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Abstract 
 
Objective: Languages used to specify computer interpretable guidelines (CIGs) differ in their 

approaches to addressing particular modeling challenges. The main goals of this paper are: 1) 

to examine the expressive power of CIG modeling languages; and 2) to define the differences, 

from the control-flow perspective, between process languages in workflow management systems 

and modeling languages used to design clinical guidelines. 

Design: The pattern-based analysis was applied to guideline modeling languages Asbru, 

EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of 

consideration. 

Measurements: We evaluated the selected CIG modeling languages and identified their 

degree of support of  43 control-flow patterns. We used a set of explicitly defined evaluation 

criteria to determine whether each pattern is supported directly, indirectly or not at all. 

Results: PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 

11.   All four directly support. Basic Control-flow patterns, Cancellation patterns, and some 

Advance Branching and Synchronization patterns.  None support Multiple Instances patterns.  

They offer varying levels of support for Synchronizing Merge patterns and State-based  

patterns.   Some support a few scenarios not covered by the 43 control-flow patterns. 

Conclusion: CIG modeling languages are remarkably close to traditional workflow 

languages from the control-flow perspective, but cover many fewer workflow patterns. CIG 

languages offer some flexibility that supports modeling of complex decisions and provide 

ways for modeling some decisions not covered by workflow management systems.  

Workflow management systems may be suitable for clinical guideline applications. 

 
Keywords: Workflow Patterns, Evaluation, Clinical Guidelines, Modeling languages 
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I. Introduction 
 

Clinical practice guidelines and protocols are being applied in diverse areas including 

policy development, utilization management, education, reference, clinical decision support, 

conduct of clinical trials, and workflow facilitation. The main intent of clinical guidelines is 

to improve the quality of patient care and reduce costs. Creating computer-interpretable 

representations of the clinical knowledge contained in clinical guidelines is crucial for 

developing decision-support systems that can provide patient-specific advice at the point of 

care. It has been demonstrated that automated guideline-based systems can improve 

adherence to paper-based guidelines [1]. 

Although many parties have been engaged in developing languages for representing 

computer-interpretable guidelines (CIGs) [2,3,4,5,6,7,8,9], there is still little standardization 

of languages that fully support representation of the logic of guidelines that unfold over time 

to facilitate sharing or to enable adaptation to local practice settings [10]. Indeed, the three 

standards, Arden Syntax, GEM and GELLO, which have been developed in the domain of 

clinical decision-support do not satisfy these requirements. The Guidelines Elements Model 

(GEM [11], a standard of the American Society for Testing and Materials (ASTM)) is an 

XML-based knowledge model for guideline documents. GEM elements relate to a guideline’s 

identity, developer, purpose, intended audience, method of development, target population, 

knowledge components, testing, and review plan. Although this standard includes elements 

for marking-up elements of clinical algorithms, the resulting markup does not support 

computer execution that requires automatic inference. The Arden Syntax [12], a standard of 

ASTM and of Health Level Seven (HL7) that has been substantially used in industry. This 

standard is suitable for representing individual decision rules in self-contained units called 

Medical Logic Modules (MLMs) which are usually implemented as event-driven alerts or 

reminders. It is not designed for encoding complex multi-step guidelines that unfold over 
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time and does not offer mechanisms for complexity management and for managing linked 

MLMs [13]. GELLO (Guideline Expression Language, Object-oriented, see [14], which has 

been recently accepted as an HL7 and ANSI standard, is an object-oriented expression 

language that is vendor-independent, side-effect-free, and extensible expression language that 

could be used for specifying and sharing decision logic and eligibility criteria, calculations, 

patient state definitions, conditions, and system actions. As its goal is to be an expression 

language, it does not support specification of entire clinical algorithms, but focuses on 

specifying logical expressions. GELLO is the first component of a CIG language that HL7 

started to standardize in order to support a full CIG formalism. The other components that 

HL7 sought to standardize include, among others, a control-flow language [15]. 

As there is no standard CIG formalism, our paper concentrates on non-standard CIG 

formalisms of the type termed “Task-Network Models (TNMs)” [15,14]. TNM CIG 

formalisms have in common a process-flow-like model that decomposes guidelines into a 

network of tasks that unfold over time, but they differ from each other in their approaches to 

addressing particular modeling challenges. In [15,14], authors compared six guideline 

modeling languages: Asbru, EON, GLIF, GUIDE, PRODIGY, and PROforma according to 

eight components that capture the structure of CIG languages (see Related Work section). In 

this paper, we examine the modeling languages using control-flow patterns. The control-flow 

patterns have been tested by evaluating a multitude of workflow systems and standards. The 

feedback from industry has resulted in the revision and extension of the control-flow patterns, 

which nowadays serve as an accepted benchmark [17]. The evaluation of CIG modeling 

languages is a big challenge because the terminology used in these languages is inconsistent, the 

semantics of the control-flow of some of the languages is incompletely and informally defined, 

and the approaches employed by the languages for guideline modeling are heterogeneous. CIGs 

represent clinical algorithms that unfold over time by specifying the ordering of tasks and 
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activities. The ordering of tasks in a process model is also referred to in the literature as 

control-flow, which is the perspective we focused on during the analysis. We compared the 

control-flow component of CIG languages by evaluating their degree of support of control-

flow patterns [16,17] that are known as "workflow patterns". Although workflow patterns 

come from the business process modeling community, they are suitable for comparing CIG 

languages; while a CIG language is a computer-interpretable TNM of a clinical care process 

that realizes a clinical/medical goal, a workflow model is a computer-interpretable TNM of a 

business process that realizes a business objective. From the control-flow perspective, both of 

these types of models (languages) are TNMs and are comparable from the control-flow 

perspective. 

