
Conformance Checking of Processes Based on
Monitoring Real Behavior

A. Rozinat and W.M.P. van der Aalst

Group of Information Systems, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{a.rozinat,w.m.p.v.d.aalst}@tue.nl

Abstract. Many companies have adopted Process-aware Information
Systems (PAIS) to support their business processes in some form. On
the one hand these systems typically log events (e.g., in transaction logs
or audit trails) related to the actual business process executions. On the
other hand explicit process models describing how the business process
should (or is expected to) be executed are frequently available. Together
with the data recorded in the log, this situation raises the interesting
question “Do the model and the log conform to each other?”. Confor-
mance checking, also referred to as conformance analysis, aims at the
detection of inconsistencies between a process model and its correspond-
ing execution log, and their quantification by the formation of metrics.
This paper proposes an incremental approach to check the conformance
of a process model and an event log. First of all, the fitness between the
log and the model is measured (i.e., “Does the observed process comply
with the control flow specified by the process model?”). Second, the ap-
propriateness of the model can be analyzed with respect to the log (i.e.,
“Does the model describe the observed process in a suitable way?”). Ap-
propriateness can be evaluated from both a structural and a behavioral
perspective. To operationalize the ideas presented in this paper a Con-
formance Checker has been implemented within the ProM framework,
and it has been evaluated using artificial and real-life event logs.

1 Introduction

New legislation such as the Sarbanes-Oxley (SOX) Act [33] and increased empha-
sis on corporate governance and operational efficiency have triggered the need
for improved auditing systems. To audit an organization, business activities need
to be monitored. Buzzwords such as BAM (Business Activity Monitoring), BOM
(Business Operations Management), BPI (Business Process Intelligence) illus-
trate the interest of vendors to support the monitoring and analysis of business
activities. The close monitoring of processes can be seen as a second wave fol-
lowing the wave of business process modeling and simulation. In the first wave
the emphasis was on constructing process models and analyzing them, illus-
trated by the many notations available (e.g., Petri nets, UML activity diagrams,
EPCs, IDEF, BPMN, and not to mention the vendor or system specific nota-
tions). This development has created the interesting situation where processes

2

are being monitored while at the same time there are process models describing
these processes. The focus of this paper is on conformance, i.e., “Is there a good
match between the recorded events and the model?”. A term that could be used
in this context is “business alignment”, i.e., are the real process (reflected by the
log) and the process model (e.g., used to configure the system) aligned properly.
Consider also Figure 1, where conformance checking is positioned in the broader
context of process mining techniques. While discovery aims at the automatic
extraction of a process model from log data, conformance checking is concerned
with the comparison of an existing process model and a corresponding log. As
soon as one is confident in the conformance of the model and the log, extension
techniques can be used to project diagnostic information derived from the log
onto the model (for example, to visualize performance bottlenecks in the process
model).

Process
model

Event
logs

Information
system

Operational
process

models

configures /
implements

records

supports /
controls

discovery

conformance

extension

Fig. 1. Conformance checking in the broader context of process mining

Most information systems, e.g., WFM, ERP, CRM, SCM, and B2B systems,
provide some kind of event log (also referred to as transaction log or audit
trail) [9]. Typically such an event log registers the start and/or completion of
activities. Every event refers to a case (i.e., process instance) and an activity,
and, in most systems, also a timestamp, a performer, and some additional data.
In this paper, we only use the first two attributes of an event, i.e., the identity of
the case and the name of the activity. Meanwhile, any organization documents
its processes in some form. The reasons for making these process models are
manifold. Process models are used for communication, ISO 9000 certification,
system configuration, analysis, simulation, etc. A process model may be of a
descriptive or of a prescriptive nature. Descriptive models try to capture existing
processes without being normative. As an example, in a hospital process it must
be possible to react to urgent situations and, therefore, the flexibility to diverge
from the normal flow of actions is crucial. Another example could be a model
that was made to document a certain procedure in a financial system (which logs
events of the activities that were executed without being driven by an explicit

3

process model). Clearly, it is desirable to keep this model aligned with the actual
procedure in the financial system using regular conformance checking techniques.
Prescriptive models describe the way that processes should be executed. In a
Workflow Management (WFM) system prescriptive models are used to enforce
a particular way of working using IT [5]. However, as shown in one of the case
studies presented later in this paper, users may need to deviate even if they
work with prescriptive models in a rigid WFM system. Furthermore, in most
situations prescriptive models are not used directly by the information system.
For example, the reference models in the context of SAP R/3 [23] and ARIS [34]
describe the “preferred” way processes should be executed. People actually using
SAP R/3 may deviate from these reference models. Finally, even if the process
model and the event log are fully compliant, it is often interesting to see how
frequent certain parts in the model are actually used, and to potentially remove
obsolete parts which otherwise would need to be maintained.

In this paper, we will use Petri nets [17] to model processes. Although the
metrics are based on the Petri net approach, the results of this paper can be ap-
plied to any modeling language that can be equipped with executable semantics.
An event log is represented by a set of event sequences, also referred to as traces.
Each case in the log refers to one sequence. The most dominant requirement for
conformance is fitness. An event log and Petri net “fit” if the Petri net can
generate each trace in the log. In other words: the Petri net should be able to
“parse” every event sequence. We will show that it is possible to quantify fitness,
e.g., an event log and Petri net may have a fitness of 0.66. Unfortunately, a good
fitness does not imply conformance. As we will show, it is easy to construct Petri
nets that are able to parse any event log. Although such Petri nets have a fit-
ness of 1 they do not provide meaningful information. Therefore, we introduce a
second dimension: appropriateness. Appropriateness tries to capture the idea
of Occam’s razor, i.e., “one should not increase, beyond what is necessary, the
number of entities required to explain anything”. Clearly, this dimension is not
as easy to quantify as fitness. We will distinguish between structural appropriate-
ness (if a simple model can explain the log, why choose a complicated one) and
behavioral appropriateness (the model should not be too generic and allow for
too much behavior). Using examples, we will show that both the structural and
behavioral aspects need to be considered to measure appropriateness adequately.

To actually measure conformance, we have developed a tool called Confor-
mance Checker. It is part of the ProM framework1, which offers a wide range of
tools related to process mining, i.e., extracting information from event logs [9].

This paper extends an earlier paper on conformance [32]. In this paper we
give explicit definitions of metrics, present new metrics, describe the implemen-
tation and present applications of the approach. The remainder of the paper is
organized as follows. Section 2 introduces a running example that will be used
to illustrate the concept of conformance, and provides the preliminaries that are
needed to understand the concepts introduced later on. Section 3 discusses the

1 Both documentation and software (including the source code) can be downloaded
from http://www.processmining.org.

4

need for two dimensions. The fitness dimension is described in Section 4, the ap-
propriateness dimension is elaborated in Section 5, and Section 6 evaluates how
these dimensions can be combined. Next, Section 7 shows how these properties
can be verified using the Conformance Checker in ProM, and discusses some
implementation details. Then, Section 8 describes two different applications of
the presented conformance checking techniques. Finally, some related work is
discussed, and the paper is concluded.

2 Preliminaries

This section introduces a running example that will be used to illustrate the
concept of conformance, and explains three basic concepts that are needed to
understand the conformance checking techniques defined later in this paper,
namely Petri nets (Section 2.1), event logs (Section 2.2), and the mapping be-
tween them (Section 2.3).

2.1 Petri Nets

The example process used throughout the paper concerns the processing of a
liability claim within an insurance company. Figure 2 shows a Petri net [17]
model of this liability claim handling procedure. It sketches a fictive (but pos-
sible real-world) procedure and exhibits typical control flow constructs that are
relevant in the context of conformance checking.

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G

c6

H

c5

c7
c8

Set
Checkpoint

Set
Checkpoint

Register as
Low-value Claim

Check
Policy

Complete
Low-value Claim

Complete
High-value Claim

Check
Liability

Consult
Expert

Register as
High-value Claim

Process Model M1

Fig. 2. Simplified model of processing a liability insurance claim

A Petri net is a dynamic structure that consists of a set of transitions, which
are indicated by boxes and relate to some task, or action that can be executed,
a set of places, which are indicated by circles and may hold one or more tokens
(indicated as black dots), and a set of directed arcs that connect these transitions
and places with each other in a bipartite manner. Transitions are enabled as soon
as all of their input places (places connected to this transition via an incoming
arc) contain a token. If a transition is enabled, it may fire whereas it consumes

5

a token from each of its input places and produces a token for each of its output
places (places connected to this transition via an outgoing arc). This way, the
firing of a transition may change the marking of a net, and therefore the state
of the process, which is defined by the distribution of tokens over the places. In
the following we explain how the Petri net model in Figure 2 can be interpreted.

At first, there are two tasks bearing the same label “Set Checkpoint” (we use
A as a shorthand to refer to this label). This can be thought of as an automatic
backup action within the context of a transactional system, i.e., activity A is
carried out at the beginning to define a rollback point enabling atomicity of
the whole process, and at the end to ensure durability of the results. Then the
actual business process is started with the distinction of low-value claims and
high-value claims, which get registered differently (B or C). The policy of the
client is always checked (D) but in the case of a high-value claim, additionally,
the consultation of an expert takes place (G), and then the filed liability claim
is being checked in more detail (H). The two completion tasks E and F can be
thought of as two different sub-processes involving decision making and potential
payment, taking place in another department. Note that the choice between E
and F is influenced by the former choice between B and C (i.e., the model does
not belong to the class of free-choice nets [16]).

In the remainder of this paper we assume that each process model belongs to
a well-investigated subclass of Petri nets that is typically used to model business
processes, which is the class of sound WF-nets [5]. A WF-net requires the Petri
net to have (i) a single Start place, (ii) a single End place, and (iii) every node
must be on some path from Start to End, i.e., the process is expected to define
a dedicated begin and end point and there should be no “dangling” tasks in
between. The soundness property further requires that (iv) each task can be po-
tentially executed (i.e., there are no dead tasks), and (v) that the process—with
only a single token in the Start place—can always terminate properly (i.e., finish
with only a single token in the End place). Note that the soundness property
guarantees the absence of deadlocks and live-locks.

2.2 Event Logs

We assume that process executions are recorded in an event log. Events in the log
are only expected to (i) refer to an activity from the business process, (ii) refer to
a case (i.e., process instance), and (iii) be totally ordered. Figure 3 shows three
example logs for the process described in Figure 2 at an aggregate level. This
means that process instances (i.e., sequences of log events grouped according to
the Case ID) that exhibit the same event sequence are combined as a logical log
trace, which stores the number of combined instances to weigh the importance of
each trace. This is possible because only the control flow perspective is considered
here. In a different setting like, e.g., mining social networks [8], the resources
performing an activity would distinguish those instances from each other.

