
Quantifying Process Equivalence Based on
Observed Behavior

A.K. Alves de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{a.k.medeiros,w.m.p.v.d.aalst,a.j.m.m.weijters}@tm.tue.nl

Abstract. In various application domains there is a desire to compare
process models, e.g., to relate an organization-specific process model to
a reference model, to find a web service matching some desired service
description, or to compare some normative process model with a pro-
cess model discovered using process mining techniques. Although many
researchers have worked on different notions of equivalence (e.g., trace
equivalence, bisimulation, branching bisimulation, etc.), most of the ex-
isting notions are not very useful in this context. First of all, most equiva-
lence notions result in a binary answer (i.e., two processes are equivalent
or not). This is not very helpful, because, in real-life applications, one
needs to differentiate between slightly different models and completely
different models. Second, not all parts of a process model are equally
important. There may be parts of the process model that are rarely acti-
vated (i.e., “process veins”) while other parts are executed for most pro-
cess instances (i.e., the “process arteries”). Clearly, differences in some
veins of a process are less important than differences in the main arteries
of a process. To address the problem, this paper proposes a completely
new way of comparing process models. Rather than directly compar-
ing two models, the process models are compared with respect to some
typical behavior. This way, we are able to avoid the two problems just
mentioned. The approach has been implemented and has been used in
the context of genetic process mining. Although the results are presented
in the context of Petri nets, the approach can be applied to any process
modeling language with executable semantics.

Keywords: Process Mining, Petri Nets, Genetic Algorithms, Process Discovery, Busi-

ness Process Intelligence, Process Equivalence.

1 Introduction

Nowadays, large organizations typically have a wide variety of process models
[17]. Some examples are: reference models (e.g., the EPC models in the SAP
R/3 reference model [24]); workflow models (e.g., models used for enactment
in systems like Staffware, FLOWer, FileNet, Oracle BPEL, etc. [2]); business
process models/simulation models (e.g., using tools such as ARIS, Protos, Arena,
etc. [17]); interface/service descriptions (e.g., the Partner Interface Processes in
RosettaNet [30], the abstract BPEL processes in the context of web services [9],
choreography descriptions using WSCDL [23], or other ad-hoc notations [33]);

and/or process models discovered using process mining techniques [5, 6]. Given
the co-existence of different models and different types of models, it is interesting
to be able to compare process models.

This comparison of process models applies to different levels ranging from
models at the business level to models at the level of software components (e.g.,
when looking for a software component matching some specification). To com-
pare process models in a meaningful manner, we need to assume that these
models have semantics. Moreover, we need to assume some equivalence notion
(When are two models the same?). People working on formal methods have
proposed a wide variety of equivalence notions [1, 19, 26], e.g., two models may
be identical under trace equivalence but are different when considering stronger
notions of equivalence (e.g., bisimulation). Unfortunately, most equivalence no-
tions provide a “true/false” answer. In reality there will seldom be a perfect fit.
Hence, we are interested in the degree of similarity, e.g., a number between 0
(completely different) and 1 (identical). In other to do so, we need to quantify
the differences. Here it seems reasonable to put more emphasis on the frequently
used parts of the model.

A

B
 D
C

E

p1

p2
 p3

p5
p4

p6

F

(a)
 (b)
 (d)

legend:

A=register request

B=book train

C=book flight

D=book hotel

E=send invoice

F=change hotel

(e)

frequencies:

40: ABDE

85: ACDE

15: ADBE

20: ADCE

(f)

A

B
 D
C

E

p1

p2

p5
p4

p6

A

D
C

E

p1

p2
 p3

p5
p4

p6

A

B
 D
C

E

p1

p2
 p3

p5
p4

p6

(c)

Fig. 1. Running example.

To clarify the problem, let us consider Figure 1 where four process models
(expressed in terms of Petri nets [14, 22, 29]) are depicted. These models de-

scribe the booking of a trip, see the legend for the interpretation of the various
transitions in the Petri nets, e.g., C refers to the booking of a flight. Clearly,
these models are similar. However, using classical equivalence notions all models
are considered different. For example, in process (a) it is possible to have the
execution sequence ADBE while this sequence is not possible in (b) and (c).
Moreover, the Petri net in Figure 1(d) allows for ACDFDE which is not possi-
ble in any of the other models. Note that we focus on the active parts of the net
(i.e., the transitions) rather than passive things such as places. Although classi-
cal equivalence notions consider the four models to be different, it is clear that
some are more similar than others. Therefore, we want to quantify “equality”,
i.e., the degree of similarity. A naive approach could be to simply compare the
sets of transition labels, e.g., nets (a) and (b) have the same transition labels:
{A,B,C,D,E} while (c) has a smaller set (without B) and (d) has a bigger
set (with F). However, models with similar labels can have completely different
behaviors (cf. (a) and (b) in Figure 1). Therefore, it is important to consider
causal dependencies and the ordering of activities, e.g., to distinguish between
parallelism and choice. Another approach could be to consider the state spaces
or sets of possible traces of both models. However, in that case the problems are
that there may be infinitely many traces/states and that certain paths are more
probable.

In this paper, we investigate these problems and propose a completely new
approach. The main idea is to compare two models relative to an event log con-
taining “typical behavior”. This solves several problems when comparing dif-
ferent models. Even models having infinitely many execution sequences can be
compared and automatically the relevance of each difference can be taken into
account. Moreover, as we will show, we can capture the moment of choice and
analyze causalities that may not be explicitly represented in the log.

To give some initial insights in our approach, consider the set of traces listed
in Figure 1(f). Each trace represents an execution sequence that may or may not
fit in the models at hand. Moreover, frequencies are given, e.g., in the event log
trace ABDE occurred 40 times, i.e., there were 40 process instances having this
behavior. Figure 1(f) represents some “typical behavior”. This may be obtained
using simulation of some model or it could be obtained by observing some real-
life system/process. All 160 traces fit into the first Petri net (cf. Figure 1(a)),
moreover, this Petri net does not allow for any execution sequences not present in
the log. In this paper, we will quantify a notion of fitness. However, our primary
objective is not to compare an event log and a process model, but to compare
models in the presence of some event log as shown in Figure 1(f). Compare for
example models (a) and (b): in a substantial number of cases (35) D precedes
B or C. If we compare (a) and (c) based on the log, we can see that for 55
cases there is a difference regarding the presence of B. We will show that we can
quantify these differences using the event log. It is important to note that we
do not only consider full traces, e.g., if we compare Figure 1(a) with a Petri net
where D is missing in the model, there is still some degree of similarity although
none of the traces still fits (they all contain D).

To quantify differences between two models, we introduce precision and recall
measures. Precision measures are used to define whether the second model’s
behavior is possible according the the first model’s behavior. Recall measures
are used to quantify how much of the first model’s behavior is covered by the
second model.

This paper extends the results presented in [4] in three ways. Firstly, we in-
vestigate what can be inferred about the values of the defined precision and recall
measures for two models - say model1 and model3 - and some typical behavior -
say log - when we know the measure values for these models when compared to
another model - say model2 - with respect to log. In other words, if the precision
and recall values for (model1, model2, log) and (model2, model3, log) are known,
what can be inferred about the values for (model 1, model3, log)? Secondly, we
reason if two models can be considered behaviorally equivalent when the preci-
sion and recall measures defined in this paper indicate that these models have
the same behavior with respect to a given typical behavior. Thirdly, this paper
also discusses the implementation of the precision and recall measures in the
context of genetic mining (i.e., discovering process using genetic algorithms),
where there is a need to compare models in an approximate manner. Moreover,
in this domain the assumption of having example behavior in terms of event logs
is very natural.

