DECLARE: Full Support for
Loosely-Structured Processes

Maja Pesic Helen Schonenberg Wil M.P. van der Aalst
Department of Technology ManagementMathematics and Computer ScienceMathematics and Computer Science
Eindhoven University of Technology Eindhoven University of Technology Eindhoven University of Technology
The Netherlands The Netherlands The Netherlands
Email: m.pesic@tue.nl Email: m.h.schonenberg@tue.nl Email: w.m.p.v.d.aalst@tue.nl

Abstract—Traditional ~Workflow Management Systems imperative models. One example of a case-handling system is
(WFMSs) are not flexible enough to support loosely-structued F|_ OWer [25], where users can “soften” the imperative nature
processes. Furthermore, flexibility in contemporary WFMSs of models by re-doing past actions or skipping unnecessary
usually comes at a certain cost, such as lack of support for ess, - . .
lack of methods for model analysis, lack of methods for analsis actions. Adaptive SYStems [_21] are another exampl_e of flexib
of past executions, etc. DECLARE is a prototype of a WFMS Systems that use imperative models. Systems like ADEPT
that uses a constraint-based process modeling language ftme [29] use powerful and complex mechanisms that allow users
development of Qeclarative models describing loosely-stctured tg change process models (by inserting, moving or deleting
processes. In this paper we show how DECLARE can support gctivities) during execution. Although these solutionsr@ase

loosely-structured processes without sacrificing importat - . .
WFMSs features like user support, model verification, analgis flexibility to a great extent, the imperative nature of medel

of past executionsl Changing models at run_time’ etc. remains, Wh|Ch can produce Othel’ burdens for users. For
example, in case-handling systems the user cannot choose to
. INTRODUCTION re-do only one activity from the past — she will have to re-

Management of business processes automated by workfldav all successor activities. On the other hand, the adaptive
management systems (WFMSSs) is limited by properties approach requires users to have modeling expertise to ehang
these systems [2], [13], [19]. Due to the rigidity of WFMSsmodels for occurring deviations.
it is hard for organizations to maintain flexible business One of the key problems of existing workflow languages
processes in WFMSs. The issue of flexibility in WFMSs hais that they force or stimulate the designer deer-specify
become one of the most frequently addressed problems witttimgs. For example, it is possible to model all kinds of
this field [4], [9], [14], [15], [18], [21], [23], [30]. These choices. However, it is not possible to simply state that two
research approaches typically focus on the central elementivities should never occur together. Instead, the user i
driving any WFMS: theprocess modeadescribing the ordering forced to provide a detailed strategy to implement this #mp
or activities. requirement.

A process model defines a business process and determind&e believe that replacing the imperative approach with a
the way the cases (i.e., process instances) are handledléclarative one is essential for making WFMSs more flexible
an organization. Therefore, the model heavily influences tivhile avoiding the problems mentioned above. Therefore,
degree of flexibility of the WFMS. In traditional WFMS, rigid we propose a system for supporting declarative (loosely-
modeling languages (e.g, BPMN, EPCs, UML-ADs, or morstructured) process models: DECLARE. DECLARE is de-
formal languages such as Petri nets [28] and Pi calculug,[24]eloped as a constraint-based system and uses a declarative
define a process model as a detailed specification of a stepdayguage grounded in temporal logic [20] for the developimen
step procedure that should be followed during the executiaand execution of process models. Even though it is a declar-
This approach is ammperative approach because it strictlyative system, DECLARE can offer most features that tradi-
specifieshow the process will be executed and yieldghly- tional WFMSs have: model development, model verification
structured processesThe major drawback of this approachfinding errors in models), automated model execution, ghan
is the fact that users have limited influence on the proceisg models at run-time (i.e., adaptivity), analysis of abfg
under execution, since most decisions about the execut®n executed processes, and decomposition of large processes.
already made during process modeling phase. In addition, DECLARE can be used to overcome the ever-

Flexible systems aim at offering flexibility to the user byasting paradox/trade-off between user support and fligyibi
shifting decision making from the system to the user. As lay providing the user with history based recommendatiomns du
result, research on flexibility in WFMSs focusses on a déffer ing process execution. To achieve this, DECLARE cooperates
notion of the process model. For instance, case-handliwith two other tools, as shown in Figure 1: YAWL [1] and
systems [27] are WFMSs that offer more flexibility by addingroM [11]. YAWL is an open-source workflow management
special actions that users can perform while working witksystem inspired by the well-known workflow patterns [3] and

good at handling structured workflows. YAWL and DECLAREB” that exclude one another, i.e., if “A’ is executed for a
work together in such as way that structured parts of thparticular case (process instance), then “B” cannot beutzdc
process are handled by YAWL while unstructured parts afer the same case and vice versa. Using DECLARE this can
handled by DECLARE, i.e., there can be an arbitrary nestilg modeled easily as shown in Figure 2(b), the connection
of of YAWL and DECLARE processes. The process-miningetween “A’ and “B” describes this constraint graphically.
tool ProM [11] is used for analysis of past executions dmperative languages do not have such a construts. a
DECLARE models and recommendations. DECLARE itselesult, the requirement needs to be translated into lowet le
consists of three typical components that every WFMS has: donstructs. In this case, the obvious approach is to add a
a modeling component callddesigner that is used for system decision activity “X” which makes a choice between “A” and
settings and process model development, (2) a component®t as shown in Figure 2(c). The conditions “c1” and “c2”
process enactment, callédameworkwhich is also used for shown in Figure 2(c) need to be mutually exclusive. Although
communication with YAWL and ProM, and changing modelactivity “X” did not play a role in the initial requirement,

at run-time, and (3) a component for process executioreaallthe designer needs to specify this activity and decide when
Worklist which is a simple tool for users to execute processésis executed. Moreover, conditions “cl” and “c2” need to
and see recommendations. be specified. Clearly, such an approach leads tooeer-
specificationof the desired behavior even though the initial
requirement was simple and unambiguous.