Note that none of the logs contains the sequence ACGHDFA, although the
Petri net model would allow this. In fact it is highly probable that a log does
not exhibit all possible sequences, since, e.g., the duration of activities or the

6

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

No. of Instances Log Traces

24
7
15
6
1
8

BDE
AABHF

CHF
ADBE

ACBGDFAA
ABEDA

No. of Instances Log Traces

4070
245
56

ABDEA
ACDGHFA
ACGDHFA

(a) Event Log L1 (b) Event Log L2 (c) Event Log L3

Fig. 3. Three logs for the process described in Figure 2: No. of Instances indicates
the frequency, and Log Traces the actual event sequence for each trace. For example:
event log L1 contains 4070 cases following the sequence ABDEA, i.e., first A (“Set
Checkpoint”) is executed, then B, etc.

availability of suitable resources may render some sequences very unlikely to oc-
cur. With respect to the example model one could think of task D as a standard
task that can be performed by anyone in a short time period and task G and
H as highly specialized and time-consuming checks, so that finishing G and H
before D would be possible but practically may not happen. Note that, further-
more, the number of possible sequences generated by a process model may grow
exponentially, in particular for a model containing concurrent behavior. For ex-
ample, there are 5! = 120 possible combinations for executing five tasks, and
8! = 40320 for executing eight tasks that are parallel to each other. Therefore,
an event log cannot be expected to exhibit all possible sequences of the underly-
ing behavioral model. Process mining techniques strive for weakening the notion
of completeness, i.e., the amount of information a log needs to contain to be able
to rediscover the underlying process model [11].

2.3 Mapping

A prerequisite for conformance analysis is that the tasks in the process model
must be associated with the logged events, which we represent by a label denoting
the associated log event type (if any) for each task in the model. Besides the
simple 1-to-1 mapping, where a task is associated with exactly one type of log
event and no other task in the model is associated with the same type of log
event, a mapping may result in the following constructs:

Duplicate Tasks Multiple tasks in the model are associated with the same
type of log event, which means that they may be different but their oc-
currence cannot be distinguished in the log. Note that duplicate tasks only
emerge from the mapping, since the tasks of a process model themselves are
distinguishable (be it not by means of their label but their identity, or unique
position in the graph). In the example process model in Figure 2 there are
two tasks that bear the same label “Set Checkpoint”. They are duplicate
tasks.

Invisible Tasks Tasks are not logged and, therefore, have no log event asso-
ciated (in contrast, tasks that are logged are called visible tasks). This can

7

happen because certain steps in the process might not be observable (such
as a telephone call). Invisible tasks can also be introduced for routing pur-
poses. In the remainder of this paper invisible tasks are denoted as small
tasks filled with black color.

Note that, although activities in real business scenarios are often logged at a
more fine-grained level—they record, for example, the scheduling, the start, and
the completion of an activity—we assume that a task is associated to at most one
type of log event (typically this corresponds to a complete2 event) to keep the
approach as universal as possible. We assume further that all log events that are
not associated to any task in the model are removed before starting the analysis.
In principle, this is a reasonable choice as the log could be at a different level
of granularity than the model (e.g., contain not only complete but also start
events, or error codes and system status messages), and we deliberately want
to abstract from these more low-level events. Note that, however, this might
be problematic in the context of adaptive workflow management systems such
as ADEPT [30], where, for example, additional activities can be inserted for a
process instance. More research is needed to specifically consider conformance
in adaptive workflow management.

However, we can define the following auxiliary metrics, which indicate the
degree of overlap from a log-based and a model-based perspective, respectively.

Metric 1 (Log Coverage) Given a set of log entries E, a set of tasks T , and
a set of labels L, let lE ∈ E → L, lT ∈ T 6→ L, TV = dom(lT), LT = {lT (t) | t ∈
TV }, and LE = {lE(e) | e ∈ E}. The log coverage metrics cE and cLE are defined
as follows:

cE =
|{e ∈ E | lE(e) ∈ LT }|

|E| (1)

cLE =
|LE ∩ LT |
|LE | (2)

Note that because not every task in the model needs to be associated with
a label (invisible tasks are unlabeled), the mapping between tasks and labels is
represented by a partial function (6→). Therefore, the subset of tasks that are
labeled (i.e., they are in the domain of lT) is precisely the set of visible tasks
(i.e., TV = dom(lT)). LE and LT denote the set of labels covered by the log and
the model, respectively.

If we assume that |E| > 0 and |LE | > 0, then these metrics range from 0
(in the case that none of the log entries is associated to any task in the model)
to 1 (when every log entry is associated to at least one task in the model).
Note that the metric cE really quantifies the overlap on the log entry level, i.e.,
if, for example, only one type of log entry is not covered by the model but it
2 The life cycle of an activity has been standardized by the MXML format for workflow

logs, which is used by the ProM framework (refer to http://www.processmining.org
for further information and the schema definition).

8

happens very often in the log, then this metric will reflect this, whereas metric
cLE measures the degree of overlap with respect to the types of log entries only.

Metric 2 (Model Coverage) Given a set of log entries E, a set of tasks T ,
and a set of labels L, let lE ∈ E → L, lT ∈ T 6→ L, TV = dom(lT), LT =
{lT (t) | t ∈ TV }, and LE = {lE(e) | e ∈ E}. The model coverage metrics cT and
cLT are defined as follows:

cT =
|{t ∈ TV | lT (t) ∈ LE}|

|TV | (3)

cLT =
|LT ∩ LE |
|LT | (4)

If we assume that |TV | > 0 and |LT | > 0, then these metrics range from 0 (in
the case that every visible task in the model did not occur at all in the log) to 1
(in the case that each visible task occurred at least once in the log). Note that
the metric cT quantifies the overlap on the task (or transition) level, whereas
metric cLT measures the degree of overlap with respect to the different types of
task labels only (i.e., it is abstracted from duplicate tasks).

3 Two Dimensions of Conformance: Fitness and
Appropriateness

The most dominant question in the context of conformance is whether the real
business process complies with the specified behavior, i.e., whether the log fits
the model. With respect to the example model M1 in Figure 2 this seems to
apply for event log L1, since every log trace can be associated with a valid path
from Start to End. In contrast, event log L2 does not match completely because
the traces ACHDFA and ACDHFA lack the execution of activity G, while event
log L3 does not even contain one trace corresponding to the specified behavior.
Somehow, L3 seems to fit “worse” than L2, and we want to measure the degree
of fitness according to this intuitive notion of conformance.

But there is another interesting—rather qualitative—dimension of confor-
mance, which can be illustrated by relating event log L2 to the process models
M2 and M3, which are shown in Figure 4(a) and Figure 4(b). Although the log
fits well with respect to both models, i.e., the event streams of the log and the
model can be matched perfectly, they do not seem to be appropriate in describing
the insurance claim administration.

The first model is much too generic as it covers a lot of extra behavior; it
allows for arbitrary sequences containing the activities A, B, C, D, E, F, G, or H.
The latter does not allow for more sequences than those that were observed in
the log, but it only lists the possible sequences instead of expressing the specified
behavior in a meaningful way. Therefore, it does not offer a better understand-
ing than can be obtained by just looking at the aggregated log. We claim that a
“good” process model should somehow be minimal in structure to clearly reflect

9

B

D

E

G

H

A

F

C

Process Model M2

A C G D H F A

A

A

C H D F A

A C D H F A

A C D G H F A

B D E A

Process Model M3

(a) Workflow model on a too high
level of abstraction (i.e., too generic)

(b) Workflow model on a too low level of abstraction
(i.e., too specific)

Fig. 4. Fitting models do not need to be a good representation of the observed behavior

the described behavior, in the following referred to as structural appropriateness,
and minimal in behavior to represent as closely as possible what actually takes
place, which will be called behavioral appropriateness.

As we have seen, conformance checking demands for two different types of
metrics, which are:

– Fitness, i.e., the extent to which the log traces can be associated with valid
execution paths specified by the process model, and

– Appropriateness, i.e., the degree of accuracy in which the process model
describes the observed behavior, combined with the degree of clarity in which
it is represented.

In the next two sections our goal is to develop conformance checking tech-
niques that enable a business analyst to both (a) measure these two dimensions
of conformance and (b) locate potential points of improvement:

(a) Metrics are important to estimate the severity of potential deviations, and
to compare different model-log combinations with each other. Therefore, we want
to define these metrics so that they are stable, i.e., as little as possible affected by
properties that are not relevant, and analyzable, which in general relates to the
scale type of a metric (such as nominal, ordinal, interval, or ratio scale). Note
that, for example, the existence of a ratio scale enables propositions like model
A is “twice as appropriate” as model B (with respect to a certain log) rather
than only saying that the first model is “better” than the second [24]. However,
an in-depth scale type discussion of the presented metrics is beyond the scope of
this paper. In the context of conformance checking, it is especially desirable that
the value of a metric indicates whether there is room for improvement, i.e., that
it reaches some optimal value as soon as no better “match” would be possible.

(b) The localization of errors is crucial as otherwise it is not possible to gain
more insight into a problem, and to issue potential alignment actions.

Note that a perceived conformance problem can always be viewed from two
angles. First of all, the model may be assumed to be “correct” because it rep-
resents the way the business process should be carried out. Therefore, it might,

10

for example, trigger actions to enforce the specified behavior. Second, the event
log may be assumed to be “correct” because it is what really happened, and the
process model might be either outdated or just not tailored to the needs of the
employees actually performing the tasks. Highlighting this issue facilitates the
redesign of the model and therefore increases transparency. In any case, a final
interpretation can only be given by a domain expert. But even if the model and
the log do conform to each other, this can be an important insight as it increases
the confidence in the existing process model. A model validated through confor-
mance checking may be the starting point for other types of analysis. Moreover,
quantitative data extracted from the log may be projected on the model (e.g.,
frequencies, probabilities, bottlenecks, etc.).

4 Measuring Fitness

One way to measure the fit between event logs and process models is to replay
the log in the model and somehow measure the mismatch, which subsequently
is described in more detail. The replay of every logical log trace starts with the
marking of the initial place in the model. Then, the transitions that belong to the
logged events in the trace are fired one after another. While replay progresses,
we count the number of tokens that had to be created artificially (i.e., the tran-
sition belonging to the logged event was not enabled and therefore could not
be successfully executed) and the number of tokens that were left in the model,
which indicate that the process was not properly completed.

