to users.
A ‘simple’ dependency (dashed arrow in Fig. 1) captures an optional precedence
between two questions: e.g. q3 can be posed after q1 or q2. A ‘strict’ dependency
(plain arrow) captures a mandatory precedence: e.g. q6 is posed after q3 only. This
way we can ask the most discriminating questions first, like q1 and q2 in Fig. 1, so that
subsequent questions are (partly) answered by means of the domain constraints. If,
e.g., we answer q3 with “Film shoot” only, the question about the tape formats (q6)
becomes irrelevant. Dependencies can be arbitrary as long as cycles are avoided.

The above concepts form the definition of a Configuration Model (CM) - a first-
class model to capture domain variability. The complete definition of CM can be
found in [7]. In the following sections we show how CMs can be applied to support
the configuration of reference process models.

3.2 Capturing Process Variability

Generally, notations for configurable process models rely on the concept of variation
points to capture a point in the process flow where more than one variant exists. To
link a CM to any configurable process model, independently of the notation adopted,
we identify each process variant with a so-called process fact. A process fact is a
boolean variable set to true if the variant it refers to is selected in a given process
configuration, and to false otherwise.

Examples of notations for configurable process models are C-EPC [13] and Con-
figurable YAWL (C-YAWL) [5]. C-EPCs extend Event-driven Process Chains
(EPCs) [6] with variation points. A variation point can be a configurable connector
(extension to the EPC join and split) or a configurable function (extension to the EPC
function). A configurable connector can have several variants depending on its type,
which can be logical AND, XOR, OR; a configurable function can have three vari-
ants: ON if enabled, OFF if disabled and OPT if optionally enabled.

Fig. 2 depicts the post-production process in a C-EPC, where variation points are
highlighted by a thicker border (trivial events are omitted). The process starts with the
preparation of the footage for edit, which depends on the type of shoot medium being
used (tape or film). This choice is captured by the configurable OR-join OR1. Its be-
havior can be restricted to an AND connector (if both tape and film are used), to
branch SEQ1a (for tape only, this results in branch SEQ1b being deleted), or to
branch SEQ1b (for film only, branch SEQ1a being deleted). We identify these three
variants with three process facts fP1, fP2, fP3, where fP1 is true if both tape and film are
chosen, fP2 is true if only tape is chosen, and fP3 is true if only film is chosen. In a C-
EPC a configurable OR can also be configured to an OR or XOR connector, but since
these variants are not feasible for this process, we do not assign process facts to them.

Once the footage is ready, the project is edited on a low-resolution medium in the

Offline. The editing decisions are then transferred to a high-resolution medium in the
Online and/or Negmatching, depending on the configuration of the OR-split OR2 (fP4

Function

Tape shoot
finished

Film shoot
finished

Prepare tape
for edit

Prepare film
for edit

Offline

Online

V

Negmatching

V

Post-
production

finished

Footage
prepared
for edit

Edit finished

OR1

OR2

OR3

OR4

OR5

SEQ4a SEQ4b

SEQ2a SEQ2b

SEQ1a SEQ1b

(Telecine transfer = 'ON'
Tape Finish = 'ON')

⇒ (OR4 'AND' OR4 'SEQ4a')

Requirement 3

Requirement 2
Record D. F. Master = 'ON'
⇒ (OR4 'AND' OR4
'SEQ4b')

Film finishTape finish

Telecine
transfer

V

V

Record DFM

V

New medium
finish

OR3 OR2

Requirement 1

Requirement 4

OR5 OR4

V Logic OR

Configurable
Function

V Configurable OR

Configurable
RequirementEvent

2a 2b

1a 1b

4a 4b

Fig. 2. The post-production reference process model in C-EPC.

for AND, fP5 for SEQ2a, and fP6 for SEQ2b) and of the OR-join OR3 (fP7 – fP9). The
possibility to finish the project on any combination of tape, film and new medium is
captured by OR4 (fP10 – fP12), OR5 (fP13 – fP15), and by the configurable functions
Telecine Transfer, Record DFM, Tape finish and New Medium finish. These functions
can be set only to ON or OFF, thus we assign two process facts to each of them. For
example, fP16 and fP17 capture the variants ON and OFF of Telecine Transfer.