The remainder is organized as follows. After providing a brief overview of
related work, we introduce some preliminaries required to explain our approach.
Although we use Petri nets to illustrate our approach, any other process model
with some local execution semantics (e.g., EPCs, activity diagrams, BPMN, etc.)
could be used. In Section 4, we present two naive approaches (one based on the
static structure and one based on a direct comparison of all possible behaviors)
and discuss their limitations. Then, in Section 5 we present the core results of
this paper. We will show that we can define precision and recall measures using
event logs containing typical behavior. These notions have been implemented
in ProM [16]. In sections 6 and 7 we reason about what can be inferred based
on the results of the precision and recall measures over different models with
respect to a same given log. Finally, we discuss the application of these results
to a genetic mining approach and conclude the paper.

2 Overview of Various Equivalence Notations and
Related Work

In the literature, many equivalence notions have been defined for process models.
Most equivalence notions focus on the dynamics of the model and not on the
syntactical structure (e.g., trace equivalence and bisimulation [1, 19, 26]).

This paper uses Petri nets as a theoretical foundation [14, 22, 29]. In [28] an
overview is given of equivalence notions in the context of Petri nets. See also
[10] for more discussions on equivalence in the context of nets. Most authors
translate a Petri net to a transition system to give it semantics. However, there
are also authors that emphasize the true-concurrency aspects when giving Petri

nets semantics. For example, in [13] the well-known concept of occurrence nets
(also named runs) are used to reason about the semantics of Petri nets.

Any model with formal/executable semantics (including Petri nets) can be
translated to a (possibly infinite) transition system. If we consider transition
systems, many notions of equivalence have been identified. The weakest notion
considered is trace equivalence: two process models are considered equivalent
if the sets of traces they can execute are identical. Trace equivalence has two
problems: (1) the set of traces may be infinite and (2) trace equivalence does
not capture the moment of choice. The first problem can be addressed in various
ways (e.g., looking at finite sets of prefixes or comparing transition systems
rather than traces). The second problem requires stronger notions of equivalence.
Bisimulation and various kinds of observation equivalence [26] attempt to capture
the moment of choice. For example, there may be different processes having
identical sets of traces {ABC,ABD}, e.g., the process where the choice for C or
D is made after executing A or the process where the same choice is made only
after executing B. Branching bisimilarity [19] is a slightly finer equivalence notion
than the well-known observation equivalence [26]. A comparison of branching
bisimilarity, observation equivalence, and a few other equivalences on processes
with silent behavior can be found in [19]. Branching bisimilarity can be checked
in polynomial time (in terms of the size of the transition system) as shown in [20].
Based on these equivalence relations also other relations have been introduced,
e.g., the four inheritance relations in [1] are based on branching bisimilarity.

All references mentioned so far, aim at a “true/false” answer. Moreover, they
do not take into account that some parts of the process may be more important
than others. Few people (e.g., Prakash Panangaden and Jose Desharnais [15])
have been working on probabilistic bisimulation using labeled Markov processes
rather than labeled transition systems. See [15] for an excellent overview of this
work and also links to the probability theory community working on metrics on
spaces of measures. In this paper, we use a different approach. We do not assume
that we know any probabilities. Instead we assume that we have some example
behavior than can serve as a basis for a comparison of two models. Also related is
the work on metric labeled transition systems where the “behavioral difference”
between states is a non-negative real number indicating the similarity between
those states [11]. This way one can define a behavioral pseudometric to compare
transition systems as shown in [11]. Note that this approach very much depends
on an explicit notion of states and it is not clear how this can be applied to a
practical, mainly activity oriented, setting.

As far as we know, this paper and our work in [4] are among the first to
propose the use of “typical behavior” recorded in event logs as an aid for com-
parison. This makes the work quite different from the references mentioned in
this section. Moreover, we show that this can be used in the context of process
mining [3, 5, 6].

3 Preliminaries

This section introduces some of the basic mathematical and Petri-net related
concepts used in the remainder.

3.1 Multi-sets, Sequences, and Matrices

Let A be a set. IB(A) = A → IN is the set of multi-sets (bags) over A, i.e.,
X ∈ IB(A) is a multi-set where for each a ∈ A: X(a) denotes the number of
times a is included in the multi-set. The sum of two multi-sets (X + Y), the
difference (X − Y), the presence of an element in a multi-set (x ∈ X), and
the notion of subset (X ≤ Y) are defined in a straightforward way and they
can handle a mixture of sets and multi-sets. The operators are also robust with
respect to the domains of the multi-sets, i.e., even if X and Y are defined on
different domains, X +Y , X −Y , and X ≤ Y are defined properly by extending
the domain where needed. |X| =

∑
a∈A X(a) is the size of some multi-set X over

A.

For a given set A, A∗ is the set of all finite sequences over A. A finite se-
quence over A of length n is a mapping σ ∈ {1, . . . , n} → A. Such a sequence is
represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.
hd(σ, k) = 〈a1, a2, . . . , ak〉, i.e., the sequence of just the first k elements. Note
that hd(σ, 0) is the empty sequence.

Every multi-set can be represented as a vector, i.e., X ∈ IB(A) can be repre-
sented as a row vector (X(a1), X(a2), . . . , X(an)) where a1, a2, . . . ,an enumerate
the domain of X. (X(a1), X(a2), . . . , X(an))T denotes the corresponding column
vector (T transposes the vector). Assume X is an k × ` matrix, i.e., a matrix
with k rows and ` columns. A row vector can be seen as 1 × ` matrix and a
column vector can be seen as a k × 1 vector. X(i, j) is the value of the element
in the ith row and the jth column. Let X be an k × ` matrix and Y an ` × m
matrix. The product X · Y is the product of X and Y yielding a k × m matrix,
where X · Y (i, j) =

∑
1≤q≤` X(i, q)Y (q, j). The sum of two matrices having the

same dimensions is denoted by X + Y .

For any sequence σ ∈ {1, . . . , n} → A over A, the Parikh vector −→σ maps
every element a of A onto the number of occurrences of a in σ, i.e., −→σ ∈ IB(A)
where for any a ∈ A: −→σ (a) =

∑
1≤i≤n if σ(i) = a then 1 else 0.

3.2 Petri nets

This subsection briefly introduces some basic Petri net terminology [14, 22, 29]
and notations used in the remainder.

Definition 1 (Petri net). A Petri net is a triple (P, T, F). P is a finite set of
places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T) ∪ (T × P)
is a set of arcs (flow relation).

Figure 1 shows four Petri nets. Places are represented by circles and transitions
are represented by squares.

For any relation/directed graph G ⊆ A × A we define the preset •a =
{a1 | (a1, a) ∈ G} and postset a• = {a2 | (a, a2) ∈ G} for any node a ∈ A.

We use
G

• a or a
G

• to explicitly indicate the context G if needed. Based on the
flow relation F we use this notation as follows. •t denotes the set of input places
for a transition t. The notations t•, •p and p• have similar meanings, e.g., p• is
the set of transitions sharing p as an input place. Note that we do not consider
multiple arcs from one node to another. In the Petri net shown Figure 1(d):
p5• = {E,F}, •p5 = {D}, A• = {p2, p3}, •A = {p1}, etc.

At any time a place contains zero or more tokens, drawn as black dots. The
state of the Petri net, often referred to as marking, is the distribution of tokens
over its places, i.e., M ∈ IB(P). In each of the four Petri nets shown in Figure 1
only one place is initially marked (p1). Note that more places could be marked
in the initial state and that places can be marked with multiple tokens.