Metric 3 (Fitness) Let k be the number of different traces from the aggregated
log. For each log trace i (1 ≤ i ≤ k), ni is the number of process instances
combined into the current trace, mi is the number of missing tokens, ri is the
number of remaining tokens, ci is the number of consumed tokens, and pi is the
number of produced tokens during log replay of the current trace. The token-based
fitness metric f is defined as follows:

f =
1
2
(1−

∑k
i=1 nimi∑k
i=1 nici

) +
1
2
(1−

∑k
i=1 niri∑k
i=1 nipi

)

Note that, for all i, mi ≤ ci and ri ≤ pi, and therefore 0 ≤ f ≤ 1. Note
also that ci and pi cannot be 0 because during log replay there will be always at
least one token produced for the Start place and one token consumed from the
End place. To have a closer look at the log replay procedure consider Figure 5,
which depicts the replay of the first trace from event log L2 in process model
M1. At the beginning (a) one initial token is produced for the Start place of
the model. Initially, m = 0 (no missing tokens), r = 0 (no remaining tokens),
c = 0 (no consumed tokens), and p = 1 (prior to the execution of A a token
is put into place Start). The first log event in the trace, A, is associated with
two transitions in the model each bearing the label A. But only one of them is
enabled and thus will be fired (b), consuming the token from Start and producing
one token for place c1 (c = 1, p = 2). For the next log event the corresponding

11

B

A
C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

(a)

m = 0
r = 0
c = 0
p = 1

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

B
A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

B

A

C

D
Start c1 c2 E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

(b)

(c)

(d)

(e)

(f)

c7

c7

c7

c7

c7

c7

c6

c6

c6

c6

c6

c6

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

m = 0
r = 0
c = 2
p = 4

m = 0
r = 0
c = 1
p = 2

m = 0
r = 0
c = 3
p = 5

m = 0
r = 0
c = 5
p = 6

m = 0
r = 0
c = 7
p = 7

Fig. 5. Log replay for trace i = 1 of event log L2 in process model M1. The trace can
be replayed without any problems, i.e., no tokens are missing (m = 0) or remaining
(r = 0)

12

B

A
C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

(a)

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA

ACHDFA
ACDHFA

B

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA

ACHDFA
ACDHFA

B

A D
Start c1 c2

E

F

c3

A
c4 End

G

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA

ACHDFA
ACDHFA

B

A

C

Start c1 c2
E

F

c3

A
c4 End

G

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA

ACHDFA
ACDHFA

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA

ACHDFA
ACDHFA

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA

ACHDFA
ACDHFA

(b)

(c)

(d)

(e)

(f)

(g)

D

c7

c7

c6

c6

c6

c6

A

C

C

H
c7

c7

H

c6
c7

c7
c6

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8c6
c7

m = 0
r = 0
c = 0
p = 1

m = 0
r = 0
c = 1
p = 2

m = 1
r = 0
c = 2
p = 4

m = 1
r = 0
c = 3
p = 5

m = 1
r = 0
c = 4
p = 6

m = 1
r = 0
c = 6
p = 7

m = 1
r = 1
c = 8
p = 8

Fig. 6. Log replay for trace i = 4 of event log L2 in process model M1. The replay
of this trace requires the artificial creation of one token (m = 1) and one token is left
behind (r = 1)

13

transition B is enabled and can be fired (c), consuming the token from c1 and
producing one token both for c2 and c5 (c = 2, p = 4). Then, the following log
event corresponds to transition D, which is enabled and therefore can be fired
(d), consuming the token from c2 and producing a token for c3 (c = 3, p = 5).
Similarly, the transition associated to the next log event E is also enabled and
fires (e), consuming the token from c3 and c5, and producing one token for c4
(c = 5, p = 6). Finally, the last log event is of type A again, i.e., is associated with
the two transitions A in the model. But only one of them is enabled and therefore
chosen to be fired (f), consuming the token from c4 and producing one token
for the End place (c = 6, p = 7). As a last step, this token at the End place is
consumed (c = 7) and the replay for that trace is completed, i.e., the removal of
the token from End is seen as a consumption. Because there were neither tokens
missing nor remaining (m = 0, r = 0), this trace perfectly fits the model M1.
Similarly, the second and third trace can also be replayed without any problems,
i.e., neither tokens are missing nor remaining (m2 = m3 = r2 = r3 = 0).

Now consider Figure 6, which depicts the replay of the fourth trace from
event log L2 in M1. At the beginning (a)(b) the procedure is very similar, only
that—instead of transition B—transition C is fired (c), consuming the token
from c1 and producing one token each for c2 and c6 (c = 2, p = 4). But
when we try to replay the next log event, the corresponding transition H is
not enabled. Consequently, the token in c7 is artificially created and recorded
as missing (m = 1). Then, transition H is fired (d), consuming the token, and
producing one token for place c8 (c = 3, p = 5). The following log events can
be successfully replayed again, i.e., their associated transitions are enabled and
can be fired: (e) transition D consuming the token from c2 and producing one
token for c3 (c = 4, p = 6), (f) transition F consuming the token from c8 and
c3 and producing one token for c4 (c = 6, p = 7), (g) one of the two associated
transitions A is enabled and can be fired, consuming the token from c4 and
producing one token for the End place (c = 7, p = 8). At last, the token at the
End place is consumed again (c = 8). But then there is still a token remaining in
place c6, which will be punished as it indicates that the process did not complete
properly (r = 1). A similar problem will be encountered during the replay of the
last trace of event log L2 (i.e., r5 = 1, m5 = 1).

Using the metric f we can now calculate the fitness between the whole event
log L2 and the process description M1. As stated before, besides trace i = 4
there were only tokens missing or remaining in the last log trace i = 5. Counting
also the number of tokens that are produced and consumed while the other three
traces are replayed (i.e., c2 = c3 = p2 = p3 = 9, and c5 = p5 = 8), and with
the given number of process instances per trace, the fitness can be measured as
f(M1, L2) = 1

2 (1− 51
10666)+ 1

2 (1− 51
10666) ≈ 0.995. Similarly, we can calculate the

fitness between the event logs L1, L3, and the process description M1, respec-
tively. The first event log L1 contains only the three log traces that were fitting
for L2. Thus, there are neither tokens left nor missing in the model during log re-
play and the fitness measurement yields f(M1, L1) = 1. In contrast, for the last
event log L3 none of the traces can be associated with a valid firing sequence of

14

the Petri net, and about half of the produced and consumed tokens were missing
or remaining, which leads to a fitness measurement of f(M1, L3) ≈ 0.540.

As pointed out in Section 3, it is also important to localize a mismatch more
closely to give useful feedback to the analyst. In fact, the place of missing and
remaining tokens during log replay can provide insight into fitness problems.
Consider for example Figure 7, which visualizes some diagnostic information
obtained for event log L2. Because of the remaining tokens (indicated by a
+ sign) in place c6, transition G remained enabled, and as there were tokens
missing (indicated by a − sign) in place c7, transition H occurred while this was
not possible according to the model. As already discussed, a final interpretation
of this mismatch could only be given by a domain expert from the insurance
company. However, on a first glance it seems likely that the model lacks the
possibility to skip activity G. This is supported by the diagnostics shown in
Figure 7.

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

+51 -51

c6 c7

Process Model M1
after replay of Event Log L2

Remained
enabled

Failed
execution

Fig. 7. Diagnostic token counters provide insight into the location of errors: the “+51”
in place c6 indicates that 51 tokens remained (r = 51), and the “-51” indicates that
51 times H occurred while it was not enabled (m = 51)

Note that this replay is carried out in a non-blocking way and from a log-
based perspective, i.e., for each log event in the trace the corresponding transition
is fired, regardless of whether the current path of the model is followed or not.
This leads to the fact that—in contrast to directly comparing the event streams
of models and logs—a series of “missing” log events is punished by the fitness
metric f just as much as a single one, since this could always be interpreted as
a missing link in the model.

Duplicate tasks cause no problems during log replay as long as exactly one
of them is enabled at the same time (like shown in Figure 5 and Figure 6 for the
two tasks labeled as A), but otherwise one must enable and/or fire the “right”
task for progressing properly. Invisible tasks are considered to be lazy [7], i.e.,
they are only fired if they can enable the transition in question. In both cases
it is necessary to partially explore the state space, which is described in more
detail in Section 7.2.

15

5 Measuring Appropriateness

One way to remove the mismatch visualized in Figure 7 would be to adapt
the process model to the process as it really happens (based on the observed
behavior in the log), and to introduce an invisible task that enables the skipping
of activity G. Figure 8 depicts this modified process model M4, which is now
100% compliant with event log L2.

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G

c6
c7

H

c8

c5

(b)

(a)

Process model M4

Fig. 8. Model which is 100% compliant with event log L2, and which is also appropriate
in structure and behavior

But as we have seen in Section 3, the models M2 and M3 in Figure 4 are
also 100% compliant with event log L2, although they do not seem to be “good”
models with respect to this log. M4 in Figure 8 appears to be more appropriate
from a behavioral perspective (it does not allow for extra behavior as opposed to
M2), and from a structural perspective (it is more compact and clearly reflects
the behavior observed in event log L2 instead of only listing possible sequences
as in M3).

In the remainder of this section, both the behavioral appropriateness (Sec-
tion 5.1) and the structural appropriateness (Section 5.2) are considered in more
detail.

5.1 Behavioral Appropriateness

While fitness evaluates whether every trace in the log is a possible execution
sequence with respect to the process model, behavioral appropriateness evaluates
how much behavior is allowed by the model which was actually never used in
the observed process executions in the log. The idea is that it is desirable to
model a process as precisely as possible. When the model becomes too general
and allows for more behavior than necessary (like in the “flower” model M2),
then it becomes less informative as it no longer describes the actual process,
and it may allow for unwanted execution sequences. Consider the process model
M5 in Figure 9. This model is also compliant with event log L2 as activity H
can be executed without the previous execution of activity G. But, in addition,
it allows for arbitrary repetitions of activity G (G corresponds to the “Consult

16

Expert” activity in the initial process model in Figure 2), which might not be
intended. In this simple example this is rather obvious, but in more complex
process models such a problem can be difficult to detect.

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G

c6

H

c5

c7

Process Model M5

Fig. 9. Model which allows to skip activity G but, in addition, allows for arbitrary
repetitions of activity G

Note again that in a practical setting, such a perceived conformance problem
can be viewed from two angles. Firstly, the “extra” behavior allowed by the
model may correspond to, for example, an alternative branch that deals with
an exceptional situation that did not occur within the time frame in which the
log was recorded. So in this case, the event log is not complete (cf. Section 2).
Secondly, the model may be indeed too generic and allow for situations that
never happen in reality. A domain expert will have to be able to differentiate
between these two situations. Therefore, suitable metrics are needed.

A first approach to measure the amount of possible behavior is to determine
the mean number of enabled transitions during log replay. This corresponds to
the idea that an increase of alternatives or parallelism, and therefore an increase
of potential behavior, will result in a higher number of enabled transitions during
log replay.

Metric 4 (Simple Behavioral Appropriateness) Let k be the number of
different traces from the aggregated log. For each log trace i (1 ≤ i ≤ k), ni

is the number of process instances combined into the current trace, and xi is the
mean number of enabled transitions during log replay of the current trace (note
that invisible tasks may enable succeeding labeled tasks but they are not counted
themselves). Furthermore, TV is the set of visible tasks in the Petri net model.
The simple behavioral appropriateness metric aB is defined as follows:

aB =
∑k

i=1 ni(|TV | − xi)

(|TV | − 1) ·∑k
i=1 ni

Assuming that |TV | > 1, this metric ranges from 0 (if all visible tasks in the
model are always enabled during log replay, such as it is the case in the “flower”
model M2) to 1 (a sequential process)3. If we calculate the simple behavioral
3 Note that we here assume 100% fitness and, therefore, there is always at least one

transition enabled during log replay.

