
Genetic Process Mining:

An Experimental Evaluation

A.K. Alves de Medeiros ∗, A.J.M.M. Weijters
and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

Abstract

One of the aims of process mining is to retrieve a process model from an event
log. The discovered models can be used as objective starting points during the de-
ployment of process-aware information systems (PAIS) [19] and/or as a feedback
mechanism to check prescribed models against enacted ones. However, current tech-
niques have problems when mining processes that contain non-trivial constructs
and/or when dealing with the presence of noise in the logs. Most of the problems
happen because many current techniques are based on local information in the event
log. To overcome these problems, we try to use genetic algorithms to mine process
models. The main motivation is to benefit from the global search performed by this
kind of algorithms. The non-trivial constructs are tackled by choosing an internal
representation that supports them. The problem of noise is naturally tackled by
the genetic algorithm because, per definition, these algorithms are robust to noise.
The main challenge in a genetic approach is the definition of a good fitness measure
because it guides the global search performed by the genetic algorithm. This paper
explains how the genetic algorithm works. Experiments with synthetic and real-life
logs show that the fitness measure indeed leads to the mining of process models
that are complete (can reproduce all the behavior in the log) and precise (do not
allow for extra behavior that cannot be derived from the event log). The genetic
algorithm is implemented as a plug-in in the ProM framework.

Key words: process mining, genetic mining, genetic algorithms, Petri nets,
workflow nets.

∗ Corresponding author.
Email address: a.k.medeiros@tm.tue.nl (A.K. Alves de Medeiros).

Preprint accepted by Journal of Data Mining and Knowledge Discovery on 20/11/2006.

1 Introduction

Today’s organizations are supported by a wide variety of information sys-
tems. Some systems only support a single task (e.g., a text editor). However,
most organizations are using systems that support processes, i.e., not a sin-
gle task but the glue between tasks. Examples are WorkFlow Management
(WFM) systems and Enterprise Resource Planning (ERP) systems. Typically,
these systems record events that can be linked to the execution of some task
in the process. Therefore, it makes sense to analyze these events to get feed-
back about enacted processes. Buzzwords such as Business Process Intelligence
(BPI) and Business Activity Monitoring (BAM) indicate the interest of orga-
nizations and software developers in solutions able to extract knowledge from
so-called event logs. However, most of the commercial systems (e.g., Cognos
and Business Objects) focus on exclusively performance issues such as flow
time and utilization. These systems abstract from the process itself and can
only be applied if the process is well-defined and fixed. ARIS PPM is one of
the few commercial systems actually trying to discover more information by
monitoring events. One of the reasons for this limited support is that it is
very difficult to extract process knowledge without having some a-priori pro-
cess model. This triggered the development of process mining techniques that
aim at automatically discovering process models based on event logs.

information

system

operational

processes

process

models

event

logs

(MXML)

models

process

mining

records

supports/

controls

Any system supporting operational processes

while recording events in, e.g., some transaction

log or audit trail. Examples include workflow

management systems (e.g., Staffware),

enterprise resource planning systems (e.g., SAP

R/3), product data management systems (e.g.,

Windchill), hospital information systems (e.g.,

Siemens Soarian), case handling systems (e.g.,

FLOWer), customer relationship management

systems (e.g., Microsoft CRM), webservice

composition systems (e.g., Oracle BPEL), etc.

Any process where it is possible to identify cases

(i.e., process instances).

Fig. 1. Overview of process mining.

Figure 1 illustrates the concept of process mining. Some operational process is
supported by some information system that records events in some event log.
This event log is used to extract process models that describe the observed
behavior. This information is valuable to better understand processes and
to improve them. In our experience, real processes tend to deviate from the

2

idealistic processes people have in mind. The practical relevance of process
mining is obvious. Unfortunately, existing techniques have severe limitations 1 .
Therefore, we present a new approach using a genetic algorithm. However,
before we introduce our approach, we first need to clarify the concept of process
mining.

1.1 Process Mining

One of the aims of process mining is to automatically build a process model
that describes the behavior contained in an event log. The models mined
by process mining tools can be used as an objective starting point during
the deployment of systems that support the execution of processes and/or
as a feedback mechanism to check the prescribed process model against the
enacted one. We use an example to illustrate how process mining techniques
work. Consider the event log shown in Table 1. This log shows the event
traces (process instances) for four different applications to get a license to ride
motorbikes or drive cars. Note that applicants for different types of licenses
do the same theoretical exam (task “Do Theoretical Exam”) but different
practical ones (tasks “Do Practical Exam Drive Cars” or “Do Practical Exam
Ride Motobikes”). In other words, whenever the task “Attend classes Drive
Cars” is executed, the task “Do practical Exam Drive Cars” is the only one
that can be executed after the applicant has done the theoretical exam. This
shows that there is a non-local dependency between the tasks “Attend Classes
Drive Cars” and “Do Practical Exam Drive Cars”, and also between the tasks
“Attend Classes Ride Motorbikes” and “Do Practical Exam Ride Motorbikes”.
The dependency is non-local because it cannot be detected by simply looking
at the direct predecessor and successor of those tasks in the log in Table 1,
e.g. “Attend Classes Drive Cars” is never followed directly by “Do Practical
Exam Drive Cars”. Moreover, note that only in some process instances (2 and
3) the task “Receive License” was executed. These process instances point to
the cases in which the candidate passed the exams. Based on this log and
these observations, process mining tools could be used to retrieve the model
in Figure 2. In this case, we are using Petri nets [18,47] to depict this model.
We do so because Petri nets will be used to explain the semantics of our
internal representation. Moreover, we use Petri-net-based analysis techniques
to analyse the resulting models. Using the Petri net representation, our tools
allow for the automatic translation of the discovered model to a variety of
modelling notations including Event-Driven Process Chains (used by ARIS,
ARIS PPM, SAP) and YAWL (an open source workflow system).

1 On Section 1.2 we elaborate more on these limitations.

3

Identifier Process instance

1 Start, Apply for License, Attend Classes Drive Cars,

Do Theoretical Exam, Do Practical Exam Drive Cars,

Get Result, End

2 Start, Apply for License, Attend Classes Ride Motorbikes,

Do Theoretical Exam, Do Practical Exam Ride Motorbikes,

Get Result, Receive License, End

3 Start, Apply for License, Attend Classes Drive Cars,

Do Theoretical Exam, Do Practical Exam Drive Cars,

Get Result, Receive License, End

4 Start, Apply for License, Attend Classes Ride Motorbikes,

Do Theoretical Exam, Do Practical Exam Ride Motorbikes,

Get Result, End

Table 1
Example of an event log with 4 process instances.

Petri nets are a formalism to model concurrent processes. Graphically, Petri
nets are bipartite directed graphs with two node types: places and transitions.
Places represent conditions in the process. Transitions represent actions. Tasks
in the event logs correspond to transitions in Petri nets. The state of a Petri
net (or process for us) is described by adding tokens (black dots) to places.
The dynamics of the Petri net is determined by the firing rule. A transition
can be executed (i.e. an action can take place in the process) when all of
its input places (i.e. pre-conditions) have at least a number of tokens that is
equal to the number of directed arcs from the place to the transition. After
execution, the transition removes tokens from the input places (one token is
removed for every input arc from the place to the transition) and produces
tokens for the output places (again, one token is produced for every output
arc). Besides, the Petri nets that we consider have a single start place and a
single end place. This means that the processes we describe have a single start
point and a single end point. For the Petri net in Figure 2, in the initial state
there is only one token in place “p1”. This implies that “Start” is the only
transition that can be executed in the initial state. When “Start” executes
(or fires), one token is removed from the place “p1” and one token is added
to the place “p2”. In a similar way, the firing of “Apply for License” marks
place “p3”. In this marking, “Attend Classes Drive Cars” or “Attend Classes
Ride Motorbikes” can fire. If “Attend Classes Drive Cars” fires, it consumes
the token in “p3” and produces one token for “p4” and another for “p5”. Note
that, although the place “p5” has now one token, the transition “Do Practical

4

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5 p6

p4

p7

p8

p9

p11

Fig. 2. Mined net for the log in Table 1.

Exam Drive Cars” cannot fire yet because the place “p7” is not marked. The
enabling and firing of transitions proceeds in a similar way until the place
“p11” is marked.

1.2 Limitations of Current Approaches

Current research in process mining [3,5,6,24,32,10,14,15,56,60] still has prob-
lems to discover process models with certain structural constructs and/or to
deal with the presence of noise in the logs (cf. Section 9). The main problem-
atic constructs are: non-free-choice, invisible tasks and duplicate tasks [14].
Non-free-choice constructs combine synchronization and choice. The exam-
ple in Figure 2 illustrates a non-free-choice construct involving the tasks “Do
Practical Exam Drive Cars” and “Do Practical Exam Ride Motorbikes”. The
current techniques do not capture the dependency between (i) the tasks “At-
tend Classes Drive Cars” and “Do Practical Exam Drive Cars”, and (ii) the

5

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

Do Theoretical Exam

Fig. 3. Another model that correctly portraits the behavior in the log in Table 1.
Note that this model uses duplicate tasks instead of the non-free-choice construct
in Figure 2.

tasks “Attend Classes Ride Motorbikes” and “Do Practical Exam Ride Motor-
bikes”. Invisible tasks are only used for routing purposes and do not appear in
the log. For instance, the process in Figure 2 has an invisible task to skip the
execution of the task “Receive License”. Current techniques have difficulties
discovering these routing tasks because they do not appear in the log. Dupli-
cate tasks means that multiple transitions have the same label in the original
process model. The problem here is that most of the mining techniques treat
these duplicate tasks as a single one. For instance, Figure 3 shows a model
that also captures the behavior in the log in Table 1 by duplicating the task
“Do Theoretical Exam”. Noise characterizes low-frequent behavior in the log.
It can appear in two situations: event traces were somehow incorrectly logged
(for instance, due to temporary system misconfiguration) or event traces re-
flect exceptional situations. Either way, most of the techniques will try to find
a process model that can parse all the traces in the log. However, the presence
of noise may hinder the correct mining of the most common behavior.

6

One of the reasons why the current techniques typically cannot cope with
the above mentioned problematic constructs and/or with noisy logs is be-
cause their search is based on local information in the log. For instance, the
α-algorithm (see [5] for details) uses only information about which tasks di-
rectly succeed or precede one another in the process instances. As a result, this
algorithm does not capture the dependency in non-free-choice constructs. For
example, the α-algorithm will never discover the Petri net in Figure 2, for the
log in Table 1, because none of the process instances has the sub-trace “At-
tend Classes Drive Cars, Do Practical Exam Drive Cars” or “Attend Classes
Ride Motorbikes, Do Practical Exam Ride Motorbikes”. Consequently, the
α-algorithm will not link these tasks.

1.3 Genetic Process Mining

To overcome the limitations of the current process mining techniques, our
research uses genetic algorithms [21] to mine process models. The main mo-
tivation is to benefit from the global search that is performed by this kind of
algorithms.

Genetic algorithms are adaptive search methods that try to mimic the process
of evolution. These algorithms start with an initial population of individuals.
Every individual is assigned a fitness measure to indicate its quality. In our
case, an individual is a possible process model and the fitness is a function
that evaluates how well the individual is able to reproduce the behavior in the
log. Populations evolve by selecting the fittest individuals and generating new
individuals using genetic operators such as crossover (combining parts of two
or more individuals) and mutation (random modification of an individual).

When using genetic algorithms to mine process models, there are three main
concerns. The first is to define the internal representation. The internal repre-
sentation defines the search space of a genetic algorithm. The internal repre-
sentation that we define and explain in this paper supports all the problematic
constructs, except for duplicate tasks. The second concern is to define the fit-
ness measure. In our case, the fitness measure evaluates the quality of a point
(individual or process model) in the search space against the event log. A ge-
netic algorithm searches for individuals whose fitness is maximal. Thus, our
fitness measure makes sure that individuals with a maximal fitness can parse
all the process instances (traces) in the log and, ideally, not more than those
traces. The reason for this is that we aim at discovering a process model that
reflects as close as possible the behavior expressed in the event log. If the
mined model allows for lots of extra behavior that cannot be derived from
the log, it does not give a precise description of what is actually happening.
The third concern relates to the genetic operators (crossover and mutation)

7

because they should ensure that all points in the search space defined by the
internal representation may be reached when the genetic algorithm runs. This
paper presents a genetic algorithm that addresses these three concerns.

1.4 Road Map

The remainder of the paper is organized as follows. Section 2 introduces the
main definitions of Petri nets that are used in this paper. Section 3 explains
the internal representation that we use and defines its semantics by mapping
it onto Petri nets. Section 4 presents the genetic algorithm to mine processes
that may have arbitrary mixtures of choice and synchronization (i.e., non-free-
choice constructs) and invisible tasks. The genetic algorithm is also robust to
noisy logs. Section 5 explains the metrics that we have developed to assess the
quality of mined models while conducting the experiments. Section 6 discusses
the experiments and results. The experiments include synthetic logs. Secion 7
shows the results of applying the genetic algorithm to logs from a municipality
in The Netherlands. Section 8 compares the results of the genetic algorithm
with the results obtained by two other related process mining techniques.
Section 9 discusses the related work. Section 10 contains the conclusions and
future work.

2 Preliminaries

This section introduces standard Petri-net notations that are used to explain
the semantics of the internal representation of our genetic algorithm.

2.1 Petri Nets

We use a variant of the classic Petri-net model, namely Place/Transition nets.
For an elaborate introduction to Petri nets, the reader is referred to [18,47,52].

Definition 1 (P/T-nets) 2 A Place/Transition net, or simply P/T-net, is
a tuple (P, T, F) where:

(1) P is a finite set of places,

2 In the literature, the class of Petri nets introduced in Definition 2 is sometimes
referred to as the class of (unlabeled) ordinary P/T-nets to distinguish it from the
class of Petri nets that allows more than one arc between a place and a transition,
and the class of Petri nets that allows for transition labels.

8

A

B

C

D

E
 F

Fig. 4. An example of a Place/Transition net.

(2) T is a finite set of transitions such that P ∩ T = ∅, and
(3) F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation.

A marked P/T-net is a pair (N, s), where N = (P, T, F) is a P/T-net and
where s is a bag over P denoting the marking of the net, i.e. s ∈ P → IN.
The set of all marked P/T-nets is denoted N .

