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Abstract. In today’s fast changing business environment flexible infor-
mation systems are required to allow companies to rapidly adjust their
business processes to changes in the environment. However, increasing
flexibility in large information system usually leads to less guidance for
its users and consequently requires more experienced users. In order to
allow for flexible systems with a high degree of guidance, intelligent user
assistance is required. In this paper we propose a recommendation ser-
vice, which, when used in combination with flexible information systems,
can guide end users during process execution by giving recommendations
on possible next steps. Recommendations are generated based on similar
past process executions by considering the specific optimization goals.
This paper also describes an implementation of the proposed recom-
mendation service in the context of ProM and the declarative workflow
management system DECLARE.

1 Introduction

In today’s fast changing business environment, flexible information systems are
required to allow companies to rapidly adjust their business processes to changes
in the environment. In order to achieve this high degree of flexibility, both
academia and industry have recently proposed several paradigms of flexible infor-
mation systems (e.g., adaptive process management [11], case handling systems
[12] and declarative processes [10]). However, in most of these approaches flexi-
bility comes at a cost, i.e. the more flexible a process-aware information system
is, the less support it provides to its users and hence the more knowledge these
users need to have about the process they are a part of. On the other hand, full
support in an information system usually comes at a cost of loosing flexibility
(cf. Figure 1).

Although users of flexible systems have the option to make their own de-
cisions while working, a certain level of support is still necessary. Reasons for
this can be various: unexperienced users, exceptional situations, personal pref-
erences, etc. Traditionally, this problem is solved by educating workers (e.g. by



making them more process aware), or by restricting the information system by
introducing more and more constraints and thus sacrificing flexibility. Obviously,
both options are costly. Moreover, they both require a process specialist to gain
insights in the process supported by the information system, either to educate
the workers about these processes or to change them into more restrictive ones.

The research area of process mining has provided many methods and tools
to help a process specialist in acquiring such insights. In this paper, we use
techniques from the process mining domain and make them directly available
to the workers in a process, i.e. we introduce a recommendation service that
provides more support for users in a flexible environment, without requiring a
business specialist to analyze the process in detail.

Process mining addresses the problem that most “process owners” have very
limited information about what is actually happening in their organization. In
practice, there is often a significant gap between what is prescribed or supposed
to happen, and what actually happens. Only a concise assessment of the orga-
nizational reality, which process mining strives to deliver, can help in verifying
process models, and ultimately be used in a process (re)design effort.

The idea of process mining is to discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs [1]. Clearly,
process mining is most relevant in a setting where much flexibility is allowed or
needed, and therefore this is an important topic in this paper. The more ways in
which people and organizations can deviate, the more variability and the more
interesting it is to observe and analyze processes as they were and are executed.

So far, process mining has always been seen as a stand-alone application, i.e.
an event log is taken and used to produce a model (e.g., a Petri net or social
network), or to extend an existing model (e.g., building a process model into
a simulation model). The recommendation service we introduce in this paper
however, more or less applies process mining on-the-fly, i.e. by looking at a log
(set of completed executions) and a partial execution, predictions can be made
about the future of the (partial) case. This logically leads to recommendations.

Recommendations can be considered as predictions about a case, conditioned
on the next step that has not been performed yet. For example, given the partial
execution of the current case and the completed executions of similar cases in
the log, it is predicted that this case will take 10 hours if the next step is activity
“A”. However, if the next step is activity “B”, it will last only 4 hours.

In order to recommend to a user what should be the next step in a process,
the recommendation service needs to know what the user’s target (goal) is, e.g.
should the user perform its tasks as soon as possible, or should s/he optimize
its outcome in terms of business value. Consider for example an insurance claim
handling process. Obviously, users should complete each claim as quickly as
possible since that optimizes the throughput and hence the costs of the claim
handling department are kept minimal. In a sales department on the other hand,
it might be a good idea not to give up after the first rejection by a potential client,
i.e. by spending more time on that sale, the probability that it is successfully
concluded might increase.
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Fig. 2. An overview of the recommendation service.