We use the standard firing rule, i.e., a transition t is said to be enabled if and
only if each input place p of t contains at least one token. An enabled transition
may fire, and if transition t fires, then t consumes one token from each input
place p of t and produces one token for each output place p of t. For example, in
Figure 1(a), A is enabled and firing A will result in the state marking place p2
and p3. In this state both B, C, and D are enabled. If B fires, C is disabled, but
D remains enabled. Similarly, if C fires, B is disabled, but D remains enabled,
etc. After firing 4 transitions in Figure 1(a) the resulting state marks p6 with
one token (independent of the order of B or C). In the following definition, we
formalize these notions.

Definition 2 (Firing rule). Let N = (P, T, F) be a Petri net and M ∈ IB(P)
be a marking.

– enabled(N,M) = {t ∈ T | M ≥ •t} is the set of enabled transitions,

– result(N,M, t) = (M − •t) + t• is the state resulting after firing t ∈ T ,

– (N,M)[t〉(N,M ′) denotes that t is enabled in (N,M) (i.e., t ∈ enabled(N,M))
and that firing t results in marking M ′ (i.e., M ′ = result(N,M, t)).

(N,M)[t〉(N,M ′) defines how a Petri net can move from one marking to another
by firing a transition. We can extend this notion to firing sequences. Suppose
σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net N with
initial marking M . (N,M)[σ〉(N,M ′) means that there is also a sequence of
markings 〈M0,M1, . . . ,Mn〉 where M0 = M , Mn = M ′, and for any 0 ≤ i <
n: (N,Mi)[ti+1〉(N,Mi+1). Using this notation we define the set of reachable
markings R(N,M) as follows: R(N,M) = {M ′ ∈ IB(P) | ∃σ(N,M)[σ〉(N,M ′)}.
Note that M ∈ R(N,M) because M is reachable via the empty sequence.

Note that result(N,M, t) does not need to yield a multi-set if t is not enabled
in marking M because some places may have a negative number of tokens.
Although this is not allowed in a Petri net (only enabled transitions can fire),
for technical reasons it is sometimes convenient to use markings that may have

“negative tokens”. This becomes clear when considering the incidence matrix of
a Petri net.

Definition 3 (Incidence matrix). Let N = (P, T, F) be a Petri net and M ∈
IB(P) be a marking.

– Ñ is the incidence matrix of N , i.e., Ñ is a |P |×|T | matrix with Ñ(p, t) = 1
if (p, t) 6∈ F and (t, p) ∈ F , Ñ(p, t) = −1 if (p, t) ∈ F and (t, p) 6∈ F , and
Ñ(p, t) = 0 in all other cases,

– result(N,M, σ) = M + Ñ · −→σ is the state resulting after firing σ ∈ T ∗,1

– enabled(N,M, σ) = enabled(N, result(N,M, σ)) is the set of enabled transi-
tions after firing σ ∈ T ∗.

The incidence matrix of a Petri net can be used for different types of analysis,
e.g., based on Ñ it is possible to efficiently calculate place and transition invari-
ants and to provide minimal (but not sufficient) requirements for the reachability
of a marking. It is important to see that result(N,M, σ) does not need to yield a
valid marking, i.e., there may be a place p such that result(N,M, σ)(p) < 0 indi-
cating a negative number of tokens. If (N,M)[σ〉(N,M ′), then result(N,M, σ) =
M ′. However, the reverse does not need to be the case. enabled(N,M, σ) cal-
culates which transitions are enabled after firing each transition −→σ times using
function result and the earlier defined function enabled (cf. Definition 2). It may
be the case that while executing σ starting from (N,M), transitions were forced
to be fired although they were not enabled. As a result, places may get a neg-
ative number of tokens. The reason we need such concepts is because we will
later compare Petri nets with some observed behavior. In such situations, we
need to be able to deal with transitions that were observed even if they were not
enabled.

4 Naive Approaches

In this paper we propose to compare two processes on the basis on some event log
containing typical behavior. However, before presenting this approach in detail,
we first discuss some naive approaches.

4.1 Equivalence of Processes Based on their Structure

When humans compare process models they typically compare the graphical
structure, i.e., do the same activities (transitions in Petri net terms) appear
in both models and do they have similar connections. Clearly, the graphical
structure may be misleading: two models that superficially appear similar may
be very different. Nevertheless, the graphical structure is an indicator that may

1 Note that σ does not need to be enabled, i.e., transitions are forced to fire even if
they are not enabled. Also note that we do not explicitly distinguish row and column
vectors.

be used to quantify similarity. Let us abstract from the precise split and join
behavior (i.e., we do not distinguish between AND/XOR-splits/joins). In other
words, we derive a simple graph where each node represents an activity and each
arc some kind of connection. For example, the Petri net shown in Figure 1(a)
is reduced to a graph with nodes A, B, C, D and E, and arcs (A,B), (A,C),
(A,D), (B,E), (C,E) and (D,E). For the other Petri nets models in Figure 1
a similar graph structure can be derived. It is easy to see that each of the
four process models has a different graph structure. However, there are many
overlapping connections, e.g., all models have arc (A,C). This suggests that
from a structural point of view the models are not equivalent but similar. When
quantifying the overlap relative to the whole model we can take the perspective
of the first model or the second model. This leads to the definition of precision
and recall as specified below.2

Definition 4 (Structural Precision and Recall). Let N1 = (P1, T1, F1) and

N2 = (P2, T2, F2) be two Petri nets. Using C1 = {(t1, t2) ∈ T1 × T1 |t1
N1

• ∩
N1

•

t2 6= ∅} and C2 = {(t1, t2) ∈ T2 × T2 |t1
N2

• ∩
N2

• t2 6= ∅}, we define:

precisionS(N1, N2) =
|C1 ∩ C2|

|C2|
recallS(N1, N2) =

|C1 ∩ C2|

|C1|

precisionS(N1, N2) is the fraction of connections in N2 that also appear in N1. If
this value is 1, the precision is high because all connections in the second model
exist in the first model. recallS(N2, N1) is the fraction of connections in N1 that
also appear in N2. If this value is 1, the recall is high because all connections
in the first model appear in the second model. Note that here we think of N1

as the “original model” and N2 as some “new model” that we want to compare
with the original one.

Let Na, Nb, Nc, and Nd be the four Petri nets shown in Figure 1.

precisionS(Na, Nb) = |{(A,B),(A,C),(D,E)}|
|{(A,B),(A,C),(B,D),(C,D),(D,E)}| = 3

5 = 0.6.

recallS(Na, Nb) = |{(A,B),(A,C),(D,E)}|
|{(A,B),(A,C),(A,D),(B,E),(C,E),(D,E)}| = 3

6 = 0.5.

Note that precisionS(N1, N2) = recallS(N2, N1) by definition for any pair of
Petri nets N1 and N2. Therefore, we only list some precision values: precisionS(Na,
Nb) = 0.6, precisionS(Na, Nc) = 4/4 = 1.0, precisionS(Na, Nd) = 6/8 = 0.75,
precisionS(Nb, Na) = 3/6 = 0.5, precisionS(Nb, Nc) = 2/4 = 0.5, precisionS(Nb,
Nd) = 3/8 = 0.375, etc. If we consider Na to be the initial model, then Nc has
the best precision of the other three models because all connections in Nc also
appear in Na. Moreover, if we consider Na to be the initial model, then Nd has
the best recall because all connections in Na also appear in Nd.