Initially we intended to analyze the current versions of the same set of TNM languages as 

considered in [15]: Asbru, EON, GLIF, NewGuide, PRODIGY and PROforma. However, we 

excluded from our analysis NewGuide because it is still under development and PRODIGY 

because it is no longer actively supported. 

II. Background 
 

This section describes the main concepts of the CIG modeling languages Asbru, EON, 

GLIF, and PROforma and presents work related to workflow patterns. 

A. Computer-Interpretable Guidelines 

Table 1 illustrates terms used in the CIG modeling languages which correspond to the main 

workflow concepts that will be used throughout this paper. These terms include process 

model, case, task, parallel branching and exclusive branching and are defined in [18]. A 

process model consists of a number of tasks that have to be carried out and a set of conditions 

that determine the order of tasks. A task is a logical unit of work that is carried out as a 

whole. Tasks can be executed based on sequential, parallel or conditional routing. Parallel 
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branching specifies that two or more tasks are executed independently of each other. 

Exclusive branching splits a process in several branches, only one of which can be selected 

based on the fulfillment of a condition associated with a given branch [19]. Process models 

are executed for specific cases (e.g., a patient with high blood pressure being managed by a 

hypertension CIG). Each case involves a process being performed, with its current active 

tasks. In Appendix 1 we describe in a more detail the main concepts of CIG modeling 

languages by modeling a patient diagnosis scenario in Asbru/AsbruView , PROforma/Tallis, 

EON/Protege-2000 and GLIF/Protege-2000 respectively. 

B. Workflow Patterns 

The recent Workflow Patterns initiative [17] has taken an empirical approach to 

identifying the most common control constructs inherent to modeling languages adopted by 

workflow systems. In particular, a broad survey of modeling languages resulted in 20 

workflow patterns being identified [20]. The collection of patterns was originally limited to 

the control-flow perspective, thus the data, organizational and application perspectives were 

missing. In addition, the set of control-flow patterns was not complete since the patterns were 

gathered non-systematically: they have been obtained as a result of an empirical analysis of 

the modeling facilities offered by selected workflow systems. The first shortcoming has been 

addressed by means of the systematic analysis of data and resource perspectives and resulted 

in the extension of the collection of the control-flow patterns by 40 data patterns and 43 

resource patterns [21,22]. The issue of the incompleteness of the control-flow patterns has 

been resolved by means of the systematic analysis of the classical control-flow patterns 

against Workflow Pattern Specification Language [23]. Furthermore, the originally-identified 

set of the 20 control-flow patterns has been revised and extended with 23 new patterns. A 

comprehensive description of the full set of 43 control-flow patterns is found in [16]. 
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The 43 patterns can be divided into several groups: basic control-flow patterns, 

advanced branching and synchronization patterns, structural patterns, multiple instances 

patterns, state-based patterns, cancellation patterns, and the 23 new patterns that will be 

classified outside the scope of this research. Due to the lack of space, in this paper we provide 

only the description of patterns that have received different ratings by the examined 

languages, and are therefore, the most interesting. These definitions are given in the Results 

section, so that the discussion of the different ways in which the CIG languages support these 

patterns could be easily followed.  

Workflow patterns have become a standard for assessing strengths and weaknesses of 

process specifications. Many workflow systems and standards such as XPDL, UML, BPEL, 

XLANG, WSFL, BPML, and WSCI were evaluated from the perspective of the control-flow 

patterns, a summary of which is available at [17]. The patterns have inspired the 

improvement and development of 10 languages and tools [17]. Furthermore, the workflow 

patterns were used for selecting a workflow management system (WfMS) (i.e., a system in 

which workflows are defined, created and executed) and have been used in teaching [17]. 

III. Research Questions 
 
The main research questions addressed by this study are: "What is the degree of support of 

the control-flow patterns in special-purpose languages for modeling clinical guidelines?" and 

"What are the differences, from the control-flow perspective, between process languages 

offered by workflow management systems and modeling languages used to design clinical 

guidelines?". 

IV. Methods 
 
In this section we describe the types of analyses that we carried out and the criteria used for 

evaluating the pattern support offered by the examined CIG modeling languages. 
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A. Analysis 
 

We evaluated the set of CIG languages against the revised set of 43 control-flow 

patterns, described in detail in [16]. 

To compare the examined languages, we used quantitative and qualitative measures. We 

calculated the number of patterns supported by the examined languages directly, indirectly, 

and not supported at all. Furthermore, we analyzed in greater detail the differences between 

the languages based on the support of patterns that have received different ratings. In 

particular, we underlined the strengths of CIG languages that were unique in their support of 

particular patterns, the significance of this support to clinical guidelines, the different ways in 

which the considered languages support the workflow patterns, and how they differ from 

process modeling languages used in the business domain. 