Figure 2 shows an overview of the recommendation service that we present
in this paper. The process engine of some information system (or any other
system that supports processes) logs information of some sort. This information
is used by the recommendation service as a basis, i.e. it bases its recommendation
on the information in this log. Then, a user requests a recommendation for a
specific case by sending a partial case, i.e. the user sends a record of all the steps
performed in a case up to the point where the recommendation is needed. The
recommendation service then answers by sending a recommendation to assist
the user in choosing the next step(s). Such a recommendation consists of a list
of advised next steps (e.g. “call potential customer again”) combined with a
number of quality attributes (e.g. this recommendation is based on 100 similar
cases, which with a 90% probability lead to a successful sale).

In the remainder of this paper, we first introduce related work in Section 2.
Then, in Section 3, we introduce the recommendation service in more detail and
we show an implementation thereof in Section 4. We conclude the paper with
Section 5 where we provide conclusions and future work.

2 Related Work

Before presenting the recommendation service in more detail, we first provide
an overview of the work in the area of run-time flexibility in process enactment
as well as user support in flexible systems.

In order to provide flexible information systems both academia and indus-
try recently have proposed several different paradigms for flexible information
systems. In all these paradigms exists the described trade-off between flexibility
requiring user assistance (e.g., through recommendations).

Adaptive process management systems represent one of these paradigms by
enabling users to make instance-specific adaptations and by supporting the evo-
lution of process models (e.g., through version management and instance migra-
tion). ADEPT[11] is an example of such an adaptive system, where users can
add, delete, and move tasks during the execution. However, users have to rely
on their experience and expertise to decide when to add, delete or move a task.



The need to support users when flexible system support is provided has been
addressed by the ProCycle approach, which combines ADEPT with case-based
reasoning technology (CBRFlow) [17]. ProCylce allows starting with an initial
simple process model and learning from the living system. End users are sup-
ported by the system to handle exceptional situations through the reuse of devia-
tions. This is achieved through the semantical annotation of changes. In addition,
ProCycle allows deriving process improvements when a particular deviation oc-
curs frequently. Unlike in our approach, recommendations are not provided by
the system in a proactive way, but user interaction is required for initiating user
assistance. In addition, the retrieval of similar deviations for reuse requires user
interaction as well. In combination with ProCycle our approach could be used to
proactively make suggestions for possible instance-specific process adaptations
by taking similar past cases into account. Thereby, not only execution logs, but
also change logs can be considered [6]. For example, if the next task according to
the process model is “A” but the recommendation is task “D”, the user might
get the suggestion to insert task “D” before task “A”.

Similar to ProCycle, the Uranos project [8] provides authoring support to
assist users in the case of process adaptations. Using case-based reasoning tech-
niques similar past workflows are retrieved, which can then be used as a starting
point for workflow adaptations. For similarity calculation, the structure of the
workflow, its execution state and context information is considered. Like in the
ProCyle approach, user interaction is required to get recommendations for pro-
cess steps. In addition. most of the context information considered in the Uranos
project is not automatically available, but has to be manually entered in the sys-
tem, which might lead to significant knowledge elicitation efforts.

Another paradigm are case-handling systems, which provide flexibility by
focusing on the whole case (process instance), not individual tasks [12]. For
example, in FLOWer [9], when working on one case, users can: open waiting
tasks, execute enabled tasks, skip waiting and enabled tasks, and redo executed
and skipped tasks. The topic of user assistance in the context of case-handling
systems has not been addressed so far. However, in this context recommendations
could, for example, discover that one task is often skipped in a certain type of
cases and recommend skipping for new cases of this type. For example, if the
next two tasks according to the model are “A” and “B” and recommendation is
task “B”, this is a signal for the user to skip task “A” in this case.

Except for adaptive process management technology, which allows for struc-
tural changes of the process model and the case-handling paradigm, which pro-
vides flexibility by focusing on the whole case, many approaches deal with the
flexibility problem by defining regions in the process model where changes can
be performed during run-time (e.g., through Late Modeling or Late Binding)
(for details see [18]). Examples of such approaches are, for instance, Worklets [2]
or the Pockets of flexibility [13] approach. Both approaches provide user assis-
tance by providing simple support for the reuse of changes, recommendations as
envisioned in our approach are not considered.