17

appropriateness for M4, the metric yields aB(M4, L2) ≈ 0.967. This is a slightly
bigger value than for the model that allows for arbitrary loops of activity G
(M5), which yields aB(M5, L2) ≈ 0.964.

However, there is the problem that this metric can only be used as a compar-
ative means, because it measures the appropriateness relatively to the degree of
model flexibility. That is, model M4 is better than model M5, because the less
behavior is allowed by the model the better. But it only reaches the value 1 in
a purely sequential model, where exactly one task is enabled in each step of the
log replay. In addition, the metric is not stable to situations where the model is
sequentialized through duplicate tasks, such as process model M3 in Figure 4(b).

To approach behavioral appropriateness independently from such structural
properties, and independently of the model flexibility, the potential behavior
specified by the model must be analyzed and compared with the behavior ac-
tually needed to describe what was observed in the log. The notion of a set of
labels that serves as a link between the tasks in the model and the elements
contained in the log (cf. Section 2) makes it possible to derive comparable “Fol-
lows” and “Precedes” relations between activities from both a model and a log
perspective. To weaken the completeness requirement towards the event log, and
to also capture long-distance dependencies between activities, the “Follows” (or
“Precedes”) relation is determined globally (i.e., the tasks, or log events, do not
need to directly follow or precede each other). If we then look at a set of se-
quences, we can determine whether two activities (x, y) either always, never, or
sometimes follow or precede each other:

Definition 1 (Follows relations) Two activities (x, y) are in “Always Fol-
lows”, “Never Follows”, or “Sometimes Follows” relation in the case that, if x
is executed at least once, then always, never, or sometimes also y is eventually
executed, respectively.

Definition 2 (Precedes relations) Two activities (x, y) are in “Always Pre-
cedes”, “Never Precedes”, or “Sometimes Precedes” relation in the case that, if
y is executed at least once, then always, never, or sometimes also x was executed
some time before, respectively.

Note that the “Follows” and the “Precedes” relations are defined as soon as
they hold for any pair of labels in a sequence. To give an example, imagine a
sequence (x, ..., x, ..., y, ..., x). Here, the tuple (x, y) would be an element of the
“Follows” relation, although it does not hold for all x that they are eventually
followed by y.

Consider Figure 10, which illustrates the global “Follows” relations that are
derived from model M5 and event log L2. To build these relations from a model
perspective, we analyze the possible execution sequences (based on a state space
analysis or “exhaustive” simulation of the model). From a log perspective we
analyze the observed execution sequences (“walking through” the log). From
this, we can determine whether two activities (x, y) either always, never, or

18

F F

Event Log L2

Analyze whether events in the log actually
Always (A), Never (N), or Sometimes (S)
followed each other

(b) “Follows” relations from log perspective(a) “Follows” relations from model perspective

B

A

C

D
Start c1 c2 E

F

c3

A
c4 End

G

c6

H

c5

c7

Process Model M5

DCB

D

C

B

E

E

F

F

G H

G

H

S S S S

S

A

A

S

S

S S S S S S

S

A AA NN N N N

A N N

A N N

A N N

A N N

A N N

A N N

A

N

N

N

AN A

A A

N N N

N N N

N

N

N A N N

AN A

DCB

D

C

B

E

E

F

F

G H

G

H

S S S S

S

A

A S S S S S S

S

S

A A

A AA NN N N

A A ANN N

A N N N

A N N N N N N

A N N N N N N

A N N A NN

A N N N A N

N

A

N

N

A

N

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

Analyze whether activities in the model
Always (A), Never (N), or Sometimes (S)
follow each other

Fig. 10. Global “Follows” relations derived for model M5 and event log L2

sometimes follow each other. The same can be done for the global “Precedes”
relations. In Figure 10 one can see that while according to the model M5 activity
G may be followed by activity G (i.e., (G,G) is an element of the “Sometimes
Follows” relation), this actually never happened in event log L2 (i.e., (G, G) is
an element of the “Never Follows” relation). We refer to a technical report [31]
for a detailed and formal description of these relations. Note that in general the
number of paths in the model is larger than the set of traces actually appearing
in the log. Therefore, the cost of deriving the relations from the model may be
problematic, while constructing them from the log is typically no problem (cf.
Section 7.2 for some complexity indications).

While the “Always” and “Never” relations describe hard constraints (i.e.,
“Follows” or “Precedes” relations that always or never hold for a sequence of
activities), the “Sometimes” relations capture variabilities in behavior. For ex-
ample, concurrent activities may follow and precede each other in any order
(cf. (D,H) and (H, D) in Figure 10). Similarly, activities preceding a num-
ber of alternative branches are sometimes followed by one of these alternative
branches and sometimes by another (cf. (A,B) and (A,C) in Figure 10). The
same holds for activities that follow after a number of alternative branches were
joined (reflected in the “Sometimes Precedes” relations). Therefore, the idea of

19

the following metric is to compare the variabilities of the behavior allowed by
the model and the behavior observed in the log based on the cardinal numbers
of the SF and SP relations.

Metric 5 (Advanced Behavioral Appropriateness) Let Sm
F be the SF re-

lation and Sm
P be the SP relation for the process model, and Sl

F the SF relation
and Sl

P the SP relation for the event log. The advanced behavioral appropriate-
ness metric a′B is defined as follows:

a′B = (
|Sl

F ∩ Sm
F |

2 · |Sm
F |

+
|Sl

P ∩ Sm
P |

2 · |Sm
P |

)

Note that—for a rather technical reason—the set of labels, which are con-
sidered to form these relations, includes an artificially inserted Start and End
task or log event, respectively, which is abstracted from in this paper. Note fur-
ther that we build the intersection of Sl

F and Sm
F (and Sl

P and Sm
P) to look

only where the log becomes more specific, i.e., we capture situations where—
according to the model—two activities may sometimes follow each other (and
sometimes not), but in the log they always or never follow each other. The re-
verse can also happen, i.e., the model is more specific than the log, which then
indicates a fitness problem. However, since we discard these tuples, the values
assigned by a′B range from 0 to 1. Note finally that although the SF and SP

relations are symmetric, we consider both and weigh them equally to make the
metric stable with respect to the position of the “extra behavior”.

If we calculate this new behavioral appropriateness metric for model M4,
the metric yields a′B(M4, L2) = 1, which indicates that the model M4 precisely
allows for the behavior that was observed in event log L2. For process model M5
it yields a′B(M5, L2) = (19

2·20 + 20
2·21) ≈ 0.951. The sometimes relations that are

derived from the model contain one element more than the sometimes relations
that are derived from the log, which is the element (G,G) (according to the
model activity G may be followed or preceded by itself). Finally, calculating the
value for the model M2 yields a′B(M2, L2) ≈ 0.271. Note that, because for the
new metric the actual distance between model and log relations is considered,
the “flower” model can also be a “good” model, namely if the event log itself
exhibits random behavior.

Process model M5
associated with event log L2

Never follows

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G

c6

H

c5

c7

Fig. 11. Differences in successor and predecessor relationships can be visualized

20

Building on a notion of global successor and predecessor relationships, we are
also able to highlight “unused” alternative and concurrent parts in the model,
which can be visualized, for example, as indicated in Figure 11.

5.2 Structural Appropriateness

The desire to model a business process in a compact and meaningful way is
difficult to capture by measurement. Whether a model is perceived as suitable
may depend on subjective preferences, and is typically correlated to the specific
purpose of the model. There are aspects like, for example, the granularity of the
described workflow actions, which can only be determined by an experienced
human designer. But the notion of structural appropriateness addressed by this
paper rather relates to the control flow perspective, and often there are several
syntactic ways to express the same behavior in a process model. Consider, for
example, model M6 in Figure 12, which allows for the same behavior4 as model
M4 and model M3. However, it contains the following constructs that may “in-
flate” the structure of a process model, and therefore render it less compact and
understandable.

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G

c6

H

c5(b)

c7
c8

H

c9

(a)

(c)

c10

Process Model M6

Fig. 12. Model containing some constructs that may “inflate” the structure of a process
model: (a) duplicate tasks, (b) invisible task, (c) implicit place

(a) Duplicate tasks. In addition to duplicate tasks that are necessary to specify
that a certain activity takes place in a completely different context, such as at the
beginning and at the end of the process like task A in process model M4 (see (a)
in Figure 8), there are also duplicate tasks that could be “folded” as the different
contexts of their execution can be captured in the model. For example, in model
M6 a duplication of task H is used to express that after performing activity
C either the sequence GH or H alone can be executed (see (a) in Figure 12).
Figure 8 (process model M4) describes the same process with the help of an
invisible task (see (b) in Figure 8). Duplicate tasks can reduce the structural

4 Note that there exist many equivalence notions for process models. Here, we assume
trace equivalence: two models are considered equivalent if the sets of traces they can
execute are identical.

21

appropriateness of a model because they prevent abstraction (it cannot be easily
seen anymore from the model that two tasks are actually the same). The model
M3 shows the extreme case of a completely instance-based view on the process
with many superfluous duplicate tasks.

(b) Invisible tasks. Besides the invisible tasks used for routing purposes like,
e.g., indicated in Figure 8(b), there are also invisible tasks that only delay visible
tasks, such as the one indicated by (b) in Figure 12. If they do not serve any
other purpose they can simply be removed, thus making the model more concise.

(c) Implicit places. Implicit places are places that can be removed without
changing the behavior of the model [11]. An example for an implicit place is
given by place c10 (see (c) in Figure 12). Note that the place c5 in Figure 12
is not implicit as it influences the choice made later on between E and F. Both
c5 and c10 are silent places, with a silent place being a place whose directly
preceding transitions are never directly followed by one of their directly suc-
ceeding transitions (e.g., for M4 it is not possible to produce an event sequence
containing BE or AA). Process discovery techniques by definition are unable to
detect implicit places, and have problems detecting silent places.

Note that these constructs are only an indicator for a potential conformance
problem. For example, there may well be situations in which a modeler finds
it more convenient to model a situation using duplicate tasks although it could
be avoided (because this, for example, eliminates potential synchronization tasks
that would be otherwise needed). Moreover, it may be useful to explicitly denote
a certain partial state (such as “machine busy”) with an implicit place. However,
the detection of such potentially problematic constructs can help the business
analyst to systematically assess the process model at hand.

As a first indicator for structural appropriateness we define a simple metric
based on the number of different task labels in relation to the graph size of the
model.

Metric 6 (Simple Structural Appropriateness) Let L be the set of labels
that establish the mapping between tasks in the model and events in the log, and
N the set of nodes (i.e., places and transitions) in the Petri net model. The
simple structural appropriateness metric aS is defined as follows:

aS =
|L|+ 2
|N |

Given the fact that a WF-net (cf. Section 2) is expected to have a dedicated
Start and End place, the graph must contain at least one transition for every
task label, plus two places (the start and end place). In this case |N | = |L|+ 2
and the metric aS yields the value 1. The more the size of the graph is growing,
e.g., due to additional places, the measured value moves towards 0.