A marking is a bag over the set of places P , i.e., it is a function from P to
the natural numbers. We use square brackets for the enumeration of a bag,
e.g., [a2, b, c3] denotes the bag with two a-s, one b, and three c-s. The sum of
two bags (X + Y), the difference (X − Y), the presence of an element in a
bag (a ∈ X), the intersection of two bags (X ∩ Y) and the notion of subbags
(X ≤ Y) are defined in a straightforward way and they can handle a mixture
of sets and bags.

Let N = (P, T, F) be a P/T-net. Elements of P ∪ T are called nodes. A node
x is an input node of another node y iff there is a directed arc from x to y
(i.e., (x, y) ∈ F or xFy for short). Node x is an output node of y iff yFx. For
any x ∈ P ∪ T , N

• x = {y | yFx} and x N

•= {y | xFy}; the superscript N may
be omitted if clear from the context.

Figure 4 shows a P/T-net consisting of 7 places and 6 transitions. Transition
A has one input place and two output places. Transition A is an AND-split.
Transition D has two input places and one output place. Transition D is an
AND-join. The black dot in the input place of A and E represents a token. This
token denotes the initial marking. The dynamic behavior of such a marked
P/T-net is defined by a firing rule.

Definition 2 (Firing rule) Let N = ((P, T, F), s) be a marked P/T-net.
Transition t ∈ T is enabled, denoted (N, s)[t〉, iff •t ≤ s. The firing rule [〉
⊆ N ×T ×N is the smallest relation satisfying for any (N = (P, T, F), s) ∈
N and any t ∈ T , (N, s)[t〉 ⇒ (N, s) [t〉 (N, s− •t + t•).

In the marking shown in Figure 4 (i.e., one token in the source place), tran-
sitions A and E are enabled. Although both are enabled only one can fire. If
transition A fires, a token is removed from its input place and tokens are put
in its output places. In the resulting marking, two transitions are enabled: B
and C. Note that B and C can be fired concurrently and we assume inter-

9

leaving semantics. In other words, parallel tasks are assumed to be executed
in some order.

Definition 3 (Reachable markings) Let (N, s0) be a marked P/T-net in
N . A marking s is reachable from the initial marking s0 iff there exists a
sequence of enabled transitions whose firing leads from s0 to s. The set of
reachable markings of (N, s0) is denoted [N, s0〉.

The marked P/T-net shown in Figure 4 has 6 reachable markings. Sometimes
it is convenient to know the sequence of transitions that are fired in order
to reach some given marking. This paper uses the following notations for se-
quences. Let A be some alphabet of identifiers. A sequence of length n, for some
natural number n ∈ IN, over alphabet A is a function σ : {0, . . . , n− 1} → A.
The sequence of length zero is called the empty sequence and written ε. For the
sake of readability, a sequence of positive length is usually written by juxta-
posing the function values. For example, a sequence σ = {(0, a), (1, a), (2, b)},
for a, b ∈ A, is written aab. The set of all sequences of arbitrary length over
alphabet A is written A∗.

Definition 4 (Firing sequence) Let (N, s0) with N = (P, T, F) be a mark-
ed P/T net. A sequence σ ∈ T ∗ is called a firing sequence of (N, s0) if and
only if, for some natural number n ∈ IN, there exist markings s1, . . . , sn and
transitions t1, . . . , tn ∈ T such that σ = t1 . . . tn and, for all i with 0 ≤ i < n,
(N, si)[ti+1〉 and si+1 = si−•ti+1 + ti+1•. (Note that n = 0 implies that σ = ε
and that ε is a firing sequence of (N, s0).) Sequence σ is said to be enabled in
marking s0, denoted (N, s0)[σ〉. Firing the sequence σ results in a marking sn,
denoted (N, s0) [σ〉 (N, sn).

For the marked Petri net shown in Figure 4, some possible firing sequences are
ABCD, ACBD and AE. Note that, for these firing sequences, the resulting
marking has a single token and this token is in the output place of transitions
D and F .

3 Internal Representation and Semantics

When defining the internal representation to be used by our genetic algorithm,
the main requirement was that this representation should express the depen-
dencies between the tasks in the log. In other words, the model should clearly
express which tasks would enable the execution of other tasks. Additionally, it
would be nice if the internal representation would be compatible with a formal-
ism to which analysis techniques and tools exist. This way, these techniques
could also be applied to the discovered models. Thus, one option would be to
directly represent the individual (or process model) as a Petri net [18,47]. How-

10

(ii)
(i)

A
 E

B

C

D

Original Petri net
 Mapped Petri net

F

G

A

F

B

C

E

G

D

Compact representation of the causal matrix

ACTIVITY

 I(ACTIVITY)

 O(ACTIVITY)

A

 {}

 {{F,B,E},{E,C},{G}}

B

 {{A}}

 {{D}}

C

 {{A}}

 {{D}}

D

 {{F,B,E},{E,C},{G}}

 {}

E

 {{A}}

 {{D}}

F

 {{A}}

 {{D}}

G

 {{A}}

 {{D}}

Fig. 5. Mapping of a PN with more than one place between two tasks (or transitions).

ever, such a representation would require determining the number of places
in every individual and this is not the core concern. It is more important to
show the dependencies between the tasks and the semantics of the split/join
tasks. Therefore, we defined an internal representation that is as expressive
as Petri nets (from the task dependency perspective) but that only focuses
on the tasks. This representation is called causal matrix. Figure 5 illustrates
in (i) the causal matrix that expresses the same task dependencies that are
in the “original Petri net”. The causal matrix shows which tasks enable the
execution of other tasks via the matching of input (I) and output (O) con-
dition functions. The sets returned by the condition functions I and O have
subsets that contain the tasks in the model. Tasks in a same subset have
an XOR-split/join relation. Sets in different subsets have an AND-split/join
relation. Thus, every I and O set expresses a conjunction of exclusive disjunc-
tions. Additionally, a task may appear in more than one subset in a same set.
As an example, for task D in the original Petri net in Figure 5 the causal
matrix states that I(D) = {{F,B,E}, {E,C}, {G}} because D is enabled by
an AND-join construct that has 3 places. From top to bottom, the first place
has a token whenever F or B or E fires. The second place, whenever E or
C fires. The third place, whenever G fires. Similarly, the causal matrix has
O(D) = {} because D is executed last in the model. The following definition
formally defines these notions.

Definition 5 (Causal Matrix) A Causal Matrix is a tuple CM = (A,C, I, O),
where

- A is a finite set of activities,
- C ⊆ A× A is the causality relation,

11

- I : A→ P(P(A)) is the input condition function, 3

- O : A→ P(P(A)) is the output condition function,

such that

- C = {(a1, a2) ∈ A× A | a1 ∈
⋃

I(a2)},
4

- C = {(a1, a2) ∈ A× A | a2 ∈
⋃

O(a1)},
- C ∪ {(ao, ai) ∈ A× A | ao

C

•= ∅ ∧ C

• ai = ∅} is a strongly connected graph,

The set of all causal matrices is denoted by CM, and a bag of causal matrices
is denoted by CM[].

Any Petri net without duplicate tasks and without more than one place with
the same input tasks and the same output tasks can be mapped to a causal
matrix. Definition 6 formalizes such a mapping. The main idea is that there
is a causal relation C between any two tasks t and t′ whenever at least one
of the output places of t is an input place of t′. Additionally, the I and O
condition functions are based on the input and output places of the tasks.
This is a natural way of mapping because the input and output places of Petri
nets actually reflect the conjunction of disjunctions that these sets express.

Definition 6 (ΠPN→CM) Let PN = (P, T, F) be a Petri net. The mapping
of PN is a tuple ΠPN→CM(PN) = (A,C, I, O), where

- A = T ,
- C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 6= ∅},
- I ∈ T → P(P(T)) such that ∀t∈T I(t) = {•p | p ∈ •t},
- O ∈ T → P(P(T)) such that ∀t∈T O(t) = {p • | p ∈ t•}.

The semantics of the causal matrix can be easily understood by mapping them
back to Petri nets. This mapping is formalized in Definition 7. Conceptually,
the causal matrix behaves as a Petri net that contains visible and invisible
tasks. For instance, see Figure 5. This figure shows (i) the mapping of a Petri
net to a causal matrix and (ii) the mapping from the causal matrix to a Petri
net. The firing rule for the mapped Petri net is very similar to the firing rule
of Petri nets in general (cf. Definition 2). The only difference concerns the
invisible tasks. Enabled invisible tasks can only fire if their firing enables a
visible task. Similarly, a visible task is enabled if all of its input places have
tokens or if there exits a set of invisible tasks that are enabled and whose
firing will lead to the enabling of the visible task. Conceptually, the causal
matrix keeps track of the distribution of tokens at a marking in the output
places of the visible tasks. The invisible tasks can be seen as “channels” or
“pipes” that are only used when a visible task needs to fire. Every causal

3 P(A) denotes the powerset of some set A.
4
⋃

I(a2) is the union of the sets in set I(a2).

12

matrix starts with a token at the start place. Finally, we point out that, in
Figure 5, although the mapped Petri net does not have the same structure
of the original Petri net, these two nets are behaviorally equivalent. In other
words, given that these two nets initially have a single token and this token
is at the start place (i.e., the input place of A), the set of traces the two nets
can generate is the same.

Definition 7 (ΠN
CM→PN) Let CM = (A,C, I, O) be a causal matrix. The

naive Petri net mapping of CM is a tuple ΠN
CM→PN = (P, T, F), where

- P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ A ∧ s ∈ O(t)},
- T = A ∪ {mt1,t2 | (t1, t2) ∈ C},
- F = {(i, t) | t ∈ A ∧ C

• t = ∅} ∪ {(t, o) | t ∈ A ∧ t C

•= ∅} ∪ {(it,s, t) | t ∈
A ∧ s ∈ I(t)} ∪ {(t, ot,s) | t ∈ A ∧ s ∈ O(t)} ∪ {(ot1,s,mt1,t2) | (t1, t2) ∈
C ∧ s ∈ O(t1) ∧ t2 ∈ s}∪{(mt1,t2 , it2,s) | (t1, t2) ∈ C ∧ s ∈ I(t2) ∧ t1 ∈ s}.

Definition 7 shows a rather naive approach to generate the mapped Petri net
shown in Figure 5. However, as shown in [16], there are special situations in
which more sophisticated mappings are possible.

4 Genetic Algorithm

In this section we describe the main steps of our genetic algorithm. Figure 6
shows how they are related.

start
 I
 II
 III

V

IV
 end

yes

no

Step

 Description

I

 Read event log

II

 Build the initial population

III

 Calculate fitness of the

individuals in the population

IV

 Stop and return the fittest

individuals?

V

 Create next population
 –
 use

elitism and genetic operators

Fig. 6. Main steps of our genetic algorithm.

4.1 Initial Population

The initial population is randomly built by the genetic algorithm. As explained
in Section 3, individuals are causal matrices. When building the initial popu-
lation, we ensure that the individuals comply with Definition 5. Given a log,
all individuals in any population of the genetic algorithm have the same set
of activities (or tasks) A. This set contains the tasks that appear in the log.

13

The setting of the causality relation C can be done via a completely random
approach or a heuristic one. The random approach uses 50% probability for
establishing (or not) a causality relation between two task in A. The heuristic
approach uses the information in the log to determine the probability that two
tasks are going to have a causality relation set. In a nutshell, the heuristics
works as follows: the more often a task t1 is directly followed by a task t2
(i.e. the subtrace “t1, t2” appears in traces in the log), the higher the prob-
ability that individuals are built with a causality relation from t1 to t2 (i.e.,
(t1, t2) ∈ C). This heuristic way of building an individual is based on the
work presented in [60]. Subsection 4.1.1 has more details about the heuristic
approach. Once the causality relations of an individual are determined, the
condition functions I and O are randomly built. This is done by setting a
maximum size n for any input or output condition function set of a task t
in the initial population 5 . Every task t1 that causally precedes a task t2, i.e.
(t1, t2) ∈ C, is randomly inserted in one or more subsets of the input con-
dition function of t2. A similar process is done to set the output condition
function of a task 6 . In our case, we set the number of distinct tasks in the log
as the maximum size for any input/output condition function set in the initial
population 7 . As a result, the initial population can have any individual in the
search space defined by a set of activities A, and that satisfy the constraints
for the size of the input/output condition function sets. Note that the higher
the amount of tasks that a log contains, the bigger this search space. Finally,
we emphasize that no further limitations to the input/output condition func-
tions sets are made in the other steps of the genetic algorithm. Therefore,
during the “Step V” in the Figure 6, these sets can increase or shrink as the
population evolves.

4.1.1 Heuristics to Build the Causality Relation of a Causal Matrix

When applying a genetic algorithm to a domain, it is common practice to
“give a hand” to the genetic algorithm by using well-know heuristics (in this
domain) to build the initial population [21]. Studies show that the use of
heuristics often does not alter the end result (if the genetic algorithm runs for
infinite amount of time), but it may speed the early stages of the evolution.
The GAs that use heuristics are called hybrid genetic algorithms.

In our specific domain - process mining - some heuristics have proven to give
reasonable solutions when used to mine event logs. These heuristics are mostly
based on local information in the event-log. Due to its similarities to other
related work, we use the heuristics in [60] to guide the setting of the causality

5 Formally: ∀t∈A[|I(t)| ≤ n ∧ |O(t)| ≤ n].
6 Formally: ∀t1,t2∈A,(t1,t2)∈C [∃i ∈ I(t2) : t1 ∈ i] and ∀t1,t2∈A,(t1,t2)∈C [∃o ∈ O(t1) :
t2 ∈ o].
7 Formally: ∀t∈A[|I(t)| ≤ |A| ∧ |O(t)| ≤ |A|].

14

relations in the individuals of the initial population. These heuristics are based
on the dependency measure. To define this measure, we first need to formalize
the notion of an event log.

Definition 8 (Event Trace, Event Log) Let T be a set of tasks. σ ∈ T ∗ is
an event trace and L : T ∗ → IN is an event log. For any σ ∈ dom(L), L(σ)
is the number of occurrences of σ. The set of all event logs is denotes by L.

Note that we use dom(f) and rng(f) to respectively denote the domain and
range of a function f . Furthermore, we use the notation σ ∈ L to denote
σ ∈ dom(L) ∧ L(σ) ≥ 1. For example, assume a log L = [abcd, acbd, abcd]
for the net in Figure 4. Then, we have that L(abcd) = 2, L(acbd) = 1 and
L(ab) = 0.