The same process can also be represented in C-YAWL, an extension of the execu-
table process modeling language YAWL. The YAWL notation is based on conditions
and tasks while the logic connectors of AND, XOR and OR are integrated in each
task in the form of a join (for the incoming arcs) and a split (for the outgoing arcs). C-
YAWL extends YAWL with so-called ports as variation points. A task’s join has an
input port for each combination of arcs through which the task can be triggered,
whilst a task’s split has an output port for each combination of subsequent arcs that
can be triggered after the task's completion. An input port can be configured as en-
abled to allow the triggering of the task via this port, as blocked to prevent the trig-
gering, or as hidden to skip the task’s execution without blocking the subsequent
process. An output port can be enabled to allow the triggering of paths leaving the
port, or blocked to prevent their triggering. Like in C-EPC, in C-YAWL we represent

each feasible variant of a port with a process fact, thus, e.g., if a port is always en-
abled we do not assign any process facts to it.

Fig. 3 depicts the post-production process in C-YAWL with an example configura-
tion for a project shot on tape, edited Online and finished on film and tape. The first
task, τ1, is used to route the process flow according to the shoot media. This task has
only one incoming arc from the input condition. Therefore, its join has only one input
port which always needs to be enabled, i.e. we do not assign any process fact to its
variants. The task’s OR-split has three output ports: one to trigger the path to condi-
tion 0a (leading to film preparation), one to trigger the path to condition 0b (leading
to tape preparation) and one to trigger both paths. In this case we assign a process fact
to each variant of these output ports as we want to capture the possibility to choose
the shooting media. We thus use two process facts for each port: fP24 for the variant
enabled and fP25 for the variant blocked of the first port, fP26, fP27 for the second
port’s variants, and fP28, fP29 for the third port's variants. In the example the project is
shot on tape, so the port to 0b is set to enabled (i.e. fP26 = true), and the other two
ports are set to blocked (fP25, fP29 = true).

Fig. 3. The post-production reference process model in C-YAWL with process facts overlaid.

An OR-join can only have one input port in C-YAWL. In Fig. 3 the input port of the
OR-join of Offline is configured to enabled as this task is always executed. No proc-
ess fact is thus assigned to its variants. The project is edited Online. So the output port
of Offline that triggers condition 2b is the only one to be enabled (fP32 = true). Simi-
lar considerations to the OR-join of Offline also hold for the OR-join of task τ2. As the
project is finished on tape and film, the output port of the OR-split of τ2 that triggers
4a and 4b is enabled (fP40 = true). We do not need Telecine transfer and New Medium
finish, but we want the process to complete. Therefore, their input ports are hidden.
To depict this configuration option for input ports, a third process fact is assigned to
each input port (fP44, fP53=true). On the other hand, the tasks Record DFM and Tape
Finish are required, thus their input ports are enabled (fP45, fP48 = true).

Notations as C-EPC and C-YAWL provide the ability to define configurable re-
quirements to restrict the variants allowed for a variation point. These requirements
need to capture the interdependencies of the domain and to preserve the correctness of
the model. Process facts, being an abstraction of process variants, are thus subject to

the same requirements. In our framework, however, we need to capture only the re-
quirements for process correctness, as the domain constraints are propagated to proc-
ess facts by mapping the CM to the configurable process model. Thus our process
constraints are only a subset of the configurable requirements of C-EPC and C-
YAWL. In C-EPC such requirements are annotated to the relevant variation points as
labels. In Fig. 2 we only report the requirements that correspond to the process con-
straints. Req. 1 and 4 ensure a synchronized configuration of the OR splits/joins to
prevent the process from a deadlock. This corresponds, e.g., to the process con-
straints: fP4 ⇔ fP7, fP5 ⇔ fP8, fP6 ⇔ fP9. Req. 2 and 3 guarantee that the configurable
functions can be performed in any configuration where they are set to ON. In C-
YAWL, the configurable requirements are not directly depicted in the model. For
example, to prevent the process from deadlocking, it is required that every C-YAWL
task with an input port enabled or hidden has at least one output port enabled; or if
a task can trigger a condition other than the final one, there needs to be a task with an
enabled or hidden input port which can be triggered by this condition.

A process configuration is thus a possible valuation over the process facts that
does not violate the process constraints, ensuring the configured model is correct. The
process configuration complements the domain configuration. The next section shows
how both types of configurations can be related.

