
DECLARE: Full Support for
Loosely-Structured Processes

Maja Pesic
Department of Technology Management

Eindhoven University of Technology
The Netherlands

Email: m.pesic@tue.nl

Helen Schonenberg
Mathematics and Computer Science
Eindhoven University of Technology

The Netherlands
Email: m.h.schonenberg@tue.nl

Wil M.P. van der Aalst
Mathematics and Computer Science
Eindhoven University of Technology

The Netherlands
Email: w.m.p.v.d.aalst@tue.nl

Abstract—Traditional Workflow Management Systems
(WFMSs) are not flexible enough to support loosely-structured
processes. Furthermore, flexibility in contemporary WFMSs
usually comes at a certain cost, such as lack of support for users,
lack of methods for model analysis, lack of methods for analysis
of past executions, etc. DECLARE is a prototype of a WFMS
that uses a constraint-based process modeling language forthe
development of declarative models describing loosely-structured
processes. In this paper we show how DECLARE can support
loosely-structured processes without sacrificing important
WFMSs features like user support, model verification, analysis
of past executions, changing models at run-time, etc.

I. I NTRODUCTION

Management of business processes automated by workflow
management systems (WFMSs) is limited by properties of
these systems [2], [13], [19]. Due to the rigidity of WFMSs,
it is hard for organizations to maintain flexible business
processes in WFMSs. The issue of flexibility in WFMSs has
become one of the most frequently addressed problems within
this field [4], [9], [14], [15], [18], [21], [23], [30]. These
research approaches typically focus on the central element
driving any WFMS: theprocess modeldescribing the ordering
or activities.

A process model defines a business process and determines
the way the cases (i.e., process instances) are handled in
an organization. Therefore, the model heavily influences the
degree of flexibility of the WFMS. In traditional WFMS, rigid
modeling languages (e.g, BPMN, EPCs, UML-ADs, or more
formal languages such as Petri nets [28] and Pi calculus [24]),
define a process model as a detailed specification of a step-by-
step procedure that should be followed during the execution.
This approach is animperativeapproach because it strictly
specifieshow the process will be executed and yieldshighly-
structured processes. The major drawback of this approach
is the fact that users have limited influence on the process
under execution, since most decisions about the execution are
already made during process modeling phase.

Flexible systems aim at offering flexibility to the user by
shifting decision making from the system to the user. As a
result, research on flexibility in WFMSs focusses on a different
notion of the process model. For instance, case-handling
systems [27] are WFMSs that offer more flexibility by adding
special actions that users can perform while working with

imperative models. One example of a case-handling system is
FLOWer [25], where users can “soften” the imperative nature
of models by re-doing past actions or skipping unnecessary
actions. Adaptive systems [21] are another example of flexible
systems that use imperative models. Systems like ADEPT
[29] use powerful and complex mechanisms that allow users
to change process models (by inserting, moving or deleting
activities) during execution. Although these solutions increase
flexibility to a great extent, the imperative nature of models
remains, which can produce other burdens for users. For
example, in case-handling systems the user cannot choose to
re-do only one activity from the past – she will have to re-
do all successor activities. On the other hand, the adaptive
approach requires users to have modeling expertise to change
models for occurring deviations.

One of the key problems of existing workflow languages
is that they force or stimulate the designer toover-specify
things. For example, it is possible to model all kinds of
choices. However, it is not possible to simply state that two
activities should never occur together. Instead, the user is
forced to provide a detailed strategy to implement this simple
requirement.

We believe that replacing the imperative approach with a
declarative one is essential for making WFMSs more flexible
while avoiding the problems mentioned above. Therefore,
we propose a system for supporting declarative (loosely-
structured) process models: DECLARE. DECLARE is de-
veloped as a constraint-based system and uses a declarative
language grounded in temporal logic [20] for the development
and execution of process models. Even though it is a declar-
ative system, DECLARE can offer most features that tradi-
tional WFMSs have: model development, model verification
(finding errors in models), automated model execution, chang-
ing models at run-time (i.e., adaptivity), analysis of already
executed processes, and decomposition of large processes.
In addition, DECLARE can be used to overcome the ever-
lasting paradox/trade-off between user support and flexibility
by providing the user with history based recommendations dur-
ing process execution. To achieve this, DECLARE cooperates
with two other tools, as shown in Figure 1: YAWL [1] and
ProM [11]. YAWL is an open-source workflow management
system inspired by the well-known workflow patterns [3] and



good at handling structured workflows. YAWL and DECLARE
work together in such as way that structured parts of the
process are handled by YAWL while unstructured parts are
handled by DECLARE, i.e., there can be an arbitrary nesting
of of YAWL and DECLARE processes. The process-mining
tool ProM [11] is used for analysis of past executions of
DECLARE models and recommendations. DECLARE itself
consists of three typical components that every WFMS has: (1)
a modeling component calledDesigner, that is used for system
settings and process model development, (2) a component for
process enactment, calledFrameworkwhich is also used for
communication with YAWL and ProM, and changing models
at run-time, and (3) a component for process execution, called
Worklist which is a simple tool for users to execute processes
and see recommendations.

log

user

recommendation

execution

recommendation

imperative

processes

sub-process

language export

model export

declarative

processes

development

validation

enactment

adaptation

Fig. 1. System architecture

The remainder of the paper is organized as follows. Section
II starts with the description of the constraint-based approach
and main features of DECLARE. Section III describes how
DECLARE cooperates with YAWL [1]. Analysis of past
executions of DECLARE models with a process-mining tool
ProM [11] is described in Section IV. User support with
history based recommendations is presented in Section V.
Related work and future work are described in Sections VI
and VII, while Section VIII concludes the paper.