In contrast to the approaches described above, the third paradigm addressed
in our implementation of the recommendation service, relies on a declarative way
of modeling business processes. As opposed to imperative languages that “proce-
durally describe sequences of action”, declarative languages “describe the depen-
dency relationships between tasks” [5]. Generally, declarative languages propose
modeling constraints that drive the model enactment [5, 7, 15]. Constraints de-
scribe dependencies between model elements and are specified using pre and post
conditions for target task [15], dependencies between states of tasks (enabled,
active, ready, etc.) [5] or various model-related concepts [7]. When working with
these systems, users have the freedom to choose between a variety of possibilities
as long as they remain within the boundaries set by the constraints. Again, a
recommendation system can help users by identifying similar situations from the
past and showing how these situations were solved.

3 The Recommendation Service

As stated before, the recommendation service uses a process log to provide sup-
port for users in a flexible environment. To do so, it requires a process log as
a basis. This process log is analyzed and when a user requires a recommenda-
tion he sends a partial case to the recommendation service. This partial case
is compared to the log and a recommendation is generated. In this section, we
introduce process logs in more detail, we show how this comparison can be done,
and which recommendations result from this comparison. Note that we do not
claim that the techniques in this section are exhaustive. Instead, they should be
seen as a meaningful instantiation of the ideas presented in Section 1.

Throughout this section, we use an illustrative example which we use to
show how a recommendation service can provide the right recommendations at
the right time. Consider three friends visiting a karaoke bar to have a good time.
However, their ideas of having a good time do not match, i.e. Mary wants to
be a singer later, so she wants to practice as much as possible. Bill had a bad
day at work, so he just wants to get as drunk as possible and Peter has to stay
sober, since he is the driver who takes Mary and Bill home.

At the karaoke bar, there are five things that Mary, Bill and Peter can do (i.e.
there are five activities) namely: sing, listen, drink beer, drink wine and drink

juice. Furthermore, there are some rules that should be followed. Obviously, a
person cannot sing and listen at the same time (i.e. concurrently). Furthermore,
nobody is allowed to drink two drinks concurrently and during singing, drinking
is also not allowed.

Mary, Bill and Peter have visited the karaoke bar before, but to no success.
Therefore, they asked their friends who go there regularly to “log their activi-
ties”, i.e. to write down what they did. This time, Mary, Bill and Peter will use
this log, of which a fragment is shown in Table 1, to get the best out of their
evening.



Table 1. Karaoke bar log.

person activity start time end time

George sing 20:00 20:04
Susan listen 20:00 20:04
Susan drink wine 20:00 20:03
Jerry listen 20:00 20:04
Jerry drink juice 20:00 20:05
Susan drink beer 20:03 20:04
Jerry listen 20:04 20:09
George sing 20:04 20:09
Susan listen 20:04 20:09
Susan drink beer 20:06 20:07
Jerry listen 20:09 20:13
George listen 20:09 20:13
George drink beer 20:09 20:10
George drink juice 20:11 20:15
. . .

Table 2. Rewritten karaoke bar log.

case activity event time

1: George sing start 20:00
1: George sing complete 20:04
1: George sing start 20:04
1: George sing complete 20:09
1: George listen start 20:09
1: George drink beer start 20:09
1: George drink beer complete 20:10
1: George drink juice start 20:11
1: George listen complete 20:13
1: George drink juice complete 20:15

2: Susan listen start 20:00
2: Susan drink wine start 20:00
2: Susan drink wine complete 20:03
2: Susan drink beer start 20:03
2: Susan listen complete 20:04
2: Susan drink beer complete 20:04
2: Susan listen start 20:04
2: Susan drink beer start 20:06
2: Susan drink beer complete 20:07
2: Susan listen complete 20:09

. . .