4 Linking Domain and Process Variability

We link the domain variability captured by a CM with the variability of a configur-
able process model, by mapping domain facts to process facts. We call FD = fD1,…,fDn
the set of domain facts and BD(FD) the boolean function representing the conjunction
of the domain constraints, such that BD holds for every domain configuration. Also,
we call FP = fP1,…,fPn the set of process facts and BP(FP) the boolean function for the
conjunction of the process constraints, such that BP holds for every process configura-
tion. A boolean function BM(FD, FP) creates the mapping of domain and process facts,
such that each process fact equals a boolean expression over the domain facts.

Fig. 4. Mapping configurable domain and configurable process model.

For example, the variants of OR1 in the C-EPC process model of Fig. 2 are captured
by the process facts fP1 (for the variant “tape and film”), fP2 (for “tape only”) and fP3
(for “film only”). At the domain level, this would correspond to answer q3 (Which
shoot media have been used?) with both fD9, fD10 = true in the first case, with only fD9
= true in the second case, and with only fD10 = true in the third case (where fD9 is Tape
shoot and fD10 is Film shoot). Therefore, we map the boolean function fD9 ∧ fD10 to fP1
so that the latter is set to true if and only if fD9 and fD10 are true. Likewise, we map fD9
∧ ¬fD10 to fP2 and ¬fD9 ∧ fD10 to fP3. In this way we can select the proper process vari-
ant by checking which of the above expressions holds against a given domain con-
figuration, which is obtained from the answers to the questions of the CM.

The mapping BM(FD, FP) is valid if and only if the boolean expressions over the
domain facts associated to the process facts of the same variation point are in exclu-
sive disjunction. Given a domain configuration, exactly one variant has to be selected
for each variation point. In this way we avoid a domain configuration to lead to zero
or more than one variant per variation point, i.e., for example, the domain facts should
not require that at the same time a C-EPC function is turned ON and OFF or a port in
C-YAWL is blocked and enabled.

An excerpt of the mapping between the CM of Fig. 1 and the process models of
Fig. 2 and 3 is given as follows.

M1: 1 9 10P D Df f f⇔ ∧ M2: 2 9 10P D Df f f⇔ ∧¬ M3: 3 9 10P D Df f f⇔¬ ∧
M4: 4 11 12P D Df f f⇔ ∧ M5: 5 11 12P D Df f f⇔ ∧¬ M6: 6 11 12P D Df f f⇔¬ ∧ [...]
M16: 16 11 13 11 15() ()P D D D Df f f f f⇔ ¬ ∧ ∨ ¬ ∧ M17: 17 11 13 11 15(() ())P D D D Df f f f f⇔¬ ¬ ∧ ∨ ¬ ∧ [...]
M24: 24 9 10P D Df f f⇔¬ ∧ M25: 25 9 10()P D Df f f⇔¬ ¬ ∧ M26: 26 9 10P D Df f f⇔ ∧¬
M27: 27 9 10()P D Df f f⇔¬ ∧¬ M28: 28 9 10P D Df f f⇔ ∧ M29: 29 9 10()P D Df f f⇔¬ ∧ [...]
M42: 42 11 13 11 15() ()P D D D Df f f f f⇔ ¬ ∧ ∨ ¬ ∧ M43: 43Pf false⇔ 2
M44: 44 11 13 11 15(() ())P D D D Df f f f f⇔¬ ¬ ∧ ∨ ¬ ∧ [...]

Answering a question may affect one or multiple variation points, e.g. the facts of q1
indirectly affect a number of variation points. Also, configuring a variation point can
be determined by answering more than one question, e.g. the process facts that refer
to OR4 in the C-EPC model are affected by q4 and q5.

A valid process configuration with respect to the domain is given by any domain
configuration that leads to a process configuration via a valid mapping, i.e. if the
conjunction BD ∧ BP ∧ BM is satisfiable and the mapping is valid. The configuration
space is obtained by the intersection of the two configuration spaces (domain and
process) via the mapping. By representing the domain variability in a separate model,
we can avoid capturing the interdependencies of the domain in the configurable proc-
ess model, as these interdependencies are represented by the domain constraints in the
CM, and propagated to the process model via the valid mapping. Constraints over
process facts have thus to deal only with the preservation of the model correctness. As
a result, the identification of such constraints becomes simpler.

Once each variation point has been configured with a variant, a set of actions, at-
tached to the process fact that captures the selected variant, are performed on the
process model to commit a configuration.