II. CONSTRAINT BASED APPROACH

As opposed to traditional imperative approaches to process
modeling, DECLARE uses a constraint-based declarative ap-
proach. Figure 2 shows the differences between the two ap-
proaches. An imperative model focuses on specifying exactly
how to execute the process, i.e., all possibilities have to entered
into the model by specifying its control-flow. A declarative
model specifies a set of constraints, i.e., rules that shouldbe
followed during the execution. In this way, the declarative
model implicitly defines the control-flow as all possibilities
that do not violate any of the given constraints, as shown in
Figure 2(a).

By defining how to execute the process, imperative lan-
guages tend to over-specify the process model. Consider, for
example, a situation where there are two activities “A” and

“B” that exclude one another, i.e., if “A” is executed for a
particular case (process instance), then “B” cannot be executed
for the same case and vice versa. Using DECLARE this can
be modeled easily as shown in Figure 2(b), the connection
between “A” and “B” describes this constraint graphically.
Imperative languages do not have such a construct.1 As a
result, the requirement needs to be translated into lower level
constructs. In this case, the obvious approach is to add a
decision activity “X” which makes a choice between “A” and
“B” as shown in Figure 2(c). The conditions “c1” and “c2”
shown in Figure 2(c) need to be mutually exclusive. Although
activity “X” did not play a role in the initial requirement,
the designer needs to specify this activity and decide when
it is executed. Moreover, conditions “c1” and “c2” need to
be specified. Clearly, such an approach leads to anover-
specificationof the desired behavior even though the initial
requirement was simple and unambiguous.

(a) Declarative ConDec vs. imperative languages

(b) A and B should not happen both

(c) Over-specification in an 
imperative language

A B

A

B
X

c1

c2

forbidden 
behavior

deviations from 
the prescribed 

model

IMPERATIVE 
MODEL

ConDec C
onD

ec 

ConDec Con
Dec

 

Fig. 2. Imperative vs. declarative approach

We will use a simple process of renting rooms in a hotel
as an illustrative example to describe process modeling and
execution in DECLARE. This process consists of seven activ-
ities: (1) “register client data” - enter client name, preferred
way of payment (e.g., cash or credit card ), identification,
etc; (2) “bill” - altering the billing specification with costs
for stay, room service, laundry service, etc (used to chargethe
total price of the stay); (3) “room service” - register the room
service for client; (4) “laundry service” - register the laundry
service for client; (5) “additional cleaning” - although rooms
are cleaned on a regular basis, additional cleaning is sometimes
necessary; (6) “charge” - client is charged with an amount for
received service(s); and (7) “check-out” - client checks out
at the reception. Figure 3 shows a DECLARE model (in the
Designercomponent) for the hotel example containing all the
mentioned activities. Actually, this is already a valid model in
DECLARE that can be saved and executed. In this case, the
number of possible executions (i.e., process instances, cases) is
infinite; it is possible not to execute any activity, or to execute
each of the activities an arbitrary number of times (0..*, i.e.,
zero or more), and activities can be executed in any order.

1Note that DECLARE is not a single, fixed language but allows for
the definition of multiple languages. One of the languages realized using
DECLARE is ConDec [26]. The notation shown in Figure 2(b) is part of
the ConDec language. We will elaborate on the subtle difference between
DECLARE and ConDec later in this paper.



Fig. 3. Activities in the hotel example

Naturally, the hotel process needs to follow some simple
rules:

• (C.1) Every process instance has to start with activity
“register client data”. Data can also be altered at later
stages (e.g., the client changes payment details).

• (C.2) Activity “bill” must be executed at least once, i.e.,
at least the number of nights will be billed. However, it
might be that the bill is altered multiple times for a given
case (e.g., room service during stay, damage in the room,
etc.).

• (C.3) Every “room service” must be billed. However, it
is possible that several services are billed at once, instead
of billing each service separately.

• (C.4) Every “laundry service” must be billed. However, it
is possible that several services are billed at once, instead
of billing each service separately.

• (C.5) When the client “checks-out” the bill must be
“charged”. It might be the case that the bill was charged
before check-out, during check-out or even after check-
out (e.g., credit card payment). Also, it must be possible
that the total amount is charged at several stages during
the stay.

Note that this set of rules also allows for undesired but
unavoidable behavior. For example it is undesired that clients
leave the hotel without paying, i.e., cases where activity
“charge” is never executed. However, if the client forgets to
“check-out” the system cannot enforce that the client pays
(activity “charge”). This situation and many other exceptional
situations are covered by the hotel process, as long as the
previous five rules are followed. Note that in a traditional
WFMS there is a tendency to describe an ideal world where
these exceptional situations do not exist. However, in the real
world these exceptional situations do exist and need to be
handled.

Figure 3 allows for any behavior involving the seven hotel
activities mentioned. DECLARE offer the possibility to spec-

ify rules such asC.1-5 asconstraints.

A. Constraint Templates

While traditional modeling languages offer a predefined
set of types of relations between activities (sequence, choice,
parallelism, and loop), DECLARE allows for customized spec-
ification of relation types, or as we call itconstraint templates.
In our small, illustrative example there are two constraints of
the same type. Constraint (C.3) and (C.4) specify the same
type of relation between activities, namely every execution of
“room service” (C.3), or every execution of “laundry service”
(C.3) will eventually be followed by at least one execution of
“billed”. This type of relation is known as “response” and is
one of the many possibleconstraint templatessupported by
DECLARE.