The precision and recall figures for the four process models in Figure 1 seem
reasonable. Unfortunately, models with nearly identical connections may be quite
different as is shown in Figure 2. Let Na, Nb, Nc, and Nd be the four Petri nets
shown in Figure 2.3 Although precisionS(Na, Nb) = recallS(Na, Nb) = 1, Na and

2 These metrics are an adaptation of the precision and recall metrics in [27].
3 Note that strictly speaking Nd does not correspond to a Petri net as defined in

Definition 1, because there are two transitions A. However, it is easy to extend

p6

(a)
 (b)
 (c)
 (d)

A

C
B

D

p1

p2
 p3

p5
p4

p6

A

C
B

D

p1

p2

p3

p4

A

C
B

D

p1

p2
 p3

p5
p4

p7

A

C
B

D

p1

p2
 p3

p4

p5

A

Fig. 2. Although the connection structures of (a) and (b) are similar they are quite
different in terms of behavior. Moreover, the connection structure of (a) and (c) differs
while the corresponding behaviors are identical.

Nb are clearly different. In Na transitions B and C are executed concurrently
while in Nb a choice is made between these two transitions. However, although
Na and Nc are structurally different (precisionS(Na, Nc) = 4/5 = 0.8), they have
identical behaviors. These examples show that Definition 4 does not provide a
completely satisfactory answer when it comes to process equivalence. Neverthe-
less, precisionS(N1, N2) and recallS(N1, N2) can be used as rough indicators for
selecting a similar model, e.g., in a repository of reference models.

4.2 Equivalence of Processes Based on their State Space or Traces

Since process models with a similar structure may have very different behaviors
and models with different structures can have similar behaviors, we now focus
on quantifying the equivalence of processes based on their actual behaviors. We
start with a rather naive approach where we define recall and precision based
on the full firing sequences of two marked Petri nets.

Definition 5 (Naive Behavioral Precision and Recall). Let N1 = (P1, T1, F1)
and N2 = (P2, T2, F2) be two Petri nets having initial markings M1 and M2

respectively. Moreover, let the corresponding two sets of possible full firing se-
quences be finite:
S1 = {σ ∈ T ∗

1 | ∃
M ′∈IB(P1)

(N1,M1)[σ〉(N1,M
′) ∧ enabled(N1,M

′) = ∅} and

S2 = {σ ∈ T ∗
2 | ∃

M ′∈IB(P2)
(N2,M2)[σ〉(N2,M

′) ∧ enabled(N2,M
′) = ∅}.

Definition 1 to so-called labeled Petri nets where different transitions can have the
same label.

precisionB((N1,M1), (N2,M2)) =
|S1 ∩ S2|

|S2|

recallB((N1,M1), (N2,M2)) =
|S1 ∩ S2|

|S1|

Clearly, the initial markings of N1 and N2 are highly relevant. However, if these
are clear from the context, we do not explicitly mention these, i.e., precisionB(N1,
N2) = precisionB((N1,M1), (N2,M2)) and recallB(N1, N2) = recallB((N1,M1),
(N2,M2)).

Let Na, Nb, Nc, and Nd be the four Petri nets shown in Figure 2 and Sa, Sb,
Sc, and Sd their corresponding full firing sequences. Sa = {〈A,B,C,D〉, 〈A,C,B,
D〉}, Sb = {〈A,B,D〉, 〈A,C,D〉}, Sc = Sa, and Sd = Sb. Hence, precisionB(Na,
Nb) = 0 and recallB(Na, Nb) = 0, i.e., the models are considered to be com-
pletely different because there are no identical full firing sequences possible in
both models. However, precisionB(Na, Nc) = 1 and recallB(Na, Nc) = 1 and
precisionB(Nb, Nd) = 1 and recallB(Nb, Nd) = 1.

We can also consider the four process models in Figure 1. The fourth model
(Nd) has an infinite set of full firing sequences. Therefore, we focus on the first
three models: Na, Nb, and Nc. Let us first compare Na and Nb: precision

B(Na, Nb)
= 2/2 = 1 and recallB(Na, Nb) = 2/4 = 0.5, i.e., all full firing sequences in Nb

are possible in Na but not the other way around. Although Nc differs from
Nb, the precision and recall values are identical when comparing with Na, i.e.,
precisionB(Na, Nc) = 1 and recallB(Na, Nc) = 0.5.

These examples show that Definition 5 provides another useful quantification
of equivalence quite different from Definition 4. However, also this quantification
has a number of problems:

1. The set of full firing sequences needs to be finite. This does not need to be
the case as is illustrated by the Petri net shown in Figure 1(d). For such
models, the metric becomes useless.

2. The models need to be terminating, i.e., it should be possible to end in a dead
marking representing the completion of the process. Note that models may
have unintentional livelocks or are designed to be non-terminating. For such
models, we cannot apply Definition 5 in a meaningful way. It also does not
make sense to look at all possible firing sequences (i.e., also firing sequences
that are not full firing sequences), because this would include the prefixes of
both terminating and non-terminating sequences. As a result, new problems
are introduced, e.g., more emphasis on the behavior typically contained in
prefixes and possibly infinite sets.

3. Definition 5 does not take into account differences between important paths
or parts versus unimportant paths or parts of the model. For example, certain
full firing sequences may have a very low probability in comparison to other
sequences that occur more frequent. There may be parts of the process model

that are rarely activated (earlier named “process veins”) while other parts are
executed for all process instances (earlier named “process arteries”). Clearly
this should be taken into account.

4. Fourth, Definition 5 appears to be too rigid, i.e., one difference in a full firing
sequence invalidates the entire sequence. In Figure 2 precisionB(Na, Nb) = 0
and recallB(Na, Nb) = 0 although both models always start with A and end
with D.

5. The moment of choice is not taken into account in Definition 5, i.e., essen-
tially trace equivalence is used as a criterion. Many authors [1, 19, 26] have
emphasized the importance of preserving the moment of choice by defining
notions such as observation equivalence, bisimilarity, branching/weak bisim-
ilarity, etc. To illustrate the importance of preserving the moment of choice,
consider Nb and Nd depicted in Figure 2. Although precisionB(Nb, Nd) = 1
and recallB(Nb, Nd) = 1, most environments will be able to distinguish both
processes. In Nb in Figure 2(b) there is no state where only B or just C is
enabled. However, such states exist in Nd in Figure 2(d), e.g., there can be a
token in p2 enabling only B. Suppose that B and C correspond to the receipt
of different messages sent by some environment. In this case, Nd potentially
deadlocks, e.g., a message for B cannot be handled because the system is
waiting for C (i.e., p3 is marked). Such a deadlock is not possible in Nb.

The problems listed above show that similarity metrics based on criteria directly
comparing all possible behaviors in terms of traces are of little use from a practi-
cal point of view. An alternative approach is to compare the state spaces rather
than the sets of traces. For example, trying to establish a bisimulation relation
where states are related in such a way that any move of one process model can
be followed by the other one and vice versa [1, 19, 26]. However, this would only
solve some of the problems listed above. Moreover, the notion of state often only
exists implicitly and it is very difficult to extend more refined equivalence notions
to include probabilities (cf. [11, 15]). Therefore, we propose another approach as
presented in the next section.

5 Equivalence of Processes in the Context of Observed
Behavior

To overcome the problems highlighted so far, we propose an approach that uses
exemplary behavior to compare two models. This exemplary behavior can be
obtained on the basis of real process executions (in case the process already
exists), user-defined scenarios, or by simply simulating one of the two models
(or both). We assume this exemplary behavior to be recorded in an event log.

Definition 6 (Event log). An event log L is a multi-set of sequences on some
set of T , i.e., L ∈ IB(T ∗).

An event log can be considered as a multi-set of full firing sequences (cf. Defi-
nition 5). However, now these sequences may exist independent of some model
and the same sequence may occur multiple times.

Before comparing two process models using an event log, we first define the
notion of fitness. This notion is inspired by earlier work on genetic mining and
conformance checking [25, 31].