In the next section we propose a methodology to constructively define a mapping
between a domain and its process model.

4.1 Constructing the Mapping between Domain and Process Model

The first step towards the construction of a mapping is to capture the variability of a
given domain by means of a CM. This task should be conducted by the modeller in
close collaboration with the domain experts, e.g. the film producers. Similarly, the
domain should be represented by a configurable process model in a suitable notation.
Process facts should be identified with the variants of the process and process con-
straints should be defined to preserve the model correctness (these depend on the
notation adopted). As a rule of thumb, a fact is meant to represent a variant of the
domain or process model. Thus a fact should be considered as such only if it can be
freely set before starting the configuration; otherwise it would represent a commonal-
ity in the domain or process model, and should be left out.

2 Fact fP43 can be omitted since it represents a commonality, being always false.

Once domain facts, process facts and their constraints have been identified, it is
possible to define the mapping by means of a two-way impact analysis:

• from domain to process: e.g., given a domain fact, we need to estimate what
 are the implications of setting such a fact to true/false in the process model;
• from process to domain: e.g., given a variation point, we need to consider

which domain facts are impacted by configuring such a point with a variant.
Although a mapping is valid, the process constraints might restrict the configuration
space of the domain so as to deny some domain options, as a result of the application
of the mapping. This situation may lead to problems when it comes to communicate
such restrictions to the stakeholders, and as such should be avoided. In these cases,
either the mapping or the process model should be modified, supposing the domain
cannot be changed. On the other hand, the mapping might be so restrictive that no
correct process model is allowed at all. In these cases, process facts and constraints
can be used to evaluate the feasibility of the domain constraints and of the mapping,
and to suggest their revision.

4.2 Tool support

To establish the practical feasibility of our framework, we have implemented a tool-
set3 that provides end-to-end support for reference process model configuration. Each
tool is a stand-alone application responsible for a specific task in the configuration
process, from the collection of the answers via questionnaires, to the release of a con-
figured process model. Fig. 5 provides an overview of the toolset's architecture.

Fig. 5. The software architecture of the tools implemented.

Quaestio accepts an XML serialization of a CM as input and generates a question-
naire that guides the configuration interactively by posing only the relevant questions
in an order consistent with the order dependencies. The tool also prevents users from
entering conflicting answers to subsequent questions, by dynamically checking the
domain constraints. Questions can be answered explicitly or by using the default
values, and they can be rolled back. Quaestio embodies a SAT solver4 based on
Shared Binary Decision Diagrams (SBDDs) [9], to handle propositional logic formu-
lae. Algorithms based on SBDDs can efficiently deal with systems made up of around
one million of possibilities [9]. Quaestio can thus scale with CMs made up of thou-
sands of domain facts and around one million of possible configurations.

The CM-Mapping tool allows designers to define mappings between the domain
facts and the process facts of a C-EPC or C-YAWL net, whose serialization is taken

3 Downloadable from http://sky.fit.qut.edu.au/~dumas/ConfigurationTool.zip
4 Downloadable from http://www-verimag.imag.fr/~raymond/tools/bddc-manual

as input. This tool uses the SBDD calculator to check the consistency of the domain
constraints and of the process constraints, i.e. if they can be satisfied and if each fact
can be freely set. It also verifies the validity of the generated mapping, checks for
redundancies, and shows possible restrictions of the single configuration spaces (do-
main and process) that may occur from the application of the mapping.

The Configuration Performer takes as input a domain configuration generated by
Quaestio, a serialization of a C-EPC or C-YAWL reference process model, and the
corresponding mapping. It outputs an intermediate format to represent the configured
net, where each variation point has been marked with one variant. This artefact is then
post-processed by a tool that implements a derivation algorithm to generate a syntac-
tically correct EPC or YAWL model.

To achieve the configuration over process facts shown in Fig. 3, we use the follow-
ing domain configuration σD = {¬fD1, fD2, ¬fD3, ¬fD4, ¬fD5, ¬fD6, fD7, fD8, fD9, ¬fD10,
fD11, ¬fD12, ¬fD13, ¬fD14, fD15,...}. From the domain configuration we realise that the
process configuration of Fig. 3 is only feasible for medium/high budgets projects. Fig.
6 shows the configured YAWL process obtained by the post-processing tool.

Fig. 6. The YAWL process model derived from the configuration of the model in Fig. 3.