In DECLARE it is possible to create a constraint tem-
plate for a relation type. Each constraint template has (1)
an unique name, (2)semanticsspecified in Linear Temporal
Logic2 (LTL) [20] and (3) graphical representation. LTL is a
special type of logic that uses (in addition to classical logical
operators) several temporal operators: always (2), eventually
(3), until (⊔), and next time (©). The major benefit of
constraint templates is that users do not have to be LTL
experts to work with the system; they work with a graphical
representation of templates, while the underlying LTL formula
remains “hidden”.

Figure 4 shows a screenshot of DECLARE while defining
a constraint template. Here the definition of the “response”
template is shown. Note that the “response” template is
defined as a “binary” relation between two activities. The
graphical representation of any template is a line for which
the beginning, end and middle part can be defined. Figure 4
shows that the “response” template is graphically represented
by a single line with a filled circle next to the first activity
(“parameter 1”), a filled arrow symbol next to the second
activity (“parameter 2”) and without a special symbol in the
middle. Furthermore a textual description and the LTL formula
for “response” are defined.

Defined constraint parameters can be used in LTL ex-
pressions, as shown in the lower part of Figure 4. In the
LTL expression2(A ⇒ 3(B)) for the “response” template
parameters “A” and “B” are used in the template formula to
define the desired relation between the parameters. When used
in the model, formal parameters of the template are replaced
by real activities in the model (e.g., parameter “A” is replaced
with activity “room service” and parameter “B” with activity
“bill”). If a parameter is specified to be “branched”, this would
allow the parameter to be replaced with a conjunction of
several activities.

The “response” template is an example of a binary template,
i.e., it specifies a relation between two activities. Clearly, it is
also desirable to define non-binary templates. For example,
it is possible to define unary templates, which involve only

2DECLARE has been developed in a way that it allows for implemen-
tation of specification languages other than LTL.



Fig. 4. Constraint template “response”

one activity (e.g, specifying that an activity has to executed at
least two times). DECLARE aims at using templates with an
arbitrary number of parameters to allow for complicated splits
and joins, e.g., the n-out-of-m split/join. Currently, DECLARE
partially supports such constructs and is being extended to
support templates with an arbitrary number of parameters.

Note that DECLARE uses somewhat more granular ap-
proach to parameters than shown in Figure 4. Written as it
is, parameters “A” and “B” are replaced by “A.completed”
and “B.completed”, respectively. This means, that when used
in our example, the “response” template between activities
“room service” and “bill” specifies a relationship between
events “room service.completed” and “bill.completed”. How-
ever, it is possible for a template to specify relations between
events of starting or canceling activities (e.g.,2(A.started⇒
3(B.started))).

Different application domains can require a different set of
constraint templates. Therefore, DECLARE facilitates thede-
finition of sets of constraint templates, also calledlanguages.
In other words, DECLARE is not a fixed language but allows
for the definition of different languages. Each language hasan
unique name and is defined by a set of constraint templates.
ConDec [26] is one of the languages created using DECLARE.
DecSerFlow [5] is another language created using DECLARE
tailored towards the specification of web services. ConDec and
DecSerFlow are very similar. However, DECLARE could be
used to define completely different languages with different
constraint templates, symbols, etc.

Figure 5 shows that DECLARE indeed allows for the
definition of different languages. Here the link between a
language (in this case ConDec) and constraint templates (in
this case the list starting with “response”) is established. Note
that in this paper, we often use the term “DECLARE” to refer
to the ConDec language realized using the DECLARE system.

B. Process Modeling

In Section II-A we described five constraints:C.1-5. Now
we add these constraints to the model of Figure 3 by using

Fig. 5. Defining a language

constraint templates. To do this we need to map the textual
descriptions given in Section II-A onto predefined constraint
templates. A constraint can be added to the model of Figure 3
by selecting the appropriate template from the drop-down list
of templates, and dragging it between the related activities.
The result is shown in Figure 6. The DECLARE process model
in Figure 6 consists of activities and some constraints between
activities. Each of the constraints in Figure 6 represents one
of the hotel rules mentioned earlier (C.1-5).

C.1
C.2

C.4

C.5

C.3

list of templates

Fig. 6. Constraints in the hotel example

The number of constraints in a model is arbitrary. As
indicated before, the model of Figure 3, which did not contain
any constraint, is already an executable model. By adding
constraints to the model, we impose rules that users have to
follow during execution. Clearly, these rules limit the allowed
behavior. In the next paragraph we describe the semantics of
each constraint depicted in Figure 6.

Because of the constraint “init” on the activity “register
client data” (rule(C.1)), users have to start each execution
with the activity “register patient”. It is still possible to
execute this activity multiple times and at any moment during
the execution to change client data at later stages (e.g., the



preferred way of paying is changed).
Before adding the “1..*” constraint on the activity “bill”

(rule (C.2)) it was possible to never execute this activity and
still complete the case. After adding the constraint, it became
necessary to execute this activity at least once. This constraint
enables the receptionist to add various items to the bill (e.g.,
room service, additional cleaning, etc.) at any moment during
the execution.

With the “response” constraint between activities “room
service” and “bill” (rule(C.3)) it is obligatory that after every
execution of the activity “room service” at least one execution
of the activity “bill” follows. The constraint allows execution
of other activities between activities and “room service” and
“bill”. For example, it is possible that after the “room service”
first “register client data” is executed and only afterwards
“bill”. The same holds for the “response” constraint between
activities “laundry service” and “bill” (rule(C.4)). The two
“response” constraints also allow users to wait and “bill” at
once several “room services” and “laundry services”.