The dependency measure basically indicates how strongly a task depends (or
is caused) by another task. The more often a task t1 directly precedes another
task t2 in the log, and the less often t2 directly precedes t1, the stronger is
the dependency between t1 and t2. In other words, the more likely it is that
t1 is a cause to t2. The dependency measure is given in Definition 9. The
notation used in this definition is as follows. l2l : T ×T ×L → IN is a function
that detects length-two loops. l2l gives the number of times that the substring
“t1t2t1” occurs in the log L. follows : T×T×L → IN is a function that returns
the number of times that a task is directly followed by another one. That is,
how often the substring “t1t2” occurs in the log L.

Definition 9 (Dependency Measure - D) Let L be an event log. Let T
be the set of tasks in L. Let t1 and t2 be two tasks in T . The dependency
measure D : T × T × L → IR is a function defined as:

D(t1, t2, L) =























































l2l(t1,t2,L)+l2l(t2,t1,L)
l2l(t1,t2,L)+l2l(t2,t1,L)+1

if t1 6= t2 and l2l(t1, t2, L) > 0,

follows(t1,t2,L)−follows(t2,t1,L)
follows(t1,t2,L)+follows(t2,t1,L)+1

if t1 6= t2 and l2l(t1, t2, L) = 0,

follows(t1,t2,L)
follows(t1,t2,L)+1

if t1 = t2.

Observe that the dependency relation distinguishes between tasks in short
loops (length-one and length-two loops) and tasks in parallel. Moreover, the
“+1” in the denominator is used to benefit more frequent observations over
less frequent ones. For instance, if a length-one-loop “tt” happens only once
in the log L, the dependency measure D(t, t, L) = 0.5. However, if this same
length-one-loop would occur a hundred times in the log, D(t, t, L) = 0.99.
Thus, the more often a substring (or pattern) happens in the log, the stronger
the dependency measure.

15

Once the dependency relations are set for the input event log, the genetic
algorithm uses it to randomly build the causality relations for every individual
in the initial population. The pseudo-code for this procedure is the following:

Pseudo-code:
input: An event-log L, a power value p, the dependency function D.
output: A causality relation C.

(1) T ←− set of tasks in L.
(2) C ←− ∅.
(3) FOR every tuple (t1, t2) in T × T do:

(a) Randomly select a number r between 0 (inclusive) and 1.0 (exclusive).
(b) IF r < D(t1, t2, L)p then:

(i) C ←− C ∪ {(t1, t2)}.
(4) Return the causality relation C.

Note that we use a power value p to control the “influence” of the dependency
measure in the probability of setting a causality relation. Higher values for p
lead to the inference of fewer causality relations among the tasks in the event
log, and vice-versa.

4.2 Fitness Calculation

As discussed in Section 1, process mining aims at discovering a process model
from an event log. This mined process model should give a good insight about
what the behavior in the log is. In other words, the mined process model
should be complete and precise from a behavioral perspective. A process model
is complete when it can parse (or reproduce) all the event traces in the log. A
process model is precise when it cannot parse more than the traces in the log.
The requirement that the mined model should also be precise is important
because different models are able to parse all event traces and these models
may allow for extra behavior that does not belong to the log. To illustrate this
we consider the nets shown in Figure 7. These models can also parse the traces
in Table 1, but they allow for extra behavior. For instance, both models allow
for the applicant to take the exam before attending to classes. The fitness
function guides the search process of the genetic algorithm. Thus, the fitness
of an individual is assessed by benefiting the individuals that can parse more
event traces in the log (the “completeness” requirement) and by punishing the
individuals that allow for more extra behavior than the one expressed in the
log (the “preciseness” requirement).

To facilitate the explanation of our fitness measure, we divide it into three
parts. First, we discuss in Subsection 4.2.1 how we defined the part of the
fitness measure that guides the genetic algorithm towards individuals that are

16

Attend Classes
Ride Motorbikes

Attend Classes
Drive Cars

Do Theoretical
Exam

Do Practical
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes Get Result Receive

 License

Start

End

StartApply for License

Do Practical
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes

Get Result
Attend Classes

Drive Cars

Attend Classes
Ride Motorbikes

Do Theoretical
Exam

Receive
 License

End

Apply for License

(a)

(b)

Fig. 7. Example of nets that can also reproduce the behavior for the log in Table 1.
The problem here is that these nets allow for extra behavior that is not in the log.

more complete. Second, we show in Subsection 4.2.2 how we defined the part
of the fitness measure that benefits individuals that are more precise. Finally,
we show in Subsection 4.2.3 the fitness measure that our genetic algorithm
is using. This fitness measure combines the partial fitness measures that are
presented in the subsections 4.2.1 and 4.2.2.

4.2.1 The “Completeness” Requirement

The “completeness” requirement of our fitness measure is based on the pars-
ing of event traces by individuals. For a noise-free log, the perfect individual
should have fitness 1. This means that this individual could parse all the
traces in the log. Therefore, a natural fitness for an individual to a given
log seems to be the number of properly parsed event traces 8 divided by the
total number of event traces. However, this fitness measure is too coarse be-
cause it does not give an indication about (i) how many parts of an individual
are correct when the individual does not properly parse an event trace and

8 An event trace is properly parsed by an individual if, for an initial marking that
contains a single token and this token is at the start place of the mapped Petri net
for this individual, after firing the visible tasks in the order in which they appear
in the event trace, the end place is the only one to be marked and it has a single
token.

17

(ii) the semantics of the split/join tasks. For instance, if a net has an AND-
split instead of an XOR-split, it may happen that all tasks in a trace can
be replayed by this net, but this net does not proper complete for this trace
because tokens remain at some of the output places of the AND-split task.
So, we defined a more elaborate fitness function: when the task to be parsed
is not enabled, the problems (e.g. number of missing tokens to enable this
task) are registered and the parsing proceeds as if this task would be en-
abled. This continuous parsing semantics is more robust because it gives a
better indication of how many tasks do or do not have problems during the
parsing of a trace. The partial fitness function that tackles the “complete-
ness” requirement is in Definition 10. The notation used in this definition
is as follows. allParsedActivities(L,CM) gives the total number of tasks in
the event log L that could be parsed without problems by the causal ma-
trix (or individual) CM . numActivitiesLog(L) gives the number of tasks in L.
allMissingTokens(L,CM) indicates the number of missing tokens in all event
traces. allExtraTokensLeftBehind(L,CM) indicates the number of tokens that
were not consumed after the parsing has stopped plus the number of tokens
of the end place minus 1 (because of proper completion). numTracesLog(L)
indicates the number of traces in L. numTracesMissingTokens(L,CM) and
numTracesExtraTokensLeftBehind(L,CM) respectively indicate the number
of traces in which tokens were missing and tokens were left behind during the
parsing.

Definition 10 (Partial Fitness - PF complete) Let L be a non-empty event
log. Let CM be a causal matrix. Then the partial fitness PF complete : L × CM→
(−∞, 1] is a function defined as:

PF complete(L,CM) =
allParsedActivities(L,CM)− punishment

numActivitiesLog(L)

where

punishment =

allMissingTokens(L,CM)

numTracesLog(L)− numTracesMissingTokens(L,CM) + 1
+

allExtraTokensLeftBehind(L,CM)

numTracesLog(L)− numTracesExtraTokensLeftBehind(L,CM) + 1

The partial fitness PF complete gives a more detailed indication about how fit
an individual is to a given log. The function allMissingTokens penalizes (i)
nets with XOR-split where it should be an AND-split and (ii) nets with an
AND-join where it should be an XOR-join. Similarly, the function allExtraTo-
kensLeftBehind penalizes (i) nets with AND-split where it should be an XOR-

18

split and (ii) nets with an XOR-join where it should be an AND-join. Note
that we weigh the impact of the allMissingTokens and allExtraTokensLeftBe-
hind functions by respectively dividing them by the number of event traces
minus the number of event traces with missing and left-behind tokens. The
main idea is to promote individuals that correctly parse the more frequent
behavior in the log. Additionally, if two individuals have the same punishment
value, the one that can parse more tasks has a better fitness because its miss-
ing and left-behind tokens impact fewer tasks. This may indicate that this
individual has more correct I and O condition functions than incorrect ones.
In other words, this individual is a better candidate to produce offsprings for
the next population (see Subsection 4.4).

4.2.2 The “Preciseness” requirement

The “preciseness” requirement is based on discovering how much extra be-
havior an individual allows for. To define a fitness measure to punish models
that express more than it is in the log is especially difficult because we do not
have negative examples to guide our search. Note that the event logs show the
allowed (positive) behavior, but they do not express the forbidden (negative)
one.

One possible solution to punish an individual that allows for undesirable be-
havior could be to build the coverability graph [47] of the mapped Petri net
for this individual and check the fraction of event traces this individual can
generate that are not in the log. The traces that express different paths of
execution for parallelism are not considered as extra behavior. The main idea
in this approach is to punish the individual for every extra event trace it gen-
erates. Unfortunately, building the coverability graph is not very practical and
it is unrealistic to assume that all possible behavior is present in the log.

Because proving that a certain individual is precise is not practical, we use a
simpler solution to guide our genetic algorithm towards solutions that have
“less extra behavior”. We check, for every marking, the number of visible tasks
that are enabled. Individuals that allow for extra behavior tend to have more
enabled tasks than individuals that do not. For instance, the nets in Fig-
ure 7 have more enabled tasks in most reachable markings than the net in
Figure 2. The main idea in this approach is to benefit individuals that have
a smaller amount of enabled tasks during the parsing of the log. This is the
measure we use to define our second partial fitness function PF precise that is
presented in Definition 11. The notation used in this definition is as follows.
allEnabledActivities(L,CM) indicates the number of activities that were en-
abled during the parsing of the log L by the causal matrix (or individual) CM .
allEnabledActivities(L,CM []) apply allEnabledActivities(L,CM) (see nota-
tion for Definition 10) to every element in the bag of causal matrices (or

19

population) CM []. The function max (allEnabledActivities(L,CM [])) returns
the maximum value of the amount of enabled tasks that individuals in the
given population (CM []) had while parsing the log (L).

Definition 11 (Partial Fitness - PF precise) Let L be a non-empty event log.
Let CM be a causal matrix. Let CM [] be a bag of causal matrices that contains
CM . The partial fitness PF precise : L × CM× CM[]→ [0, 1] is a function de-
fined as

PF precise(L,CM,CM []) =
allEnabledActivities(L,CM)

max (allEnabledActivities(L,CM []))

The partial fitness PF precise gives an indication of how much extra behavior
an individual allows for in comparison to other individuals in the same pop-
ulation. The smaller the PF precise of an individual is, the better. This way we
avoid over-generalizations.

4.2.3 Fitness - Combining the “Completeness” and “Preciseness” Require-
ments

While defining the fitness measure, we decided that the “completeness” re-
quirement should be more relevant than the “preciseness” one. The reason
is that we are only interested in precise models that are also complete. The
resulting fitness is defined as follows.

Definition 12 (Fitness - F) Let L be a non-empty event log. Let CM be
a causal matrix. Let CM [] be a bag of causal matrices that contains CM .
Let PF complete and PF precise be the respective partial fitness functions given in
definitions 10 and 11. Let κ be a real number greater than 0 and smaller or
equal to 1 (i.e., κ ∈ (0, 1]). Then the fitness F : L × CM× CM[]→ (−∞, 1)
is a function defined as

F (L,CM,CM []) = PF complete(L,CM)− κ ∗ PF precise(L,CM,CM [])

The fitness F weighs (by κ) the punishment for extra behavior. Thus, if a
set of individuals can parse all the traces in the log, the one that allows for
less extra behavior will have a higher fitness value. For instance, assume a
population with the corresponding individual for the net in Figure 2 and the
corresponding individuals for the nets in Figure 7. If we calculate the fitness F
of these three individuals with respect to the log in Table 1, the individual in
Figure 2 will have the highest fitness value among the three and the individual
in Figure 7(b), the lowest fitness value.

20

4.3 Stop Criteria

The mining algorithm stops when (i) it computes n generations, where n is the
maximum number of generations that is allowed; or (ii) the fittest individual
has not changed for n/2 generations in a row.

4.4 Genetic Operators

We use elitism, crossover and mutation to build the individuals of the next
generation. A percentage of the best individuals (the elite) is directly copied
to the next population. The other individuals in the population are generated
via crossover and mutation. Two parents produce two offsprings. To select one
parent, a tournament is played in which five individuals in the population are
randomly drawn and the fittest one always wins. The crossover and mutation
operator are explained respectively in subsections 4.4.1 and 4.4.2.

4.4.1 Crossover

Crossover is a genetic operator that aims at recombining existing material
in the current population. In our case, this material is the current causality
relations (cf. Definition 5) in the population. Thus, the crossover operator
used by our genetic algorithm should allow for the complete search of the
space defined by the existing causality relation in a population. Given a set
of causality relations, the search space contains all the individuals that can
be created by any combination of a subset of the causality relations in the
population. Thus, our crossover operator allows an individual to: lose tasks
from the subsets in its I/O condition functions (but not necessarily causality
relations because a same task may be in more than one subset of an I/O
condition function), add tasks to the subsets in its I/O condition functions
(again, not necessarily causality relations), exchange causality relations with
other individuals, incorporate causality relations that are in the population
but are not in the individual, lose causality relations, decrease the number of
subsets in its I/O condition functions, and/or increase the number of subsets
in its I/O condition functions. The crossover rate determines the probability
that two parents undergo crossover. The crossover point of two parents is a
randomly chosen task. The pseudo-code for the crossover operator is as follows:

Pseudo-code:
input: Two parents (parent 1 and parent2), crossover rate.
output: Two possibly recombined offsprings (offspring 1 and offspring2).

(1) offspring1 ←− parent1 and offspring2 ←− parent2.

21

(2) With probability “crossover rate” do:
(a) Randomly select a task t to be the crossover point of the offsprings.
(b) Randomly select a swap point sp1 for I1(t)

9 . The swap point goes
from position 0 to n − 1, where n is the number of subsets in the
condition function I1(t).

(c) Randomly select a swap point sp2 for I2(t).
(d) remainingSet1(t) equals subsets in I1(t) that are between position 0

and sp1 (exclusive).
(e) swapSet1(t) equals subsets in I1(t) whose position equals or bigger

than sp1.
(f) Repeat steps 2d and 2e but respectively use remainingSet 2(t), I2(t),

sp2 and swapSet2(t) instead of remainingSet1(t), I1(t), sp1 and
swapSet1(t).