3.1 Process Logs

For the purpose of deriving recommendations from a process log, we need logs
to satisfy certain requirements. These requirements, which are similar to the
requirements presented in [3], are also required most process mining approaches,
and state that a process log is a collection of events, such that:

1. Each event should be an event that happened at a given point in time.
It should not refer to a period of time. For example, starting to work on
some work-item in a workflow system would be an event, as well as finishing
the work-item. The process of working on the work-item itself is not. Our
example log of Table 1 satisfies this property, as it shows both the beginning
and the end of each activity, which can be considered separate events.

2. Each event should refer to one activity only, and activities should be uniquely
identifiable. In our example log of Table 1 this requirement is fullfilled.

3. Each event should contain a description of the event that happened with
respect to the log, we show the start and the end of each activity, which are
the respective descriptions.

4. Each event should refer to a specific case. We need to know, for example, for
which invoice the payment activity was started. In our example, the log only
contains one visit of three people to the karaoke bar and hence we consider
each of these people as individual cases.



Note that our description of a process log is such that it can be considered
as a bag of cases, where each case is an ordered list of events (the ordering is
induced by the required timestamp). Table 2 shows the same log as Table 1,
translated to meet all the requirements.

Before we show how the recommendation service deals with process logs
exactly, we first introduce another important part of the recommendation service,
the so-called target function. When a user asks for a recommendation, then he
does so with certain goals in mind. Such a goal is formalized using a target
function.

3.2 Target Functions

The goal of the recommendation system is to support users in their decisions,
such that a certain target value is optimized. These targets can be anything,
from the duration of a case to whether or not a sale is successful. To determine
how successful each case in the log was, we introduce target functions. These
functions map a given case to a number, e.g. in case of duration, it maps the
case to the number of minutes or seconds that case lasted. However, any data
value can be used, if it is stored somewhere in the event log or can be derived
from it.

Recall that the three people involved in our karaoke process have three dif-
ferent goals (target functions), i.e. Mary wants to be a singer, Bill wants to get
as drunk as possible and Peter wants to stay sober, so he can drive. To capture
the fact that different processes (or even different users within the same process)
can have different objectives, many different target function can be thought of,
but we consider the following to be the most relevant:

1. The duration of a case. When a user is trying to finish cases as soon as
possible, the target for the recommendation service should be to minimize
the duration of a case (hence to maximize one divided by the duration of a
case).

2. The business value of a case. When trying to sell insurances for example,
the user would like to get recommendations that lead to a sale in the end,
hence the target function should express this. Since process logs usually con-
tain data, this target function typically optimizes for a certain data element
expressing the business value of that case.

3. The learning curve of a person. Since the recommendation service has ac-
cess to the entire log, it is able to determine which people performed which
activities. Therefore, a manager can decide to influence the recommendation
service, such that each user performs each activity with the same frequency.
This way, the users are constantly learning and developing their skills.

4. The value for money of a case, i.e. the business value per time unit. If cases
that last longer are unreasonable more expensive, then it is logical to try to
optimize for earning the most money per time unit. However, if a certain
activity is expected to take long, but with a high cost/benefit ratio, then it
might be a good idea to still perform this activity.



Table 3. Evaluation of karaoke target functions.

Mary Bill Peter
Case duration of singing in minutes drinks per hour non-alcoholic

1: George 9 1/15 0

2: Susan 0 3/9 0

3: Jerry 0 0 1

When we consider our karaoke example and we look into the log of Table 1
in more detail, then we see that drinking wine always takes considerably longer
than drinking beer. Therefore, when trying to get as drunk as possible, the target
function should be such that it counts the number of drinks per hour (i.e. the
value for money category). However, when staying sober, the target function
should be such that it should only provide a positive outcome for cases where
no alcohol was consumed and zero value otherwise. Furthermore, when trying to
become a singer, only the duration of all singing activities combined is important.
Table 3 shows the results of the three target functions on the log of Table 2.