Constraint “responded existence” between activities “check-
out” and “charge” (rule(C.5)) specifies that if “check-out”
was executed then “charge” must have been executed before
or must be executed after “check-out”. Other activities canbe
executed between activities “check-out” and “charge”.

A process model containing multiple constraints is defined
as a conjunction of the constraints, i.e., actions of users during
execution must fulfill all the constraints.

C. Mandatory and Optional Constraints

DECLARE supports two types of constraints:mandatory
and optional constraints. The system forces its users to fol-
low all mandatory constraints in the model. In Figure 6 all
constraints are mandatory constraints. In case of optionalcon-
straints users may decide whether to follow the corresponding
rule or to violate it.

For example, in the hotel example every “room service”
and “laundry service” is billed because they impose additional
costs for the hotel. Although “additional cleaning” imposes
additional cost, it is not necessarily billed. Suppose that
management of the hotel noticed that in some cases “additional
cleaning” is a consequence of irresponsible behavior. If this
is the case, then the costs of cleaning should be billed. It is
up to the receptionist to decide in which cases “additional
cleaning” should be billed and in which not. This rule can
be implemented as anoptional “response” constraint between
activities “additional cleaning” and “bill”. Figure 7 shows this
rule as an optional constraint. Note that the line is dashed to
indicate that it is optional.

Optional constraints are not enforced by DECLARE system
during execution. When a user is about to perform an action
that violates an optional constraint, a warning about the
violation is presented and the user can decide whether to
continue with the action and violate the constraint or to cancel
the action and follow the constraint. The text of the warning
can be specified in the definition of the constraint. Figure 8
shows the form for defining a constraint in DECLARE.

Fig. 7. Mandatory and optional constraints

Fig. 8. Settings for optional constraint

The form contains the name of the constraint. By default
this is the name of the template, but this name can be changed.
Also, a condition for the constraint can be specified (e.g., a
constraint should hold only if “price< 1000”). Moreover, the
constraint is either mandatory or optional. If the constraint
is optional, the information presented to users needs to be
specified. Groups of constraints represent policies and canbe
defined on the system level in DECLARE by specifying a
name and description for each group. For example, there could
be groups like “Tourism Ministry Policy”, “Hotel Policy”,
“Personnel Policy”, “Billing Policy”, etc. The appropriate
group needs to be selected for each optional constraint. The
importance of the constraint is given by the “level” on a scale
1-10. The higher the level is, the more dangerous it is to violate
the constraint. Finally, a context-related message is specified
that gives more detailed instructions to users.

Figure 9 shows the warning that a user will get when she
is about to close a case where activity “additional cleaning”



was not followed by activity “bill”. This warning contains
information about the billing policy, the violation level and
an advising message to help the user to decide weather to
violate this constraint or not.

Fig. 9. Violation warning for optional constraint

D. Process Execution

A model in DECLARE is mapped onto a set of LTL formu-
las. Based on these LTL formulas, automata are automatically
generated [16] to support enactment. Many algorithms that
generate automata from LTL formulas have developed and
these are widely used in the field of model checking [20].
DECLARE uses an algorithm that creates finite-words au-
tomata [17] from LTL formulas of the constraints that are
used. These automata are used both to drive the execution and
to monitor the state of each constraint.

After process model is loaded in theFramework tool (cf.
Figure 1), users can execute the model in theirWorklists.
Figure 10(a) shows the initial Worklist for the hotel example.
A list of all running cases (process instances, assignments) is
shown on the left side of the screen. The process model of the
selected case is shown on the right side of the screen. After
the user starts an activity by double-clicking it, the activity is
opened in the panel under the model. Although the structure of
the process model is the same as in the Designer, the Worklist
uses some additional symbols and colors to help users to
understand the current state of the model, the activities and
the constraints.

First, each activity contains “start” (play) and “complete”
(stop) icons, that indicate if users can start/complete the
activity at the moment. The initial state of the process instance
in Figure 10(a) shows that it is only possible to start activity
“register client data”, because the corresponding symbol is
enabled. Starting and completing any of the other activities is
not possible, as indicated by the disabled icons. In addition
to the two icons, all currently disabled activities are colored
grey. This initial state of the process instance is caused bythe
“init” constraint on the activity “register client data”, i.e., this
activity is the first activity to be executed.

Second, each constraint is colored to indicate its state.
Constraints are rules that should be fulfilled at the end of
the execution. However, it is not realistic to expect that each
constraint is fulfilled at each moment of time during the whole
execution. Generally, at any moment each constraint can be

in one of the following states: (1)fulfilled – constraint is
represented by agreen color, (2) temporarily violated, i.e.,
it can be fulfilled in the future – constraint is represented by
a orangecolor, and (3)permanently violated, i.e., it cannot
be fulfilled in the future – constraint is represented by ared
color. For example, when the process instance of the hotel
example is started (before executing any activity), constraint
“1..*” on the activity “bill” is not fulfilled because “bill” was
never executed. However, it is only temporarily violated, i.e.,
it can be fulfilled later (when the activity “bill” is executed for
the first time). Therefore, it presented using an orange color.
All other constraints are fulfilled at this moment, as can be
seen from their green color. Naturally, DECLARE will prevent
users from permanently violating mandatory constraints, i.e.,
only optional constraints can be “red”.