(b) A and B should not happen both

declarative
processes

imperative
processes
development

validation
enactment
adaptation

forbidden
language export behavior
model export

IMPERATIVE

__ sub-process | DECLARE

YAWL |« > ProM %
V_/
deviations from

Designer recommendation the prescribed

(c) Over-specification in an
(a) Declarative ConDec vs. imperative languages imperative language

execution
user recommendation

Fig. 2. Imperative vs. declarative approach

Fig. 1. System architecture
We will use a simple process of renting rooms in a hotel

The remainder of the paper is organized as follows. Secti@f an illustrative example to describe process modeling and
Il starts with the description of the constraint-based apph €xecution in DECLARE. This process consists of seven activ-
and main features of DECLARE. Section Ill describes hotfies: (1) “register client data” - enter client name, pregel
DECLARE cooperates with YAWL [1]. Analysis of pastway of payment (e.g., cash or credit card), identification,
executions of DECLARE models with a process-mining todtc; (2) “bill" - altering the billing specification with cés
ProM [11] is described in Section IV. User support witfor stay, room service, laundry service, etc (used to cherge
history based recommendations is presented in Section t9tal price of the stay); (3) “room service” - register theno
Related work and future work are described in Sections Bervice for client; (4) “laundry service” - register the falry

and VII, while Section VIII concludes the paper. service for client; (5) “additional cleaning” - althoughams
are cleaned on aregular basis, additional cleaning is som@&t
[I. CONSTRAINT BASED APPROACH necessary; (6) “charge” - client is charged with an amount fo

As opposed to traditional imperative approaches to procegseived service(s); and (7) “check-out” - client checks ou
modeling, DECLARE uses a constraint-based declarative &-the reception. Figure 3 shows a DECLARE model (in the
proach. Figure 2 shows the differences between the two &pesignercomponent) for the hotel example containing all the
proaches. An imperative model focuses on specifying exactnentioned activities. Actually, this is already a valid rebih
how to execute the process, i.e., all possibilities havetered DECLARE that can be saved and executed. In this case, the
into the model by specifying its control-flow. A declarativéumber of possible executions (i.e., process instancessy &
model specifies a set of constraints, i.e., rules that shbeld infinite; it is possible not to execute any activity, or to exte
followed during the execution. In this way, the declarativeach of the activities an arbitrary number of times (0.¢,,i.
model implicitly defines the control-flow as all possib#isi zero or more), and activities can be executed in any order.
that do not violate any of the given constraints, as shown in
Figure 2(a). INote that DECLARE is not a single, fixed language but allows fo

By defining how to execute the process, imperative |affie definition of multiple languages. One of the languagesdized using
ECLARE is ConDec [26]. The notation shown in Figure 2(b) a&rtpof

guages tend FO oyer-speufy the process mOde_l'. _Con3|der, ConDec language. We will elaborate on the subtle diffezebetween
example, a situation where there are two activities “A” andECLARE and ConDec later in this paper.

B DECLARE Designer =10ol x|

ify rules such a<. 1-5 asconstraints

Assignment model Design Window Help

IG:IjhprDiec‘llpr ypeldeclaretrunk hatelhotel ... o° o

I i : A. Constraint Templates
work | people | data

While traditional modeling languages offer a predefined
@.| | ™% conDec | g response v| a

set of types of relations between activities (sequenceiceho
parallelism, and loop), DECLARE allows for customized spec
ification of relation types, or as we calldbnstraint templates
In our small, illustrative example there are two constiioit
the same type. Constrain€.(3) and C. 4) specify the same
type of relation between activities, namely every executid
“room service” C. 3), or every execution of “laundry service”
(C. 3) will eventually be followed by at least one execution of
“billed”. This type of relation is known as “response” and is
one of the many possibleonstraint templatesupported by
DECLARE.

In DECLARE it is possible to create a constraint tem-
plate for a relation type. Each constraint template has (1)
an unique name, (Zemanticsspecified in Linear Temporal
Logic? (LTL) [20] and (3) graphical representationLTL is a

Naturally, the hotel process needs to follow some simpﬁ{pec""‘I type of logic that uses (in addition to classicalda
rules: operators) several temporal operators: alwayy éventually

C1)E inst has to start with acti 't(<>)' until (U), and next time ¢). The major benefit of
° (') very proces§ Instance has 1o start With activity, 4 aint templates is that users do not have to be LTL
register client data”. Data can also be altered at lat

¢ the client ch t detail %&perts to work with the system; they work with a graphical
stages (eg o ec lent changes payment details). . representation of templates, while the underlying LTL fatan
« (C 2) Activity “bill” must be executed at least once, -85 amains “hidden”

at least the number of nights will be billed. However, it Figure 4 shows a screenshot of DECLARE while defining

might be that the bill is altered multiple times for a 9VeN, constraint template. Here the definition of the “response”

case (e.g., room service during stay, damage in the rOotrgmplate is shown. Note that the “response” template is
etc.). . s " . I
B - . . defined as a “binary” relation between two activities. The
« (C. 3) Every “room service” must be billed. However, it i
is possible that several services are billed at once, idst raphical representation of any template is a line for which
P ' e beginning, end and middle part can be defined. Figure 4

of billing each service separately. u N :)
« (C4) E\?ery “laundry servi?:e” mu)s/t be billed. However itShOWS that the *response” template is graphically repriesen
' ' ' by a single line with a filled circle next to the first activity

is possible that several services are billed at once, 'dSte(gr,Jarameter 17), a filled arrow symbol next to the second

of billing each service separately. activity (“parameter 2”) and without a special symbol in the

» (C.5) When the client “checks-out’ the bill must bi{rgiddle. Furthermore a textual description and the LTL folanu
C -

register client data ‘ hill ‘

room service,

‘ laundry service additional cleaning ‘

Fig. 3. Activities in the hotel example

charged”. It might be_the case that the bill was charg r “response” are defined.
before check-out, during check-out or even after che : : .

. . . Defined constraint parameters can be used in LTL ex-
out (e.g., credit card payment). Also, it must be possible

. ressions, as shown in the lower part of Figure 4. In the
that the total amount is charged at several stages dur ng . B N
the stay. expressiond(A = <(B)) for the “response” template

_ . parameters “A” and “B” are used in the template formula to
Note that this set of rules also allows for undesired biefine the desired relation between the parameters. Wheh use
unavoidable behavior. For example it is undesired thantdie i, 1o model, formal parameters of the template are replaced
leave thg hotel without paying, i.e., cases yvhere actm% real activities in the model (e.g., parameter “A” is regeie
“charge” is never executed. However, if the client fF’rg‘ﬁS fith activity “room service” and parameter “B” with actiyit
‘check-out” the system cannot enforce that the client paygn it a parameter is specified to be “branched”, this wo

(activity “charge”). This situation and many other excepal 5 the parameter to be replaced with a conjunction of

situations are covered by the hotel process, as long as theq 4 activities.

previous five rules are followed. Note that in a traditional The “response” template is an example of a binary template
VXFMS there is al tendency tg describe an ideal wqudﬁav;he{%” it specifies a relation between two activities. Chgaitlis
these exceptional situations do not exist. However, in rElso desirable to define non-binary templates. For example,

\rl1vor|(?| tgese exceptional situations do exist and need to 8s possible to define unary templates, which involve only
andled.