Definition 7 (Fitness). Let (N,M) be a marked Petri net and let L ∈ IB(T ∗)
be a multi-set over T .4

fitness((N,M), L) =

(
∑

σ∈L

L(σ)

|σ|
|{i ∈ {0, |σ| − 1} | σ(i + 1) ∈ enabled(N,M, hd(σ, i))}|)/|L|

fitness((N,M), L) yields a number between 0 and 1. Note that per sequence
σ ∈ L we calculate the number of times that a transition that was supposed
to fire according to σ was actually enabled. This is divided by |σ| to yield a
number between 0 and 1 per sequence. This number shows the “fit” of σ. This
is repeated for all σ ∈ L. Since the same sequence may appear multiple times
in L (i.e., L(σ) > 1), we multiply the result for σ with L(σ) and divide by
|L|. Definition 7 assumes that |L| > 0 and |σ| > 0. This is not a fundamental
restriction, if such strange cases occur (empty event log or an empty sequence),
then we can simply assume that 0/0 = 0.

As an example, consider the event log L shown in Figure 1(f) containing 160
traces. Clearly, fitness(Na, L) = 1 because all sequences in L can be reproduced
by Na.5 Moreover, fitness(Nb, L) = (40 + 85 + (15 ∗ 3/4) + (20 ∗ 3/4))/160 =
0.945, fitness(Nc, L) = ((40 ∗ 1/2) + 85 + (15 ∗ 1/2) + 20)/160 = 0.828, and
fitness(Nd, L) = 1. These examples show that Definition 7 matches our intuitive
understanding of fitness. It is important to note that transitions are “forced”
to fire even if they are not enabled, cf. Definition 3. Moreover, a particular se-
quence can be “partly fitting”, e.g., if we parse sequence 〈A,B,D,E〉 using
Nc in Figure 1(c), half of the sequence fits. When forcing the execution of
〈A,B,D,E〉 using Nc, A is initially enabled. However, B is not enabled and
does not even exist in the model. Nevertheless, in the resulting state D is still
enabled. However, after firing D, the last event in the sequence (E) is not en-
abled. Hence, only two of the four events in 〈A,B,D,E〉 are actually enabled,
resulting in a fitness of 0.5. Note that it is better to look at individual events
rather than considering whole sequences like in Definition 5. Using Definition 7,
fitness(Nc, L) = 0.828. However, if we would focus on completely fitting se-
quences, fitness(Nc, L) = (0 + 85 + 0 + 20)/160 = 0.656, i.e., considerably lower
because partly fitting are ignored.

Inspired by the definition of fitness, we would like to compare two models
on the basis of a log. A straightforward extension of Definition 7 to two models
is to compare the overlap in fitting or partially fitting sequences. However, in

4 Note that not all events in the log need to correspond to actual transitions. These
events are simply ignored, i.e., we assume enabled(N, M, σ) to be defined properly
even if not all transitions in σ actually appear in N .

5 Note that again we omit the initial marking if it is clear from the context, i.e.,
fitness(Na, L) = fitness((Na, [p1]), L).

this case one only considers the actual behavior contained in the log. Therefore,
we go one step further and look at the enabled transitions in both models and
compare these, i.e., we do not just check whether an event in some sequence is
possible, but also take into account all enabled transitions at any point in the
sequence. This idea results in the following definition of precision and recall.

Definition 8 (Behavioral Precision and Recall). Let (N1,M1) and (N2,M2)
be marked Petri nets and let L ∈ IB(T ∗) be a multi-set over T .6

precision((N1,M1), (N2,M2), L) =

(
∑

σ∈L

L(σ)

|σ|
(

|σ|−1∑

i=0

|enabled(N1,M1, hd(σ, i)) ∩ enabled(N2,M2, hd(σ, i))|

|enabled(N2,M2, hd(σ, i))|
))/|L|

recall((N1,M1), (N2,M2), L) =

(
∑

σ∈L

L(σ)

|σ|
(

|σ|−1∑

i=0

|enabled(N1,M1, hd(σ, i)) ∩ enabled(N2,M2, hd(σ, i))|

|enabled(N1,M1, hd(σ, i))|
))/|L|

To explain the concept consider a log L = {(〈A,B,C,D〉, 2), (〈A,C,B,D〉, 1)}
and the first three Petri nets shown in Figure 2. precision(Na, Nb, L) = ((2/4 ∗
(1/1 + 2/2 + 0/1 + 1/1)) + (1/4 ∗ (1/1 + 2/2 + 0/1 + 1/1)))/3 = 0.75 and
recall(Na, Nb, L) = ((2/4 ∗ (1/1 + 2/2 + 0/1 + 1/1)) + (1/4 ∗ (1/1 + 2/2 + 0/1 +
1/1)))/3 = 0.75. precision(Na, Nc, L) = recall(Na, Nc, L) = 1.

We can also consider the four process models in Figure 1 with respect to
the logs shown in Figure 1(f). precision(Na, Nb, L) = ((40/4 ∗ (1/1 + 2/2 +
1/1 + 1/1)) + (85/4 ∗ (1/1 + 2/2 + 1/1 + 1/1)) + (15/4 ∗ (1/1 + 2/2 + 2/3 +
1/1)) + (20/4 ∗ (1/1 + 2/2 + 2/3 + 1/1)))/160 = 0.98 and recall(Na, Nb, L) =
((40/4 ∗ (1/1 + 2/3 + 1/1 + 1/1)) + (85/4 ∗ (1/1 + 2/3 + 1/1 + 1/1)) + (15/4 ∗
(1/1 + 2/3 + 2/2 + 1/1)) + (20/4 ∗ (1/1 + 2/3 + 2/2 + 1/1)))/160 = 0.92. Note
that both numbers would be lower if the sequences starting with 〈A,D, . . .〉
would be more frequent. Let us now compare Na and Nd in Figure 1 using L.
precision(Na, Nd, L) = ((40/4∗(1/1+3/3+1/1+1/2))+(85/4∗(1/1+3/3+1/1+
1/2))+(15/4∗(1/1+3/3+2/3+1/2))+(20/4∗(1/1+3/3+2/3+1/2)))/160 = 0.75
and recall(Na, Nd, L) = ((40/4∗(1/1+3/3+1/1+1/1))+(85/4∗(1/1+3/3+1/1+
1/1))+(15/4∗ (1/1+3/3+2/2+1/1))+(20/4∗ (1/1+3/3+2/2+1/1)))/160 =
1. Note that Nd allows for behavior not present in log L (i.e., executing F).
Nevertheless, as we can see from precision(Na, Nd, L) = 0.75, the enabling of F
is taken into account. It is also easy to see that Definition 8 takes into account the
moment of choice, i.e., the enabling of set of transitions is the basis of comparison
rather than the resulting sequences. Hence, we can distinguish Nb and Nd in
Figure 2.7

6 Note that the two denominators |enabled(N2, M2, hd(σ, i))| and
|enabled(N1, M1, hd(σ, i))| may evaluate to zero. In these case, the numerator
is also zero. Again, we assume in such cases that 0/0 = 0.

7 Note that Nd contains duplicate labels, i.e., two transitions with label A. However,
it is possible to extend Definition 8 and the resulting approach for such models.

In Section 4.2 we listed five problems related to the use of Definition 5. It is
easy to see that Definition 8 addresses each of these problems:

1. Even models with an infinite set of firing sequences can be compared using
a finite, but representative, set of traces.