B. Evaluation criteria 
 
For each language, we checked whether it is possible to realize the control-flow pattern with 

the facilities offered by the language. As a means for evaluation, we used evaluation criteria 

explicitly defined in [16]. These evaluation criteria specify a set of context conditions an 

analyzed language has to fulfill in order to support a pattern. The pattern support has been 

rated as full, partial, or no support. A pattern is fully supported (+) if the examined language 

fully satisfies the evaluation criteria for the pattern and provides direct support for each of 

them via constructs found in the language. A pattern is supported partially (+/-) if the 

examined language provides indirect support for all of the criteria either via extended 

workarounds or programmatic extensions. A pattern is not supported (-) if the examined 

language does not satisfy any of the criteria for direct or indirect support. To make sure that 

our understanding of the CIG languages abilities was correct, the developers of the four 

languages that we compared reviewed our paper before its submission. 
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V. Results 

A. Comparing CIG Languages Support of Categories 
of Workflow Patterns 

Table 2 summarizes the support of the full set of 43 patterns by the languages. The brief 

description of pattern categories used for the evaluation is given in Table 3. We explicitly 

elaborate on patterns that received different ratings by the examined languages (i.e., patterns 

which are supported only by a sub-set of the examined languages), which underline the 

weaknesses and strengths of these languages essential for understanding of the paper in 

Appendix 2. We provide the full set of results in an online source [24]. 

After analyzing how the four CIG languages support the specific workflow patterns, 

as summarized in Table 2, we tried to arrive at more general conclusions about the languages' 

support of categories of Workflow Patterns. As the results of the analysis have shown, 

PROforma offers direct support for the largest number of patterns (22 out of 43) among the 

examined offerings. Asbru and GLIF offer support for 20 and 17 patterns respectively. Even 

fewer patterns are supported by EON (it supports only 11 patterns).  

More detailed analysis of the pattern support reveals that all examined offerings 

directly support Basic Control-flow patterns. At least half of the Advanced Branching and 

Synchronization patterns, which are relatively common to business processes used in 

practice, are supported by all offerings. Note that the Structured Synchronizing Merge pattern 

is not supported by all examined offerings. While PROforma supports this pattern directly, 

Asbru adds a time restriction to the process of synchronization to approximate the desired 

behavior. The semantics of the Synchronization blocks in EON and GLIF are not precise 

enough, i.e. they do not specify what happens to the active tasks after the Synchronization 

task has been executed. This is also the reason why some of the new patterns addressing 

variants of the Synchronization Merge are not supported by EON and GLIF. 
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None of the examined modeling languages have the concept of a multiple instance 

activity and, therefore, patterns from the Multiple Instances pattern group and new patterns 

related to the multiple instances activity are not supported directly.  

Not all examined languages have full support for the state-based patterns. Although 

EON and GLIF have the notion of the patient state, they lack the notion of the process state. 

The only language that employed these concepts is PROforma. All analyzed languages 

support the Cancellation patterns relatively well. 

B. Unique features of the CIG languages 
While evaluating the modeling languages and studying their documentation, we identified 

several scenarios not covered by the set of the control-flow patterns that we had used as a 

reference framework. In particular, a deferred multi-choice is a capability to defer the 

selection of multiple options by a user until the user decides that no more options will be 

selected (for instance, selecting several medicines from the recommended ones for the 

treatment of the patient). The functionality of the deferred multi-choice has been encountered 

in GLIF3.5/Protege-2000, EON/Protege-2000 and PROforma/Tallis. Another scenario is 

related to "forced trigger", where any internal or external event triggers the execution of a 

task even if the task precondition was not satisfied at the moment of triggering. The 

functionality of the forced trigger has been encountered in PROforma/Tallis. 

In addition, guideline modeling languages allow for some flexibility by offering 

expression languages that support modeling of complex decisions. They also provide ways 

for modeling decisions as argumentation rules (rule-in and rule-out) which are unique 

features that affect control-flow specification and are not offered by workflow management 

systems. 

Another aspect of flexibility, offered in EON and GLIF, is the ability to specify multiple 

entry and exit points to a guideline. Such a feature might be useful when, due to 
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unpredictable changes in a patient's state, a patient has to "jump" from one state of the 

guideline, at which he was situated at the previous encounter, to another state that reflects his 

current situation (e.g., his condition deteriorated despite the use of the guideline, or due to a 

different guideline that was applied to him, medications were added, etc). However, such 

support of multiple entry points is not unique to EON and GLIF and has alternatives; similar 

behavior can be achieved by means of the state triggers in PROforma. 

VI.  Discussion 

Members of the computerized guidelines community have emphasized how important it 

is to support flexibility in guideline formalisms [15,4,25]. However, when we examined 

guideline modeling languages, we found only limited additional flexibility not present in 

business process modeling languages. The CIG languages we studied support only two new 

patterns not encountered in business process models. This is remarkable since one would 

have expected dedicated constraints allowing for more flexibility given the more dynamic 

nature of care processes. 

Moreover, only half of the workflow patterns elicited from business process modeling 

languages are supported by CIG languages. An interesting question is whether the patterns 

that are not supported by CIG languages could be useful in the domain of clinical guidelines 

automation. Many of these patterns relate to flexibility of process execution. In the business 

processes domain, multiple threads of execution that relate to the same activity are often 

supported (e.g., an insurance claim with a variable number of witness statements or an order 

containing multiple order lines). Similar situations may arise when a clinical trial is executed 

for groups of patients, for example. To identify whether there is a need for CIG modeling 

constructs supporting multiple instances, more research has to be done addressing the nature 

of the clinical guidelines requirements. 
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Since CIG languages do not offer substantially more control-flow constructs than 

business process modeling languages, the medical community might rethink the use of more 

general formalisms and tools, which have formal foundation and have been widely tested and 

used in industry, for expressing control flow of guideline models. For instance, the case-

handling system FLOWer [26] offers a high degree of flexibility during the execution of a 

case (i.e., a process instance). FLOWer is based on an "information-driven" approach and 

takes the process as its focal point, whereas traditional workflow management systems are 

based on the routing of activities from work tray to work tray, leading to inflexibility. 