If we calculate the structural appropriateness for the model M3, it yields
aS(M3) ≈ 0.170, which is a very bad value caused by the many duplicate tasks
(as they increase the number of transitions while having identical labels). For

22

the model M4 the metric yields aS(M4) = 0.5. A slightly lower value aS(M6) ≈
0.435 is calculated for the model in Figure 12.

However, this metric can only be used as a comparative means for process
models that exhibit equivalent behavior (because it is only based on the graph
size of the model). Therefore, it is of limited applicability.

To approach structural appropriateness independently of the actual behavior
of the model, it is a better idea to verify certain design guidelines, which define
the preferred way to express specific behavioral patterns, and to somehow punish
violations of these guidelines. It is obvious that the design guidelines will vary for
different process modeling notations and may depend on personal or corporate
preferences. Nevertheless, in the following we present a new structural appro-
priateness approach based on the findings reported earlier in this section. As a
design guideline, constructs such as alternative duplicate tasks (duplicate tasks
that never happen together in one execution sequence) and redundant invisible
tasks (invisible tasks that can be removed from the model without changing the
behavior) should be avoided as they were identified to inflate the structure of
a process model and to detract from clarity in which the expressed behavior is
reflected. A more complete description including a formal specification of the
approach can be found in a technical report [31]. Note that because the number
of paths in the model can become very large, the cost of detecting alternative
duplicate tasks may be problematic. In contrast, redundant invisible tasks can
be detected via structural analysis of the model, which is typically very fast (cf.
Section 7.2 for some complexity indications).

Metric 7 (Advanced Structural Appropriateness) Let T be the set of tran-
sitions in the Petri net model, TDA the set of alternative duplicate tasks, TIR the
set of redundant invisible tasks. The advanced structural appropriateness metric
a′S is defined as follows:

a′S =
|T | − (|TDA|+ |TIR|)

|T |

Note that |TDA| + |TIR| ≤ |T | and therefore 0 ≤ a′S ≤ 1 as duplicate
tasks are always visible. Revisiting the example models it becomes clear that—
according to the defined design guideline—only model M6 and M3 are reduced
in structural appropriateness. For M6 the number of alternative duplicate tasks
|TDA| = 2 (see (a) in Figure 12) and the number of redundant invisible tasks
|TIR| = 1 (see (b) in Figure 12), which results in a′S(M5) ≈ 0.727. In M3 all tasks
but A, B and E belong to the set of alternative duplicate tasks and therefore
a′S(M3) ≈ 0.387.

Building on some kind of design guideline, we are usually also able to locate
its violations and visualize them such as, for example, indicated in Figure 13.

23

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G

c6

H

c5

c7
c8

H

c9

c10

Process Model M6
associated with event log L2

Alternative
duplicate task

Redundant
invisible task

Fig. 13. Design guideline violations can be visualized

6 Balancing Fitness and Appropriateness

In general, the presented notions of conformance, i.e., fitness, behavioral appro-
priateness, and structural appropriateness are orthogonal to each other. They
measure something completely different and, therefore, an improvement accord-
ing to one notion is not really comparable to an improvement according to an-
other notion.

We can use the defined conformance metrics to position the example mod-
els and logs with respect to fitness, behavioral appropriateness, and structural
appropriateness. Table 1 contains the measured values for all combinations of
example models and logs in this paper. If we equally weigh the three metrics
f , a′B , and a′S , then process model M1 is the overall best conforming model for
event log L1, M4 has the best conformance with respect to event log L2, and
M2 with respect to event log L3.

Table 1. Overview of the values of the defined conformance metrics for all combinations
of example models and logs in this paper

M1 M2 M3 M4 M5 M6

f = 1.0 f = 1.0 f = 1.0 f = 1.0 f = 1.0 f = 1.0
aB = 0.9740 aB = 0.0 aB = 0.9739 aB = 0.9718 aB = 0.9703 aB = 0.9749

L1 a′B = 0.9167 a′B = 0.2292 a′B = 0.8474 a′B = 0.8474 a′B = 0.8060 a′B = 0.8474
aS = 0.5263 aS = 0.7692 aS = 0.1695 aS = 0.5 aS = 0.5556 aS = 0.4348
a′S = 1.0 a′S = 1.0 a′S = 0.3871 a′S = 1.0 a′S = 1.0 a′S = 0.7273

f = 0.9952 f = 1.0 f = 1.0 f = 1.0 f = 1.0 f = 1.0
aB = 0.9705 aB = 0.0 aB = 0.9745 aB = 0.9669 aB = 0.9637 aB = 0.9706

L2 a′B = 1.0 a′B = 0.2708 a′B = 1.0 a′B = 1.0 a′B = 0.9512 a′B = 1.0
aS = 0.5263 aS = 0.7692 aS = 0.1695 aS = 0.5 aS = 0.5556 aS = 0.4348
a′S = 1.0 a′S = 1.0 a′S = 0.3871 a′S = 1.0 a′S = 1.0 a′S = 0.7273

f = 0.5397 f = 1.0 f = 0.4947 f = 0.6003 f = 0.5830 f = 0.6119
aB = 0.8909 aB = 0.0 aB = 0.8798 aB = 0.8904 aB = 0.8894 aB = 0.9026

L3 a′B = 0.75 a′B = 0.4583 a′B = 0.7434 a′B = 0.7434 a′B = 0.7071 a′B = 0.7434
aS = 0.5263 aS = 0.7692 aS = 0.1695 aS = 0.5 aS = 0.5556 aS = 0.4348
a′S = 1.0 a′S = 1.0 a′S = 0.3871 a′S = 1.0 a′S = 1.0 a′S = 0.7273

24

Note that the metrics aB and aS are not considered because it was shown that
they are not stable enough (cf. Section 3) to compare all process models with each
other. Recall that, for example, the metric aB is affected by structural properties.
Nevertheless, the metrics aB and aS can be well applied as a comparative means
within the given restrictions. So, for example, the aB metric determines M1, the
initial Petri net given in Figure 2, as the behaviorally most suitable model over
M2, M4, and M5 with respect to event log L1.

Although, ideally, a process model and a log should have both 100% fitness,
and behavioral and structural appropriateness, it can be expected that in a
practical setting the fitness dimension is typically more dominant. Therefore, we
recommend to carry out the conformance analysis in two phases (first, the fitness
is analyzed, and then the appropriateness of the model is assessed afterwards).

7 Adding Conformance to the ProM Framework

The Process Mining (ProM) framework is an extensible tool suite that supports
a wide variety of process mining techniques in the form of plug-ins [3]. In this
section, we describe how the concepts presented in this paper are supported by
the ProM tool. For this, we first give an overview about the provided function-
ality in Section 7.1, and then highlight some challenges related to the log replay
involving invisible and duplicate tasks in Section 7.2.

7.1 Functionality of the Conformance Analysis Plug-in

The Conformance Checker5 replays an event log within a Petri net model in a
non-blocking way while gathering diagnostic information that can be accessed
afterwards. It calculates the token-based fitness metric f (taking the number of
process instances for each log trace into account), the behavioral appropriateness
metrics aB and a′B , and the structural appropriateness metrics aS and a′S .

During log replay the plug-in takes care of invisible tasks that might enable
the transition to be replayed next, and it is able to deal with duplicate tasks
(see also Section 7.2). Figure 14 shows a screenshot of the ProM framework es-
tablishing the mapping between process model M4 and event log L2. While the
left column lists all the different transitions contained in the Petri net model,
each of them can either be related to a log event contained in the associated log,
or made invisible. A third possibility is to make it visible without linking it to
an event in the log, which is needed if this activity never occurred in the log (cf.
Section 2.3). In the situation shown in Figure 14 the tasks B (complete) to H
(complete) are all one-to-one mapped onto different log events, while A1 (com-
plete) and A2 (complete) are both related to the same log event A (complete),
i.e., they are duplicate tasks. Moreover, the task with the name invisible is made
invisible. Note that for practical use the mapping has been made explicit, so any
5 Both the Conformance Checker, which is embedded in the ProM framework, and the

files belonging to the example logs and models used in this paper can be downloaded
from http://www.processmining.org.

25

Fig. 14. Screenshot of ProM while associating model tasks with log events

task label can be set in the right column (the name of the task, the name of the
log event, or even something else). All audit trail entries that are not mapped
to a task in the model are automatically removed from the log.

Then, the Conformance Checker can be started. The settings screen shown
in Figure 15 will appear first, and the user can select which metrics should be
calculated. The Conformance Checker supports all the metrics presented earlier
in this paper, and also provides visualizations for detected conformance prob-
lems. Furthermore, it automatically determines the maximum length of possible
sequences of invisible tasks in the model for an efficient log replay (cf. Sec-
tion 7.2). Later, in connection with the case studies, we will show screenshots of
the plug-in. However, first we elaborate on the implementation.

7.2 Implementation of the Conformance Analysis Plug-in

To calculate the presented metrics the Conformance Checker makes use of the
following analysis methods:

– State space analysis, i.e., the coverability graph [16, 17, 27, 29] of the process
model is traversed while loops are followed at most twice. This is used for
the calculation of both the metrics a′B (deriving the activity relations from
the model perspective) and a′S (detecting alternative duplicate tasks).
Because the state space of a model can grow exponentially, state-based anal-
ysis techniques may be problematic with respect to computational complex-
ity. However, there exist techniques for state space reduction, such as partial
order reduction, and symmetry methods, which may be exploited. Moreover,

26

Fig. 15. Screenshot of the conformance analysis settings

e.g., the activity relations for metric a′B serve as a footprint and may be ap-
proximated. For example, one could stop constructing the state space after
some time or space limit is reached and construct the footprint based on
this. Hence, it is possible to balance efficiency and precision.

– Structural analysis, i.e., the structure of the process model is analyzed. This
is used for the metrics aS (assessing the graph size) and a′S (detecting re-
dundant invisible tasks). Note that the redundant invisible tasks are distin-
guished via reduction rules similar to [4] and based on [27].
Compared to the state space analysis, structural analysis techniques are
typically very efficient.

– Log replay analysis, i.e., the log is replayed in a non-blocking way and from
a log perspective. This is necessary for calculating the metrics f (measuring
the amount of consumed, produced, missing and remaining tokens) and aB

(measuring the mean number of enabled transitions). To derive the activity
relations from a log perspective for metric a′B a single pass of the log is
sufficient (i.e., no actual log replay is needed).
The time complexity of the log replay method without invisible or duplicate
tasks increases only linearly with the size of the log. This is very important for
practical applicability as it also enables the analysis of large logs. However,
if the log replay involves invisible or duplicate tasks, there may be situations
in the course of replay where the state space of the process model needs to
be partly explored, which may degrade the performance.