2. Models do not need to be terminating.

3. Differences between frequent and infrequent sequences can be taken into
account by selecting a representative log.

4. Partial fits are taken into account, i.e., small local differences do not result
in a complete “misfit”.

5. The moment of choice is taken into account because the focus is on enabling.

Given the attractive properties of the precision and recall metrics defined in
Definition 8, we have implemented these metrics in the ProM framework [16].8

Here it has been applied to a variety of process models as will be discussed in
Section 8.

One the of critical success factors is the availability of some log L that can
serve as a basis for comparison. We propose to use existing event logs or to
generate artificial logs using simulation.

Existing logs can be extracted from information systems but can also be
obtained by manually describing some typical scenarios. It is important to re-
alize that today’s information systems are logging a wide variety of events. For
example, any user action is logged in ERP systems like SAP R/3, workflow
management systems like Staffware, and case handling systems like FLOWer.
Classical information systems have some centralized database for logging such
events (called transaction log or audit trail). Modern service-oriented architec-
tures record the interactions between web services (e.g., in the form of SOAP
messages). Moreover, today’s organizations are forced to log events by national
or international regulations (cf. the Sarbanes-Oxley (SOX) Act [32] that is forc-
ing organizations to audit their processes).

An example application scenario where existing event logs are used is the
comparison of an existing process and a set of possible redesigns. For each of
the redesigns, we can measure the precision and recall taking an event log of the
existing information system as a starting point. First of all, the existing process
can be compared with this event log using the fitness notion presented in this
section. This gives an indication of the quality of the initial model. Then, if the
quality is acceptable, each of the redesigns can be compared with the existing
process using this log.

Another approach would be to use simulation. This simulation could be based
on both models or just the initial model. Note that the generated logs do not need
to be complete, because Definition 8 also takes the enabling into account. It is
more important that the probabilities are taken into account, because differences
in the “process veins” are of less importance than differences in the “process
arteries”.

8 ProM and the analysis plug-in implementing the precision and recall metrics can be
downloaded from www.processmining.org.

6 When are Behavioral Precision and Recall Metrics
“Transitive”?

As illustrated in Figure 3, this section explores what can be “transitively” in-
ferred about the values of the behavioral precision and recall metrics (cf. Defini-
tion 8) for three models and a log. In other words, given that you have (i) three
process models N1, N2 and N3 with the respective initial markings M1, M2, and
M3, (ii) an event log L and (iii) the values for the precision and recall metrics
for N1 and N2 and for N2 and N3 over the same log L and using the respective
initial markings, we analyze what can be said about the precision and recall
values for N1 and N3. The results for the different scenarios are summarized in
Table 1.

pr
ec

is
io

n
=

z

re

ca
ll

=
w

pr
ec

is
io

n
=

x

re

ca
ll

=
y

precision = ?
 recall = ?

A

B
 D
C

E

Net N
1
 Net N
2

A

D
C

E

A

B
 D
C

E

Net N
3

Log

Fig. 3. Given that the precision and recall values for the models (N1,N2) and (N2,N3)
to a given Log are known, what can be inferred about the precision and recall for the
models (N1,N3) with respect to Log?

To understand Table 1, we formulate our main question as follows. Sup-
pose we have three marked nets (N1,M1), (N2,M2) and (N3,M3), and a log L.
Moreover, assume that the following behavioral precision and recall metrics are
known: precision((N1,M1), (N2,M2), L) = z, recall((N1,M1), (N2,M2), L) = w,
precision((N2,M2), (N3,M3), L) = x and recall((N2,M2), (N3,M3), L) = y. The
main question is then: What are the values of the precision((N1,M1), (N3,M3), L)

and the recall((N1,M1), (N3,M3), L)? The results in Table 1 are motivated in
the remainder. Note that rather than providing formal proofs we give core ar-
guments. However, first we provide an obvious lemma (cf. Lemma 1). Using
the insights from this lemma, we show the reasoning behind the 16 scenarios in
Table 1.

S
c
e
n
a
ri

o

p
re

c
is
io

n
((

N
1
,
M

1
),

(N
2
,
M

2
),

L
)

re
c
a
ll

((
N

1
,
M

1
),

(N
2
,
M

2
),

L
)

p
re

c
is
io

n
((

N
2
,
M

2
),

(N
3
,
M

3
),

L
)

re
c
a
ll

((
N

2
,
M

2
),

(N
3
,
M

3
),

L
)

precision((N1, M1), (N3, M3), L) recall((N1, M1), (N3, M3), L)

1 z w x y ≤ 1.0 ≤ 1.0
2 z w x 1.0 < 1.0 ≥ w

3 z w 1.0 y ≤ 1.0 ≤ w

4 z w 1.0 1.0 z w

5 z 1.0 x y ≤ x ≤ 1.0
6 z 1.0 x 1.0 < x 1.0
7 z 1.0 1.0 y ≤ 1.0 ≤ 1.0
8 z 1.0 1.0 1.0 z 1.0
9 1.0 w x y ≥ x ≤ 1.0
10 1.0 w x 1.0 ≥ x ≥ w

11 1.0 w 1.0 y 1.0 < w

12 1.0 w 1.0 1.0 1.0 w

13 1.0 1.0 x y x y

14 1.0 1.0 x 1.0 x 1.0
15 1.0 1.0 1.0 y 1.0 y

16 1.0 1.0 1.0 1.0 1.0 1.0

Table 1. Possible scenarios for the values of the precision and recall metrics. We
assume that the variables z, w, x and y have values between zero (inclusive) and 1
(exclusive). In other words, z, w, x, y ∈ [0, 1).

Lemma 1. Let (N1,M1) and (N2,M2) be two marked Petri nets and let L be a
log.

– If precision((N1,M1), (N2,M2), L) = 1.0
then ∀σ∈L∀i∈{0,|σ|−1} enabled(N1,M1, hd(σ, i)) ⊇ enabled(N2,M2, hd(σ, i));

– If recall((N1,M1), (N2,M2), L) = 1.0
then ∀σ∈L∀i∈{0,|σ|−1} enabled(N1,M1, hd(σ, i)) ⊆ enabled(N2,M2, hd(σ, i));

– If precision((N1,M1), (N2,M2), L) = recall((N1,M1), (N2,M2), L) = 1.0
then ∀σ∈L∀i∈{0,|σ|−1} enabled(N1,M1, hd(σ, i)) = enabled(N2,M2, hd(σ, i)).

Proof. Follows directly from Definition 8. If both nets do not enable the same
set of transitions, the precision and recall values will be less then 1. 2

Scenario 13, 14, 15 and 16 Since N1 and N2 have the exact same enabled
transitions while replaying the log (i.e, precision((N1,M1), (N2,M2), L) =
1.0 and recall((N1, M1), (N2, M2), L) = 1.0), the intersection between the
enabled transitions of N1 and of N3 while replaying the log will be the
same as for N2 and N3. Therefore, we can conclude that precision((N1,
M1), (N3,M3), L) = precision((N2,M2), (N3,M3), L) and recall((N1,M1),
(N3,M3), L) = recall((N2,M2), (N3,M3), L).

Scenarios 4, 8 and 12 Scenarios 4, 8 and 12 are similar to scenarios 13, 14
and 15. Just swap the models N1 and N3 in Figure 3 to get the scenarios
already explained for 13, 14 and 15.