From Table 3, it is easy to see that Bill should best follow Susan when he
wants to get drunk, i.e. Susan drank the most drinks per hour. Furthermore,
following George is also possible (although this is not the best option), whereas
following Jerry would not make sense. The latter statement shows the idea of
the recommendation service. In this case it should lead Bill to “follow” the same
steps as Susan did. However, for this, we need to formalize what this “following”
means, i.e. we need a means to compare cases.

The recommendation service we present in this paper uses process logs to
base recommendations on. It does so by comparing the partial instance a user
sends to the service with the cases already present in the process log. However,
if we would not abstract from the log at all, then it is very unlikely that two
cases can be compared to each other, i.e. in real life, no two cases are dealing
with exactly the same data, involving exactly the same people at the same time.

Again consider our karaoke example. Since the recommendation service has
no knowledge about Mary, but only about George, Susan and Jerry, there should
be some abstraction from the log. If Mary, at the beginning of her evening asks
the recommendation service what to do next, the recommendation service should
ignore the specific persons that performed the logged activities and should tell
her to follow Georges lead.

Abstracting from the identities of people is not the only useful abstraction
and therefore, in Subsection 3.3, we introduce several abstraction mechanisms
and we show how cases can be compared to obtain a degree of similarity between
them.

3.3 Comparison Mechanisms

Most existing process mining algorithms use a multi step approach when con-
sidering event logs. In the first step, an event log is typically analyzed to come
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Set abstraction:
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partial sequence: <D,C,D,E>    (last four)
partial multi-set: {C,D2,E}    (last four)

filtered sequence: <A,B,E>    (ignore C and D)

Partial case:  
   A B C D C D C D E       

Fig. 3. Possible abstractions of cases.

to some abstraction thereof and in the second step the respective algorithm uses
this abstraction as a starting point.

The α-algorithm is a typical example of a multi step algorithm applying
process discovery from a process perspective (i.e. discovering the control flow of
the underlying process). This algorithm first abstracts from the log by deriving
dependencies between the activities in the log (e.g. causal dependencies). These
dependencies are then used to construct a Workflow net describing the control
flow of the process. Another example is the construction of a social network
from an event log, i.e. process discovery from an organizational perspective. In
order to do this, the log is first analyzed to derive relations between the people
involved in the process and these relations are then used to construct a social
network.

Abstracting from the information in the log typically serves two purposes.
First, it hides the complexity of the respective mining algorithm and second, it
helps to focuss on relevant information. Consider an event log with thousands of
cases concerning ten activities and ten people. The complexity of the α-algorithm
or an algorithm for social network analysis for example, results from the analysis
of the dependencies that are contained in the abstraction. Since deriving the
abstraction from the actual event log can be done in polynomial time, the mining
algorithms become more or less independent of the size of the log.

The second purpose of abstracting from a log is to focus on relevant infor-
mation. Again, as an example, consider a conference management system. Logs
produced by such a system might show events relating to all people who submit-
ted a paper. However, when trying to analyze the social network of the conference
visitors, all events relating to those people who did submit a paper, but did not
visit the conference should be removed. This process of removing events from
(but also changing events or adding events to) a log when certain criteria are
met is called filtering and can be considered as a special case of abstraction.

The recommendation service’s main goal is to decide what the next step in
an partial case should be. To do so, this partial case is compared to the event
log containing many completed cases and it is decided which of those completed
cases are most similar to the incomplete one. In the remainder of this section,



we introduce several abstraction mechanisms and we show how this comparison
should be performed for each of them. Figure 3 shows some examples of how a
partial case (and hence a complete case) can be abstracted from.

Finite vs. infinite horizons. First of all, the base for similarity calculation
may be using finite or infinite horizons. In some scenarios the entire case has to
be considered in order to make meaningful recommendations (hence the horizon
is infinite), while in other scenarios it is sufficient to consider the h last events
of a case (i.e., postfix of a case). For example, instead of using a complete case
〈A,B,C,D,C,D,C,E〉 only a limited horizon of 4 activities (h=4) is considered:
〈D,C,D,E〉. This abstraction is especially useful when the recent past is more
relevant. Using this abstraction, deviations which lay far behind are not consid-
ered in the similarity calculation. Obviously, the horizon can also be expressed
in terms of time (e.g. consider the activities of last week) or other data objects
(e.g. consider the activities performed after the sale was made).