(g) FOR every subset S2 in swapSet2(t) do:
(i) With equal probability perform one of the following steps:

(A) Add S2 as a new subset in remainingSet1(t).
(B) Join S2 with an existing subset X1 in remainingSet1(t).
(C) Select a subset X1 in remainingSet1(t), remove the ele-

ments of X1 that are also in S2 and add S2 to remaining−
Set1(t).

(h) Repeat Step 2g but respectively use S1, swapSet1 (t), X2 and remain−
ingSet2(t) instead of S2, swapSet2(t), X1 and remainingSet1(t).

(i) I1(t)←− remainingSet1(t) and I2(t)←− remainingSet2(t).
(j) Repeat steps 2b to 2h but use O(t) instead of the I(t).
(k) Update the related tasks to t.

(3) Return offspring1 and offspring2.

Note that, after crossover, the number of causality relations for the whole
population remains constant, but how these relations appear in the offsprings
may be different from the parents. Moreover, the offsprings may be differ-
ent even when both parents are equal. For instance, consider the situation in
which the crossover operator receives as input two parents that are equal
to the causal matrix in Figure 5. Assume that (i) the crossover point is
the task D, (ii) we are doing crossover over the input condition function
I(D) = {{F,B,E}, {E,C}, {G}}, and (iii) the swap points are sp1 = 1
and sp2 = 2. Then, we have that the remainingSet 1(D) = {{F,B,E}}, the
swapSet1(D) = {{E,C}, {G}}, the remainingSet 2(D) = {{F,B,E}, {E,C}},
the swapSet2(D) = {{G}}. Let us first crossover the subsets in the swapSet 2(D)
with the remainingSet1(D). During the crossover, the genetic algorithm ran-
domly chooses to merge the subset S2 = {G} in the swapSet2(D) with the
existing subset X1 = {F,B,E}. In a similar way, while swapping the subsets

9 We use the notation Ij(t) to get the subset returned by the input condition
function I of task t in individual j. In this pseudo-code, the individuals are the
offsprings (offspring1 and offspring2) and j ∈ {1, 2}.

22

in swapSet1(D) with the remainingSet2(D), the algorithm randomly chooses
(i) to insert the subset S1 = {E,C} and remove task E from the subset
X2 = {F,B,E}, and (ii) to insert the subset S1 = {G} as a new subset
in the remainingSet2(D). The result is that I1(D) = {{F,B,E,G}}} and
I2(D) = {{F,B}, {E,C}, {G}}. The output condition functions O1(D) and
O2(D) do not change after the crossover operator because the task D does not
have any output task. After the crossover, the mutation operator takes place.

4.4.2 Mutation

The mutation operator aims at inserting new material in the current pop-
ulation. In our case, this means that the mutation operator may change
the existing causality relations of a population. Thus, our mutation oper-
ator performs one of the following actions to the I/O condition functions
of a task in an individual: (i) randomly choose a subset and add a task
(in A) to this subset, (ii) randomly choose a subset and remove a task out
of this subset, or (iii) randomly redistribute the elements in the subsets of
I/O into new subsets. For example, consider the input condition function
of task D in Figure 5. I(D) = {{F,B,E}, {E,C}, {G}} can be mutated to
(i) {{F,B,E}, {E,C}, {G,D}} if task D is added to the subset {G}, (ii)
{{F,B,E}, {C}, {G}} if task E is removed from the subset {E,C}, or (iii)
{{F}, {E,C,B}, {G}, {E}} if the elements in the original I(D) are randomly
redistributed in a randomly chosen number of new subsets. Every task in
an offspring may undergo mutation with the probability determined by the
mutation rate. The pseudo-code for the mutation operator is as follows:

Pseudo-code:
input: An individual, mutation rate.
output: A possibly mutated individual.

(1) For every task t in the individual do:
(a) With probability mutation rate do one of the following operations for

the condition function I(t):
(i) Select a subset X in I(t) and add a task t′ to X, where t′ belongs

to the set of tasks in the individual.
(ii) Select a subset X in I(t) and remove a task t′ from X, where

t′ belongs to X. If X is empty after t′ removal, exclude X from
I(t).

(iii) Redistribute the elements in I(t). 10

(b) Repeat Step 1a, but use the condition function O(t) instead of I(t).

10 Details about this step: (i) Get a list with the elements of I(t); (ii) Create n sets
(n is the number of elements in I(t)) and randomly distribute them in the n sets;
and (iii) Filter out the non-empty sets. These non-empty sets are now the subsets
of I(t).

23

(c) Update the related tasks to t.

As the reader may already have noticed, both the crossover and the mutation
operators perform a repairing operation at the end of their executions. The
“update the related tasks” operation makes sure that the individual is still
compliant with the Definition 5 after undergoing crossover and/or mutation.

5 Analysis Metrics

The genetic algorithm searches for models that are complete and precise (see
Subsection 4.2). Therefore, when evaluating the results of our experiments,
we should check if the mined models are indeed complete and precise. At
first sight, the natural way to check for this seemed to be to compare the
causal matrix of the original model (the one that was simulated to created the
synthetic event logs) with the causal matrix of the individual that was mined
by the genetic algorithm. However, this is not a good evaluation criterion
because there are different ways to model the exact behavior expressed in
a log. For instance, consider the net in Figure 8. This net produces exactly
the same behavior as the one in Figure 2. However, their causal matrices are
different. Furthermore, even when the mined models are not complete and/or
precise, we should be able to assess how much correct material they contain.
This is important because we do not let the genetic algorithm run for an
“infinite” amount of time. Thus, even when the mined model is not complete
and precise, it is important to know if the genetic algorithm is going in the
right direction.

In our experiments, we have three elements: (i) the original model that is used
to build the synthetic event log, (ii) the synthetic event log itself, and (iii) the
mined model (or individual). Thus, to analyse our results, we have defined
metrics that are based on two or more of these elements.

Checking for Completeness

To check for completeness, we only need the event log and the mined model.
Recall that a model is complete when it can parse all the traces in the log
without having missing tokens or tokens left behind. So, completeness can be
verified by calculating the partial fitness PFcomplete (see Definition 10) for the
event log and the mined model. Whenever PFcomplete = 1, the mined model
is complete. Moreover, even when the mined model has PFcomplete < 1, this
measure gives an indication of the quality of the mined model with respect to
completeness.

Checking for Preciseness

24

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5

p6

p4

p7

p8

p9

p11

Fig. 8. Other mined net for the log in Table 1. Note that this net is behaviorally
equivalent to the net in Figure 2, although they are structurally different. Note that
the place “p6” has different input and output tasks in the two nets.

To check for preciseness, we need the original model, the event log and the
mined model 11 . The main reason why we could not define metrics only based
on the event log and the mined model, or the original model and the mined
model, is because it is unrealistic to assume that the event log has all the
possible traces that the original model can generate. In other words, it is
unrealistic to assume that the log contains all possible event traces. Recall
that a model is precise when it does not allow for more behavior than the one
expressed in the log. Thus, if the log would be exhaustive, a possible metric
to check for this preciseness could be to divide the number of traces that are
in the log and that the mined model can generate by the amount of traces
that the mined model can generate. Clearly, a precise mined model could not

11 Note that in reality we do not know the original (or initial) model. However,
the only way to evaluate our results is to assume an initial model. Without an
initial model, it is impossible to judge preciseness. In other words, there could be
over-fitting or over-generalization, but it would be impossible to judge this.

25

A B C A D

y

x

y

X

D B C

X

A B C

D

Y

OriginalModel Log1

X,A,B,C,D,Y

X,A,C,B,D,Y

X,C,A,D,B,Y

X,B,A,D,C,Y

X,D,A,C,B,Y

X,C,D,B,A,Y

Log2

X,A,B,C,D,Y

X,B,A,C,D,Y

X,C,B,A,D,Y

X,B,C,A,D,Y

MineModel1

MineModel2

Fig. 9. Example of two mined models that are complete and precise with respect to
the logs, but both mined models can generate more traces than the ones in the log.
Additionally, the coverability graph of the “MinedModel2” is different from the one
of the “OriginalModel”.

generate more traces than the ones in the log. Note that this metric would
be based on the event log and the mined model. Furthermore, metrics based
on the mined and original models would also be possible if the log would be
entire. For instance, we could compare the coverability graphs [47] of mapped
Petri nets of the mined and the original models. In this case, the mined model
would be precise whenever the coverability graphs would be equal. Note that
sophisticated notions such as bisimulation [41] and branching bisimulation [22]
could also be used. However, none of these metrics are suitable because in real-
life applications the log does not hold all possible traces.

For instance, consider the situation illustrated in Figure 9. This figure shows
the original model (“OriginalModel”), two synthetic logs (“Log1” and “Log2”)
and their respective mined models (“MinedModel1” and “MinedModel2”).
“Log1” shows that the tasks A,B,C and D are (i) always executed after the
task X and before the task Y and (ii) independent of each other. Thus, we can
say that the “MinedModel1” is precise with respect to the behavior observed

26

in the “Log1”. However, note that the “MinedModel1”, although precise, can
generate more traces than the ones in the “Log1”. A similar reasoning can
be done for the “Log2” and the “MinedModel2”. Moreover, the coverability
graph of the “MinedModel2” is different from the one of the “OriginalModel”.
Actually, based on “Log2”, the “MinedModel2” is more precise than the “Orig-
inalModel”. This illustrates that, when assessing how close the behavior of the
mined and original models are, we have to consider the event log that was used
by the genetic algorithm. Therefore, we have defined two metrics to quantify
how similar the behavior of the original model and the mined model are based
on the event log used during the mining process.

The two metrics are the behavioral precision (BP) and the behavioral recall
(BR). Both metrics are based on the parsing of an event log by the mined
model and by the original model. The BP and BR metrics are respectively
formalized in definitions 13 and 14. These metrics basically work by checking,
for the continuous semantics parsing of every task in every process instance of
the event log, how many tasks are enabled in the mined model and how many
are enabled in the original model. The more enabled tasks the models have
in common, the more similar their behaviors are with respect to the event
log. The behavioral precision BP checks how much behavior is allowed by the
mined model that is not by the original model. The behavioral recall BR checks
for the opposite. Additionally, both metrics take into account how often a trace
occurs in the log. This is especially important when dealing with logs in which
some paths are more likely than others, because deviations corresponding the
infrequent paths are less important than deviations corresponding to frequent
behavior. Note that, assuming a log generated from an original model and a
mined model for this log, we can say that the closer their BP and BR are to
1, the more similar their behaviors. More specifically, we can say that:

- The mined model is as precise as the original model whenever BP and BR

are equal to 1. This is exactly the situation illustrated in Figure 9 for the
“OriginalModel”, the “Log1” and the “MinedModel1”.

- The mined model is more precise than the original model whenever BP = 1
and BR < 1. For instance, see the situation illustrated in Figure 9 for the
“OriginalModel”, the “Log2” and the “MinedModel2”.

- The mined model is less precise than the original model whenever BP < 1
and BR = 1. For instance, see the situation illustrated for the original model
in Figure 2, the log in Figure 1, and the mined models in Figure 7.

Definition 13 (Behavioral Precision - BP) 12 Let L be an event log. Let
CM o and CM m be the respective causal matrices for the original (or base)

12 For both definitions 13 and 14, whenever the denominator “|Enabled(CM , σ, i)|”
is equal to 0, the whole division is equal to 0. For simplicity reasons, we have omitted
this condition from the formulae.

27

model and for the mined one. Then the behavioral precision BP : L × CM ×
CM→ [0, 1] is a function defined as:

BP(L,CM o,CM m) =

∑

σ∈L

(

L(σ)

|σ|
×

|σ|
∑

i=1

|Enabled(CM o, σ, i)
⋂

Enabled(CM m, σ, i)|

|Enabled(CM m, σ, i)|

)

∑

σ∈L

L(σ)

where

- Enabled(CM , σ, i) gives the enabled activities at the causal matrix CM just
before the parsing of the element at position i in the trace σ. During the
parsing a continuous semantics is used (see Section 4.2.1).

Definition 14 (Behavioral Recall - BR) Let L be an event log. Let CM o

and CM m be the respective causal matrices for the original (or base) model and
for the mined one. Then the behavioral recall BR : L × CM× CM→ [0, 1] is
a function defined as:

BR(L,CM o,CM m) =

∑

σ∈L

(

L(σ)

|σ|
×

|σ|
∑

i=1

|Enabled(CM o, σ, i)
⋂

Enabled(CM m, σ, i)|

|Enabled(CM o, σ, i)|

)

∑

σ∈L

L(σ)

Reasoning about the Quality of the Mined Models

When evaluating the quality of a data mining approach (genetic or not), it
is common to check if the approach tends to find over-general or over-specific
solutions. In our case, the over-general solution is the one that can parse any
trace that can be formed from the tasks in a log. This solution has a self-loop
for every task in the log. The over-specific solution is the one that has a branch
for every unique trace in the log. Figure 10 illustrates an over-general and an
over-specific solution for the log in Table 1.

The over-general solution does belong to the search space considered in this
paper. However, this kind of solution can be easily detected by the metrics we
have defined so far. Note that, for a given original model CM o, a log L gener-
ated by simulating CM o, and the mined over-general model CM m, it always
holds that: (i) the over-general model is complete (i.e., PFcomplete(L,CM m) =
1); (ii) while parsing the traces, all the tasks that are enabled in the original
model are also enabled in the over-general model (i.e., BR(L,CM o,CM m) =

28

StartApply for License

Do Practical
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes

Get Result

Attend Classes
Drive Cars

Attend Classes
Ride Motorbikes

Do Theoretical
Exam

Receive
 License

End

Start Start Start Start

Apply for License Apply for License Apply for License Apply for License

Attend Classes
Drive Cars

Attend Classes
Drive Cars

Attend Classes
Ride Motorbikes

Attend Classes
Ride Motorbikes

Do Theoretical
Exam

Do Theoretical
Exam

Do Theoretical
Exam

Do Theoretical
Exam

Do Practical
Exam Drive Cars

Do Practical
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes

Do Practical Exam
 Ride Motorbikes

Get Result Get Result Get Result Get Result

Receive
 License

Receive
 License

EndEnd End End

(a)

(b)

Fig. 10. Example of nets that are (a) over-general and (b) over-specific for the log
in the Table 1.