Although FLOWer suggests which steps have to be performed according to the modeled 

process description, a user is able to execute any task from the given list, even to re-execute 

some of them. This may be very useful for clinicians who are using guideline and disagree with 

the advice provided by the CIG because they think that their patient's case was not considered by 

the developers of the CIG or that new evidence suggests other treatment option. We note that 

some of the CIG execution engines (e.g., GLIF's execution engine GLEE) support execution of 

any task that is defined in the CIG, at any point in time, if the user wishes to do so. Yet, this 

execution semantics is not part of the semantics defined for the GLIF language. 

In addition to the set of constructs discussed in this paper, the medical community may 

also consider using configurable modeling constructs, found in business process formalisms 

[27]. A CIG developed by one organization can be locally adjusted by another organization 

by using configurable modeling constructs. Such configurable constructs enable specifying 

ahead of time what part of a model can be configured and how. For instance, a choice 

between various kinds of tests performed by a laboratory can be configured to a choice 

between a blood analysis and urine analysis that are performed by an assistant of a family 

doctor. This is very important, as some changes that are made locally could violate the 

purpose of the guideline and it is therefore important to define what changes should be 

permitted. 
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Another area that has been developing in the business process community and could 

benefit the CIG community (especially if it would adopt a workflow-based semantics of 

process models) is the area of process mining [28]. Mining logs of executed events (e.g., 

medication ordering, patient referrals) can be used to discover the actual workflow of patient 

care and how it deviates from a CIGs process model. 

The results of the evaluation presented in this paper could be used to clarify language 

specifications. Moreover, the evaluation results can be used as a means for comparing the 

capabilities of the languages to express the control-flow patterns and for selecting an 

appropriate modeling language. For instance, medical organizations, who plan to automate 

their processes and improve the quality of care by employing CIGs may match the list of their 

requirements against the results of the pattern-based evaluation. For example, if an 

organization requires exclusive execution of activities in non-predefined order, then Asbru 

might be chosen, since no other language from the evaluated ones offers these feature (see 

pattern 17). If a requirement is to incorporate transient triggers (pattern 23) then the best 

choice would be PROforma; persistent triggers (pattern 24) are also supported by GLIF. 

PROforma is also a good choice if such requirements as synchronization of variable number 

of paths (pattern 37) or support of milestones (pattern 18) are important. The Milestone pattern 

is important for modeling medical guidelines. For example, in a cancer protocol, two treatment 

strategies could be used: a surgery or medication. A surgery may be performed only if 

medication cannot be prescribed or it does not help. Checking the state of medication affect 

before enabling the surgery could be done by means of the Milestone pattern. GLIF or EON 

could be a language of choice if flexibility in the structure of a guideline is required (they 

support Arbitrary Cycles pattern). 

The analysis we performed and reported in this paper has several limitations. It 

concentrates only on the control-flow aspect of the guideline formalisms and does not take 
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into consideration other aspects such as data and resources. Furthermore, the evaluation has 

been performed on the limited set of the languages. In particular, a couple of formalisms that 

are recognized as standards, e.g. Arden syntax and GEM, were not included in the study. 

Note that Arden syntax has been excluded since it is used to model individual decisions (not 

guidelines that unfold over time). GEM is focused on the guideline DOCUMENT model – 

structuring the evidence statements and the decision variable. GEM permits to markup text as 

imperative recommendations or as parts of decisions tables; at the same time it misses the 

logic of a guideline that unfolds over time. 

VI. Conclusions 

From a flow-control perspective, the Asbru, EON, GLIF3.5 and PROforma CIG languages 

are very similar to the process languages of workflow management systems, although they do 

not make use of many of the workflow patterns in such systems.   The additional workflow 

patterns supported by process languages of workflow management systems may be useful for 

clinical guideline applications.  A suitable CIG can be selected for a specific modeling and 

execution task on the basis of pattern-based requirements.  . 
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Appendix 1. Main concepts of CIG modeling languages 

We introduce the main concepts of CIG modeling languages by modeling the following 

patient diagnosis scenario in the corresponding tools. 

A patient is registered at a hospital, after which he consults a doctor. The doctor directs the 

patient to take a blood test and a urine test. When the results of both tests become available, 

the doctor determines the diagnosis and defines the treatment strategy. 

Figure 1 presents the scenario modeled in AsbruView [29]. AsbruView is one among 

several tools (Delt/A [30,31], URUZ [32,33], and CareVis [34,35]) that were developed to 

support authoring of guidelines in Asbru [31]. A process model in Asbru [35] is represented 

by means of a time-oriented skeletal plan. The root plan (marked as Plan A) is composed of a 

set of other plans. The plans are represented as three-dimensional objects, where the width 

represents the time axis, the depth represents plans on the same level of the decomposition 

(i.e., that are performed in parallel), and the height represents the decomposition of plans into 

sub-plans. Parent plans are considered to be completed when all mandatory sub-plans are 

completed. Enabling, completion, resumption and abortion conditions can be specified for 

each plan, if necessary. As the time axis shows, plans Register patient, Consult with doctor, 

Test phase, and Define the treatment are executed sequentially. The Test phase plan is a 

parallel plan consisting of two activities: ask for urine test and ask for blood test. In this 

model, we used only two types of plans: sequential (root plan) and parallel plan (Test phase 

plan). AsbruView permits to visualize also Any-order Plan, Unordered Plan, Cyclical Plan, 

and If-then-else Plan, and two types of actions: Ask and Variable Assignment. 