F_igl_”e 3 allqws for any behavior inVOIVing th_e. _Seven hotel 2DECLARE has been developed in a way that it allows for impleme
activities mentioned. DECLARE offer the possibility to spe tation of specification languages other than LTL.

£ Edit template | B DECLARE Designer 1ol x|
Assignment model Design Window Help
* S
ECnnslraimlemnlales E
name response symbol —_ | [symbolfill line EB B constain groups
parameter 1 |4 symbol o w | [w] symbol fill [] branch |anuauue‘cﬂnpec ‘v| : Dreview
parameter 2 B symbol -1 - symbol fill [¢] branch
extra display|response templates
1: response(A, B) || A
description 2: precedence(A, B) = response
wihenever & happens, B should happen after & [3: existence(A}
4: co-existence(d, By
5: responded existence(, B) H
6: exacthy1(&) =
] il [» |
formula | add H edit H delete H export to ProM ‘ :
IO = < ("B)y
4] il [»
check syntax Fig. 5. Defining a language

constraint templates. To do this we need to map the textual
descriptions given in Section 1I-A onto predefined constrai
templates. A constraint can be added to the model of Figure 3

one activity (e.g, specifying that an activity has to exeduat by selecting the appropriate template from the drop-doein

least two times). DECLARE aims at using templates with f templates, and dragging it between the related activitie

arbitrary number of parameters to allow for complicatedtspl . € resultis shoyvn n F|ggrg_6. The DECLARE process model
and joins, e.g., the n-out-of-m splitjoin. Currently, DEERE in Figure 6 consists of activities and some constraints eetw

partially supports such constructs and is being extended & ttlr\:ltleh&t Elacf|1 of thet.conséralntﬁd;n F|59ure 6 represents o
support templates with an arbitrary number of parameters.0 e hotel rules mentioned earlieZ. {- 5).
Note that DECLARE uses somewhat more granular ap-

Fig. 4. Constraint template “response”

proach to parameters than shown in Figure 4. Written as it E‘ of templates
is, parameters “A’ and “B” are replaced by “A.completed” [DECLARE Designer =1olx|
and “B.completed”, respectively. This means, that wherduse Asslopment model.. Desion, Winiow, Holh....
in our example, the “response” template between activities Clcoipiectoconneueciateui e O
“room service” and “bill” specifies a relationship between] o [o =
events “room service.completed” and “bill.completed”.vido & |yt corbc| g feshonee 3l (4 PP
ever, it is possible for a template to specify relations teet C-l] el [B
events of starting or canceling activities (e g(A.started= register client data ‘ bill ‘ .[c_4
& (B.started)). - .
Different application domains can require a differentfeto _ | ... I,E-sp;m'se'
constraint templates. Therefore, DECLARE facilitates diee 0-3]' I
finition of sets of constraint templates, also calladguages foom sendce) || loundrysendcs | addelonal cleani _[C .
In other words, DECLARE is not a fixed language but allows .
for the definition of different languages. Each languagedras .
unigue name and is defined by a set of constraint templates. resmnded'e;is;em

ConDec [26] is one of the languages created using DECLARE.

DecSerFlow [5] is another language created using DECLARE

tailored towards the specification of web services. Conekc a Fig. 6. Constraints in the hotel example

DecSerFlow are very similar. However, DECLARE could be

used to define completely different languages with differen The number of constraints in a model is arbitrary. As

constraint templates, symbols, etc. indicated before, the model of Figure 3, which did not cantai
Figure 5 shows that DECLARE indeed allows for th@ny constraint, is already an executable model. By adding

definition of different languages. Here the link between @nstraints to the model, we impose rules that users have to

language (in this case ConDec) and constraint templates féflow during execution. Clearly, these rules limit thecalied

this case the list starting with “response”) is establisiiéote pehavior. In the next paragraph we describe the semantics of
that in this paper, we often use the term “DECLARE” to refesach constraint depicted in Figure 6.

to the ConDec language realized using the DECLARE systemBecause of the constraint “init’ on the activity “register

client data” (rule(C. 1)), users have to start each execution
with the activity “register patient”. It is still possibleot

In Section II-A we described five constraints:1-5. Now execute this activity multiple times and at any moment dyirin
we add these constraints to the model of Figure 3 by usitige execution to change client data at later stages (eg., th

B. Process Modeling

preferred way of paying is changed).
Before adding the “1..*” constraint on the activity “bill”

B DECLARE Designer
Assignment model Design Window Help

(rule (C. 2)) it was possible to never execute this activity and Rl cibusoicciopaieciotuy A=
still complete the case. After adding the constraint, itdree | veone | m' ___________________________

necessary to execute this activity at least once. This cinst 9 [convee | g response 7| S
enables the receptionist to add various items to the bij. (e. init []

room service, additional cleaning, etc.) at any momentrauri
the execution.

With the “response” constraint between activities “room
service” and “bill” (rule(C. 3)) it is obligatory that after every
execution of the activity “room service” at least one exexnut
of the activity “bill” follows. The constraint allows exetion
of other activities between activities and “room servicetia
“bill”. For example, it is possible that after the “room si@”
first “register client data” is executed and only afterwards
“bill”. The same holds for the “response” constraint betwee
activities “laundry service” and “bill” (rulg C. 4)). The two
“response” constraints also allow users to wait and “bill” a
once several “room services” and “laundry services”.