In the remainder of this section we concentrate on the log replay method
and show how we approach two non-trivial problems, namely whether a specific
task can be enabled via firing a sequence of invisible tasks (see Algorithm 1)
and the decision for one task among duplicates (see Algorithm 2). Note that the
presented algorithms are heuristic, local approaches that deal with the replay
of the next step in the log trace. Unfortunately, this means that it cannot be

27

guaranteed that if the log fits the model it can be replayed correctly (and thus
any mismatch really indicates a conformance problem). For example, we choose
the shortest sequence of invisible tasks to enable the currently replayed task
if possible. However, from a global viewpoint it could always be the case that
firing some longer sequence would actually produce exactly those tokens that
are needed in a later stage of the replay. Dealing with this issue in a global
manner (i.e., minimizing the number of missing and remaining tokens during
log replay) seems intractable for complexity reasons6. However, the presented
algorithms work well in most of the cases, while keeping the technique accessible
for practical situations. The two algorithms are described in the remainder of
this section.

The first algorithm deals with the fact that invisible tasks are considered to
be lazy, i.e., they might fire to enable one of their succeeding visible tasks, but
will never be fired directly in the course of log replay since they do not have a log
event associated. This implies that in the case that the task currently replayed is
not directly enabled, it must be checked whether it can be enabled by a sequence
of invisible tasks before considering it having failed. If there are multiple enabling
sequences, we choose the shortest sequence among them (or one of the shortest
sequences if there are more than one that are “the shortest”). This heuristic aims
at having minimal possible side effects on the current marking of the net, e.g.,
not to unnecessarily fire an invisible task that is in conflict with another task
later to be replayed. As indicated earlier, there may be situations where a longer
sequence of invisible tasks results in a better replay than a shorter sequence.
However, while an optimal solution would be difficult from a complexity point
of view, our “best effort” solution seems to work well in practice. Algorithm 1
shows the flow of the method isEnabled().

First, a list is created to capture the (potential) enabling sequence. If the
transition is already enabled, this sequence remains empty and the method re-
turns true. Note that an empty list has length 0 but is not NIL (which can be seen
as undefined). In the case the transition is not directly enabled, the state space7 is
built from the current marking of the Petri net. To prevent nets that accumulate
tokens from producing an infinite state space (which could happen, e.g., when
building the reachability graph of a Petri net) the coverability graph builder of
the ProM framework has been used for implementation. In a coverability graph a
so-called ω-state denotes an extended marking, which subsumes all the different
finite markings that result from token accumulation in an infinite marking [27,
35]. Then traceShortestPathOfInvisibleTasks()—the recursive program part—
is called. The idea is to look for a sequence of invisible tasks that can be fired to

6 Note that the theoretical worst-case complexity of generating a coverability graph
is non-primitive recursive space, although for small to medium sized systems (up to
100 transitions) generating a coverability graph is often feasible [35].

7 Note that in fact we only need to build a partial state space depending on the
maximum length of possible sequences of invisible tasks in the model. This maxi-
mum depth can be efficiently calculated based on the structure of the model, and is
automatically determined by the Conformance Checker.

28

Algorithm 1 Recursive method for transparently enabling a replayed task
through a sequence of invisible tasks (if possible)

isEnabled :

1: list ← new empty list
2: soFarShortestPath ← NIL
3: if not directly enabled then
4: clone Petri net and build state space from current marking
5: list ← traceShortestPathOfInvisibleTasks(...)
6: end if
7: if list = NIL then
8: return false
9: else

10: while list has next element do
11: fetch next task from list
12: fire corresponding transition in Petri net
13: end while
14: return true
15: end if

traceShortestPathOfInvisibleTasks :

1: if current state already visited ∨ shorter path already found then
2: return soFarShortestPath // (a) (b)
3: else
4: while possible path from current state in state space left do
5: determine next task
6: if requested task found then
7: return currentPath // (c)
8: else if invisible task found then
9: set current state visited

10: copy currentPath and append task
11: determine next state
12: soFarShortestPath ← traceShortestPathOfInvisibleTasks(...)
13: else
14: return NIL // (d)
15: end if
16: end while
17: return soFarShortestPath
18: end if

29

create a marking of the Petri net that allows to execute the currently replayed
transition (in this case, the transition is considered to be enabled, and there is
no conformance problem). For this, each possible path of invisible tasks in the
state space is traced until one of the following end-conditions is reached:

(a) If the current state has been already visited during traversal, it means that
the state space is cyclic and recursion stops to prevent an infinite loop.

(b) If a shorter sequence of invisible tasks enabling the transition in question
than the one currently traced has already been found, it is not necessary to
pursue this route any further.

Assuming that neither (a) nor (b) are fulfilled, the current state in the state
space is marked as visited, and all possible paths spawned from this state are
considered and further traced until one of the following end conditions holds:

(c) If the transition to be replayed is encountered, a possible enabling sequence
has been found and will be returned.

(d) If no invisible task can be found, recursion aborts as the path cannot be
followed any further.

If no possible sequence could be found, i.e., the checked transition cannot be
enabled via firing any invisible tasks either, the list will be set to NIL and
the method returns false. But in the case a possible path has been found, the
selected sequence of invisible tasks is executed to enable the transition and the
method returns true.

The second algorithm deals with the fact that the mapping between model
tasks and log events may result in duplicate tasks. During log replay this is a
problem since for a log event that is associated with multiple tasks in the model,
it is not always clear which of the duplicates should be executed. Algorithm 2
shows the flow of the implemented method chooseEnabledDuplicateTask(), which
is called in the case that more than one transition is found associated with the
log event currently replayed.

At first, only those tasks that are enabled8 by the current marking of the Petri
net are selected. If none of them is enabled, the method returns immediately and
the Conformance Checker will fire an arbitrary task from the list of duplicates
(since correct replay is not possible anyway). If there is exactly one task enabled,
it is returned and will be executed subsequently. This will often be the case in
scenarios where the same task is carried out in multiple contexts (such as setting
a checkpoint in the beginning and in the end of the example process in Figure 2),
i.e., the marking of the net clearly indicates which choice is best. However, if
there are more candidates enabled, the remaining log events must be consid-
ered to determine the best choice. For these purposes, chooseBestCandidate() is
called. It makes a copy of the current replay scenario for each enabled duplicate
and fires the transition belonging to that candidate (i.e., it starts to mimic every
8 Note that in the context of this algorithm the possibility of invisible tasks indirectly

enabling other transitions needs to be respected again (but without actually changing
the marking of the replayed net). Nevertheless, from now on we abstract from this.

30

Algorithm 2 Recursive method for choosing one task among a set of duplicate
tasks during log replay

chooseEnabledDuplicateTask :

1: candidateList ← select all enabled duplicates
2: if length of candidateList = 0 then
3: return NIL
4: else if length of candidateList = 1 then
5: return the only enabled duplicate
6: else
7: clone replay scenario for each candidate and fire corresponding transition
8: return traceBestCandidate(...)
9: end if

traceBestCandidate :

1: if no log events left then
2: return any of remaining candidateList // (a)
3: else
4: fetch next log event
5: nextTask ← determine transition(s) associated to log event
6: for each scenario from candidateList do
7: if nextTask is duplicate task then
8: nextTask ← chooseEnabledDuplicateTask(...)
9: else if nextTask is not enabled then

10: nextTask ← NIL
11: end if
12: if nextTask = NIL then
13: remove current from candidateList
14: else
15: further trace replay scenario via firing nextTask
16: end if
17: end for
18: end if
19: if length of candidateList = 0 then
20: return any of remaining candidateList // (b)
21: else if length of candidateList = 1 then
22: return the only remaining candidate // (c)
23: else
24: return traceBestCandidate(...)
25: end if

31

case). Then the entry point for the recursive method tracking these scenarios
traceBestCandidate() is reached and will not return until there is only one sce-
nario left, which can then be reported to the initial caller to proceed with the
actual log replay. First, the following end-condition is checked:

(a) If there are no log events left in the trace currently replayed, then one of the
remaining candidates is chosen arbitrarily and recursion finishes.

Assuming that (a) is not fulfilled the next log event is fetched from the trace
and the number of associated transitions is determined. If there is only one task
associated to it, those scenarios are kept and updated where this task is enabled,
i.e., where the next replay step can be executed successfully as well. If there are
multiple tasks associated, the best duplicate must also be chosen for this case
and for each scenario, realized by a recursive call to the very entry point of the
whole procedure. Then, similarly, those scenarios are kept and updated that were
able to determine an enabled duplicate task for this anticipated next replay step.
The possibility for having a 0:1 mapping has been discarded since log events not
associated to any task in the model were removed during import (cf. Section 2.3).

Now, the number of remaining scenarios is checked and if there are more
than one left, recursion proceeds to check at least one step further. Otherwise
one of the two following end-conditions is reached:

(b) If only a single candidate remains, this one is returned as the best choice.
(c) If after the replay of this next log event none of the scenarios is left, any of

the previously kept candidates is returned.

8 Conformance Checking Applications

In the following subsections we describe two different applications of the pre-
sented conformance checking techniques. The first application involves admin-
istrative processes of a municipality in the Netherlands (Section 8.1), whereas
in the second case the Conformance Checker has been used to analyze (web)
service behavior (Section 8.2).

8.1 Town Hall

In the context of a project cooperating with a town hall in the Netherlands
we had the opportunity to apply our techniques to real-life logs related to four
different administrative processes. Three processes deal with the handling of
complaints and the fourth process handles building permit applications. As an
example, Figure 16(a) shows the original description of one of the complaint
handling procedures. It has been created in a tool called “Routebuilder”, which
comes with the Global 360 Enterprise EX workflow system (formerly known as
eiStream WMS). Note that all the considered tasks have XOR-split/join seman-
tics.

The managers at the municipality were especially interested in answers to the
following questions: “Are there deviations from the designed process?”, “What

32

(a) The original description of the complaint handling procedure as used by the G360 Enterprise EX workflow system

(b) The Petri net model of the complaint handling procedure loaded into ProM

Fig. 16. Translating the original process description into a Petri net

are the exact differences?”, “What are the most frequently followed paths per
process?”, and “What does the model describing the current situation look
like?”. While the first three question could be answered using the conformance
checking techniques presented in this paper, the last question was addressed us-
ing genetic process mining algorithms (see [15] for further details with respect
to this case study).

As a first step, domain experts (i.e., employees of the town hall) helped us
to understand the semantics of their initial model, so that it could be translated
into a Petri net model, which can be analyzed by the Conformance Checker in
the ProM framework (see Figure 16(b)). Note that the crossed-out tasks were
not considered because they are executed by external third parties (and not
by the personnel from the municipality). Then, an extract of the corresponding
log data was exported from the town hall’s database and converted9 into the
MXML format, which can be interpreted by the ProM framework. Finally, all
fragmentary process instances were removed from the log. This means that only
those cases were considered which actually executed both the start activity and
one of the possible end activities of the process.

9 For this, we built a custom plug-in for the ProMimport framework [21], which con-
verts logs from a wide variety of systems to the XML format used by ProM. It can
be downloaded from www.processmining.org.