An EON model of the patient-diagnosis scenario created in the Protege-2000 

environment is illustrated in Figure 2. Protege-2000 is an ontology-editor and knowledge-

base framework (cf. http://protege.stanford.edu). The main modeling entities in EON [36] are 

scenarios, action steps, branching, decisions, and synchronization [37,3]. A scenario is used 

http://protege.stanford.edu/
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to characterize the state of a patient. There are two types of Decision steps in EON, i.e. a 

Case step and a Choice step, which allow exactly one path or more to be selected 

respectively. An Action step is used to specify a set of action specifications or a sub-guideline 

that are to be carried out. Branch and Synchronization steps are used to specify parallel 

execution. 

GLIF3.5 [4] is a specification method for structured representation of guidelines. To 

create a model in GLIF, an ontology schema and a graph widget have to be loaded into the 

Protege-2000 environment. Figure 3 visualizes the GLIF model of the patient-diagnosis 

scenario. In GLIF3.5, five main modeling entities are used for process modeling, i.e. an 

Action Step, a Branch Step, a Decision Step, a Patient-State Step, and a Synchronization 

Step. An Action Step is a block used to specify a set of tasks to be performed, without 

constraints set on the execution order. It allows sub-guidelines to be included into the model. 

Decision steps, combining a Case Step and a Choice Step from GLIF 3.4, are used for 

conditional and unconditional (user-selected) routing of the flow to one out of multiple steps. 

Branch and Synchronization steps are used for modeling concurrent steps and 

synchronization of the parallel branches respectively. A Patient-State Step is a guideline step 

used for describing a patient state and for specifying an entry point(s) to a guideline. 

PROforma [39] is a formal knowledge representation language for authoring, 

publishing and executing clinical guidelines. It deliberately supports a minimal set of 

modeling constructs: actions, compound plans, decisions, and enquiries that can be used as 

tasks in a task network. In addition, a keystone may be used to denote a generic task in a task 

network. All tasks share attributes describing goals, control flow, pre-conditions, and post-

conditions. A model of the patient-diagnosis scenario, created in Tallis, is shown in Figure 4. 

Note that in PROforma, control-flow behavior is captured by modeling constructs in 

combination with scheduling constraints. Scheduling constraints are visualized as arrows 
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connecting two tasks, meaning that the task at the tail of the arrow may become enabled only 

after the task at the head of the arrow has completed. 

The current evaluation can be considered as complementary to several comparisons 

[15,40, 36,9].Wang et al. [9] have reviewed and compared formal methods for CIG 

specification focusing mainly on guideline representation primitives, process models and 

their relationship with a patient’s clinical status. Tu and Musen [36] focused on the 

computational methods of the formalisms. De Clercq et al. took a life-cycle approach to 

compare five formalisms for representing guidelines and medical decision rules: Asbru, 

EON, GLIF, PROforma, and the Arden Syntax, examining guideline representation, 

acquisition, verification and execution aspects [40]. Peleg et al. [15] analyzed CIGs by 

examining them against identified by them eight dimensions capturing the conceptual 

components of CIGs: organization of guideline plans, goals, model of guideline actions, 

decision model, expression language, data interpretation/abstractions, medical concept model, 

and patient information model. 

 

Appendix 2. CIG Languages Support of Workflow 

Patterns 

The results reported in this Appendix refer to the numbering used in Table 2. We explicitly 

elaborate on patterns that received different ratings by the examined languages (i.e., patterns 

which are supported only by a sub-set of the examined languages), which underline the 

weaknesses and strengths of these languages essential for understanding of the paper. We 

provide the full set of results in an online source [24]. 

Basic Control-flow Patterns 
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The basic control-flow patterns define elementary aspects of process control: Sequence, 

Parallel Split, Synchronization, Exclusive Choice, and Simple Merge. All basic patterns are 

directly supported by the examined languages. We will illustrate the support of these patterns 

along with the description of more complex patterns. 

Advanced Control-flow Patterns 

While the basic control-flow patterns select all parallel paths or just one-of a set of mutually 

exclusive paths, the advanced patterns allow specifying in-between behaviors, where some of 

the paths in a set of paths can be selected for execution and different modes of continuation 

are possible thereafter. As shown in Table 2, two advanced Branching and Synchronization 

Patterns, Multiple Choice and Structured Discriminator were supported by all of the 

languages while Multiple Merge was not supported by any language. The Structured 

Synchronizing Merge pattern, which received different ratings for support by the examined 

languages, combines the functionality of the Synchronization and Simple Merge patterns 

used for synchronization of parallel and exclusive paths.  

Pattern 7. Structured Synchronizing Merge 

Description The convergence of two or more branches (which diverged earlier in the process 

at a uniquely identifiable point) into a single subsequent branch. The thread of control is 

passed to the subsequent branch when each active incoming branch has been enabled. 

PROforma supports this pattern via task precondition and antecedent tasks property 

specifying tasks that must be completed or discarded before this one starts. In fact, an action 

block used for synchronizing multiple branches would only be executed after all incoming 

tasks were either completed or discarded.  

Asbru supports this pattern indirectly. If the branches for merging were modeled as an 

if-then-else statement, the merge occurs before the next step after if-then-else is performed. If 

the branches were implemented as sub-plans of a certain plan (using plan-ordering parallel or 



Mulyar    A Pattern-based Analysis of CIG Modeling Languages       Page 19 of 45 pages 

unordered), the merge occurs when the continuation condition (specified in element wait-for) 

is fulfilled. The timing of the merge can be influenced via time-annotations for each plan-

activation of sub-plans, both to delay it and enforce a time limit. In other words, the duration 

of waiting for completion of incoming tasks by the merge has to be specified. Only the inputs 

which arrived before the timeout occurred will be merged. 