Constraint “responded existence” between activities ¢khe
out” and “charge” (rule(C. 5)) specifies that if “check-out”
was executed then “charge” must have been executed before

register client data hill J

response, s« response
-
response .

additional cleaning
check-out %—
responded existence

Fig. 7.

room Service laundry service

charge

Mandatory and optional constraints

B Edit constraint definition . |

[respanse |

name

conditioni " check syntax
or must be executed after “check-out”. Other activities ban - = & ardlonal
executed between activities “check-out” and “charge”. group [BILLING POLICY ~]
A process model containing multiple constraints is defined decription [EESTI e S
as a conjunction of the constraints, i.e., actions of usersd
execution must fulfill all the constraints.
C. Mandatory and Optional Constraints level |4 -

MEeSSAYL | f jamage was made on purpose bill additional cleaning. If

nat, additional cleaning is free 0fcharge.|

DECLARE supports two types of constraintsiandatory
and optional constraints. The system forces its users to fol-
low all mandatory constraints in the model. In Figure 6 all
constraints are mandatory constraints. In case of opticoral

cancel

straints users may decide whether to follow the correspandi | ok || cancel |

rule or to violate it.

For example, in the hotel example every “room service”
and “laundry service” is billed because they impose adaidio
costs for the hotel. Although “additional cleaning” impsse
additional cost, it is not necessarily billed. Suppose that The form contains the name of the constraint. By default
management of the hotel noticed that in some cases “adaditiothis is the name of the template, but this name can be changed.
cleaning” is a consequence of irresponsible behavior. i thAlso, a condition for the constraint can be specified (e.g., a
is the case, then the costs of cleaning should be billed. Itdenstraint should hold only ifgrice < 1000”). Moreover, the
up to the receptionist to decide in which cases “additionabnstraint is either mandatory or optional. If the constrai
cleaning” should be billed and in which not. This rule cars optional, the information presented to users needs to be
be implemented as amptional “response” constraint betweenspecified. Groups of constraints represent policies andean
activities “additional cleaning” and “bill”. Figure 7 shaxathis defined on the system level in DECLARE by specifying a
rule as an optional constraint. Note that the line is dasbhedname and description for each group. For example, therelcoul
indicate that it is optional. be groups like “Tourism Ministry Policy”, “Hotel Policy”,

Optional constraints are not enforced by DECLARE systelfersonnel Policy”, “Billing Policy”, etc. The appropriat
during execution. When a user is about to perform an actignoup needs to be selected for each optional constraint. The
that violates an optional constraint, a warning about theportance of the constraint is given by the “level” on a scal
violation is presented and the user can decide whether tdl0. The higher the level is, the more dangerous it is tcawol
continue with the action and violate the constraint or tocehn the constraint. Finally, a context-related message isifpec
the action and follow the constraint. The text of the warnindpat gives more detailed instructions to users.
can be specified in the definition of the constraint. Figure 8 Figure 9 shows the warning that a user will get when she
shows the form for defining a constraint in DECLARE. is about to close a case where activity “additional cleahing

Fig. 8. Settings for optional constraint

was not followed by activity “bill”. This warning containsin one of the following states: (Ljulfilled — constraint is
information about the billing policy, the violation levehd represented by green color, (2) temporarily violated i.e.,
an advising message to help the user to decide weatherittoan be fulfilled in the future — constraint is representgd b
violate this constraint or not. a orangecolor, and (3)permanently violatedi.e., it cannot
be fulfilled in the future — constraint is represented byed
color. For example, when the process instance of the hotel
response example is started (before executing any activity), camstr
group EILLIMG POLICY L. . . . i
decription 5o1s up rules that should ansure minmized biling foke. “1..*” on the activity “bill” is not fulfilled because “bill” was
never executed. However, it is only temporarily violated, i
(I & it can be fulfilled later (when the activity “bill” is execuddor
s s e e T the first time). Therefore, it presented using an orangercolo
All other constraints are fulfilled at this moment, as can be
Doynuiwanio/piocenes seen from their green color. Naturally, DECLARE will preten
users from permanently violating mandatory constraings, i
only optional constraints can be “red”.
Fig. 9. Violation warning for optional constraint Figure 10(b) shows the state of the case after startingigctiv
“register client data”. Three observations can be made. here
First, the activity is now open in the panel under the model.
Second, now it is possible to start other activities in theeca
A model in DECLARE is mapped onto a set of LTL formu-Third, only constraint “1..*” of the bill is not yet fulfillecand
las. Based on these LTL formulas, automata are automaticalblored in orange. This constraint can be satisfied by eiegut
generated [16] to support enactment. Many algorithms thagtivity “bill”. Figure 10(c) shows the state of the caseeaft
generate automata from LTL formulas have developed asglecuting “room service”. The “response” constraint betmwe
these are widely used in the field of model checking [20fhis activity and activity “bill” becomes temporally vidked,
DECLARE uses an algorithm that creates finite-words asince it requires the execution of activity “bill” in the fute.
tomata [17] from LTL formulas of the constraints that ar@his is indicated by coloring the constraint orange. Exiecut
used. These automata are used both to drive the execution aguity “bill” results in the fulfilment of two constraintg(1)
to monitor the state of each constraint. the “response” constraint between activities “room sevic
After process model is loaded in tligameworktool (cf. and “bill” and (2) the “1..*” constraint on the activity “dfl,
Figure 1), users can execute the model in th&frklists as shown in Figure 10(d).

Figure 10(a) shows the initial Worklist for the hotel exampl Depending on the state of itmandatory constraints, a

A list of all running cases (process instances, assignméntsprocess instance has its own state, as shown by the color of
shown on the left side of the screen. The process model of the instance in the list on the right side of the four Worklist
selected case is shown on the right side of the screen. Af{ghdows in Figures 10. The process instance is in the “green”
the user starts an activity by double-clicking it, the atyivs ~ state if all its mandatory constraints are “green”. If atstkea

opened in the panel under the model. Although the structureghe mandatory constraint is “orange”, the process instice
the process model is the same as in the Designer, the Workdiglo “orange”.

uses some additional symbols and colors to help users to
understand the current state of the model, the activities
the constraints.