Scenario 6 For this scenario, recall((N1,M1), (N3,M3), L) = 1.0 because, while
replaying the log, (i) all transitions that are enabled in N1 are also in N2

(i.e., recall((N1,M1), (N2,M2), L) = 1.0) and (ii) all transitions that are
enabled in N2 are also in N3 (i.e., recall((N2,M2), (N3,M3), L) = 1.0).
Thus, we can conclude that all transitions that are enabled in N1 are also
going to be enabled in N3 (i.e., recall((N1,M1), (N3,M3), L) = 1.0) be-
cause these transitions are contained in the set of transitions that were
enabled for N2 while calculating the value of recall((N2,M2), (N3,M3), L).
precision((N1,M1), (N3,M3), L) < precision((N2,M2), (N3,M3), L) because,
since recall((N1,M1), (N2,M2), L) = 1.0 and precision((N2,M2), (N3,M3),
L) 6= 1.0, the intersection between the enabled transitions in N3 and N1 (cf.
numerator for the precision formula in Definition 8) can only be smaller than
the intersection for N3 and N2. Furthermore, the intersection is always di-
vided by the same number (i.e., the denominator “|enabled(N3,M3, hd(σ, i)|”
remains constant). Therefore, we can conclude that precision((N1,M1), (N3,
M3), L) < precision((N2,M2), (N3,M3), L).

Scenario 11 A similar reasoning for the precision (recall) in Scenario 6 is used
for the recall (precision) in Scenario 11.

Scenario 10 Since all transitions enabled for N2 during the log replay are
also enabled in N1 (cf. precision((N1,M1), (N2,M2), L) = 1.0) and in N3

(cf. recall((N2,M2), (N3,M3), L) = 1.0), N1 and N3 cannot have fewer
intersecting transitions that are enabled at a given moment than the en-
abled transitions for N2. However, since we do not make any assumptions
about the transitions in these models, it is possible that N1 and N3 have
more enabled transitions in common while replaying the log than they have
with N2. Therefore, we can conclude that precision((N1,M1), (N3,M3), L) ≥
precision((N2,M2), (N3,M3), L) and recall((N1,M1), (N3,M3), L) ≥ recall(
(N1,M1), (N2,M2), L).

Scenario 9 For this scenario, precision((N1,M1), (N3,M3), L) ≥ precision((N2,
M2), (N3,M3), L) because,while replaying the log, in the worst scenario, N3

will have at least as many elements in common with N1 as it has with N2.
Note that N3 allows for more behavior than N2 (cf. precision((N2,M2),
(N3,M3), L) = x), but all the behavior enabled in N2 is also enabled in N1

(cf. precision((N1,M1), (N2,M2), L) = 1.0), thus N3 cannot have fewer en-
abled transitions in common with N1 than it has with N2. However, nothing

can be said about recall((N1,M1), (N3,M3), L) because N1 can have more or
fewer enabled transitions than N3. Therefore, recall((N1,M1), (N3,M3), L)
can assume any value between 0 (inclusive) and 1 (inclusive).

Scenario 5 For this scenario, precision((N1,M1), (N3,M3), L) ≤ precision((N2,
M2), (N3,M3), L) and recall((N1,M1), (N3,M3), L) ≤ 1. precision((N1,M1),
(N3,M3), L) ≤ precision((N2, M2), (N3,M3), L) because, since (i) all en-
abled transitions in N1 are also enabled in N2 while replaying the log (cf.
recall((N1,M1), (N2,M2), L) = 1.0) and (ii) N3 has enabled transitions that
are not enabled in N2 (cf. precision((N2,M2), (N3,M3), L) = x), N3 can
have at most as many enabled transitions in common with N1 as it has
with N2. However, note that N3 can have fewer transitions in common with
N1 than it has with N2 because N2 has behavior that is not in N1 (cf.
precision((N1,M1), (N2,M2), L) = z). recall((N1,M1), (N3,M3), L) ≤ 1 be-
cause, while replaying the log, N1 may have enabled transitions that are not
enabled in N3. Note that, although recall((N1,M1), (N2,M2), L) = 1.0, a
fraction of these enabled transition may not intersect with the enabled ones
for N3 because recall((N2,M2), (N3,M3), L) 6= 1.0.

Scenario 2 In this scenario, we can infer that recall((N1,M1), (N3,M3), L) ≥
recall((N1,M1), (N2,M2), L) and precision((N1,M1), (N3,M3), L) < 1. Let
us first have at look at why recall((N1,M1), (N3,M3), L) ≥ recall((N1,M1),
(N2,M2), L). From the value of the recall metric for N2 and N3 (cf. recall(
(N2,M2), (N3,M3), L) = 1), we know that all transitions enabled in N2

are also enabled in N3 when replaying the log. Thus, when assessing the
recall metric for N1 and N3 (i.e., recall((N1,M1), (N3,M3), L)), we know
that N1 has at least as many enabled elements in common with N3 as N2

has with N3. However, since precision((N2,M2), (N3,M3), L) 6= 1 (i.e., some
of the enabled transitions in N3 are not enabled in N2), it can be that
N1 has more elements in common with N3 than with N2. That is why
recall((N1,M1), (N3,M3), L) ≥ recall((N1,M1), (N2,M2), L). Now, let us
analyze why precision((N1,M1), (N3,M3), L) < 1. This happens because we
cannot be sure if N3 will have more or less enabled elements in common with
N1 than it has with N3. We only know that N3 cannot have all enabled tran-
sitions in common with N1 because precision((N1,M1), (N2,M2), L) 6= 1 and
recall((N2,M2), (N3,M3), L) = 1.0. Thus, precision((N1,M1), (N3,M3), L)
can assume any value but 1.

Scenario 3 The recall((N1,M1), (N3,M3), L) ≤ recall((N2, M2), (N3,M3) for
this scenario because all enabled transitions for N3 are also enabled for N2

(cf. precision((N2, M2), (N3,M3) = 1). Consequently, N1 cannot have more
enabled transitions with N1 than it has with N2. However, N1 can have
fewer enabled transitions in common with N3 than with N2. That is why
recall((N1,M1), (N3,M3), L) ≤ recall((N2, M2), (N3,M3). The precision(
(N1,M1), (N3,M3), L) ≤ 1.0 because the fact that precision((N2,M2), (N3,
M3), L) is equal to 1 does not prevent that all enabled transitions in N3 are
also enabled in N1. Thus, precision((N1,M1), (N3,M3), L) can assume any
value between 0 (inclusive) and 1 (inclusive).

Scenario 7 In this scenario, we know that all the enabled transitions for N1 and
N3 while replaying the log are also enabled for N2 because recall((N1,M1),
(N2,M2), L) = 1.0 and precision((N2,M2), (N3,M3), L) = 1.0. However,
since we do not know how much behavior of N2 intersects with the behavior
of N1 and N3, it can be that N1 and N3 have the same enabled transitions
or that they do not have a single transition in common while replaying the
log. In other words, precision((N1,M1), (N3,M3), L) and recall((N1,M1),
(N3,M3), L) can assume any value between 0 (inclusive) and 1 (inclusive).

Scenario 1 In this scenario, the precision and recall metrics for N1 and N3

can have any value between 0 (inclusive) and 1 (inclusive) because the fact
that precision((N1,M1), (N2,M2), L) 6= 1, recall((N1,M1), (N2,M2), L) 6=
1, precision((N2,M2), (N3,M3), L) 6= 1, and recall((N2,M2), (N3,M3), L) 6=
1 does not prevent N1 and N3 of having precision((N1,M1), (N3,M3), L) = 1
and recall((N1,M1), (N2,M2), L) = 1. As an illustration, just think of the
situation in which the two models N1 and N3 are the same, but have a
different behavior than the model N2.

The results presented in this section (cf. Table 1) are useful in situations in which
one needs to get a rough indication about values for the precision and recall of
two models, but does not really need/want to calculate these values.