EON does not support this pattern. The only possibility for synchronization in EON is 

to use the Synchronization Step is in the mode wait-for-all or proceed-after-one, thus giving 

no option for synchronizing of a variable number of branches. GLIF also does not support 

this pattern since it does not keep track of activated branches.  

Structural Patterns 

Structural patterns such as Arbitrary cycles and Implicit termination identify whether the 

modeling formalism has any restrictions regarding the structure of the processes. We discuss 

the Arbitrary Cycles pattern below. Implicit termination is supported by all of the languages. 

Pattern 10. Arbitrary Cycles 

Description The ability to represent cycles in a process model that have more than one entry 

or exit point. 

Only GLIF and EON support this pattern. In GLIF it is possible to specify multiple 

entry or end-points to a loop (see Figure 5). In addition, it is possible to specify iterations of 

action and decision steps using an iteration expression that specifies the iteration frequency, 

along with stopping and abort conditions that terminate the loop.  Similar structures can be 

realized in EON. Asbru supports only structured loops (i.e., without multiple entry and exit 

points) by means of a cyclical plan (see Figure 6). PROforma prohibits modeling arbitrary 

cycles to prevent a model from deadlocking. Note, however, that all analyzed languages 

allow for modeling of the structured loops (also known as while-do and repeat-until 

constructs of pattern 21). 
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Multiple Instances Patterns 

The Multiple Instances (MI) patterns refer to situations where several instances of a task can 

be active concurrently in the same case. None of the examined languages offers a direct 

support for these patterns; therefore we omit the discussion of patterns related to them. 

State-based Patterns 

The state-based patterns characterize scenarios in a process where subsequent execution is 

determined by the state of the process instance. There are three such patterns: Deferred 

Choice, Interleaved Parallel Routing and Milestone. We discuss the Interleaved parallel 

Routing pattern in the context of the Critical Section pattern (#39), which is a more complex 

pattern variant of it. The two other state-based patterns are described below. 

Pattern 16. Deferred Choice 

Description A point in a workflow process where one of several branches is chosen based on 

interaction with the operating environment. Prior to the decision, all branches present 

possible future courses of execution. After the decision is made, execution alternatives in 

branches other than the one selected are withdrawn.  

From the analyzed specifications, Asbru, GLIF, and PROforma support this pattern. 

Asbru implements this pattern via the any-order plan in conjunction with the continuation 

specification wait-for-one and the flag confirmation required in the filter-condition of the 

sub-plans. In this case, all sub-plans are presented to the user who selects one sub-plan. As 

soon as this sub-plan is activated (in response to the user’s selection) the other sub-plans 

cannot be activated any more (because of the mechanism of any-order plan). As soon as the 

selected sub-plan is completed, the parent plan completes, because it was only waiting for 

one sub-plan to complete. Thus, the not selected plans cannot be selected later.  

GLIF supports this pattern by a Decision Step with no conditions specified on the 

outgoing arcs. When multiple options are presented to a user, recommendations for selecting 
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or declining the presented options are given to the user. The recommendations for the 

decision may involve rule-in, rule-out, strict-rule-in and strict-rule-out properties. These 

properties contain a set of conditions which has to be satisfied in order to suggest which 

candidate to select and which to decline. 

PROforma supports this pattern by a Decision plan in which choice is made by an 

end-user between different candidates. The selection of a candidate is driven by an argument 

in the form of the truth-valued expression and support offered to the candidate if the 

condition is true. Next to this, Decision has recommendation rules which determine whether a 

certain candidate is recommended or not. To make sure that only one candidate from multiple 

available ones will be selected, a selection mode has to be set to single. An end-user may 

select either a recommended or a non-recommended candidate. The result of the Decision 

block used in preconditions of the tasks following this Decision realizes the behavior of the 

Deferred Choice. 

Note that although in EON a Choice Step and the associated Action Choice present 

several choices to a user and the decision as to which option is selected is deferred until the 

user makes his choice, multiple options can be selected, thus the option to execute other 

branches is not immediately withdrawn.   

Pattern 18. Milestone 

Description An activity is only enabled when the process instance (or which it is part) is in a 

specific state. The state is assumed to be a specific execution point (also known as a 

milestone) in the process model. When this execution point is reached, the nominated activity 

can be enabled. If the process instance has progressed beyond this state, then the activity 

cannot be enabled now or at any future time (i.e. the deadline has expired). 

PROforma supports this pattern by means of a state trigger that allows checking states 

of activities and values of truth-valued expressions. Asbru does not support this pattern. EON 
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also does not support this pattern, however it allows to represent a state of a patient via 

Scenario, the eligibility conditions of which specify the necessary conditions for a patient to 

be in this scenario. GLIF does not support this pattern directly, however it allows an Action 

Step to be triggered by an event of the following types: end-of-previous step, patient-data-

availability, patient-arrival, or temporal. Similar to EON, GLIF allows for the modeling of a 

Patient State step which denotes the state of the patient. Patient State step is used to denote 

multiple entry points to a guideline model.  

Cancellation Patterns 

There are two so-called cancellation patterns: Cancel Activity and Cancel Case. Cancel 

Activity pattern is supported by all examined offerings. Asbru supports canceling of an 

arbitrary set of tasks whereas other languages support either canceling of a single task or of a 

group of tasks related to each other. 

Pattern 20. Cancel Case 

Description A complete process instance is removed. This includes currently executing 

activities, those which may execute at some future time and all sub-processes. 