Depending on whether a finite or an infinite horizon is considered, similarity
is calculated differently. Let us assume that we have a case 〈A,A,C,D,E,A, F 〉
and a partial case 〈X,X,A,A,C,D,E〉. When considering infinite horizons, the
similarity is 1 if the partial case is a prefix of the first case, otherwise 0 (like in
our example). When considering a finite horizon of length h, the similarity is 1
if the last h events of the partial case make up an infix of length h of the first
case, otherwise 0. Given the above example and a horizon of 3, the similarity
between the first case and the partial case is 1 as the last three events of the
partial case 〈C,D,E〉 make up an infix of the first case.

When we consider our karaoke example, then the recommendation service
which Mary uses should consider an infinite horizon, since her goal is to optimize
the time spent singing during the entire evening. Also for Peter, the goal is not
to drink the entire evening and hence the horizon should be infinite. For Bill
however, the idea of a finite horizon is more intuitive, i.e. he does not care when

the most drinks per hour were consumed, so he considers an horizon of, for
example, 5.

Filtering of events. Second, only a selected set of events may be considered,
i.e., the log is filtered and only the remaining events are used as an input for the
recommendation engine. This abstraction is orthogonal to taking a partial case.
Filtering may be used to remove certain activities or certain event types. For
instance, if there are “start” and “complete” events for all activities in the event
log (“A start” and “A complete”), then it is possible to only consider “start”
events by filtering out other non relevant events.

When calculating the similarity between cases, events which have been fil-
tered out are not considered, only the remaining events are compared. Let us
assume that we have a case 〈Astart, Acomplete, Bstart, Bcomplete〉 and a partial
case 〈Acomplete, Bcomplete〉. Without removing the “start” events from the the
first case a low similarity value results. However, by filtering out all “start”
events, both cases are perfectly similar.



In our karaoke example, the log that is used by the recommendation service
should be filtered to remove the “complete” events from the log. It would make
no sense if a recommendation service suggests to Mary to stop singing. Hence,
the recommendation service should only consider the starting of an activity when
generating a recommendation.

Removing order and/or frequency. The third abstraction mechanism re-
moves the order and/or frequency of activities from a case. For instance, in
particular scenarios it might only be relevant to know which activities occurred,
but not their ordering or multiplicity. In other cases, it might be relevant to
know how many times activity A was executed or that A has been executed
before B. Thus, this abstraction mechanism suggests the following three ways of
representing cases:

– sequence, i.e., the order of events is considered for a particular case

– multi-set of events, i.e., the number of times each events is executed is con-
sidered, order is ignored

– set of events, i.e., the mere presence of events is taken into consideration

As the sequential approach allows to consider the ordering of activities this
abstraction is most appropriate if a process is highly structured, i.e. the num-
ber of possible sequences is limited. However, since we are considering flexible
systems where the number of possible sequences is typically extremely large,
the multi set or set approach seems to be more promising. The main difference
between these two is that loops (i.e. multiple executions of the same part of a
process) are only considered in the multi set, but not in the set approach. Which
abstraction to choose depends on the specific process that is being considered. In
a hospital for example, no two patients ever follow the same path and therefore,
the abstraction which considers the complete ordering of the complete case is not
meaningful. For example an abstraction which shows the collection of treatments
which a patient received in the last year would be more applicable.

Whether the ordering of activities has been removed or not has a direct
impact on the similarity calculation. Assume that the similarity between a case
〈A,A,C,D,E,A, F 〉 and a partial case 〈A,A,D,G,H, I〉 should be calculated.
Taking the sequential approach the ordering of the activities is taken into account
and the similarity value would only be zero or one. As in our example the partial
case is not an exact prefix of the first case, the similarity is 0. Taking the multi-
set or set approach the ordering of activities is not considered. The similarity is
calculated as the number of activities which are contained in both cases divided
by the number of activities in the partial case send to the recommendation service
by the user. For instance, for the multi-set approach the similarity between the
case {A,A,C,D,E,A, F} and the partial case {A,A,D,G,H, I} returns 3

6
as a

similarity value as the partial case contains 3 activities which are also contained
in the first case. However, for the set approach the similarity is 2

5
, because each

activity is only considered once.