First, each activity contains “start” (play) and “complete Adaptivity is an important feature of flexible WFMSs [29].
(stop) icons, that indicate if users can start/complete telaptive systems allow changing the process model during
activity at the moment. The initial state of the processanse its execution. Adaptivity is one of the main features of
in Figure 10(a) shows that it is only possible to start attivi DECLARE; it is possible to change its declarative process
“register client data”, because the corresponding symbol models during execution. Not only it is possible to add,
enabled. Starting and completing any of the other actwitie delete (together with relating constraints) and changéa(da
not possible, as indicated by the disabled icons. In additielements used in) activities, but it is also possible to add,
to the two icons, all currently disabled activities are cetb remove and change (e.g., make optional, change condition)
grey. This initial state of the process instance is causetthdy constraints. Before confirming an adaptation, DECLARE ver-
“init” constraint on the activity “register client data”e., this ifies the compliance of the changed model and instance hjstor
activity is the first activity to be executed. i.e., history based errors are detected (cf. Section IIAREer

Second, each constraint is colored to indicate its stathe adaptation, the changed model is re-initiated with the
Constraints are rules that should be fulfilled at the end pfocedure that is also used to start the process instanee. Th
the execution. However, it is not realistic to expect thathearequired automata are again generated for the new set of
constraint is fulfilled at each moment of time during the veholconstraints and the history of the instance is replayed eseth
execution. Generally, at any moment each constraint can rew automata.

D. Process Execution

2 Changing Process During Execution

=10lx|

£ DECLARE Worklist - administrator

£ DECLARE Worklist - administrator -1ol x| < DECLARE Worklist - administrator
! Lvisit 5:visit
init
(8] [m]
register client data il
A
i EESPulEE ‘response
ponse "3 redponse ' oho
‘o ..
>0 >O >E >
room senice laundy senice adgiional cleaning \aundry seniice additional cleaning
—= 2y e
cherconl | respondedexssience | tharge check-out | responted existence | _charge
[1]register client data | |~
data fields |
— R complete cancel =
H T 3 H H T ”
(a) The initial state (b) The state after “client registration”.
o [=] 3 £ DECLARE Worklist - administrator o [=] |

assignments —
Z stasit

Srvisit

(] 3]
register client data bill
[W2
re:

response
b B

3] (7] (3]
room senvicel laundry service additional cleaning
]]
check-out responded existence charge

close

S:visit

=] >m
register client data hill
r A

e

refponse

3] 3]
laundry service additional cleaning
3] 3]
check-out responded existence charge

close

(c) The state after “room service”.

(d) The state after “bill”.

Fig. 10. Execution of the Hotel example

F. Verification of Process Models WoeCLARERE Sy [
Assignment model Desigh Window Help
The addition of constraints to a process model in DECLARE | B caibprojectprototypeleciaretrunk .o O
may cause errors that lead to problems at run-time. Tharefor work [/ peaple |’ deta
DECLARE verifies process models against three types of .|| compec| 1t |~ q, |4
errors and finds a minimal set of constraints that causes the = [

error. All models can be verified againdead activitiesand
conflicting constraintsin addition to this, when a model is
altered during its execution, it can be verified agalristory-
based errors
1) Dead activities: A dead activity is an activity that can
never be executed in the model. Figure 11 shows the hotel
example with one additional constraint — the “responded ab- e -
sence” constraint between activities “check-out” and tgled
specifies that if activity “check-out” is ever executed, rthe
activity “charge” must never be executed (neither before or B e e =
after “check-out”). If activity “check-out” would be exetad
in the model, it would not be possible to fulfill both consttzi
“responded existence” and “responded absence” between ac-
tivities “check-out” and “charge”. Therefore, activity leck-
out” is a dead activity, i.e., it will never be possible to exte
this activity. detected errors is shown. In this case, one “dead activitgre
DECLARE will detect this error during verification asis detected for activity “check-out”. The list on the rightis
shown in Figure 12. On the left part of the screen a list aff the screen shows the minimal set of constraints that sause

register client data

response

I[ESFII]"SE

‘ laundry senvice ‘

room service additional cleaning ‘

responded absence

P
,\ check-out charge

Activity “check-out” is dead

Fig. 11.

the selected error.

result

Verificatinn result - Errors were detected.

:| constraints

name | message

| info

constraint

activities conditi.

DEAD ACTIMITY |[Some activit..|[check-ouf]

esponded existence

[check-ouf], [charge]

espond abhsence

[check-out], [charge]

with the history of the case. For example, assume that tetvi
“register client data”, “bill", and “check-out” are exeadt in

the current process instance. At this point the receptionis
decides that client should not “check-out” before activity
“charge” is executed, and adds a “precedence” constraint
between activities “check-out” and “charge” (see Figurg. 15

Fig. 12. Verification result for dead activity

2) Conflicting constraints:A set of constraints is conflict-
ing if there exists no execution that would fulfill all corestuts.
If a constraint specifying that activity “check-out” has to
be executed at least once would be added to the model
in Figure 11, the result would be a process model with a
conflict, as shown in Figure 13. This is because there exists
no execution that would satisfy the following three coristia

A DECLARE Change model - visit 1o =]
work | people
.| |2 conDec M. - G| €
init | e
register client data hill J
F 3 %

.
response
regponse Hh %

-

-
laundry service additional cleaning

“1..*” on activity “check-out”,

responded existence” lvaten
activities “check-out” and “charge”, and “responded alo&gn

between activities “check-out” and “charge”.

[P =10l =l
Assignment model Design Window Help
I Grljbprojectipr leclarettrunk hoteld I'.|K o A
If work r people data
@ | = conDec | 1. - N
init | il |

register client data

response

I[ES[JDI’ISE

room service

‘ laundry service ‘

additional cleaning

responded absence

-~ responded existence

Fig. 13. Conflict

i -
charge

| ok || cancel || verify |

Fig. 15. History violation

This adaptation is in conflict with the history of the case,
because activity “check-out” is already executed befot&-ac
ity “charge”. DECLARE will detect this error and inform the
user that the new constraint causes a history-based esor, a
shown in Figure 16.

£ Yerification result - Errors were detected.

resutt

i| constraints

/| [_constraint | activities [condition
| Iprecedence |[chargel, [check-out |

Fig. 16. Verification result for history violation

name | message |info
HISTORY |Case histary caus... |

IIl. ComBINING DECLARE AND YAWL

Figure 14 shows the conflicting error that was detected in

DECLARE during verification.

B verification result - Errors were detected.
resuft

:| constraints

name | message | info constraint

activities conditi

COMFLICT |Some constraints are .| esponded existence

[check-out], [charge]

[check-out], [chargs]

espond absence
-

[check-ou

Fig. 14. Verification result for conflict

This section shows how DECLARE and YAWL can be
combined to support arbitrary mixtures of loosely-struetl
and highly-structured processes.