Figure 10(b) shows the state of the case after starting activity
“register client data”. Three observations can be made here.
First, the activity is now open in the panel under the model.
Second, now it is possible to start other activities in the case.
Third, only constraint “1..*” of the bill is not yet fulfilledand
colored in orange. This constraint can be satisfied by executing
activity “bill”. Figure 10(c) shows the state of the case after
executing “room service”. The “response” constraint between
this activity and activity “bill” becomes temporally violated,
since it requires the execution of activity “bill” in the future.
This is indicated by coloring the constraint orange. Executing
activity “bill” results in the fulfilment of two constraints: (1)
the “response” constraint between activities “room service”
and “bill” and (2) the “1..*” constraint on the activity “bill”,
as shown in Figure 10(d).

Depending on the state of itsmandatory constraints, a
process instance has its own state, as shown by the color of
the instance in the list on the right side of the four Worklist
windows in Figures 10. The process instance is in the “green”
state if all its mandatory constraints are “green”. If at least
one mandatory constraint is “orange”, the process instanceis
also “orange”.

E. Changing Process During Execution

Adaptivity is an important feature of flexible WFMSs [29].
Adaptive systems allow changing the process model during
its execution. Adaptivity is one of the main features of
DECLARE; it is possible to change its declarative process
models during execution. Not only it is possible to add,
delete (together with relating constraints) and change (data
elements used in) activities, but it is also possible to add,
remove and change (e.g., make optional, change condition)
constraints. Before confirming an adaptation, DECLARE ver-
ifies the compliance of the changed model and instance history,
i.e., history based errors are detected (cf. Section II-F).After
the adaptation, the changed model is re-initiated with the
procedure that is also used to start the process instance. The
required automata are again generated for the new set of
constraints and the history of the instance is replayed on these
new automata.



(a) The initial state (b) The state after “client registration”.

(c) The state after “room service”. (d) The state after “bill”.
Fig. 10. Execution of the Hotel example

F. Verification of Process Models

The addition of constraints to a process model in DECLARE
may cause errors that lead to problems at run-time. Therefore,
DECLARE verifies process models against three types of
errors and finds a minimal set of constraints that causes the
error. All models can be verified againstdead activitiesand
conflicting constraints. In addition to this, when a model is
altered during its execution, it can be verified againsthistory-
based errors.

1) Dead activities:A dead activity is an activity that can
never be executed in the model. Figure 11 shows the hotel
example with one additional constraint – the “responded ab-
sence” constraint between activities “check-out” and “charge”
specifies that if activity “check-out” is ever executed, then
activity “charge” must never be executed (neither before or
after “check-out”). If activity “check-out” would be executed
in the model, it would not be possible to fulfill both constraints
“responded existence” and “responded absence” between ac-
tivities “check-out” and “charge”. Therefore, activity “check-
out” is a dead activity, i.e., it will never be possible to execute
this activity.

DECLARE will detect this error during verification as
shown in Figure 12. On the left part of the screen a list of

Fig. 11. Activity “check-out” is dead

detected errors is shown. In this case, one “dead activity” error
is detected for activity “check-out”. The list on the right side
of the screen shows the minimal set of constraints that causes



the selected error.

Fig. 12. Verification result for dead activity

2) Conflicting constraints:A set of constraints is conflict-
ing if there exists no execution that would fulfill all constraints.
If a constraint specifying that activity “check-out” has to
be executed at least once would be added to the model
in Figure 11, the result would be a process model with a
conflict, as shown in Figure 13. This is because there exists
no execution that would satisfy the following three constraints:
“1..*” on activity “check-out”, “responded existence” between
activities “check-out” and “charge”, and “responded absence”
between activities “check-out” and “charge”.

Fig. 13. Conflict

Figure 14 shows the conflicting error that was detected in
DECLARE during verification.

Fig. 14. Verification result for conflict

3) History based violations:As described in Section II-E,
DECLARE models can be changed during the execution.
Changes (especially adding new constraints) can be conflicting

with the history of the case. For example, assume that activities
“register client data”, “bill”, and “check-out” are executed in
the current process instance. At this point the receptionist
decides that client should not “check-out” before activity
“charge” is executed, and adds a “precedence” constraint
between activities “check-out” and “charge” (see Figure 15).

Fig. 15. History violation

This adaptation is in conflict with the history of the case,
because activity “check-out” is already executed before activ-
ity “charge”. DECLARE will detect this error and inform the
user that the new constraint causes a history-based error, as
shown in Figure 16.

Fig. 16. Verification result for history violation

III. C OMBINING DECLARE AND YAWL

This section shows how DECLARE and YAWL can be
combined to support arbitrary mixtures of loosely-structured
and highly-structured processes.

DECLARE is not particularly suitable for modeling large
and/or highly-structured processes. In both cases, a DECLARE
model would have many constraints, which can easily cre-
ate problems. First, errors can be easily introduced during
process development when the number of constraints is high.
Second, it is hard for users to understand the whole model
during execution if the model has too many constraints. In
addition, the performance of the system is poot for models
with many constraints, because the automata become too
large to be handled efficiently. Therefore, we propose using
the YAWL [1] workflow management system in combination



with DECLARE. YAWL can easily deal with large highly-
structured processes and its service-oriented architecture al-
lows for an easy integration.