1); and (iii) while parsing the traces, all the tasks of the over-general model are
always enabled, i.e., the formula of the behavioral precision (see Definition 13)
can be simplified to the formula in Equation 1. These three remarks are used

29

to detect over-general mined models during the experiments analysis.

BP(L,CM o,CM m) =

∑

σ∈L

(

L(σ)

|σ|
×

|σ|
∑

i=1

|Enabled(CM o, σ, i)|

|Am|

)

∑

σ∈L

L(σ)
(1)

Contrary to the over-general solution, the over-specific one does not belong
to our search space because our internal representation (the causal matrix)
does not support duplicate tasks. However, because our fitness only looks for
the complete and precise behavior (not the minimal representation, like the
works on Minimal Description Length (MDL) [28]), it is still important to
check how similar the structures of the mined model and the original one are.
Differences in the structure may point out another good solution or an overly
complex solution. For instance, have a look at the model in Figure 11. This
net is complete and precise from a behavioral point of view, but it contains
extra unnecessary places. Note that the places “p12” and “p13” could be
removed from the net without changing its behavior. In other words, “p12”
and “p13” are implicit places [5]. Actually, because the places do not affect
the net behavior, all the nets in figures 2, 8 and 11 have the same fitness.
However, a metric that checks the structure of a net would, for instance, point
out that the net in Figure 11 is a “superstructure” of the net in Figure 2,
and has many elements in common with the net in Figure 8. So, even when
we know that the over-specific solution is out of the search space defined in
this paper, it is interesting to get a feeling about the structure of the mined
models. That is why we developed two metrics to assess how much the mined
and original model have in common from a structural point of view.

The two metrics are the structural precision (SP) and the structural recall
(SR). Both metrics are based on the causality relations of the mined and orig-
inal models, and were adapted from the precision and recall metrics presented
in [49]. The SP and SR metrics are respectively formalized in definitions 13
and 16. These metrics basically work by checking how many causality rela-
tions the mined and the original models have in common. The more causality
relations the two models have in common, the more similar their structures
are. The structural precision assess how many causality relations the mined
model has that are not in the original model. The structural recall works
the other way around. Note that the structural similarity performed by these
metrics does not consider the semantics of the split/join points. We have done
so because the causality relations are the core of our genetic material (see
Subsection 4.4). The semantics of the split/join tasks can only be correctly
captured if the right dependencies (or causality relations) between the tasks
in the log are also in place.

30

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5 p6

p4

p7

p8

p9

p11

p12

p13

Fig. 11. Example of a net that that is behavioral precise and complete w.r.t. the log
in the Table 1, but that contains extra unnecessary (implicit) places (p12 and p13).

Definition 15 (Structural Precision - SP) 13 Let CM o and CM m be the
respective causal matrices for the original and the mined models. The structural
precision SP : CM× CM→ [0, 1] is a function defined as:

SP(CM o,CM m) =
|Co ∩ Cm|

|Cm|

Definition 16 (Structural Recall - SR) Let CM o and CM m be the respec-
tive causal matrices for the original and the mined model. The structural recall

13 For both definitions 13 and 16, whenever the denominator “|C|” is equal to 0, the
whole division is equal to 0. For simplicity reasons, we have omitted this condition
from the formulae.

31

SR : CM× CM→ [0, 1] is a function defined as:

SR(CM o,CM m) =
|Co ∩ Cm|

|Co|

When the original and mined models have behavioral metrics BR and BP that
are equal to 1, the SR and SP show how similar the structure of these models
are. For instance, for the original model in Figure 2, the structural metrics
would indicate that a mined model like the one in Figure 8 differs from the
original one by the same amount of causality relations (SR = SP), and a
mined model like the one in Figure 11 has extra causality relations(SR = 1
and SP < 1).

Recapitulation of the Analysis Metrics

This section has presented the five metrics that are used to analyse the ex-
periments in this paper: the partial fitness for the completeness requirement
(PFcomplete), the behavioral precision (BP), the behavioral recall (BR), the
structural precision (SP) and the structural recall (SR). The PFcomplete quan-
tifies how complete a mined model is. The BP and BR measure how precise
the mined model is. The SP and SR express if the mined model has an overly
complex structure or not. These metrics are complementary and should be
considered together during the experiments analysis. For instance, for our ex-
periments, the mined model is as complete and precise as the original model
whenever the metrics PFcomplete , BP and BR are equal to 1. More specifically,
the mined model is exactly like the original model when all the five metrics
are equal to 1. As a general rule, the closer the values of the five metrics are
to 1, the better.

6 Experiments and Results

This section explains how we conducted the experiments and, most important
of all, how we analyzed the quality of the models that the genetic algorithm
mined. To conduct the experiments we needed (i) to implement our genetic al-
gorithm and (ii) a set of event logs. The genetic algorithm described in this pa-
per is implemented as the “Genetic algorithm plug-in” in the ProM framework
(see Figure 12). The ProM framework is available at www.processmining.org
and supports the development of plug-ins to mine event logs. Although in
this paper we focus on the “Genetic algorithm plug-in”, the ProM framework
offers other plug-ins like, for instance, the “Social network miner plug-in” [2]
and “Conformance checker plug-in” [53]. The logs used in our experiments are
synthetic. In brief, we built the model (or copied it from some related work)

32

Fig. 12. Screenshot of the “Genetic algorithm plug-in” in the ProM framework.
This screenshot shows the result of mining an event log like the one in Table 1. This
log has 300 process instances in total. The left-side window shows the configuration
parameters (see Section 6.1). The right-side window shows the best mined individual
(or causal matrix). Additionally, in the menu bar we show how to convert this
individual (called “Heuristics Net” in the ProM framework) to a Petri net.

and simulated it to create a synthetic event log. We then run the genetic algo-
rithm over these sets of logs. Once the genetic algorithm finished the mining
process, we analyzed the results.

When conducting the experiments we were interested in getting an indication
of two main points: (i) how the heuristics and genetic operators influence the
quality of mined models, and (ii) if the fitness measure indeed guides the search
towards individuals that reflect the most frequent behavior in the log. The first
point was investigated by executing the genetic algorithm over synthetic noise-
free log. Details about these experiments are explained in Subsection 6.1. The
second point was investigated by running the genetic algorithm over synthetic
noisy logs. Details about the experiments with noisy logs are reported in
Subsection 6.2.

33

6.1 Experiments with Noise-Free Logs

Setup

The genetic algorithm was tested over noise-free event logs from 25 different
process models. These models contain constructs like sequence, choice, paral-
lelism, loops, non-free-choice and invisible tasks. From the 25 models, 6 were
copied from the models in [30]. The other models were created by the authors.
The models had between 6 and 42 tasks 14 . Every event log was randomly gen-
erated and contained 300 process instances. To speed up the computational
time of the genetic algorithm, the similar traces were grouped into a single
one and a counter was associated to inform how often the trace occurs. The
similarity criterion was the local information in the trace. Traces with the
same direct left and right neighbors for every element were grouped together.
Besides, to test how strong the use of the genetic operators and the heuristics
influence the results, we set up four scenarios while running the genetic al-
gorithm: (“Scenario I”) without heuristics to build the initial population and
without genetic operators 15 ; (“Scenario II”) with heuristics, but without the
genetic operators; (“Scenario III”) without heuristics, but with genetic opera-
tors; and (“Scenario IV”) with heuristics and genetic operators. For every log,
50 runs were executed for every scenario. Every run had a population size of
100 individuals, at most 1000 generations, an elite of 2 individuals and a κ of
0.025 (see Definition 12). The experiments with heuristics used a power value
of 1 while building the initial population (see Subsection 4.1.1). The exper-
iments with the genetic operators have a respective crossover and mutation
probabilities of 0.8 and 0.2 (see the respective subsections 4.4.1 and 4.4.2). All
the experiments were run using the ProM framework, our tool set that can be
obtained via www.processmining.org. We implemented the genetic algorithm
and the metrics (cf. Section 5) described in this paper as plug-ins for this
framework.

Results

The results are reported in Figures 16 13 to 23. Figures 13 to 19 show the
average values of the analysis metrics (cf. Section 5) for the mined models.
Figures 20 and 21 indicate how the fitness of the best mined model evolved

14 Table A.1 (cf. Appendix A) provides more details about the characteristics of
these models.
15 This scenario is a random generation of individuals. The aim of experimenting
with this scenario is to assess if the use of genetic operators and/or heuristics is bet-
ter than the pure random generation of individuals, given the same limited amount
of computational time.
16 The unmarked points in these figures correspond to experiments that were inter-
rupted because they were taking more than 6 hours to process one seed.

34

over generations. Figures 22 and 23 show how much computational time was
required, on average, per run of the genetic algorithm 17 . Overall, the results
indicate that the scenario for the hybrid genetic algorithm (Scenario IV) is
superior to the other scenarios in all aspects. More specifically, the results
show that:

• Any approach (scenarios II to IV) is better than the pure random generation
of individuals (Scenario I) (cf. Figures 13 to 19).
• Scenario II and IV mined more complete and precise models than the other

scenarios (cf. Figure 19).
• The hybrid genetic algorithm (Scenario IV) works the best. This approach

combines the strong ability of the heuristics to correctly capture the local
causality relations with the benefits of using the genetic operators (especially
mutation) to introduce the non-local causality relations. For instance, con-
sider the results for the nets a6nfc, driversLicense and herbstFig6p36.
All these nets have non-local non-free-choice constructs. Note that, for these
three nets, the results for Scenario II (cf. Figure 14) have a much lower be-
havioral precision than for Scenario IV (cf. Figure 16). This illustrates the
importance of the genetic operators to insert the non-local causality rela-
tions.
• In general, the hybrid genetic algorithm (Scenario IV) mines more complete

models that are also precise than the other scenarios (see Figure 19). In
fact, except for net a7, Scenario IV is the only configuration that mined a
complete and precise model for at least one of the runs (cf. Figure 19). This
shows that this scenario finds mined models that are complete and precise
faster than the other scenarios.
• Nets with short parallel branches (like parallel5, a7 and a5) are more

difficult to mine. This is due to the probabilistic nature of the genetic algo-
rithm. Recall that the fitness measure always benefits the individuals that
can parse the most frequent behavior in the log. So, in parallel situations, it
is often the case that the algorithm goes for individuals that show the most
frequent interleaving patterns in the log.
• Although Scenario II led to better results than Scenario III, it is not fair

to compare them. The reason is that Scenario III starts from scratch, in
the sense that its initial population is randomly built, while Scenario II
is strongly helped by good heuristics to detect local dependencies. In our
experiments, Scenario III is used to show that (i) the use of the genetic
operators improves the results (and this is indeed the case, since Scenario
III gave better results than Scenario I), and (ii) the genetic operators help
in mining non-local dependencies (again, note that the results for the nets
with non-local non-free-choice constructs - a6nfc and driversLicense -
are better in Scenario III than in Scenario II). Thus, in short, Scenario III

17 The experiments were run in a Intelr Pentiumr 4 CPU 3.40 GHz 3.39 GHz,
1.99 GB RAM, with Microsoft Windows XP 2002.

35

Averages for Precision and Recall for Scenario I (-H-GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8
 a1

2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge

Average Structural Precision
 Average Structural Recall
 Average Behavioral Recall
 Average Behavioral Precision

Fig. 13. Average precision and recall values of the results for Scenario I (without
heuristics to build the initial population and without using genetic operators to
build the following populations).

Averages for Precision and Recall for Scenario II (+H-GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8
 a1

2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge

Average Structural Precision
 Average Structural Recall
 Average Behavioral Recall
 Average Behavioral Precision

Fig. 14. Average precision and recall values of the results for Scenario II (with
heuristics to build the initial population, but without using genetic operators to
build the following populations).

shows that the GA was going on the right track, but it would need more
iterations to reach or outperform the results of Scenario II for all nets.
• The use of genetic operators makes the population converge to better models

36

Averages for Precision and Recall for Scenario III (-H+GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8
 a1

2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge

Average Structural Precision
 Average Structural Recall
 Average Behavioral Recall
 Average Behavioral Precision

Fig. 15. Average precision and recall values of the results for Scenario III (without
heuristics to build the initial population, but using genetic operators to build the
following populations).

Averages for Precision and Recall for Scenario IV (+H+GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8
 a1

2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge

Average Structural Precision
 Average Structural Recall
 Average Behavioral Recall
 Average Behavioral Precision

Fig. 16. Average precision and recall values of the results for Scenario IV (with
heuristics to build the initial population and using genetic operators to build the
following populations).

37

Average Fitness (PFcomplete) over 50 Runs

-1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Nets

A
ve

ra
ge

 P
Fc

om
pl

et
e

of
 th

e
M

in
ed

 M
od

el
s

Scenario I (-H-GO)
 Scenario II (+H-GO)
 Scenario III (-H+GO)
 Scenario IV (+H+GO)

Fig. 17. Average fitness (PFcomplete) values of the mined models for 50 runs.

% of Complete Models over 50 Runs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8
 a1

2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Nets

%
 o

f P
ro

pe
r

C
om

pl
et

e
M

in
ed

 M
od

el
s

Scenario I (-H-GO)
 Scenario II (+H-GO)
 Scenario III (-H+GO)
 Scenario IV (+H+GO)

Fig. 18. Percentage of the mined models that proper complete (PFcomplete = 1) over
50 runs.

in a faster pace, as illustrated in figures 20 and 21. Note that for Scenario
III and IV, in many situations the best individuals have a fitness superior to
0.90 already at generation 100. Furthermore, the results in these figures show
that the heuristics used to build the initial population indeed capture many
of the correct causality relations. Note that the best fitness for individuals
at generation 0 is already bigger than 0.0 for all nets in scenarios II and IV,

38

% of Complete Mined Models that are also Precise over 50 Runs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Nets

%
 o

f P
ro

pe
r

C
om

pl
et

e
M

od
el

s
th

at
 a

re
 a

ls
o

P
re

ci
se

Scenario I (-H-GO)
 Scenario II (+H-GO)
 Scenario III (-H+GO)
 Scenario IV (+H+GO)

Fig. 19. Percentage of the complete mined models (PFcomplete = 1) that are also
precise (BP = 1) over 50 runs.

and this is not the case for scenarios I and III.
• Many of the runs took on average less than 15 minutes (cf. figures 22 and 23).