DECLARE is not particularly suitable for modeling large
and/or highly-structured processes. In both cases, a DIRH A
model would have many constraints, which can easily cre-
ate problems. First, errors can be easily introduced during
process development when the number of constraints is high.
Second, it is hard for users to understand the whole model
during execution if the model has too many constraints. In
addition, the performance of the system is poot for models

3) History based violationsAs described in Section II-E, with many constraints, because the automata become too
DECLARE models can be changed during the executiolarge to be handled efficiently. Therefore, we propose using
Changes (especially adding new constraints) can be candlictthe YAWL [1] workflow management system in combination

with DECLARE. YAWL can easily deal with large highly- processes (YAWL), loosely-structured processes (DECLARE
structured processes and its service-oriented architeetlh emerging/rule-based processes (e.g., Worklets [7]), etc.
lows for an easy integration.

We propose YAWL for highly-structured processes and IV. ANALYSIS OF PAST EXECUTIONS
DECLARE for loosely-structured ones. The decomposition WFMSs can execute a variety of process instances over
of processes using DECLARE and YAWL can be two-foldime. Most systems record detailed logs about all completed
i.e., a DECLARE model can be a sub-process or sup@xecutions. Data stored in such logs can be various: start-
process of YAWL model(s). Figure 17 shows an examplfg cases; starting, completing, canceling activitiesanging
of a decomposition of a large hotel process. First, a highlyalue of data elements; deadline expiry, etc. These logbean
structured global process for managing rooms in a hotel ised for discovering and analysis of executed process model
developed in YAWL — on the first level of decomposition & process minind6]. Process mining tools (e.g., ProM [11])
room is “booked”, “cleaned”, “rented”, and then “cleanedlse various techniques of log analysis to discover the gsoce
again. At this level, we decompose the thskent” to our model, verify certain properties of the model, discover the
hotel example in DECLARE (the second level). Within thisocial network, etc.
DECLARE model, we can specify that activity “room service” DECLARE stores all events related to activities in exeautio
should invoke another highly-structured process in YAWlpgs using the MXML format [10]. This format is also used
where after the “order” is taken, it is “prepared”, “delieel’ by the ProM tool and thus this export allows for all kinds

and “registered” (the third level). of analysis techniques ranging from locating bottleneaks i
_ . & process to constructing a social network for the actors
VAT e — mvolvgd. Amongst other_s, ProM has a feature tha_t can be used
_ = e . to verify various properties of executions stored in loghe t
CrrrE L @] [convee | grespmmse <] Y LTL CheckerLTL checker enables verification of logs against
O Ml B EN < Bl) properties specified in Linear Temporal Logic. For examiple,
A is possible to verify if a “junior officer has approved a claim
e omd worth more than 10000 this year’. DECLARE enables two
| types of export to LTL Checker readable files, as shown in
o Figure 18.
S -
Fig. 17. A DECLARE model serving both as a sub-process andrspocess
for YAWL LUk
— checker
To achieve this decomposition, DECLARE communicates €< Prom DECLARE |« &
with YAWL via its “interface B”. YAWL is developed using analyst user
a service oriented architecture where a YAWL process can
serve both as a service consumer and as a service provider. log

Tasks in YAWL may be subcontracted to another service. This

way YAWL acts as a service consumer. In the context dﬁg 18. DECLARE is able to export event logs, models, andstramt

. mplates to ProM
YAWL, several services have been developed. For examptiee,IO

the default Worklist handler is an example of a service tteam ¢

communicate with YAWL via “interface B”. Other services arn%iI
the SMS service, Worklet service [7], etc. From the viewpoin L . . “ "
of YAWL, DECLARE is just another service that YAWL can properties in logs in an generic way, e.g., the ‘response

use. Moreover, YAWL can also act as a service provider fgrroperty (template) can be checked against different pairs

DECLARE, i.e., an activity in DECLARE can be subcon-Of activities. Second, a DECLARE process model can be

tracted to YAWL by initiating a new process instance. Thigxported to an LTL Checker file. Using this file, process logs

can be mixed an arbitrary ways, e.g., YAWL may subcontracd” be verified against constraints from the process model,

a task to DECLARE, in the corresponding DECLARE procese'g" the “response” property (existing constraint) caly e

an activity is subcontracted to YAWL, in the correspondin(g:;% ecked against existing activities *room service” and™bi
YAWL process a task is subcontracted to the Worklet service, V. USERSUPPORT BYRECOMMENDATIONS

etc. This allows for arbitrary mixtures of highly-structar

First, constraint templates can be exported to LTL Checker
es from DECLARE. These files can be used to verify

Despite many benefits that flexibility brings, its major draw
3For clarity we use different terms for the smallest unit ofrkvin back it the lack ofsupportthat users get in flexible systems.

YAWL and DECLARE. The terntaskis used to denote the smallest unit OfSupport of a WFMS can be seen as an extension in which the

work YAWL, i.e., a task is not decomposed further in YAWL butynrefer is abl ke decisi " h Fi 19 sh

to a DECLARE process. DECLARE uses the teattivity for the smallest system is able to make decisions for the user. Figure shows

unit of work. flexibility and support as two opposing properties, i.egjdi

P DECLARE Worklist - admi
b|| 2:vis

=10l

systems provide support by sacrificing flexibility, and flezi
systems provide flexibility by sacrificing support. The edyi
of options in flexible systems makes it difficult for users tc
make the right decision. For example, an inexperienced us
or a user working on an exceptional case will find it difficult
to decide between many options, and would greatly bene
from support.

recommenation

confidence [weight | task |event type] rationale
1.0 1006 bil|start

high

Fig. 21. Recommendation is to start activity “bill”

low

Approaches like case-handling and adaptive systems change

@ decision making @ the way the system manages the execution of rigid models. An
D example of a case-handling system is FLOWer [25]. FLOWer
user system does not enforce a strict execution of process models, but

allows users to open tasks that should be executed later
(according to the model), re-do tasks that were executeatdef