We propose YAWL for highly-structured processes and
DECLARE for loosely-structured ones. The decomposition
of processes using DECLARE and YAWL can be two-fold,
i.e., a DECLARE model can be a sub-process or super-
process of YAWL model(s). Figure 17 shows an example
of a decomposition of a large hotel process. First, a highly-
structured global process for managing rooms in a hotel is
developed in YAWL – on the first level of decomposition a
room is “booked”, “cleaned”, “rented”, and then “cleaned”
again. At this level, we decompose the task3 “rent” to our
hotel example in DECLARE (the second level). Within this
DECLARE model, we can specify that activity “room service”
should invoke another highly-structured process in YAWL,
where after the “order” is taken, it is “prepared”, “delivered”
and “registered” (the third level).

interface B

Fig. 17. A DECLARE model serving both as a sub-process and super-process
for YAWL

To achieve this decomposition, DECLARE communicates
with YAWL via its “interface B”. YAWL is developed using
a service oriented architecture where a YAWL process can
serve both as a service consumer and as a service provider.
Tasks in YAWL may be subcontracted to another service. This
way YAWL acts as a service consumer. In the context of
YAWL, several services have been developed. For example,
the default Worklist handler is an example of a service than can
communicate with YAWL via “interface B”. Other services are
the SMS service, Worklet service [7], etc. From the viewpoint
of YAWL, DECLARE is just another service that YAWL can
use. Moreover, YAWL can also act as a service provider for
DECLARE, i.e., an activity in DECLARE can be subcon-
tracted to YAWL by initiating a new process instance. This
can be mixed an arbitrary ways, e.g., YAWL may subcontract
a task to DECLARE, in the corresponding DECLARE process
an activity is subcontracted to YAWL, in the corresponding
YAWL process a task is subcontracted to the Worklet service,
etc. This allows for arbitrary mixtures of highly-structured

3For clarity we use different terms for the smallest unit of work in
YAWL and DECLARE. The termtask is used to denote the smallest unit of
work YAWL, i.e., a task is not decomposed further in YAWL but may refer
to a DECLARE process. DECLARE uses the termactivity for the smallest
unit of work.

processes (YAWL), loosely-structured processes (DECLARE),
emerging/rule-based processes (e.g., Worklets [7]), etc.

IV. A NALYSIS OF PAST EXECUTIONS

WFMSs can execute a variety of process instances over
time. Most systems record detailed logs about all completed
executions. Data stored in such logs can be various: start-
ing cases; starting, completing, canceling activities; changing
value of data elements; deadline expiry, etc. These logs canbe
used for discovering and analysis of executed process models
– process mining[6]. Process mining tools (e.g., ProM [11])
use various techniques of log analysis to discover the process
model, verify certain properties of the model, discover the
social network, etc.

DECLARE stores all events related to activities in execution
logs using the MXML format [10]. This format is also used
by the ProM tool and thus this export allows for all kinds
of analysis techniques ranging from locating bottlenecks in
a process to constructing a social network for the actors
involved. Amongst others, ProM has a feature that can be used
to verify various properties of executions stored in logs – the
LTL Checker. LTL checker enables verification of logs against
properties specified in Linear Temporal Logic. For example,it
is possible to verify if a “junior officer has approved a claim
worth more than 10000 this year”. DECLARE enables two
types of export to LTL Checker readable files, as shown in
Figure 18.

user

log

DECLAREProM
analyst

LTL 
property filesLTL

checker

constraint tem
plates

process m
odel

Fig. 18. DECLARE is able to export event logs, models, and constraint
templates to ProM

First, constraint templates can be exported to LTL Checker
files from DECLARE. These files can be used to verify
properties in logs in an generic way, e.g., the “response”
property (template) can be checked against different pairs
of activities. Second, a DECLARE process model can be
exported to an LTL Checker file. Using this file, process logs
can be verified against constraints from the process model,
e.g., the “response” property (existing constraint) can only be
checked against existing activities “room service” and “bill”.

V. USERSUPPORT BYRECOMMENDATIONS

Despite many benefits that flexibility brings, its major draw-
back it the lack ofsupportthat users get in flexible systems.
Support of a WFMS can be seen as an extension in which the
system is able to make decisions for the user. Figure 19 shows
flexibility and support as two opposing properties, i.e., rigid



systems provide support by sacrificing flexibility, and flexible
systems provide flexibility by sacrificing support. The variety
of options in flexible systems makes it difficult for users to
make the right decision. For example, an inexperienced user,
or a user working on an exceptional case will find it difficult
to decide between many options, and would greatly benefit
from support.

decision making

low

high

flexibility sup
po

rt

systemuser

Fig. 19. Trade-off: flexibility vs. support [10]

Support for flexible systems should focus on offeringrecom-
mendationsfor decisions, rather than taking these decisions for
the user. Recommendations are generated based on past expe-
riences and a specific goal. DECLARE stores past experiences
in MXML format. Based on the goal of a user/organization,
past experiences can be rated in terms of their desirability. For
example, the goal may be to minimize throughput time and,
therefore, cases which were handled quickly are considered
positive examples. The recommendation service of ProM [11]
generates recommendations for DECLARE based on the com-
parison of the current process instance (partial instance) with
past executions (logs), while favoring those executions that
satisfy the specifiedgoal, as shown in Figure 20. Currently,
various recommendation algorithms have been implemented
in ProM but outside the scope of this paper.

user

log

DECLAREProM
partial instance

goal
execution

recommendation recommendation

Fig. 20. ProM as recommendation provider for DECLARE

DECLARE does not enforce recommendations to users.
On the contrary, recommendations are presented to users as
independent information, as shown on the right side of the
Figure 21. The user can choose to follow or not to follow the
recommendation to “start activity bill”.