5 Conclusion and Outlook

This paper presented a framework and a toolset for the configuration of reference
process models. The main innovation of the proposal is that the configuration is not
driven directly by a (configurable) process model, but rather by a model that captures
the variability of the application domain. The domain model is structured in terms of
questions, facts and constraints that reflect the decisions that need to be made during
configuration. From a domain model, an interactive questionnaire is generated that
guides domain experts through the process of configuring the process model without
requiring them to understand the process modeling notation.

The domain model is then linked to a configurable process model, so that once all
configuration decisions are made, an individualized process model can automatically
be generated. The variability of the configurable process model is also captured in
terms of facts and constraints. By merging the process constraints with the domain
constraints, we obtain a unified set of constraints that is used by the configuration tool
to ensure that the model generated from the configuration decisions is always correct.

Capturing reference process models in terms of facts and constraints allows us to
abstract away from the modeling notation. We have demonstrated the applicability of

the proposal on two configurable process modeling notations: one intended for analy-
sis (C-EPCs) and another intended for implementation (C-YAWL). We have tested
the approach on several examples, particularly in the area of film post-production.

In the current framework, process facts and constraints need to be manually ex-
tracted from a process model. We are working on applying formal analysis techniques
to automate this extraction. Furthermore, we are conducting experiments with screen
business experts to empirically evaluate the applicability and impact of the proposed
configuration approach on the modeling process.

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage. Information Systems, 30(4): 245–275, 2005.

2. J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modelling: Integrating
Configurative and Generic Adaptation Techniques for Information Models. In Reference
Modeling. Efficient Information System Design through Reuse of Information Models, pp.
23–49. Berlin et al. 2007.

3. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, D. Kuropka: Configurative Process
Modeling – Outlining an Approach to Increased Business Process Model Usability. In
Proceedings of the Information Resources Management Association Conference. New
Orleans LA, USA. 2004. pp. 615-619.

4. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business Proc-
ess Reference Model. Upper Saddle River, 1997.

5. F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Configur-
able Workflow Models. BETA Working Paper 222, TU Eindhoven, 2007.

6. G. Keller, M. Nüttgens, A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts
f¨ur Wirtschaftsinformatik, University of Saarland, Saarbrücken, 1992.

7. M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Variability
Modeling for Questionnaire-based System Configuration. Preprint # 7992, Queensland
University of Technology, 2007. Available at http://eprints.qut.edu.au/archive/00007992.

8. M. La Rosa, J. Lux, S. Seidel, M. Dumas and A. ter Hofstede. Questionnaire-driven Con-
figuration of Reference Process Models. In Proceedings of the International Conference
on Advanced Information Systems Engineering (CAiSE). Trondheim, Norway, June 2007.

9. S. Minato, N. Ishiura, S. Yajima. Shared Binary Decision Diagram with Attributed Edges
for Efficient Boolean function Manipulation. In Proceedings of the ACM/IEEE Confer-
ence on Design Automation (DAC), pp. 52–57, 1990.

10. C. L . Owen. Design Research: Building the Knowledge Base. Design Studies, 19(1): 9-
20, January 1998.

11. K. Pohl, G. Böckle, and F. van der Linden. Software Product-line Engineering – Founda-
tions, Principles and Techniques. Springer, Berlin, 2005.

12. E. S. Raymond. The CML2 Language. http://catb.org/esr/cml2/cml2-paper.html, 2000.
13. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Lan-

guage. Information Systems, 32(1): 1–23, March 2007.
14. S. Seidel, M. Rosemann, A.H.M. ter Hofstede, and L. Bradford. Developing a Business

Process Reference Model for the Screen Business - A Design Science Research Case
Study. In Proceedings of the 17th Australasian Conference on Information Systems
(ACIS), Adelaide, Australia, 2006.

15. P. Soffer, B. Golany, and D. Dori. ERP modeling: a comprehensive approach. Informati-
on Systems, 28(6): 673–690, September 2003.

16. S. Stephens. The Supply Chain Council and the Supply Chain Operations Reference
Model. Supply Chain Management - An International Journal, 1(1): 9–13, 2001.

17. C. Taylor and C. Probst. Business Process Reference Model Languages: Experiences
from BPI Projects. In Proceedings of INFORMATIK 2003 – Innovative Informatikan-
wendungen, Band 1, pg. 259–263, 2003.