Table 4. Comparison mechanisms for the karaoke bar.

Person Infinite vs. Finite Filtering Order Frequency

Mary Infinite remove “complete” events sequence
Bill Finite (h=5) remove “complete” events multi-set
Peter Infinite remove “complete” events set

In our karaoke example, the ordering of activities might only be relevant
for Mary, e.g. there could be a policy that the same person cannot sing more
than three songs in a row, in which case the recommendation service should
take this into account for Mary. For Bill, the multi-set abstraction would work
just as well, i.e. it is not important in which order drinks were consumed, only
the multiplicity is. For Peter the set abstraction seems perfect, since he is only
interested in the absence of any activity relating to drinking alcohol, hence he
does not care if alcohol was drank once or more than once.

Table 4 summarizes the different comparison mechanisms that suit our karaoke
example best, e.g. for Mary, recommendations should be based on similar cases,
such that these similar cases are complete, with full ordering and without “com-
plete” events.

In this section, we presented all the ingredients for the recommendation ser-
vice, i.e. we presented (1) process logs, (2) comparison mechanisms and (3) target
functions. In Section 4, we show a concrete implementation of the recommen-
dation service in the process mining framework ProM. Furthermore, we show
how access to the recommendation service is included in the flexible information
system Declare. However, before we do so, we first revisit our karaoke example
and show which recommendations are given to Mary, Bill and Peter when they
step into the karaoke bar. For this, we use the settings of Table 4, the target
functions of Table 3, and the log of Table 2.

When Mary enters the bar and asks for a recommendation for her first step,
her history (which is empty) is a perfect match to all three cases. However, case
1 has a higher outcome for the target function and hance it is preferred over the
other cases. The recommendation for Mary will therefore be to “start singing”,
like George did. For the others however, the recommendation is rather different.

For Peter (trying to stay sober) the set abstraction leads to the recommen-
dation to either start listening or drinking juice, since that is what Jerry did
and Jerry’s example is the only one where the goal of staying sober is reached.
Which activity to start first however is not of important in this context.

For Bill, the resulting recommendation is less straightforward. Since the tar-
get function eliminates the example set by Jerry, we focus on the other two.
In George’s case, he sang twice, listened, drank beer and drank juice. Susan
listened twice, drank beer twice and drank wine. In both cases, the activities
“drink beer” and “listen” are equally frequent. Therefore, the recommendation
service cannot decide which one of these two is more relevant, thus both are
proposed as the first step. The other activities are also proposed, but they are
less frequent and/or their cases have a lower target function result and therefore



the quality attributes sent along with the recommendation show that they are
probably not a good start.

4 Implementation

The recommendation service has been implemented in the process mining frame-
work, ProM, i.e. ProM contains an analysis plugin that uses a (filtered) process
log, a specific comparison mechanism and a specific target function. Note that
the philosophy of ProM is to keep all components extendable with little effort.
Therefore, we implemented the target functions and comparison mechanisms
as plugins inside a plugin. To test the recommendation service implemented in
ProM, we included the possibility to ask for a recommendations in the flexible
system Declare [10].

We decided to use Declare as an information system and not for example
YAWL, since Declare is based on a declarative language. Unlike imperative lan-
guages, declarative languages specify the “what” without determining of the
“how”. When working with such a model, the users are guided by the system
to produce required results, while the manner in which the results are produced
depends on the preferences of users. Therefore, declarative languages are more
flexible by nature, but it is more likely that users working in such an environment
need support.

4.1 Declare

Declare is a declarative workflow management system [10]. A process model in
Declare consists of: 1) a set of activities and 2) constraints, which define the
forbidden behaviour of the process. These constraints are provided to the user
in an intuitive graphical notation and therefore these users do not have to be
process experts to work with Declare models.