Asbru supports this pattern via an abort-condition of a root plan. PROforma supports 

this pattern via an abort condition associated with a plan containing all activities. GLIF 

indirectly supports this pattern. It requires the whole guideline to be placed inside of the 

Action Step, the fulfillment of the abort condition of which would lead to the cancellation of 

the included guideline. EON does not support this pattern. 

New Patterns 

The 23 new control-flow patterns consist of a set of completely new patterns and a number of 

variants of the revised patterns described earlier. Among them are patterns which address the 

concepts such as triggers, path and thread branching and synchronization, and cancellation. 

Only 11 patterns from this category are supported by some of the analyzed languages. We 
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omit the discussion of patterns Cancel Multiple Instance Activity (#26) and Complete 

Multiple Instance Activity (#27) because they relate to the concept of multiple-instances task 

which is not present in of the examined languages. These patterns are supported by some of 

the languages because they offer support for task cancellation and task completion. We 

discuss the support of the Interleaved Routing pattern (#40) by means of its complex pattern 

variant Critical Section (#39). The other 8 patterns are described below. 

Pattern 22. Recursion 

Description The ability of an activity to invoke itself during its execution or an ancestor in 

terms of the overall decomposition hierarchy with which it is associated. 

EON, GLIF and PROforma do not support this pattern. Asbru supports it by a static-

plan pointer invoking itself in an invoking-plan element. 

Pattern 23. Transient Trigger 

Description The ability for an activity to be triggered by a signal from another part of the 

process or from the external environment. These triggers are transient in nature and are lost if 

not acted on immediately by the receiving activity. 

From all examined specifications, only PROforma supports this pattern via an event 

trigger, which brings a task to execution even if scheduling constraints are not met. Since the 

context conditions of this pattern assume that the transient triggers are lost if not acted on 

immediately, and PROforma event triggers always force the execution of tasks and never get 

lost, therefore PROforma supports this pattern partially. 

Pattern 24. Persistent Trigger 

Description The ability for an activity to be triggered by a signal from another part of the 

process or from the external environment. These triggers are persistent in form and are 

retained by the workflow until they can be acted on by the receiving activity. 
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GLIF supports this pattern via Action steps and Decision steps with an attribute 

triggering events (see Figure 7), which specifies the events that trigger the execution of the 

step. During the execution, when the flow reaches a step that has associated triggering events, 

this next step should be executed only after one of its triggering event occurred. If more than 

one triggering event occurs at the same time, then the highest priority event is chosen to 

trigger the step. PROforma supports the pattern via a state trigger. A state trigger is an 

expression that has to be true before the task can be executed. The task remains dormant until 

it becomes true. Asbru and EON do not support this pattern. 

Pattern 29. Canceling Discriminator 

Description The convergence of two or more branches into a single subsequent branch 

following one or more corresponding divergences earlier in the process model. The thread of 

control is passed to the subsequent branch when the first active incoming branch has been 

enabled. Triggering the discriminator also cancels the execution of all of other incoming 

branches and resets the construct. 

Only PROforma and Asbru support this pattern. PROforma supports this pattern via a 

plan which has tasks that are marked as terminal. The plan completes as soon as a first 

terminal task has completed (see Figure 8).  Asbru supports this pattern by means of the 

Propagation Specification (abort-if) to influence the Abort-Condition. 

We describe the support of the Structured N-out-of-M Join pattern which 

automatically supports special case of the 1-out-of-M Join also known as the Structured 

Discriminator pattern (#9). 

Pattern 30. Structured N-out-of-M Join 

Description The convergence of M branches into a single subsequent branch following a 

corresponding divergence earlier in the process model. The thread of control is passed to the 

subsequent branch when N of the incoming branches have been enabled. Subsequent 
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enablement of incoming branches does not result in the thread of control being passed on. 

The join construct resets when all active incoming branches have been enabled. 

Asbru supports the pattern by wait-for-group attribute of a plan that specifies that N 

tasks must complete to continue the execution, the rest of the tasks are out of importance. 

GLIF supports the pattern via a Synchronization step whose continuation attribute allows for 

explicit specification of branches which must complete before a subsequent activity can be 

performed (see Figure 9). PROforma supports this pattern via a plan which has tasks that are 

marked as terminal. Completion of all tasks in any of the specified groups would lead to 

termination of the discriminator and cancellation of active tasks (see Figure 10). Although 

EON supports 1-out-of-M join, it does not support this pattern.   

Pattern 32. Canceling N-out-of-M Join 

Description The convergence of two or more branches into a single subsequent branch 

following one or more corresponding divergences earlier in the process model. The thread of 

control is passed to the subsequent branch when N of the incoming branches have been 

enabled. Triggering the join also cancels the execution of all of the other incoming branches 

and resets the construct. 

None of the examined CIGs except for PROforma support this pattern. PROforma 

supports this pattern directly as described in the Structured N-out-of-M Join pattern.  

Pattern 37. Acyclic Synchronizing Merge 

Description The convergence of two or more branches which diverged earlier in the process 

into a single subsequent branch. The thread of control is passed to the subsequent branch 

when each active incoming branch has been enabled. Where a given branch does not have a 

thread of control passed to it at the divergence, "false" tokens are passed along the branch to 

ensure that the merge construct is able to determine when each of the incoming branches can 
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be synchronized. Clearly, it is only possible to pass false tokens if the split is before the join. 

Therefore, no cycles are possible. 

None of the examined CIGs except PROforma support this pattern. PROforma 

supports this pattern directly via scheduling constraints and the status of the antecedent tasks. 

The patterns Interleaved Parallel Routing (pattern 17), Critical Section (pattern 39), 

and Interleaved Routing (pattern 40) address similar problems; therefore we will describe 

only one of them, i.e., the Critical Section pattern.  