However, logs from nets with loops and/or parallel constructs tend to take
more time. These nets usually allow for more interleaving situations and,
therefore, have bigger logs. Since the fitness is calculated by replaying the
logs in the individuals of a population, the genetic algorithm takes longer
for these models. As a general remark, the more different traces and tasks
a log contains, the higher will be the computational time of the genetic
algorithm.

The next subsection shows the results for the experiments with noisy logs.

6.2 Experiments with Noisy Logs

Before reporting on the experiments with noisy logs, we explain the approach
we chose to handle mined models from these logs. Noise can be defined as
low-frequent incorrect behavior in the log. A log may contain noise because
some of its traces are incomplete (e.g., they correspond to running cases in
the system that have not been completed yet), or the traces reflect incorrect
behavior (e.g., due to some temporal system misconfiguration). Either way, the
presence of noise may hinder the correct discovery of a process model. Noisy
behavior is typically difficult to detect because it cannot be easily distinguished
from other low-frequent correct behavior in the log (for instance, the execution

39

Average Values of the Best Fitness per Run of Scenario I (-H-GO)

-5,25

-5

-4,75

-4,5

-4,25

-4

-3,75

-3,5

-3,25

-3

-2,75

-2,5

-2,25

-2

-1,75

-1,5

-1,25

-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

B
es

t f
itn

es
s

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Average Values of the Best Fitness per Run of Scenario II (+H-GO)

0

0,25

0,5

0,75

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

B
es

t f
itn

es
s

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Fig. 20. Average values of the best fitness per run of scenarios I (top graph) and II
(bottom graph).

of exceptional paths in the process). For this reason, and because the genetic
algorithm is designed to always benefit individuals that can correctly parse the
most frequent behavior in the log, we have opted for a post-processing step to
“clean” mined models from the effects of noise. In short, this post-processing
step works by pruning the arcs of a (mined) model that are used fewer times
than a certain threshold.

40

Average Values of the Best Fitness per Run of Scenario III (-H+GO)

-5,25

-5

-4,75

-4,5

-4,25

-4

-3,75

-3,5

-3,25

-3

-2,75

-2,5

-2,25

-2

-1,75

-1,5

-1,25

-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

B
es

t f
itn

es
s

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Average Values of the Best Fitness per Run of Scenario IV (+H+GO)

0

0,25

0,5

0,75

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

B
es

t f
itn

es
s

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Fig. 21. Average values of the best fitness per run of scenarios III (top graph) and
IV (bottom graph).

The main advantage of a post-pruning step is that, because it works inde-
pendently of the process mining algorithm, it does not avoid the discovery of
low-frequent behavior. Thus, if the mined low-frequent behavior is a correct
one, it can remain in the model. If the mined low-frequent behavior corre-
sponds to noisy behavior, the end user has the possibility to clean the mined
model. Furthermore, arc post-pruning can also be used over any model to get
a more concise view (in terms of the number of arcs in the model) of the

41

Average Values of the Time per Run of Scenario I (-H-GO)

0

60

120

180

240

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

A
ve

ra
ge

 ti
m

e
 (i

n
m

in
ut

es
)

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Average Values of the Time per Run of Scenario II (+H-GO)

0

60

120

180

240

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

A
ve

ra
ge

 ti
m

e
 (i

n
m

in
ut

es
)

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Fig. 22. Average values of the time per run of scenarios I (top graph) and II (bottom
graph).

most frequent behavior. As a final remark, we point out that arc post-pruning
is also the approach adopted by the other related process mining techniques
in [6,10,25,32] to clean mined models. The remainder of this section provides
more details about this arc post-pruning approach, the experiments setup and
results. The aim of the experiments is to get an indication of how sensitive te
genetic algorithm is to different noise types.

42

Average Values of the Time per Run of Scenario IV (+H+GO)

0

60

120

180

240

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

A
ve

ra
ge

 ti
m

e
 (i

n
m

in
ut

es
)

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Average Values of the Time per Run of Scenario III (-H+GO)

0

60

120

180

240

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Net name

A
ve

ra
ge

 ti
m

e
 (i

n
m

in
ut

es
)

gen0
 gen10
 gen50
 gen100
 gen500
 gen999

Fig. 23. Average values of the time per run of scenarios III (top graph) and IV
(bottom graph).

Post Pruning

The post-pruning step removes the arcs that are used fewer times than a given
threshold from a (mined) model. The threshold refers to the arc usage percent-
age. The arc usage indicates the number of times that an arc (or dependency)
is used when a log is replayed by an individual. The arc usage percentage
defined by the threshold is relative to the most frequently used arc. As an

43

illustration, assume that the most frequent arc usage of a mined model to
a given log is 300. If the threshold is set for 5%, all arcs of this model that
are used 15 or fewer times are removed during the post-pruning step. This
situation is depicted in Figure 24. The mined model is in Figure 24(a). The
pruned model is in Figure 24(b). Notice that the arcs of the mined model that
were used (from left to right) 7, 5, 3 and 6 times are not shown in the pruned
model. When the removal of arcs leads to dangling activities (i.e., activities
without ingoing and outgoing arcs), these activities are also omitted in the
post-pruned model.

Setup

The genetic algorithm was tested over noisy logs from 5 different process
models: a12, bn1, herbstFig3p4, herbstFig6p36 and herbstFig6p37. These mod-
els 18 contain constructs like sequences, choices, parallelism, structured loops
and non-local non-free-choice constructs, and have between 12 and 42 tasks.
The noise-free log of every net has 300 traces (actually, these are the same
noise-free logs used during the experiments reported in Section 6.1). For ev-
ery noise-free log, 12 noisy logs were generated: 6 logs with 5% noise and 6
logs with 10% noise. The 6 noise types used are: missing head, missing body,
missing tail, swap tasks, remove task and mix all. These noise types are the
ones described in [36]. If we assume a trace σ = t1...tn−1tn, these noise types
behave as follows. Missing head, body and tail respectively randomly remove
sub-traces of tasks in the head, body and tail of σ. The head goes from t1
to tn/3

19 . The body goes from t(n/3)+1 to t(2n/3). The tail goes from t(2n/3)+1

to tn. The removed sub-traces contain at least one task and at most all the
tasks in the head, body or tail. Swap task exchanges two tasks in σ. Remove
task randomly removes one task from σ. Mix all randomly performs (with the
same probability) one of the other 5 noise types to a traces in a log. Real life
logs will typically contain mixed noise. However, the separation between the
noise types allows us to better assess how the different noise types affect the
genetic algorithm.

To speed up the computational time of the genetic algorithm, the similar
traces were grouped into a single one and a weight was added to indicate how
often the trace occurs. Traces with the same sequence of tasks were grouped
together. For every noisy log, 50 runs were executed. The configuration of
every run is the same used for the noise-free experiments of the Scenario IV
(see Section 6.1). After a run was complete, the mined model was used as input

18 The main motivation to select only five models is that, as shown in Section 6.1,
a run of the genetic algorithm is time consuming and, as we explain further in the
text, 12 noisy logs were generated per net. Thus, the choice for five models is a
pragmatic one.
19 The division n/3 is rounded to the largest double value that is not greater than
n/3 and is equal to a mathematical integer.

44

(a)
 (b)

Fig. 24. Illustration of applying post-pruning to arcs of a mined model. The mined
model is in (a), and the resulting post-pruned model is in (b). The numbers next to
the arcs in these models inform how often these arcs have been used while replaying
the log for the models. The post-pruning illustrated here has a threshold of 5%.
Thus, since the highest arc usage of the mined model in (a) is 300, all of its arcs
that are used 15 or fewer times are not shown in the resulting pruned model in (b).

for a post-processing step to prune its arcs. Every mined model went two post-
pruning steps: one to prune with a threshold of 5% and another to prune with
a threshold of 10%. So, when analyzing the results, we look at (i) the mined
model returned by the genetic algorithm, (ii) the model after applying 5%
pruning, and (iii) the model after 10% pruning. The post-processing step is
implemented as the Prune Arcs analysis plug-in in the ProM framework.

45

Results

The results for the experiments with logs of the net a12 are in Figure 25 to 28.
We only show the results for the net a12 because the obtained results for
the other nets lead to the same conclusions that can be drawn based on the
analysis of the results for a12. Every figure plots the results before and after
pruning. However, we have omitted the results for 10% arc-pruning because
the results are just like the results for 5% arc-pruning. Furthermore, for every
graph, the x-axis shows, for a given net (or original model), the noise type and
the percentage of noise in the log. For instance, a12All10pcNoise is a short for
“Noisy log for the net a12 (a12). The noise type is mix all (All) and this log
contains at most 10% (10pc) of noise (Noise).”. The y-axis contains the values
for the analysis metrics.

Additionally, we have plotted the metric values for the mined model and orig-
inal model with respect to the noisy log and the noise-free one. The reason
is that the analysis with the noisy logs allow us to check if the mined models
over-fit the data (since these noisy logs were given as input to the genetic algo-
rithms). For instance, if some mined model can proper complete the noisy log
(can parse all the traces without missing tokens or tokens left-behind), this
mined model has over-fitted the data. On the other hand, when the model
does not over-fit the data, the analysis with the noise-free logs can check if the
mined model correctly captures the most frequent noise-free behavior (since
the noisy logs used for the experiments were created by inserting noisy behav-
ior into these noise-free logs).

In a nutshell, we can conclude that (i) the genetic algorithm is more sensitive
to the noise type swap tasks (and, consequently, mix all) and (ii) the mined
models do not tend to over-fit the noisy logs. More specifically, the results
point out that:

• The genetic algorithm is more robust to 5% noise than to 10% noise. But
the 5% arc post-pruning gave the same results as the 10% one.
• The pruning is more effective for the noise types missing head, missing body,

missing tail and remove task. This makes sense because these noise types
usually can be incorporated to the net by adding causality dependencies
to skip the “removed” or “missing” tasks. In other words, the main net
structure (the one also contained in the original model) does not change,
only extra causality dependencies need to be added to it. This explains why
the arc post-pruning works quite fine for these noise types.
• Related to the previous item, the noise type swap tasks affects the quality

of the mined results the most. By looking at figures 25 and 27, one can see
that the behavioral/structural precision and recall of the mined models for
logs with swapped tasks (a12Swap5pcNoise and a12Swap-10pcNoise) did
not change dramatically after the pruning. This is probably because the

46

GA - Net a12 - Results for the Preciseness Requirement - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision
 Average Structural Recall

Average Behavioral Precision
 Average Behavioral Recall

GA - Net a12 - Results for the Preciseness Requirement - Noisy Logs - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision
 Average Structural Recall

Average Behavioral Precision
 Average Behavioral Recall

Fig. 25. Average values for the behavioral and structural precision/recall metrics
of the models mined by the genetic algorithm (GA) for noisy logs of the net a12.
The top (bottom) graph shows the results for the mined models before (after) arc
post-pruning. The results show that (i) the mined models have a behavior that is
quite similar to the original models (since behavioral precision > 0.8 and behavioral
recall > 0.95), and (ii) the arc post-pruning is more effective for the noise types
missing head/body/tail and remove task (since all the values plotted in the bottom
graph are better than the ones in the top graph).

47

GA - Net a12 - Results for the Completeness Requirement - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness
 Average Proper Completion Fitness

% of Complete Models
 % of Complete Models that are Precise

GA - Net a12 - Results for the Completeness Requirement - Noisy Logs - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness
 Average Proper Completion Fitness

% of Complete Models
 % of Complete Models that are Precise

Fig. 26. Results of the GA for the noisy logs of the net a12: completeness metrics.
The metrics were calculated based on the noisy logs used during the mining. The
top graph shows the results for the mined models. The bottom graph shows the
results after the mined models have undergone 5% arc post-pruning. Note that the
top graph indicates that only 2 models for the noise type missing head (10% noise)
over-fit the data. However, overall the mined models did not over-fit the data, since
the average proper completion < 0.95 and the % of complete models is 0 for almost
all logs.

48

GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision
 Average Structural Recall

Average Behavioral Precision
 Average Behavioral Recall

GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision
 Average Structural Recall

Average Behavioral Precision
 Average Behavioral Recall

Fig. 27. The results show the same metrics as explained for Figure 25, but these
metrics are calculated base on a noise-free log of a12. Note that, contrary to the
results in Figure 25, all mined models (before and after pruning) have an average
behavioral recall that is equal to 1. This means that, with respect to the noise-free
log, all the behavior allowed by the original model is also captured by the mined
models.

over-fitting of the mined models to the logs involves more than the simple
addition of causality dependencies. I.e., the main structure of mined models
is more affected by the swap tasks noise type.

49

GA - Net a12 - Results for the Completeness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness
 Average Proper Completion Fitness

% of Complete Models
 % of Complete Models that are Precise

GA - Net a12 - Results for the Completeness Requirement - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness
 Average Proper Completion Fitness

% of Complete Models
 % of Complete Models that are Precise

Fig. 28. Same metrics as in Figure 26, but this time the values are calculated based
on a noise-free log of a12. The values for the average proper completion fitness point
out that the models correctly captured at least 50% (see a12Body10pcNoise) of the
behavior in the log. This indicates that the fitness indeed benefits the individu-
als that correctly model the most frequent behavior in the log. Besides, note that
many more mined models are complete and precise after they have undergone arc
post-pruning.

50

The next section shows the results of applying the hybrid version of the genetic
algorithm (Scenario IV) to event logs from a municipality in The Netherlands.

7 Mining Real-Life Logs

This section shows the results of applying the genetic algorithm for event logs
from a municipality in The Netherlands. The four selected process models
deal with the handling of complaints (Bezwaar, BezwaarWOZ, Afschriften)
and the process to get a building permit (Bouwvergunning). As shown in
Table 2, not all traces in the event logs given to us are compliant with the
prescribed (original) process model 20 . So, these logs are a nice setting to test
how robust the genetic algorithm is to noise.

Process Model Number of Traces % Correctly Parsed Traces

Bezwaar 35 51%

BezwaarWOZ 100 47%

Afschriften 358 100%

Bouwvergunning 407 80%

Table 2
Percentage of traces that could be correctly parsed by the original process models.
A trace is correctly parsed when no tokens are missing or left behind during the
parsing.