33

The Petri net models and the cleaned event logs could then be analyzed by
the Conformance Checker. Although the municipality uses a workflow system
and, therefore, in principle all cases should comply with the prescriptive models,
only for one of the four processes all cases were indeed 100% compliant with
the original, deployed model (this was one of the three complaint handling pro-
cesses and the analysis included 358 cases). For example, for the building permit
handling procedure only 80% of the 407 cases were fully compliant. The main
reason for these deviations was a temporary misconfiguration of the system.
When the process was initially configured, a synchronization task could already
be executed as soon as 3 out of the 4 incoming parallel branches were ready,
which then also happened for some cases. The system administrator inspected
the cases that had this problem and confirmed that they happened before this
configuration error was corrected. For the complaint handling process depicted
in Figure 16 only 51% of the 35 cases were fully compliant with the deployed
model. The conformance analysis results for this process are now described in
more detail.

Figure 17(a) shows the Fitness result screen of the Conformance Checker. As
discussed before, during the replay of the log in the model there may be tokens
missing and remaining. Hovering over a problematic place or transition provides
more detailed information, e.g., about the number of instances leaving or lacking
a certain amount of tokens at that place. Further visualization options indicate
the number of times each edge has been passed during log replay, and mark
those transitions that have been fired at least once (path coverage). This way,
one can directly see how often certain paths in the model were actually used.
Note that pressing the Select Fitting button automatically selects all traces of
the log that are 100% compliant with the given model. This functionality is
important for practical use as it enables the separation of fitting and non-fitting
process instances. This is particularly useful for large log files. Every subset of
the event log can then be further investigated (“Do the non-compliant cases
usually take a certain path?” etc.), and may be exported, e.g., to carry out an
in-depth performance analysis.

In Figure 17(a) the fitness analysis results of the non-compliant cases of the
complaint handling process (the relevant part of the process model is indicated
by rectangle A in Figure 16(a) and (b)) are depicted, which shows that activity
“Voorstel”10 was not ready to be executed once (as one token was missing) for
six cases, and for one case even twice (as two tokens were missing). Figure 17(b)
depicts a screenshot of the log view, which reveals that activity “Voorstel” was
sometimes indeed executed two and even three times, which is not allowed ac-
cording to the original model. So, we were curious to find out how these de-
viations were possible, and the people responsible for these processes in the
municipality explained that the discrepancies resulted from an explicit change
of the case by the system administrator. So for example, users had to re-edit an
already completed case, or needed to jump to other tasks in the process (and

10 Note that an understanding of the process is not needed. Therefore, we did not
translate the Dutch task names.

34

(a) The fitness analysis of the non-compliant cases shows that activity ‘Voorstel’ was not ready to be
executed once for six, and even twice for one of the cases

(b) The log view reveals that activity ‘Voorstel’ was indeed executed two and even three times (cf. log trace
indicated by mouse pointer) by some of the cases, which is not allowed according to the original model

(c) The behavioral appropriateness analysis highlights that, although activity ‘Intrekken’ could have been
executed in many states of the process, this was not used for the recorded cases

Fig. 17. Screenshots while analyzing the complaint handling process

35

the deployed model did not allow for this). This is a very interesting result as it
shows that people may need to deviate from prescribed procedures even if they
have a workflow system guiding that process in a non-flexible way. Then, the
changes are realized in an ad-hoc way, such as through a system administrator
who has the right to work “behind the back” of the system.

Figure 17(c) shows a screenshot of the behavioral appropriateness analysis of
the same process. As explained earlier, the visualization indicates where the log
becomes more specific than the model (i.e., activities always or never followed
or preceded each other while according to the model this is not required). In
Figure 17(c), the activity in the center of the diagnostic visualization is activity
“Intrekken” (indicated by rectangle B in Figure 16(a) and (b)), which is con-
nected to almost every other activity in the process as it relates to some cancel
activity (i.e., when the complaint handling is not further pursued). Analyzing
the behavior in the log, it became clear that complaints were only cancelled in a
very early stage of the process, so that after most of the other activities activity
“Intrekken” never happened (although this would be possible with respect to
the model). This is not necessarily a problem but provides insight into the way
the process is actually executed.

These examples demonstrate that using the presented techniques it is possible
to discover conformance problems in real-life scenarios.

8.2 Conformance Checking of Service Behavior

In [4] we investigated conformance in the context of service-oriented systems,
which are composed of services that are typically (a) independently developed
and operated, and (b) interact with one another exclusively through message
exchanges. To coordinate the communication between different services there
are process descriptions that specify how these services should interact. Since
partners will typically not expose the internal structure and state of their ser-
vices, the question of conformance arises: “Do all parties involved operate as
described?”. The expected behavior may deviate as soon as, e.g., a service re-
ceives a reply of the wrong type, messages are received in the wrong order, etc.
Using abstract BPEL as a choreography language, and observing the exchanged
SOAP messages we demonstrated that it is possible to tackle this problem using
the conformance checking techniques presented in this paper.

The example of a simple supplier service was used in the following way.
First, the supplier service was specified as an abstract BPEL process, which is
a non-executable process specification describing the business protocol as seen
from one of the partners involved. Second, we automatically created a Petri
net description of the intended choreography, using the translation described
in [28] and implemented in the tool BPEL2PNML11. Finally, the resulting net
was reduced using a tool called WofBPEL, which yielded a process model that

11 Both documentation and software can be downloaded from the BABEL project pages
http://www.bpm.fit.qut.edu.au/projects/babel/tools/.

36

(a) Reduced Petri net model of the supplier service

Log trace

(order, orderResponse)
(order, orderResponse, orderResponse, orderResponse)
(order, orderResponse, change, orderChangeResponse)
(order, orderResponse, orderResponse, change, orderChangeResponse)
(order, orderResponse, change, orderChangeResponse, orderChangeResponse)

(order)
(order, orderResponse, change)
(orderResponse)
(order, orderResponse, change, orderResponse, orderChangeResponse)
(order, change, orderChangeResponse)
(change)
(order, orderResponse, change, orderChangeResponse, change)
(order, orderResponse, change, change, orderChangeResponse)

Scenario

1
2
3
4
5

6
7
8
9

10
11
12
13

Fitness

1.0
1.0
1.0
1.0
1.0

0.625
0.749
0.905

1.0
0.759

0.0
0.914
0.971

de
si

ra
bl

e
be

ha
vi

or
un

de
si

ra
bl

e
be

ha
vi

or

(b) Desirable and undesirable scenarios for the supplier service execution

Fig. 18. Supplier service example

37

could be analyzed by the Conformance Checker in the ProM framework (see
Figure 18(a)).

In [4] we showed that it is possible to monitor and correlate messages, and to
group them into log traces where each trace reflects one concrete service execu-
tion. By implementing the example process in Oracle BPEL we could obtain logs
of SOAP messages for both directions (both to and from the supplier service).
Note that we do not make assumptions with respect to the implementation of
the process logic in the service, instead of executable BPEL any other language
could have been used.

Having demonstrated that it is feasible to obtain such event log from real
service executions we then used the presented conformance checking techniques
to validate the supplier service specification for a number of interaction scenar-
ios. Figure 18(b) shows five execution sequences which should be valid for the
supplier service (Scenarios 1 – 5) and eight which should not (Scenarios 6 – 9
correspond to possible violations by the supplier service and 10 – 13 contain
violations by the client or environment of the service). Importing the reduced
Petri net model generated from the abstract BPEL process, the Conformance
Checker can replay the given scenarios in this model, and the fitness measure-
ment indicates whether a scenario corresponds to a possible execution sequence
for that process.

Consider for example Figure 19(a), in which the Conformance Checker shows
the dotted part of the model in Figure 18(b) after the replay of Scenario 8. In
this situation a single orderResponse was sent without having received any pre-
vious order, which is not allowed. Following the control flow of the model it
can be observed that the order transition is supposed to fire first to produce a
token in the enlarged place on the right, which can be consumed by the order-
Response transition afterwards. However, since the log replay is carried out from
a log-based perspective the missing tokens (indicated by a − sign) are created
artificially and the task belonging to the observed message in the model (i.e.,
the orderResponse transition) is executed immediately. The fact that it had been
forced to do so is recorded and the task is marked as having failed successful
execution (i.e., it was not enabled). Furthermore, there are tokens remaining in
the enlarged places in the upper and the lower left corner (indicated by a +
sign), which leads to the order transition remaining enabled after replay has
finished. Remaining tasks are visualized with the help of a shaded rectangle in
the background and they point to situations where a task was expected to be
executed but did not happen.

Now reconsider Figure 18(b), where the Fitness column indicates for each
scenario whether it corresponds to a valid execution sequence for our supplier
service (i.e., fitness = 1.0) or not (i.e., fitness < 1.0). As it shows 100 % fitness
for Scenario 1 – 5 the abstract BPEL process has been proven to be a valid spec-
ification with respect to the “well-behaving” conversation scenarios we thought
of. However, it also allows for an execution sequence that we classified as un-
desirable behavior, namely Scenario 9: Although another orderResponse is sent
after a change request has been received already (and thus only orderChangeRe-

38

(a) The fitness analysis of scenario No. 8 shows that ‘orderResponse’ was not ready to be executed when
it occurred (tokens were missing), and that ‘order’ was expected to occur but did not happen (tokens were
remaining)

(b) The behavioral appropriateness analysis based on the desirable scenarios reveals that the model
allows for more behavior than expected. Due to intermediate states it is possible to send an
‘orderResponse’ after a ‘change’ request has been received

(c) The structural appropriateness analysis of the initial, non-reduced Petri net model highlights a number
of redundant invisible tasks (in the visualized fragment all invisible tasks except the one indicated by the
mouse pointer are redundant)

Fig. 19. Screenshot while analyzing the service execution scenarios

39

sponses should be sent) the scenario proved to comply with the given abstract
BPEL process specification. This was an interesting result as it made us aware
of the fact that—due to a number of intermediate states—the chosen fault/event
handler construct did not completely capture the intended constraint. The same
conclusion can be drawn from the behavioral appropriateness analysis based on
the five desirable scenarios, where the result is depicted in Figure 19(b).

Finally, Figure 19(c) depicts a screenshot from the structural appropriateness
analysis of the non-reduced Petri net model. Recall that in the process of gener-
ating a Petri net from the BPEL model, the tool WofBPEL was used to reduce
the initially created Petri net. In fact, a part of this reduction is the removal of
redundant invisible tasks as described in this paper. The reduced model (i.e.,
after applying WofBPEL) contains 27 transitions, 28 places, and 121 arcs. The
non-reduced model (which is partly shown in Figure 19(c)) contains 71 transi-
tions, 72 places, and 209 arcs, i.e., 41 invisible transitions are redundant and can
be removed. These redundant invisible tasks are also detected and highlighted
by the Conformance Checker. Note that, besides the export of all the diagnostic
visualizations, the Conformance Checker also offers the export of the reduced
Petri net model (i.e., an equivalent model without the redundant invisible tasks
that were detected).

This application demonstrates that behavioral appropriateness analysis can
help to detect undesirable behavior, and that in the presence of negative exam-
ples (i.e., “forbidden” scenarios) the fitness metric can also be used to analyze
the behavioral appropriateness of a given process model.