Support for flexible systems should focus on offeriagom- or even skip tasks that should be executed. When working

mendationgor decisions, rather than taking these decisions féfith adaptive systems like ADEPT [29], users can change the
the user. Recommendations are generated based on past &Jﬁ)é:-ess _model _N_h_'le e_xecutmg the model by adding, moving
riences and a specific goal. DECLARE stores past experien_gésdele_t'ng activities in the mo?‘e'- BOFh , approaches use
in MXML format. Based on the goal of a user/organizatioﬁmperat've models and they consider variations in exenstio
past experiences can be rated in terms of their desiratsity to be exceptions, which can have_ negative consequences. For
example, the goal may be to minimize throughput time an@,(ample, if a user of a case-handling system wants to re-do an

therefore, cases which were handled quickly are considegiVity that was already executed before, she will alsoehav

positive examples. The recommendation service of ProM [1tﬂ execute all activities that followed it. Frequently charg

generates recommendations for DECLARE based on the cofhocess models in adaptiv_e systems are tirr_1e consuming and re
parison of the current process instanparfial instancg with duire users to be experts in process modeling. DECLARE uses

past executionsldgs), while favoring those executions that® different approac_h that does not require users _to_redeS|gn
satisfy the specifiegjoal, as shown in Figure 20. Currently the process to deviate from the normal flow. Deviations are

various recommendation algorithms have been implementdf S€€n as exceptions and are included the allowed behavior
in ProM but outside the scope of this paper. Moreover, unlike case handling, there is not a fixed set of

automatically included deviations (e.g., skip and redo).

Fig. 19. Trade-off: flexibility vs. support [10]

patial instance execution Loosely-structured process can be handled using dedarati
ProM | DECLARE : ¢ languages, which “describe the dependency relationshéps b
recommendano.n recommendation user I
tween tasks, rather than procedurally describing seqgesice
action” [12]. DECLARE is not the first attempt to use a more
declarative language [12], [23], [30]. Instead of modelag
log detailed control-flow, declarative languages propose nirogle

constraints that (as rules that should be followed) drive th
model enactment [12], [23], [30]. Constraints describe de-
DECLARE does not enforce recommendations to use&gndencies betwee_”. model elements and are specified u§ing
On the contrary, recommendations are presented to user "% and post conditions for target ta?"" [30], dependencies
independent information, as shown on the right side of t eetyveen states of tasks (enabled, active, ready,.et-c.)c{_ELZ]
Figure 21. The user can choose to follow or not to follow th;éggﬁufsrorgoczﬁggzla;?li?”;gg:z;iﬁ]e'slaichg;)? (rjelsstg]e?:?:hFor
recommendation to “start activity bill". example, DECLARE is based on LTL, it does not use a
VI. RELATED WORK fixed language and users can extend the language, it supports
Many approaches aim at “relaxing” the rigid nature of tradiPptional and mandatory constraints, it supports verifratit
tional process modeling languages and workflow manageméan supports on-the-fly model changes, and it is equippéd wit
systems. These process models precisely prescribe how ahgcommendation service.
process should be executed and workflow systems force usershis paper builds on two papers: [26] and [5]. [26] presents
to execute these models step-by-step. the ConDec language and [5] introduces the DecSerFlow lan-

Fig. 20. ProM as recommendation provider for DECLARE

guage. The first language is tailored towards teamwork while REFERENCES
the second is tailored towards the specification of services
These two papers do not describe the DECLARE tool in anit] W:M.P.van der Aalst, L. Aldred, M. Dumas, and A.H.M. teofstede.

. Design and Implementation of the YAWL System. In A. Perssod a
detail. In fact most of the funCt|0nal|ty described in thﬂﬂ&r, J. Stirna, editorsAdvanced Information Systems Engineering, Proceed-

was realized after the publication of [5], [26]. Moreovéein- ings of the 16th International Conference on Advanced fation
novative features of DECLARE in relation to process mining, Systems Engineering (CAISE'04jolume 3084 ofLecture Notes in

. Computer Sciencgpages 142-159. Springer-Verlag, Berlin, 2004.
recommendation, verification, optional constraints, aratieh P cPag pring g
h h t been described before. This illustrates ti\% W.M.P. van der Aalst and K.M. van Hee.Workflow Management:
change have no ! : 1S flu Models, Methods, and SystenMIT press, Cambridge, MA, 2002.

Or'gmal contribution of the current paper. [3] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszé&iysand A.P.
Barros. Workflow Pattern®istributed and Parallel Database44(1):5—
51, 2003.

[4] W.M.P. van der Aalst and S. Jablonski. Dealing with WaskflChange:

Currently, DECLARE uses a simple constraint specification 'S‘jfsqgf'nf:"t'ggiga'CS;“aerfdaE‘:\;gg}‘i’ggfg)ﬁ%@g@e{0568%'. of Computer
approach that considers only events regarding execution %ﬁ W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards ralyT
activities (the COﬂtrOl-ﬂOW). This can be extended by USing Declarative Service Flow Language. In M. Bravetti, M. Nunend
other process model elements (like user roles, data elsment G. Zavattaro, editors|nternational Conference on Web Services'and
etc.) in the constraint specification. For example, it can be E%rn’?;'ltg"reg?gﬁcéo\’:gse'g“ﬂ_gg?@ﬁﬂ'ﬁgﬂf_éﬁg“g,Oé';f”cr:‘frzeog'eo_tes n
necessary to spequ a qqnstralnt that prevents one user {9 \v v p van der Aalst, BF. van Dongen, J. Herbst, L. Méets
execute two crucial activities in the process model (the so-" G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Surveyf o
called “four eyes principle”), e.g., it is not possible thhe Issues and Approachefata and Knowledge Engineering7(2):237—
same person who filed a request for salary rase approves this 267, 2003.

. . : - [7] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. va dalst.
request. Here these is also a link to the topic of semantictf Worklets: A service-oriented implementation of dynamicxitidity in

correctness presented in [22]. workflows. In R. Meersman and Z. Tari et al., edito®n the
Another interesting extension would be adding deadlines Move to Meaningful Internet Systems, OTM Confederatedniational

in DECLARE dels. F | he “ , Conferences, 14th International Conference on Coopegdtiformation

n h process modeils. For examp et e response Systems (CooplS 2006)olume 4275 ofLecture Notes in Computer

constraint template can be extended with a deadline: “A'tbas Science pages 291-308, Berlin, 2006. Springer-Verlag.

be followed with “B” within five days. To introduce deadlines [8] A. Bouajjani, Y. Lakhnech, and S. Yovine. Model-chedkifor extended

a logic extended with time dimension and time automata can fimed temporal logics. =~ INFTRTFT "96: Proceedings of the 4th

. . International Symposium on Formal Techniques in Real-Tame: Fault-
be used (e.g., Extended Timed Temporal Logic [8]) Tolerant Systemspages 306—-326, London, UK, 1996. Springer-Verlag.