The experiments consisted in running the algorithm for every log. The con-
figuration used is just like the one in Section 6.1, but with 10 individuals, at
most 5000 generations and for 10 seeds only. For every log, the best mined
model over all seeds was selected to undergo the arc post-pruning step (cf.
Section 6.2). The arc pruning is a post-processing step that eliminates from a
mined model the arcs that are used up to a percentage of the most frequently
used arc, during the parsing of the event log by the mined model. The percent-
age is set by the user. The choice for a post-pruning step is based on the fact
that we do not typically know how much noise an event log contains. Thus,
we let the genetic algorithm mine the most frequent behavior in the log and
use the post-pruning to “clean” this model even further. The results of the
experiments are in Table 3. As can be seen, the algorithm indeed goes for the
parsing of the most frequent behavior in the log. Note that even after pruning

20 All modes contain sequences, choices, length-two loops and invisible tasks. Addi-
tionally, Bouwvergunning has four tasks in parallel. The amount of tasks per process
is: Afschriften (11 tasks), Bezwaar (14), BezwaarWOZ (17) and Bouwvergunning
(19).

51

% Correctly Parsed Traces Mined Model

Process Model no pruning 1% pruning 5% pruning 10% pruning

Bezwaar 100% 100% 62% 51%

BezwaarWOZ 100% 95% 82% 82%

Afschriften 100% 99% 99% 88%

Bouwvergunning 70% 70% 64% 64%

Table 3
Percentage of traces that could be correctly parsed by the mined process models
before and after the arc pruning. Note that process Bouwvergunning has the only
log to which the mined model cannot correctly parse all the traces. This process
has a construct with four tasks in parallel. As the results for the experiments in
Section 6 indicated, the genetic algorithm goes for the most frequent behavior in
these situations.

the arcs that are used 10 or fewer times less than the most frequently used
arc, the resulting process model can still correctly parse more than half of the
traces in the log. As an example, Figure 29 shows the original and (pruned)
mined models for the process BezwaarWOZ (cf. Table 3).

8 Comparison to Some Related Approaches

The genetic algorithm is the only mining algorithm so far (cf. Section 9) that
can mine sequence, choice, parallelism, (arbitrary) loops, invisible tasks, and
non-free-choice constructs at once, while being robust to noise. Therefore, it
is interesting to compare it with other existing approaches. In this section we
compare the genetic algorithm with two other mining algorithms: α++ and
HeuristicsMiner.

The aim of the comparison is to assess if these approaches outperform or
not the genetic algorithm when mining logs. The reasons to select these two
algorithms are: (i) both algorithms are implemented in the ProM framework
(what facilitates the comparison); (ii) the α++ [61] is an extension of the α
algorithm in [15] to also explicitly capture non-free-choice constructs in the
mined model; and (iii) the HeuristicsMiner 21 is robust to noise, can tackle
invisible tasks and uses heuristics that are based on the Dependency measure
explained in Section 4.1.1. Furthermore, both algorithms can mine the basic
structural constructs (sequence, choice, parallelism and loops).

21 The HeuristicsMiner is the ProM version of the Little Thumb tool [60].

52

(a)
 (b)
 (c)
 (d)

Fig. 29. Original and mined models for the process BezwaarWOZ. The original
model is in (a). The unpruned mined model is in (b). (c) and (d) respectively show
the models after applying 1% and 5% arc pruning to the mined model in (b).

The α++ and HeuristicsMiner algorithms were applied 22 over the three sets of
logs (noise-free, noisy and real-life) to which we executed the genetic algorithm.
The results show that:

Experiments with noise-free logs: As the values for the analysis metrics
(cf. Section 5) in figures 30 and 31 show, both algorithms could find a
complete and precise model for many of the logs. However, as expected, the
α++ could not correctly mine models with invisible tasks (cf. Figure 30)
and the HeuristicsMiner was unable to capture non-free-choice constructs
(cf. Figure 31).

Experiments with noisy logs: As the α++ is not robust to noise, none of
its mined models could proper complete any of the traces in the noisy logs
in Section 6.2. Actually, the resulting mined models were very spaghetti.
However, the HeuristicsMiner outperformed the genetic algorithm for the
noisy logs in Section 6.2. In fact, except for the model with non-free-choice
(herbstFig6p36), the HeuristicMiner mined models with the same struc-

22 The default configuration provided by ProM was used when running these algo-
rithms.

53

Results for the Preciseness Requirement - Alpha ++

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Structural Precision
 Structural Recall
 Behavioral Precision
 Behavioral Recall

Results for the Completeness Requirement - Alpha ++

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Fitness
 Proper Completion Fitness

Model is complete (1=yes, 0=no)
 Model is complete and precise (1=yes, 0=no)

Fig. 30. Results for the models mined by the α++ algorithm. Note that the
non-free-choice constructs are indeed correctly captured (cf. results for a6nfc,
driversLicense and herbstFig6p36), but the algorithm cannot correctly mine
the models with invisible tasks (cf. l1lSkip, a10skip, herbstFig6p18, bn3, bn2
and l2lSkip).

ture of the original models for all six noise types.
Experiments with real-life logs: Given the results reported in the previ-

ous two items, one would expect the HeuristicMiner to outperform the ge-
netic algorithm when running over te real-life logs (cf. Section 7). Especially

54

Results for the Metrics related to Completeness - HeuristicsMiner

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Fitness
 Proper Completion Fitness

Model is complete (1=yes, 0=no)
 Model is complete and precise (1=yes, 0=no)

Results for the Precision and Recall Metrics - HeuristicsMiner

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip

pa
ra

lle
l5

a6
nfc

bn

1
 a8

he
rb

stF
ig6

p3
7

a1
0s

kip

he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4

 l1l

he
rb

stF
ig6

p4
5
 a7

al2

a5

bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al
 al1

he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1
 l2l

bn

2

l2l
Skip

Structural Precision
 Structural Recall
 Behavioral Precision
 Behavioral Recall

Fig. 31. Results for the models mined by the HeuristicsMiner. Note that the invis-
ible tasks are correctly captured, but the non-free-choice constructs are not. Fur-
thermore, the algorithm seems to have problems with mining length-one loops (cf.
l1lSkip and l1l).

because all the structural constructs in the the prescribed models of the
Dutch municipality can be tackled by the HeuristicsMiner. However, as the
results in Table 4 indicate, both the α++ and the HeuristicsMiner underper-
formed the genetic algorithm when correctly capturing the most frequent
behavior in the log.

55

% Correctly Parsed Traces Mined Model

Process Model α++ HeuristicsMiner

Bezwaar 0% 48%

BezwaarWOZ 0% 86%

Afschriften 100% 100%

Bouwvergunning 0% 0%

Table 4
Percentage of traces that could be correctly parsed by the models mined by the
α++ and the HeuristicsMiner. Note that both algorithm underperformed the genetic
algorithm (cf. Table 3) when correctly portraying the most frequent behavior in the
logs.

As a final remark, we emphasize that both the α++ and the HeuristicsMiner
are extremely fast (models were mined within 30 seconds on the same com-
puter used for the experiments with the genetic algorithm). However, when
looking at the quality of the mined models, the genetic algorithm is better
than these other two related algorithms because, for the set of logs discussed
above, it mined models that correctly depict the most frequent behavior in
more situations.

9 Related Work

The idea of process mining is not new [3,4,6,13,29–32,10–12,37,40,54–56,49,60].
Cook and Wolf have investigated similar issues in the context of software en-
gineering processes. In [11] they describe three methods for process discovery:
one using neural networks, one using a purely algorithmic approach, and one
Markovian approach. The authors consider the latter two the most promis-
ing approaches. The purely algorithmic approach builds a finite state machine
where states are fused if their futures (in terms of possible behavior in the
next k steps) are identical. The Markovian approach uses a mixture of algo-
rithmic and statistical methods and is able to deal with noise. Note that the
results presented in [11] are limited to sequential behavior. Cook and Wolf
extend their work to concurrent processes in [10,12]. They propose specific
metrics (entropy, event type counts, periodicity, and causality) and use these
metrics to discover models out of event streams. However, they do not provide
an approach to generate explicit process models. Recall that the final goal of
the approach presented in this paper is to find explicit representations for a
broad range of process models, i.e., we want to be able to generate a con-
crete model rather than a set of dependency relations between events. In [13]
Cook and Wolf provide a measure to quantify discrepancies between a process

56

model and the actual behavior as registered using event-based data. The idea
of applying process mining in the context of workflow management was first
introduced in [6]. This work is based on workflow graphs, which are inspired
by workflow products such as IBM MQSeries workflow (formerly known as
Flowmark) and InConcert. In this paper, two problems are defined. The first
problem is to find a workflow graph generating events appearing in a given
workflow log. The second problem is to find the definitions of edge conditions.
A concrete algorithm is given for tackling the first problem. The approach is
quite different from other approaches: Because the nature of workflow graphs
there is no need to identify the nature (AND or XOR) of joins and splits. As
shown in [35], workflow graphs use true and false tokens which do not allow
for cyclic graphs. Nevertheless, [6] partially deals with iteration by enumerat-
ing all occurrences of a given activity and then folding the graph. However,
the resulting conformal graph is not a complete model. In [40], a tool based
on these algorithms is presented. [49] extends the work in [6] to also consider
the time information in the logs and, consequently, better detect concurrent
behavior. Schimm [54–56] has developed a mining tool suitable for discover-
ing hierarchically structured workflow processes. This requires all splits and
joins to be balanced. Herbst and Karagiannis also address the issue of pro-
cess mining in the context of workflow management [29–32] using an inductive
approach. The work presented in [31] is limited to sequential models. The ap-
proach described in [30,29,32] also allows for concurrency. It uses stochastic
activity graphs as an intermediate representation and it generates a workflow
model described in the ADONIS modelling language. In the induction step
activity nodes are merged and split in order to discover the underlying pro-
cess. A notable difference with other approaches is that the same activity can
appear multiple times in the workflow model, i.e., the approach allows for du-
plicate activities. The graph generation technique is similar to the approach
of [6,40]. The nature of splits and joins (i.e., AND or XOR) is discovered in
the transformation step, where the stochastic activity graph is transformed
into an ADONIS workflow model with block-structured splits and joins. In
contrast to the previous papers, the work [37,60] is characterized by the focus
on workflow processes with concurrent behavior (rather than adding ad-hoc
mechanisms to capture parallelism). In [60] a heuristic approach using rather
simple metrics is used to construct so-called “dependency/frequency tables”
and “dependency/frequency graphs”. The preliminary results presented in [60]
only provide heuristics and focus on issues such as noise. In [1] the EMiT tool
is presented which uses an extended version of the α-algorithm to incorporate
timing information. For a detailed description of the α-algorithm and a proof
of its correctness we refer to [5]. For a detailed explanation of the constructs
the α-algorithm does not correctly mine and an extension to mine short-loops,
see [14,15]. The main differences from our work to the above mentioned ones
are that (i) our search is not primarily based on local (direct neighborhood)
information in the log, (ii) we can capture non-free-choice constructs, and (iii)
we try to discover the dependencies (causality relations) and the semantics of

57

the split/join points all together.

With respect to non-free-choice constructs, as already explained in Section 8,
Wen et al. [61] have extended the α algorithm in [15] to also discover this kind
of construct. The extension is called the α++ algorithm. However, unlike the
genetic algorithm, the α++ is unable to capture invisible tasks and is also not
robust to noise. The approach by [26] handles non-free-choice situations by
clustering the traces that follow different paths in the mined model. The dif-
ference to our approach is that the non-free-choice constructs are not explicitly
captured in the control-flow structure of the mined model.

Process mining can be seen as a tool in the context of Business (Process)
Intelligence (BPI). In [27] a BPI toolset on top of HP’s Process Manager is
described. The BPI tools set includes a so-called “BPI Process Mining En-
gine”. However, this engine does not provide any techniques as discussed be-
fore. Instead it uses generic mining tools such as SAS Enterprise Miner for the
generation of decision trees relating attributes of cases to information about
execution paths (e.g., duration). In order to do workflow mining it is conve-
nient to have a so-called “process data warehouse” to store audit trails. Such
as data warehouse simplifies and speeds up the queries needed to derive causal
relations. In [20,45,46] the design of such warehouse and related issues are dis-
cussed in the context of workflow logs. Moreover, [46] describes the PISA tool
which can be used to extract performance metrics from workflow logs. Similar
diagnostics are provided by the ARIS Process Performance Manager (PPM)
[33]. The later tool is commercially available and a customized version of PPM
is the Staffware Process Monitor (SPM) [57] which is tailored towards mining
Staffware logs. Note that none of the latter tools is extracting the process
model. The main focus is on clustering and performance analysis rather than
causal relations as in [6,11–13,29–31,37,40,54,55,60].

More from a theoretical point of view, the rediscovery problem discussed in
this paper is related to the work discussed in [7,23,50]. In these papers the
limits of inductive inference are explored. For example, in [23] it is shown
that the computational problem of finding a minimum finite-state acceptor
compatible with given data is NP-hard. Several of the more generic concepts
discussed in these papers could be translated to the domain of process mining.
It is possible to interpret the problem described in this paper as an inductive
inference problem specified in terms of rules, a hypothesis space, examples,
and criteria for successful inference. The comparison with literature in this
domain raises interesting questions for process mining, e.g., how to deal with
negative examples (i.e., suppose that besides log W there is a log V of traces
that are not possible, e.g., added by a domain expert). However, despite the
many relations with the work described in [7,23,50] there are also many dif-
ferences, e.g., we are mining at the net level rather than sequential or lower
level representations (e.g., Markov chains, finite state machines, or regular

58

expressions). For a survey of existing research, we also refer to [3].

There have been some papers combining Petri nets and genetic algorithms,
cf. [8,34,38,39,42–44,48,51,58]. However, these papers do not try to discover
a process model based on some event log. The approach in this paper is the
first approach using genetic algorithms for process discovery. The goal of using
genetic algorithms is to tackle problems such as duplicate activities, hidden
activities, non-free-choice constructs, noise, and incompleteness, i.e., overcome
the problems of some of the traditional approaches. Actually, we have also pre-
vious papers on genetic process mining [17,59]. However, the work presented in
this paper differs from our previous papers for the following reasons. In [59],
the causal matrix representation (cf. Definition 5) was more restrictive be-
cause the subsets in the input and output condition functions (i.e., I and O)
were partition sets of A. Thus, nets like the one in Figure 5 could not be sup-
ported. The work in [17] removed these restrictions and improved the fitness
measure. However, neither the fitness measure in [59] nor the one in [17] have
the preciseness requirement (cf. Section 4.2.2) to punish over-general models.
Additionally, the works in [17,59] (i) do not include the analysis metrics (cf.
Section 5) to assess the quality of the mined models, (ii) have experiments
with a smaller set of synthetic logs, and (iii) do not include experiments with
real-life logs.