We will use an illustrative example to show how recommendations are used
in Declare system. Consider a process model for the general practitioner med-
ical process in Figure 4. It consists of five activities: 1) “check patient”, i.e.
the doctor examines the patient, 2) “prescribe medication”, i.e. an appropriate
medication is prescribed , 3) “check allergy”, i.e. the existence of an allergy to
a specific medication is checked, 4) “archive data”, i.e. patient information is
stored, and 5) “consult external”, i.e. an external professional is consulted about
exceptional situations. For details about these constraints, we refer to [10] and
the annotations in Figure 4.

Figure 5 shows the Declare work-list with one open case of the doctor model
from Figure 4. On the left hand side of the screen a case is selected, i.e. the
active case. In the middle of the screen the whole process model for the ac-
tive case is presented to the user. On the right side of the screen we can see
that the system recommends to start activity “check allergy”. This figure shows
that recommendations are presented to users as additional information that in-
creases system support during their work. By no means users are forced to follow
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Fig. 4. General practitioner model in Declare.
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Fig. 5. General practitioner execution with recommendations in Declare.

recommendations. The user can freely chose the next action regardless of the rec-
ommendation, i.e., not following the recommendation is not considered to be a
mistake or an error. Furthermore, Declare checks the incoming recommendations
for consistency, i.e. if a certain activity is recommended but violates constraints
imposed by the process model and consequently cannot be executed, it is not
shown to the user.

4.2 ProM

The ProM framework has been developed as a workbench for process mining and
related subjects, such as verification and analysis. In [3], the MXML log format
was presented, which lies at the basis of the process mining algorithms contained
in ProM. ProM however is not just a collection of process mining algorithms.
Instead, it contains implementations of a large number of related subjects, such



as analysis or conversion algorithms. For more information about ProM, we refer
to [4, 14] and the website http://www.processmining.org/.

An important feature of the ProM framework is that it allows for interaction
between a large number of so-called plug-ins. A plug-in is basically the imple-
mentation of an algorithm that is of some use in the process mining area, where
the implementation agrees with the framework. Such plug-ins can be added to
the entire framework with relative ease: Once the plug-in is ready it can easily be
added to the framework without the need for recompiling the framework.Note
that there is no need to modify the ProM framework (e.g., recompiling the code)
when adding new plug-ins, i.e., it is a truly “plug-able” environment.

For the implementation of our recommendation work, we extended ProM
with an analysis plugin that in itself is extensible via plug-ins. This analysis
plugin lets the user select the type of abstraction that needs to be used, as
well as the specific implementation of the target function. Currently, several
implementations of both are available.

When the right abstraction and target function have been selected, the analy-
sis plugin opens a network connection for communication with a process engine,
such as Declare. This enables the service to operate completely disconnected
from any process engine, furthermore it allows for multiple process engines to
connect at once. 3

5 Conclusions and Future Work

The recommendation service presented in this paper touches on a whole new area
of user support in flexible environments. Whereas traditionally, user support is
negatively correlated to flexibility, we gave a first step to solve this problem.
In our approach, users of a flexible information system can send their current
execution history to the recommendation service. This service then considers all
past executions of the same process and generates a recommendation to the user
about the next action to take, taking into account the specific goals of that user.

Currently we are working on the experimental evaluation of the proposed
recommendation service. We are conducting simulations evaluating the different
comparison mechanisms and target functions. In addition, we plan to perform
experiments with real users. Letting different groups of users work with the
system with and without recommendations will allow us to make clear statements
about the impact of recommendations on process performance (e.g., duration or
business value). In addition, we plan to evaluate the effects of recommendations
in respect to collaborative learning and examine whether users adjust their way
of working when recommendations about better ways of working are presented
to them.

3 For more information about the implementation details, how to add abstractions or
target functions and which messages are passed between ProM and Declare, we refer
to [16]. This report contains all information needed to use ProM with any other flex-
ible system, or to use Declare with any other implementation of a recommendation
service.
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