VI. RELATED WORK

Many approaches aim at “relaxing” the rigid nature of tradi-
tional process modeling languages and workflow management
systems. These process models precisely prescribe how the
process should be executed and workflow systems force users
to execute these models step-by-step.

Fig. 21. Recommendation is to start activity “bill”

Approaches like case-handling and adaptive systems change
the way the system manages the execution of rigid models. An
example of a case-handling system is FLOWer [25]. FLOWer
does not enforce a strict execution of process models, but
allows users to open tasks that should be executed later
(according to the model), re-do tasks that were executed before
or even skip tasks that should be executed. When working
with adaptive systems like ADEPT [29], users can change the
process model while executing the model by adding, moving
or deleting activities in the model. Both approaches use
imperative models and they consider variations in executions
to be exceptions, which can have negative consequences. For
example, if a user of a case-handling system wants to re-do an
activity that was already executed before, she will also have
to execute all activities that followed it. Frequently changing
process models in adaptive systems are time consuming and re-
quire users to be experts in process modeling. DECLARE uses
a different approach that does not require users to redesign
the process to deviate from the normal flow. Deviations are
not seen as exceptions and are included the allowed behavior.
Moreover, unlike case handling, there is not a fixed set of
automatically included deviations (e.g., skip and redo).

Loosely-structured process can be handled using declarative
languages, which “describe the dependency relationships be-
tween tasks, rather than procedurally describing sequences of
action” [12]. DECLARE is not the first attempt to use a more
declarative language [12], [23], [30]. Instead of modelinga
detailed control-flow, declarative languages propose modeling
constraints that (as rules that should be followed) drive the
model enactment [12], [23], [30]. Constraints describe de-
pendencies between model elements and are specified using
pre and post conditions for target task [30], dependencies
between states of tasks (enabled, active, ready, etc.) [12]or
various model-related concepts [23]. DECLARE distinguishes
itself from these earlier approaches in many respects. For
example, DECLARE is based on LTL, it does not use a
fixed language and users can extend the language, it supports
optional and mandatory constraints, it supports verification, it
can supports on-the-fly model changes, and it is equipped with
a recommendation service.

This paper builds on two papers: [26] and [5]. [26] presents
the ConDec language and [5] introduces the DecSerFlow lan-



guage. The first language is tailored towards teamwork while
the second is tailored towards the specification of services.
These two papers do not describe the DECLARE tool in any
detail. In fact most of the functionality described in this paper,
was realized after the publication of [5], [26]. Moreover, the in-
novative features of DECLARE in relation to process mining,
recommendation, verification, optional constraints, and model
change have not been described before. This illustrates the
original contribution of the current paper.

VII. F UTURE WORK

Currently, DECLARE uses a simple constraint specification
approach that considers only events regarding execution of
activities (the control-flow). This can be extended by using
other process model elements (like user roles, data elements,
etc.) in the constraint specification. For example, it can be
necessary to specify a constraint that prevents one user to
execute two crucial activities in the process model (the so-
called “four eyes principle”), e.g., it is not possible thatthe
same person who filed a request for salary rase approves this
request. Here these is also a link to the topic of semantical
correctness presented in [22].

Another interesting extension would be adding deadlines
in DECLARE process models. For example, the “response”
constraint template can be extended with a deadline: “A” hasto
be followed with “B” within five days. To introduce deadlines,
a logic extended with time dimension and time automata can
be used (e.g., Extended Timed Temporal Logic [8]).

DECLARE is currently being extended to support constraint
templates with multiple parameters, instead of only one or two
parameters. This will enable creating more advanced templates
and constraints involving more that two activities.

VIII. C ONCLUSIONS

The DECLARE system supports loosely-structured
processes without sacrificing useful features that traditional
workflow management systems have. DECLARE uses a
temporal logic (LTL) as a basis and combines this with
an extendible graphical language. In fact, DECLARE can
support multiple languages in parallel and end users can make
domain specific languages. To support enactment, DECLARE
automatically constructs automata to guide (or force) to user.

DECLARE connects to the workflow management system
YAWL and the process mining tool ProM. Through YAWL, it
becomes possible to support large processes containing mix-
tures of loosely-structured and highly-structured fragments.
The connection to ProM allows for the analysis of processes
supported by DECLARE. Moreover, using ProM’s recom-
mendation service it is possible guide users based on past
experiences. This way flexibility and learning are combined
in a powerful manner.

The DECLARE provides many innovative features and can
be downloaded from http://is.tm.tue.nl/staff/mpesic/declare.
htm.

REFERENCES

[1] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede.
Design and Implementation of the YAWL System. In A. Persson and
J. Stirna, editors,Advanced Information Systems Engineering, Proceed-
ings of the 16th International Conference on Advanced Information
Systems Engineering (CAiSE’04), volume 3084 ofLecture Notes in
Computer Science, pages 142–159. Springer-Verlag, Berlin, 2004.

[2] W.M.P. van der Aalst and K.M. van Hee.Workflow Management:
Models, Methods, and Systems. MIT press, Cambridge, MA, 2002.

[3] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow Patterns.Distributed and Parallel Databases, 14(1):5–
51, 2003.

[4] W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change:
Identification of Issues and Solutions.International Journal of Computer
Systems, Science, and Engineering, 15(5):267–276, 2000.

[5] W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly
Declarative Service Flow Language. In M. Bravetti, M. Nunez, and
G. Zavattaro, editors,International Conference on Web Services and
Formal Methods (WS-FM 2006), volume 4184 ofLecture Notes in
Computer Science, pages 1–23. Springer-Verlag, Berlin, 2006.