9 Related Work

Conformance checking as presented in this paper is closely related to the work
of Cook et al. [14, 13] who have introduced the concept of process validation.
They propose a technique comparing the event stream coming from the process
model with the event stream from the execution log based on two different string
distance metrics. To address the problem of time-complexity while exploring
the state space of the model they investigate (and reject) several techniques
from domains like compiler research and regular-expression matching. In the end
an incremental, data-driven state-space search is suggested, using heuristics to
reduce the cost. An interesting point is that they include the possibility to assign
weights to differentiate the relative importance of specific types of events. In
[13] the results are extended to include time aspects. The notion of conformance
has also been discussed in the context of security [6], business alignment [1],
and genetic mining [7] (all proposing some kind of replay). However, in each of
the papers mentioned only fitness is considered and appropriateness is mostly
ignored. (Note that more recent work on genetic mining also includes “penalties”
for “too much behavior” [25, 15].) In [36] case-based reasoning is applied to
explicitly record information about non-compliant cases, which can be re-used
for potential adaptations of the business process model. Finally, this paper builds
on preliminary work reported in [32, 31].

40

Conformance checking assumes the presence of a given descriptive or pre-
scriptive process model, and therefore has a different starting point, but nev-
ertheless it is closely related to typical process mining techniques [10, 9], which
aim at the discovery of a process model based on some event log. In the desire
to derive a “good” model for the behavior observed in the execution log, shared
notions of fitness, behavioral appropriateness and structural appropriateness can
be identified. In [18] the process mining problem is faced with the aim of deriv-
ing a model which is as compliant as possible with the log data, accounting for
fitness (called completeness) and also behavioral appropriateness (called sound-
ness). Starting with a disjunctive workflow schema containing all the traces from
the log (cf. Figure 4(b)) they try to incrementally cluster these traces until a
given lower bound for the number of schemata contained is reached, which, in
fact, corresponds to some notion of structural appropriateness as well. Another
example is the process mining approach presented in [37], which aims at the
discovery of a WF-net that (i) potentially generates all event sequences appear-
ing in the execution log (i.e., fitness), (ii) generates as few event sequences not
contained in the execution log as possible (i.e., behavioral appropriateness), and
(iii) captures concurrent behavior and (iv) is as simple and compact as possible
(i.e., structural appropriateness). Moreover, techniques such as considering some
form of causal relation can be borrowed from the process mining research, just
as insights gained into concepts like correctness, completeness, and noise are also
relevant in the context of conformance checking.

Related to conformance checking as presented in this paper is the checking of
a temporal formula with respect to a log [2]. In [2] we show that the LTL Checker
in ProM can check which cases satisfy a given property. Furthermore, in [22] the
authors present a polynomial algorithm to decide whether a scenario (given as
a labelled partial order) is executable in a given Petri net ([12] presents the
VipTool, which implements the approach). Both approaches are complementary
to the approach presented here.

Process mining and conformance checking can be seen in the broader con-
text of Business (Process) Intelligence (BPI) and Business Activity Monitoring
(BAM). In [19, 20] a BPI tool set on top of HP’s Process Manager is described.
The BPI tool suite includes a so-called “BPI Process Mining Engine”. In [26]
Zur Muehlen describes the PISA tool which can be used to extract performance
metrics from workflow logs. Similar diagnostics are provided by the ARIS Pro-
cess Performance Manager (PPM). The latter tool is commercially available and
a customized version of PPM is the Staffware Process Monitor (SPM), which is
tailored towards mining Staffware logs. Note that none of the latter tools is sup-
porting conformance checking. The focus of these tools is often on performance
measurements rather than monitoring (un)desirable behavior.

10 Conclusion

From the coexistence of explicit process models and event logs originates the
interesting question “Do the model and the log conform to each other?”. This

41

question is highly relevant for all kinds of situations where there is a notion of a
process model but people can deviate. This paper proposes an incremental ap-
proach to check the conformance of a process model and an event log. At first,
the fitness between the log and the model needs to be ensured (i.e., “Does the
observed process comply with the control flow specified by the process model?”).
At second, the appropriateness of the model can be analyzed with respect to the
log (i.e., “Does the model describe the observed process in a suitable way?”).
During this second phase two aspects of appropriateness are considered, evaluat-
ing structural properties of the process model on the one hand (“Is the behavior
specified by the model represented in a structurally suitable way?”) and be-
havioral properties on the other (“Does the model specify the behavior of the
observed process in a sufficiently specific way?”).

One metric (f) has been defined to address fitness. Moreover, two metrics for
structural appropriateness (aS and a′S) and two metrics for behavioral appropri-
ateness (aB and a′B) have been defined. Together they allow for the quantification
of conformance. An evaluation of properties of previous metrics has led to the de-
velopment of the two new appropriateness metrics a′S and a′B , which—in contrast
to their counterparts aS and aB—are able to measure only one dimension of ap-
propriateness, independently of the other (i.e., they are stable and orthogonal).
Furthermore, they indicate when an “optimal” solution has been reached (i.e.,
they are analyzable). Besides the quantification of fitness and appropriateness, it
is crucial to assist the analyst in finding the location of a conformance problem.
It has been shown that we are also able to locate the respective problem areas in
the model or the log. Two different applications (Town Hall in the Netherlands
and the Oracle BPEL application) of the implemented Conformance Checker
demonstrated that the presented techniques constitute a powerful means to in-
dicate a conformance problem and to estimate its dimension, while providing the
user with some visual feedback pinpointing those parts that should be revised.

Future work will aim at the development of new techniques for both mea-
suring and visualizing non-conformance, and at the support of further modeling
languages. Note that other process modeling languages may include special con-
structs, which can be exploited by dedicated conformance checking techniques.
An example is the OR-split/join in EPCs, where an arbitrary number of branches
can be activated/joined during log replay. Furthermore, the structural appropri-
ateness methods are naturally biased by the used modeling notation. Also note
that the availability of suitable log data will be crucial for any future system that
is used to support business processes because this enables a systematic analy-
sis of how these processes are actually carried out. If additional information is
present in the log and the specification, even further perspectives on the business
process (such as the data, performance, and organizational perspective) could
be exploited to verify data dependency constraints, whether deadlines were met,
or whether the resource specifications were respected.

42

Acknowledgements

This research is supported by the Technology Foundation STW, EIT, the EU
project SUPER, and the IOP program of the Dutch Ministry of Economic Af-
fairs. Furthermore, the authors would like to thank all ProM developers for their
on-going work on process mining techniques.

References

1. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th
Workshop on Business Process Modeling, Development and Support (BPMDS’04),
volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical University, 2004.

2. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and
Verification of Properties: An Approach based on Temporal Logic. In R. Meers-
man and Z. Tari et al., editors, On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Computer Sci-
ence, pages 130–147. Springer-Verlag, Berlin, 2005.

3. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, Berlin, 2007.

4. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets (extended version). BPM Center Report BPM-05-25, BPMcenter.org, 2005
(To appear in ACM Transactions on Internet Technology, special issue on Middle-
ware for Service-oriented Computing).

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

6. W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance. In
N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Workshop
on Security Issues with Petri Nets and other Computational Models (WISP 2004),
pages 69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa, Italy, 2004.

7. W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters. Genetic Pro-
cess Mining. In G. Ciardo and P. Darondeau, editors, 26th International Conference
on Applications and Theory of Petri Nets (ICATPN 2005), volume 3536 of Lecture
Notes in Computer Science, pages 48–69. Springer-Verlag, Berlin, 2005.

8. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

9. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

43

10. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

11. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

12. R. Bergenthum, J. Desel, G. Juhás, and R. Lorenz. Can I Execute My Scenario in
Your Net? VipTool Tells You! In S. Donatelli and P.S. Thiagarajan, editors, Petri
Nets and Other Models of Concurrency - ICATPN 2006, volume 4024 of Lecture
Notes in Computer Science, pages 381–390. Springer-Verlag, Berlin, 2006.

13. J.E. Cook, C. He, and C. Ma. Measuring Behavioral Correspondence to a Timed
Concurrent Model. In Proceedings of the 2001 International Conference on Soft-
ware Mainenance, pages 332–341, 2001.

14. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147–176, 1999.

15. A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Department of
Technology Management, Technical University Eindhoven, 2006.

16. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

17. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

18. G. Greco, A. Guzzo, L. Pontieri, and D. Saccá. Mining Expressive Process Models
by Clustering Workflow Traces. In Proc of Advances in Kowledge Discovery and
Data Mining, 8th Pacific-Asia Conference (PAKDD 2004), pages 52–62, 2004.

19. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321–343, 2004.

20. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, ed-
itors, Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

21. C.W. Günther and W.M.P. van der Aalst. A Generic Import Framework for Process
Event Logs. In J. Eder and S. Dustdar, editors, Business Process Management
Workshops, Workshop on Business Process Intelligence (BPI 2006), volume 4103
of Lecture Notes in Computer Science, pages 81–92. Springer-Verlag, Berlin, 2006.

22. G. Juhás, R. Lorenz, and J. Desel. Can I Execute My Scenario in Your Net?
In G. Ciardo and P. Darondeau, editors, Applications and Theory of Petri Nets
2005, volume 3536 of Lecture Notes in Computer Science, pages 289–308. Springer-
Verlag, Berlin, 2005.

23. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

24. P. Liggesmeyer. Software-Qualität – Testen, Analysieren und Verifizieren von Soft-
ware. Spektrum Akademischer Verlag, Heidelberg, Berlin, 2002.

25. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: A Basic Approach and its Challenges. In M. Castellanos and
T. Weijters, editors, First International Workshop on Business Process Intelligence
(BPI’05), pages 46–57, Nancy, France, September 2005.

44

26. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings
of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

27. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

28. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
BPM Center Report BPM-05-13, BPMcenter.org, 2005.

29. J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Engle-
wood Cliffs, 1981.

30. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of
Workflows Without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

31. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Align-
ment Between Event Logs and Process Models. BETA Working Paper Series, WP
144, Eindhoven University of Technology, Eindhoven, 2005.

32. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
Business Process Management 2005 Workshops, volume 3812 of Lecture Notes in
Computer Science, pages 163–176. Springer-Verlag, Berlin, 2006.

33. P. Sarbanes, G. Oxley, and et al. Sarbanes-Oxley Act of 2002, 2002.
34. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
35. H.M.W. Verbeek. Verification and Enactment of Workflow Management Systems.

PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
2004.

36. B. Weber, M. Reichert, S. Rinderle, and W. Wild. Towards a Framework for the
Agile Mining of Business Processes. In C. Bussler et al., editor, Business Process
Management 2005 Workshops, volume 3812 of Lecture Notes in Computer Science,
pages 191–202, Nancy, France, September 2006. Springer-Verlag, Berlin.

37. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data. In Proceedings of the Third International NAISO Sym-
posium on Engineering of Intelligent Systems (EIS 2002), pages 65–65. NAISO
Academic Press, Sliedrecht, The Netherlands, 2002.