Pattern 39. Critical Section 

Description. Two or more connected subgraphs of a process model are identified as "critical 

sections". At runtime for a given process instance only activities in one of these "critical 

sections" can be active at any given time. Once execution of the activities in one "critical 

section" commences, it must complete before another "critical section" can commence. 

Asbru supports the pattern by Any-Order sub-plans, where critical sections have to be 

included in a body of sub-plans (see Figure 11). GLIF supports this pattern via any_order 

attribute of Branch step. Critical sections have to be included on separate branches. EON and 

PROforma do not support this pattern. 
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Table 1 Terms used by Asbru, EON, GLIF, and PROforma 

Terms Asbru EON  GLIF PROforma 
Process model Plan Guideline Guideline Plan 
Case Instance of Plan Guideline 

Instance 
Guideline 
Instance 

Instance of Plan 

Task/ activity Plan Action Action Action, Enquiry 
 

Parallel branching Plan type Branch and 
Synchronization 

Branch and 
Synchronization 

Action or Enquiry 

Exclusive branching Plan precondition, 
Plan type 

Decision Decision Decision, Enquiry 
and scheduling 
constraints 
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Table 2 Support for the Control–flow Patterns in Asbru, EON, GLIF, and PROforma 

Basic control-flow Asbru EON GLIF PROforma 
1. Sequence + + + + 
2. Parallel Split  + + + + 
3. Synchronization + + + + 
4. Exclusive Choice + + + + 
5. Simple Merge + + + + 
Advanced Branching and Synchronization     
6. Multi-choice + + + + 
7. Structured Synchronizing Merge +/- - - + 
8. Multi-merge - - - - 
9. Structured Discriminator + + + + 
Structural Patterns     
10. Arbitrary Cycles - + + - 
11. Implicit Termination + + + + 
Multiple Instances Patterns     
12. MI without Synchronization - - - - 
13. MI with a priori Design Time Knowledge +/- +/- +/- +/- 
14. MI with a priori Run-Time Knowledge - - - - 
15. MI without a priori Run-Time Knowledge - - - - 
State-Based Patterns     
16. Deferred Choice + - + + 
17. Interleaved Parallel Routing + - - - 
18. Milestone - - - + 
Cancellation Patterns     
19. Cancel Activity + + + + 
20. Cancel Case + - +/- + 
New patterns     
21. Structured Loop + + + + 
22. Recursion + - - - 
23. Transient Trigger - - - + 
24. Persistent Trigger - - + + 
25. Cancel Region - - - - 
26. Cancel Multiple Instance Activity + - + + 
27. Complete Multiple Instance Activity  + - - + 
28. Blocking Discriminator - - - - 
29. Canceling Discriminator  + - - + 
30. Structured N-out-of-M Join + - + + 
31. Blocking N-out-of-M Join - - - - 
32. Canceling N-out-of-M Join - - - + 
33. Generalized AND-Join - - - - 
34. Static N-out-of-M Join for MIs - - - - 
35. Static N-out-of-M Join for MIs with Cancellation - - - - 
36. Dynamic N-out-of-M Join for MIs - - - - 
37. Acyclic Synchronizing Merge - - - + 
38. General Synchronizing Merge - - - - 
39. Critical Section + - + - 
40. Interleaved Routing + - + - 
41. Thread Merge - - - - 
42. Thread Split - - - - 
43. Explicit Termination - - - - 

 (+) : full support; (+/-): partial support, (-) : no support. MI – Multiple Instances 
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Table 3 Description of pattern categories 

Category name Description 

Basic control-flow patterns Patterns describing elementary aspects of process control: 
Sequence, Parallel Split, Synchronization, Exclusive Choice, 
and Simple Merge 

Advanced Branching and Synchronization Patterns describing in-between behaviors, where some of the 
paths in a set of paths can be selected for execution and 
different modes of continuation are possible thereafter 

Structural Patterns Structural patterns identify whether the modeling formalism has 
any restrictions regarding the structure of the processes 

Multiple Instances Patterns Patterns that refer to situations where several instances of a task 
can be active concurrently in the same case 

State-Based Patterns Patterns characterizing scenarios in a process where subsequent 
execution is determined by the state of the process instance 

Cancellation Patterns Patterns refer to the situation where either a single task  or a 
group of tasks have to be cancelled in a model 

New patterns A set of new patterns and the revised variants of patterns in the 
above-introduced categories which address the concepts such as 
triggers, path and thread branching and synchronization, and 
cancellation. 
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Parallel 
plans Sequential plan 

Figure 1 The patient-diagnosis scenario modeled in AsbruView 
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Branch_Step Synchronization_Step
 

Figure 2 The patient-diagnosis scenario modeled in EON/Protege 
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Figure 3 The patient-diagnosis scenario modeled in GLIF3.5/Protege 
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Action
Enquiry Plan Decision
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Figure 4 The patient-diagnosis scenario modeled in PROforma/Tallis 
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Figure 5 Specification of the Arbitrary Cycles in GLIF3.5/Protege 
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Figure 6 Specification of the Structured Loop in Asbru/AsbruView 
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Figure 7 Specification of the Persistent Trigger in GLIF3.5 
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Figure 8 Specification of the Canceling Discriminator in PROforma/Tallis 
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Figure 9 Specification of the Structured N-out-of-M join in GLIF3.5/Protégé 
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Figure 10 Specification of the Structured N-out-of-M join in PROforma/Tallis 
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Figure 11 Specification of Critical Section in Asbru/AsbruView 
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