DECLARE is currently being extended to support constrainfo; c. Bussler, S. Jablonski, and H. Schuster. A new gerwratf workflow-
templates with multiple parameters, instead of only onevor t management-systems: beyond taylorism with mobiBIGOIS Bull,
parameters. This will enable creating more advanced tdmpla[17(1):17-20, 1996.

10

: : : s i] B.F. van Dongen and W.M.P. van der Aalst. A Meta Model Roocess
and constraints mvolvmg more that two activities. Mining Data. In J. Casto and E. Teniente, editdPspceedings of the

CAISE’'05 Workshops (EMOI-INTEROP Workshopdlume 2, pages
VIIl. CONCLUSIONS 309-320. FEUP, Porto, Portugal, 2005.
[11] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. VerbeékJ.M.M.
The DECLARE system supports Ioosely-structured Weijters, and W.M.P. van der Aalst. The ProM framework: A NEva
ith ifici ful f h L in Process Mining Tool Support. In G. Ciardo and P. Darongedlitors,
processes without sacriricing usetul features that travagti Application and Theory of Petri Nets 200Becture Notes in Computer
workflow management systems have. DECLARE uses a Science, pages 444-454. Springer-Verlag, Berlin, 2005.
temporal logic (LTL) as a basis and combines this witf12] P. Dourish, J. Holmes, A. MacLean, P. Margvardsen, and@yslaw.
an extendible graphical Ianguage. In fact. DECLARE can Freeflow: mediating between representation and action irkflos
ltiole | . llel and ’ d K systems. INCSCW '96: Proceedings of the 1996 ACM conference on
suppqrt mu t|_p_e anguages In parallel and ena users catmak computer supported cooperative wpgages 190-198, New York, NY,
domain specific languages. To support enactment, DECLARE USA, 1996. ACM Press.
automatically constructs automata to guide (or force) ®@r.us[13] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstederocess-
DECLARE connects to the workflow management system AWare Information Systemiiley & Sons, 2005. _
YAWL and the process mining tool ProM. Through YAWL, it[l4] D. Georgakopoulos. Teamware: An evaluation of key nedbgies and

h . . open problemsDistributed and Parallel Database45(1):9-44, 2004.
becomes possible to support large processes containing nﬂg] D. Georgakopoulos, M. Hornick, and A. Sheth. An Ovewief Work-

tures of loosely-structured and highly-structured fragtae flow Management: From Process Modeling to Workflow Automatio
The connection to ProM allows for the analysis of processes Infrastructure.Distributed and Parallel Database$:119-153, 1995.
supported by DECLARE. Moreover, using ProM’s recomié] R. Gerth, D. F_’fféled, M-Yf- Vardi, and P. VV|0|pef-, Simple Uﬂ%ﬂy

. . P . . Automatic Verification of Linear Temporal Logic. [liProceedings
mendgtlon serwpe It Is po§§|ple guide us_ers based On, past of the Fifteenth IFIP WGB6.1 International Symposium on &tot
experiences. This way flexibility and learning are combined specification, Testing and Verification Xgages 3-18, London, UK,
in a powerful manner. 1996. Chapman & Hall, Ltd.

The DECLARE provides many innovative features and cdf’] D- Giannakopoulou and K. Havelund. Automata-basedfivation of
be d loaded f htto://i \/staff/ icld temporal properties on running programsAI8E '01: Proceedings of the
€ downloade rom http:/Ais.tm.tue.nl/stafi/mpesiclaee. 16th IEEE international conference on Automated softwaigireering

htm. page 412, Washington, DC, USA, 2001. IEEE Computer Society.

VIl. FUTURE WORK

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, andTekchke. A
comprehensive approach to flexibility in workflow managetrssistems.

In WACC '99: Proceedings of the international joint confereran Work
activities coordination and collaboratigrpages 79-88, New York, NY,
USA, 1999. ACM Press.

S. Jablonski and C. Bussléiorkflow Management: Modeling Concepts,
Architecture, and Implementation International Thomson Computer
Press, London, UK, 1996.

E.M. Clarke Jr., O. Grumberg, and D.A. Pelellodel Checking The
MIT Press, Cambridge, Massachusetts and London, UK, 1999.

M. Klein, C. Dellarocas, and A. Bernstein, edito&daptive Workflow
Systemsvolume 9 ofSpecial issue of the journal of Computer Supported
Cooperative Work2000.

L. Thao Ly, S. Rinderle, and P. Dadam. Semantic coressrin adaptive
process management systems. In S. Dustdar, J.L. Fiadeidb AcP.
Sheth, editorsBusiness Process Management, 4th International Confer-
ence, BPM 2006, Vienna, Austria, September 5-7, 2006, Edings
volume 4102 ofLecture Notes in Computer Scienqeages 193-208.
Springer, 2006.

P. Mangan and S. Sadig. On building workflow models foxifile
processes. IMDC '02: Proceedings of the 13th Australasian database
conference pages 103-109, Darlinghurst, Australia, Australia, 2002
Australian Computer Society, Inc.

R. Milner. Communicating and Mobile Systems: The Pi-Calculus
Cambridge University Press, Cambridge, UK, 1999.

Pallas Athena.Flower User Manual Pallas Athena BV, Apeldoorn,
The Netherlands, 2002.

M. Pesic and W.M.P. van der Aalst. A Declarative Apptodar Flexible
Business Processes. In J. Eder and S. Dustdar, eddosiness Process
Management Workshops, Workshop on Dynamic Process Maeagem
(DPM 2006) volume 4103 oLecture Notes in Computer Scienpages
169-180. Springer-Verlag, Berlin, 2006.

H. Reijers, J. Rigter, and W.M.P. van der Aalst. The Qdaadling Case.
International Journal of Cooperative Information Systerh(3):365—
391, 2003.

W. Reisig and G. Rozenberg, editorkectures on Petri Nets |: Basic
Models volume 1491 ofLecture Notes in Computer Scien&pringer-
Verlag, Berlin, 1998.

S. Rinderle, M. Reichert, and P. Dadam. Flexible SupmdrTeam
Processes by Adaptive Workflow Systenmstrib. Parallel Databases
16(1):91-116, 2004.

J. Wainer and F. de Lima Bezerr&roupware: Design, Implementation,
and Use volume 2806, chapter Constraint-Based Flexible Workflows
pages 151 — 158. Springer Berlin / Heidelberg, 2003.