[6] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of
Issues and Approaches.Data and Knowledge Engineering, 47(2):237–
267, 2003.

[7] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Worklets: A service-oriented implementation of dynamic flexibility in
workflows. In R. Meersman and Z. Tari et al., editors,On the
Move to Meaningful Internet Systems, OTM Confederated International
Conferences, 14th International Conference on Cooperative Information
Systems (CoopIS 2006), volume 4275 ofLecture Notes in Computer
Science, pages 291–308, Berlin, 2006. Springer-Verlag.

[8] A. Bouajjani, Y. Lakhnech, and S. Yovine. Model-checking for extended
timed temporal logics. InFTRTFT ’96: Proceedings of the 4th
International Symposium on Formal Techniques in Real-Timeand Fault-
Tolerant Systems, pages 306–326, London, UK, 1996. Springer-Verlag.

[9] C. Bussler, S. Jablonski, and H. Schuster. A new generation of workflow-
management-systems: beyond taylorism with mobile.SIGOIS Bull.,
17(1):17–20, 1996.

[10] B.F. van Dongen and W.M.P. van der Aalst. A Meta Model forProcess
Mining Data. In J. Casto and E. Teniente, editors,Proceedings of the
CAiSE’05 Workshops (EMOI-INTEROP Workshop), volume 2, pages
309–320. FEUP, Porto, Portugal, 2005.

[11] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M.
Weijters, and W.M.P. van der Aalst. The ProM framework: A NewEra
in Process Mining Tool Support. In G. Ciardo and P. Darondeau, editors,
Application and Theory of Petri Nets 2005, Lecture Notes in Computer
Science, pages 444–454. Springer-Verlag, Berlin, 2005.

[12] P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen, and A. Zbyslaw.
Freeflow: mediating between representation and action in workflow
systems. InCSCW ’96: Proceedings of the 1996 ACM conference on
Computer supported cooperative work, pages 190–198, New York, NY,
USA, 1996. ACM Press.

[13] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede.Process-
Aware Information Systems. Wiley & Sons, 2005.

[14] D. Georgakopoulos. Teamware: An evaluation of key technologies and
open problems.Distributed and Parallel Databases, 15(1):9–44, 2004.

[15] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Work-
flow Management: From Process Modeling to Workflow Automation
Infrastructure.Distributed and Parallel Databases, 3:119–153, 1995.

[16] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly
Automatic Verification of Linear Temporal Logic. InProceedings
of the Fifteenth IFIP WG6.1 International Symposium on Protocol
Specification, Testing and Verification XV, pages 3–18, London, UK,
1996. Chapman & Hall, Ltd.

[17] D. Giannakopoulou and K. Havelund. Automata-based verification of
temporal properties on running programs. InASE ’01: Proceedings of the
16th IEEE international conference on Automated software engineering,
page 412, Washington, DC, USA, 2001. IEEE Computer Society.



[18] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M.Teschke. A
comprehensive approach to flexibility in workflow management systems.
In WACC ’99: Proceedings of the international joint conference on Work
activities coordination and collaboration, pages 79–88, New York, NY,
USA, 1999. ACM Press.

[19] S. Jablonski and C. Bussler.Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer
Press, London, UK, 1996.

[20] E.M. Clarke Jr., O. Grumberg, and D.A. Peled.Model Checking. The
MIT Press, Cambridge, Massachusetts and London, UK, 1999.

[21] M. Klein, C. Dellarocas, and A. Bernstein, editors.Adaptive Workflow
Systems, volume 9 ofSpecial issue of the journal of Computer Supported
Cooperative Work, 2000.

[22] L. Thao Ly, S. Rinderle, and P. Dadam. Semantic correctness in adaptive
process management systems. In S. Dustdar, J.L. Fiadeiro, and A.P.
Sheth, editors,Business Process Management, 4th International Confer-
ence, BPM 2006, Vienna, Austria, September 5-7, 2006, Proceedings,
volume 4102 ofLecture Notes in Computer Science, pages 193–208.
Springer, 2006.

[23] P. Mangan and S. Sadiq. On building workflow models for flexible
processes. InADC ’02: Proceedings of the 13th Australasian database
conference, pages 103–109, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[24] R. Milner. Communicating and Mobile Systems: The Pi-Calculus.
Cambridge University Press, Cambridge, UK, 1999.

[25] Pallas Athena.Flower User Manual. Pallas Athena BV, Apeldoorn,
The Netherlands, 2002.

[26] M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible
Business Processes. In J. Eder and S. Dustdar, editors,Business Process
Management Workshops, Workshop on Dynamic Process Management
(DPM 2006), volume 4103 ofLecture Notes in Computer Science, pages
169–180. Springer-Verlag, Berlin, 2006.

[27] H. Reijers, J. Rigter, and W.M.P. van der Aalst. The CaseHandling Case.
International Journal of Cooperative Information Systems, 12(3):365–
391, 2003.

[28] W. Reisig and G. Rozenberg, editors.Lectures on Petri Nets I: Basic
Models, volume 1491 ofLecture Notes in Computer Science. Springer-
Verlag, Berlin, 1998.

[29] S. Rinderle, M. Reichert, and P. Dadam. Flexible Support of Team
Processes by Adaptive Workflow Systems.Distrib. Parallel Databases,
16(1):91–116, 2004.

[30] J. Wainer and F. de Lima Bezerra.Groupware: Design, Implementation,
and Use, volume 2806, chapter Constraint-Based Flexible Workflows,
pages 151 – 158. Springer Berlin / Heidelberg, 2003.