With respect to the analysis metrics, some notions related to the behavioral
precision metric (cf. Definition 13) have been used in [26,53]. In [26], the
notion of soundness is used to check for how much extra behavior a mined
model allows for. However, the metric assumes that the target model does not
contain loops. In [53], the notion of behavioral appropriateness is defined to
also check if a model can generate more behavior than the one expressed in
the log. The problem here is that the metric cannot state when a model is
precise enough. Because the analysis metrics defined in Section 5 make use
of the original model as well, they can precisely quantify how complete and
precise a mined model is.

10 Conclusions and Future Work

In this paper we have presented a hybrid genetic algorithm to mine process
models from event logs. The internal representation (the causal matrix) sup-
ports more complex routing constructs like non-free choice and invisible task.
The fitness measure benefits the individuals that are complete (can parse most
of the behavior in the log) and precise (cannot parse more behavior than the
one that can be derived from the log). The genetic operators (crossover and
mutation) manipulate the basic genetic material in the algorithm: the causal-
ity relations. The experiments with synthetic logs show that (i) the use of

59

heuristics is indeed beneficial to speed the search performed by the genetic
algorithm and (ii) the genetic operators are playing their role in finding the
non-local causality relations that can never be introduced by the heuristics.
Furthermore, the experiments with synthetic noisy logs and real-life logs show
that the genetic algorithm is capturing the most frequent behavior in the log
even in the presence of noise. However, although the GA is able to mine mod-
els with all structural constructs but duplicates tasks and is robust to noise,
it has a drawback that cannot be neglected: the computational time. For this
reason, future work will focus on developing better strategies to perform this
search. Additionally, we want to develop a genetic algorithm that can also
mine process models with duplicate tasks. As a final remark, the genetic al-
gorithm, analysis metrics and arc post-pruning step are all implemented as
plug-ins in the ProM framework (www.processminining.org).

References

[1] W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors,
International Conference on Engineering and Deployment of Cooperative
Information Systems (EDCIS 2002), volume 2480 of Lecture Notes in Computer
Science, pages 45–63. Springer-Verlag, Berlin, 2002.

[2] W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering
interaction patterns in business processes. In J. Desel, B. Pernici, and M. Weske,
editors, International Conference on Business Process Management (BPM
2004), volume 3080 of Lecture Notes in Computer Science, pages 244–260.
Springer-Verlag, Berlin, 2004.

[3] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches.
Data and Knowledge Engineering, 47(2):237–267, 2003.

[4] W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining,
volume 53 of Special Issue of Computers in Industry. Elsevier Science
Publishers, Amsterdam, 2004.

[5] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

[6] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In I. Ramos G. Alonso H.-J. Schek, F. Saltor, editor,
Advances in Database Technology - EDBT’98: Sixth International Conference
on Extending Database Technology, volume 1377 of Lecture Notes in Computer
Science, pages 469–483, 1998.

60

[7] D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods.
Computing Surveys, 15(3):237–269, 1983.

[8] T. Bourdeaud’huy and P. Yim. Petri net controller synthesis using genetic
search. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, volume 1, pages 528–533, 2002.

[9] E. Cantú-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U. O’Reilly, H. Beyer,
R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and
J. F. Miller, editors. Genetic and Evolutionary Computation - GECCO 2003,
Genetic and Evolutionary Computation Conference, Chicago, IL, USA, July
12-16, 2003. Proceedings, Part II, volume 2724 of Lecture Notes in Computer
Science. Springer, 2003.

[10] J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering Models of Behavior for
Concurrent Workflows. Computers in Industry, 53(3):297–319, 2004.

[11] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

[12] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In
Proceedings of the Sixth International Symposium on the Foundations of
Software Engineering (FSE-6), pages 35–45, New York, NY, USA, 1998. ACM
Press.

[13] J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively
Measuring the Correspondence of a Process to a Model. ACM Transactions
on Software Engineering and Methodology, 8(2):147–176, 1999.

[14] A.K. Alves de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters.
Workflow Mining: Current Status and Future Directions. In R. Meersman,
Z. Tari, and D.C. Schmidt, editors, On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes
in Computer Science, pages 389–406. Springer-Verlag, Berlin, 2003.

[15] A.K. Alves de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M.
Weijters. Process Mining: Extending the α-algorithm to Mine Short Loops.
BETA Working Paper Series, WP 113, Eindhoven University of Technology,
Eindhoven, 2004.

[16] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Using
Genetic Algorithms to Mine Process Models: Representation, Operators and
Results. BETA Working Paper Series, WP 124, Eindhoven University of
Technology, Eindhoven, 2004.

[17] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: A Basic Approach and its Challenges. In Busines Process
Management 2005 Workshops, volume 3812 of Lecture Notes in Computer
Science, pages 203–215. Springer Verlag, 2006.

61

[18] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

[19] M. Dumas, W.M.P. van der Aalst, and A.H. ter Hofstede, editors. Process-
Aware Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons Inc, 2005.

[20] J. Eder, G.E. Olivotto, and Wolfgang Gruber. A Data Warehouse for Workflow
Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International Conference
on Engineering and Deployment of Cooperative Information Systems (EDCIS
2002), volume 2480 of Lecture Notes in Computer Science, pages 1–15. Springer-
Verlag, Berlin, 2002.

[21] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural
Computing. Springer-Verlag, Berlin, 2003.

[22] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

[23] E.M. Gold. Complexity of Automaton Identification from Given Data.
Information and Control, 37(3):302–320, 1978.

[24] G. Greco, A. Guzzo, and L. Pontieri. Mining Hierarchies of Models:
From Abstract Views to Concrete Specifications. In W.M.P. van der
Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Business Process
Management, volume 3649, pages 32–47, 2005.

[25] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Mining Expressive Process
Models by Clustering Workflow Traces. In H. Dai, R. Srikant, and C. Zhang,
editors, PAKDD, volume 3056 of Lecture Notes in Computer Science, pages
52–62. Springer, 2004.

[26] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering expressive process
models by clustering log traces. IEEE Transactions on Knowledge and Data
Engineering, 18(8):1010–1027, 2006.

[27] D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business
Process Quality through Exception Understanding, Prediction, and Prevention.
In P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and
R. Snodgrass, editors, Proceedings of 27th International Conference on Very
Large Data Bases (VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

[28] P. D. Grunwald, I. J. Myung, and M. Pitt, editors. Advances in Minimum
Description Length Theory and Applications. The MIT Press, 2005.

[29] J. Herbst. Dealing with Concurrency in Workflow Induction. In U. Baake,
R. Zobel, and M. Al-Akaidi, editors, European Concurrent Engineering
Conference. SCS Europe, 2000.

[30] J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, Universität Ulm, November 2001.

62

[31] J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow
Management to Support Acquisition and Adaptation of Workflow Models.
International Journal of Intelligent Systems in Accounting, Finance and
Management, 9:67–92, 2000.

[32] J. Herbst and D. Karagiannis. Workflow Mining with InWoLvE. Computers in
Industry, 53(3):245–264, 2004.

[33] IDS Scheer. ARIS Process Performance Manager (ARIS PPM).
http://www.ids-scheer.com, 2002.

[34] S. Malpathak K. Saitou and H. Qvam. Robust design of flexible manufacturing
systems using, colored petri net and genetic algorithm. Journal of Intelligent
Manufacturing, 13(5):339–351, 2002.

[35] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control
Flow Modelling in Workflows (submitted). PhD thesis, Queensland
University of Technology, Brisbane, Australia, 2002. Available via
http://www.tm.tue.nl/it/research/patterns.

[36] L. Maruster. A Machine Learning Approach to Understand Business Processes.
PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
2003.

[37] L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch.
Process Mining: Discovering Direct Successors in Process Logs. In Proceedings
of the 5th International Conference on Discovery Science (Discovery Science
2002), volume 2534 of Lecture Notes in Artificial Intelligence, pages 364–373.
Springer-Verlag, Berlin, 2002.

[38] H. Mauch. Evolving Petri Nets with a Genetic Algorithm. In E. Cantu-Paz and
J.A. Foster et al., editors, Genetic and Evolutionary Computation (GECCO
2003), volume 2724 of Lecture Notes in Computer Science, pages 1810–1811.
Springer-Verlag, Berlin, 2003.

[39] Holger Mauch. Evolving petri nets with a genetic algorithm. In Cantú-Paz
et al. [9], pages 1810–1811.

[40] M.K. Maxeiner, K. Küspert, and F. Leymann. Data Mining von Workflow-
Protokollen zur teilautomatisierten Konstruktion von Prozemodellen. In
Proceedings of Datenbanksysteme in Büro, Technik und Wissenschaft, pages
75–84. Informatik Aktuell Springer, Berlin, Germany, 2001.

[41] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes.
Information and Computation, 100(1):1–77, 1992.

[42] J. H. Moore and L. W. Hahn. An Improved Grammatical Evolution Strategy
for Hierarchical Petri Net Modeling of Complex Genetic Systems. In G. R. Raidl
et al., editor, Applications of Evolutionary Computing, EvoWorkshops2004,
volume 3005 of Lecture Notes in Computer Science, pages 63–72. Springer-
Verlag, Berlin, 2004.

63

[43] J. H. Moore and L. W. Hahn. Grammatical evolution for the discovery of petri
net models of complex genetic systems. In Cantú-Paz et al. [9], pages 2412–2413.

[44] J. H. Moore and L. W. Hahn. Petri net modeling of high-order genetic systems
using grammatical evolution. BioSystems, 2003.

[45] M. zur Mühlen. Process-driven Management Information Systems Combining
Data Warehouses and Workflow Technology. In B. Gavish, editor, Proceedings
of the International Conference on Electronic Commerce Research (ICECR-4),
pages 550–566. IEEE Computer Society Press, Los Alamitos, California, 2001.

[46] M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring
and Controlling - Technical and Organizational Issues. In R. Sprague,
editor, Proceedings of the 33rd Hawaii International Conference on System
Science (HICSS-33), pages 1–10. IEEE Computer Society Press, Los Alamitos,
California, 2000.

[47] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[48] J. Nummela and B. A. Julstrom. Evolving petri nets to represent metabolic
pathways. In H. Beyer and U. O’Reilly, editors, GECCO, pages 2133–2139.
ACM, 2005.

[49] S.S. Pinter and M. Golani. Discovering Workflow Models from Activities
Lifespans. Computers in Industry, 53(3):283–296, 2004.

[50] L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In
K.P. Jantke, editor, Proceedings of International Workshop on Analogical and
Inductive Inference (AII), volume 397 of Lecture Notes in Computer Science,
pages 18–44. Springer-Verlag, Berlin, 1889.

[51] J.P. Reddy, S. Kumanan, and O.V.K. Chetty. Application of Petri Nets
and a Genetic Algorithm to Multi-Mode Multi-Resource Constrained Project
Scheduling. International Journal of Advanced Manufacturing Technology,
17(4):305–314, 2001.

[52] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998.

[53] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In Christoph Bussler
and Armin Haller, editors, Business Process Management Workshops, volume
3812, pages 163–176, 2005.

[54] G. Schimm. Process Mining. http://www.processmining.de/.

[55] G. Schimm. Process Miner - A Tool for Mining Process Schemes from Event-
based Data. In S. Flesca and G. Ianni, editors, Proceedings of the 8th European
Conference on Artificial Intelligence (JELIA), volume 2424 of Lecture Notes in
Computer Science, pages 525–528. Springer-Verlag, Berlin, 2002.

64

[56] G. Schimm. Mining Exact Models of Concurrent Workflows. Computers in
Industry, 53(3):265–281, 2004.

[57] Staffware. Staffware Process Monitor (SPM). http://www.staffware.com, 2002.

[58] H. Tohme, M. Nakamura, E. Hachiman, and K. Onaga. Evolutionary petri
net approach to periodic job-shop-scheduling. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, volume 4, pages
441–446, 1999.

[59] W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters.
Genetic Process Mining. In Proceedings of the 26th International Conference
on Applications and Theory of Petri Nets, volume 3536 of Lecture Notes in
Computer Science, 2005.

[60] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided
Engineering, 10(2):151–162, 2003.

[61] L. Wen, J. Wang, and J. Sun. Detecting Implicit Dependencies Between Tasks
from Event Logs. In Xiaofang Zhou, Jianzhong Li, Heng Tao Shen, Masaru
Kitsuregawa, and Yanchun Zhang, editors, APWeb, volume 3841 of Lecture
Notes in Computer Science, pages 591–603. Springer, 2006.

65

A Details About the Models for Experiments with Synthetic Logs

Net S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

N
on

-L
o
ca

l
N

F
C

In
v
is

ib
le

T
as

k
s

D
u
p
li
ca

te
s

in
S
eq

u
en

ce

D
u
p
li
ca

te
s

in
P
ar

al
le

l

N
u
m

b
er

of
V

is
ib

le
T
as

k
s

a10skip X X X X 12

a12 X X X 14

a5 X X X X 7

a6nfc X X X X 8

a7 X X X 9

a8 X X X 10

al1 X X X X 9

al2 X X X X 13

bn1 X X 42

bn2 X X X X 42

bn3 X X X X 42

choice X X 12

driversLicense X X X 9

herbstFig3p4 X X X X 12

herbstFig6p18 X X X X X X 7

herbstFig6p36 X X X 12

herbstFig6p37 X X 16

herbstFig6p41 X X X 16

herbstFig6p45 X X 8

l1l X X X 6

l1lSkip X X X X X 6

l2l X X X 6

Continued on next page

66

N
et

Sequence

Choice

Parallelism

Length-One Loop

Length-Two Loop

Structured Loop

Arbitrary Loop

Non-Local NFC

Invisible Tasks

Duplicates in Sequence

Duplicates in Parallel

Number of Visible Tasks

l2
lO

p
tio

n
a
l

X
X

X
6

l2
lS

k
ip

X
X

X
X

6

p
ara

llel5
X

X
10

T
ab

le
A

.1:
O

verv
iew

of
th

e
stru

ctu
ral

con
stru

cts
con

tain
ed

in
th

e
m

o
d
els

for
th

e
ex

p
erim

en
ts

w
ith

sy
n
th

etic
logs.

67