7 Behavioral Precision/Recall and Process Equivalence
in General

If two models N1 and N2 have behavioral precision and recall equal to 1 with
respect to a given log L, does this imply that these two models are behaviorally
equivalent? In other words, does this mean that all the behavior generated by
N1 can be generated by the N2, and vice-versa? The short answer is not always.
In this section we illustrate situations in which precision(N1, N2, L) = 1 and
recall(N1, N2, L) = 1, but N1 and N2 do not capture the exact same behavior.
The situations are:

Model does not fit the log In this situation, the fitness (cf. Definition 7) of
at least one of the models is not equal to 1 (i.e., fitness((N1,M1), L) < 1
or fitness((N2,M2), L) < 1). Figure 4 shows one example for this situation.
Note that none of the models in Figure 4 fit the log, but they always have
the same enabled transitions when replaying the traces of the log in 4(c) and
with the respective initial markings in 4(a) and 4(b).

Model has tasks that are not in the log When some of the tasks of one of
the models are not in the log (i.e., TN1

6⊆ TL or TN2
6⊆ TL), the models may

also have different behaviors even if their behavioral precision and recall are
maximal. For instance, consider the example illustrated in Figure 5. Note
that these models have the same enabled transitions when parsing the log.
Furthermore, both models completely fit the log. However, these models are
not behaviorally equivalent. If the log would contain any trace with the tasks

(c)(b)(a) Log:

C, D, A
B, D, A

C

D D

B

A

B C

A

p5

p4 p4

p3

p2

p1

p3

p2

p1

Fig. 4. Example illustrating why the models should fit the log. Note that both models
in (a) and (b) have behavioral precision and recall equal to 1 with respect to the log
in (c), but these two models are not behaviorally equivalent.

C or E, the behavioral differences would have been captured by the precision
and recall metrics in Definition 8.

The log does not express enough behavior Even if two models completely
fit a log, all of their tasks are in this log, and their precision and recall values
are maximal for this log, these models can still behave differently. The reason
is that the log may not contain enough behavior such that the precision
and recall metrics can capture differences between models. This situation is
illustrated in Figure 6.

Our aim with showing the three situations above is to make the reader aware of
the “limitations” of the behavioral precision and recall metrics in Definition 8.
It is important to realize that the process equivalence quantification captured by
these metrics is always with respect to a given log. That is why it is so important
that the log reflects typical behavior. This is both the strength and weakness of
the approach described in this paper.

8 Application to Genetic Mining

Process mining aims at extracting information from event logs to capture the
business process as it is being executed. Process mining is particularly useful in
situations where events are recorded but there is no system enforcing people to
work in a particular way. Consider for example a hospital where the diagnosis
and treatment activities are recorded in the hospital information system, but
where health-care professionals determine the “careflow”. A variety of process
mining algorithms have developed [5–7, 12, 21], including our approach based on
genetic process mining [3, 25, 8].

(c)(b)(a) Log:

A, B, D, F

C

FF

ED D

B

A

B C

A

p6 p5

p5

p4

p4

p3

p2

p1

p3

p2

p1

Fig. 5. Example illustrating why all the tasks in the process models should be in the
log. In this case, C and E are not in the log.

(c)(b)(a) Log:

A, C, E, B, D, F

E

C

FF

ED D

B

A

B C

A

p9

p7

p5

p3

p7

p3

p8 p8

p6

p5

p6

p4

p2

p1

p4

p2

p1

Fig. 6. Example why the log should contain enough behavior such that the behavioral
precision and recall metrics could capture differences in the models.

The goal of process mining is to extract information about processes from
event logs [5], e.g., a log like the one shown in Figure 1(f). The result is a model,
e.g., a Petri net. Using simple approaches such as the one presented in [6] it
is possible to automatically discover the Petri net shown in Figure 1(a) based
on the log shown in Figure 1(f). Unfortunately, existing approaches for mining
the process perspective have problems dealing with issues such as duplicate ac-
tivities, hidden activities, non-free-choice constructs, noise, and incompleteness.
The problem with duplicate activities occurs when the same activity can oc-
cur at multiple places in the process. This is a problem because it is no longer
clear to which activity some event refers. The problem with hidden activities is
that essential routing decisions are not logged but impact the routing of cases.
Non-free-choice constructs are problematic because it is not possible to separate
choice from synchronization. We consider two sources of noise: (1) incorrectly
logged events (i.e., the log does not reflect reality) or (2) exceptions (i.e., se-
quences of events corresponding to “abnormal behavior”). Clearly noise is diffi-
cult to handle. The problem of incompleteness is that for many processes it is
not realistic to assume that all possible behavior is contained in the log. The
goal of genetic process mining [3, 25] is to overcome these problems.

Genetic process mining is the application of genetic algorithms to process
mining. Genetic algorithms are an adaptive search technique that mimics the
process of evolution in biological systems [18]. Figure 7 depicts the main steps
of our genetic approach. Once the log is read (Step I), the algorithm randomly
builds an initial population with a number of individuals (Step II). Every indi-
vidual is a process model containing all the tasks in the log. After the initial
population is generated, the genetic algorithms calculates the fitness of its indi-
viduals (Step III). In our case, the fitness of an individual is based on its ability
to correctly replay the behavior in the log. Populations evolve by selecting the
fittest individuals and generating new individuals using genetic operators such
as crossover (combining parts of two of more individuals) and mutation (ran-
dom modification of an individual) (Step V). This process continues until the
“best fitting” model is discovered or other stop criteria (like maximum number
of generations) are met (Step IV). The “best fitting” discovered model that the
genetic algorithm targets at is complete (can parse all the traces in the log) and
precise (does not allow for the parsing of too much extra behavior that cannot
be derived from the behavior observed in the log). Figure 8 shows a screenshot
of the Genetic algorithm plug-in in the ProM framework. The ProM framework
can be downloaded from www.processmining.org and supports the development
of plug-ins to mine event logs.

One of the problems of doing research in this area is that it is difficult to
judge the result. For testing our approach we do not only take real-life logs (e.g.,
from SAP, Staffware or FLOWer) but also generate logs from known models.
In the later case, we can compare the “original model” (i.e., the initial model
used to generate logs from) with the “discovered model” (i.e., the one obtained
using process mining). Experience shows that typically the initial model and the
discovered model are not identical: the structure is different and/or behaviorally

start
 I
 II
 III

V

IV
 end

yes

no

Step

 Description

I

 Read event log

II

 Build the initial population

III

 Calculate fitness of the

individuals in the population

IV

 Stop and return the fittest

individuals?

V

 Create next population
 –
 use

elitism and genetic operators

Fig. 7. Main steps of our genetic process mining algorithm.

there are also differences. In the genetic algorithm setting, these differences can
occur because, for instance, there is more than one complete and precise model
that can be discovered for a given log, or simply because the genetic algorithm
did not find a very precise model. Hence, to measure the quality of mining result
we need to consider the issues raised in this paper. Moreover, in this setting
there are event logs that can serve as a basis for comparison.

Figures 8 and 9 show some results obtained by applying the genetic algorithm
to the log L = {(〈A,B,C,E, F,H, I〉, 141), (〈A,B,D,E,G,H, I〉, 159)}. Figure 8
shows the result of one run of the genetic algorithm in ProM. Figure 9 shows
the precision and recall values over 50 runs. The results show that the genetic
algorithm found a model with the same structure and behavior as the original
model for most of the runs. The Petri net representation of the mined model for
these runs looks like the one in Figure 8(c). Note that this Petri net shows a
non-free-choice construct involving the tasks C,D,E, F and G. In other words,
the choice of whether executing F or G is not done after executing E, but
when executing C or D. Note that the behavior in the log tell us that the task
F is only executed when the task C has been executed. A similar observation
holds for tasks G and B. Figure 9 shows that the genetic algorithm did pretty
well for 88% (44/50) of the runs. However, for six runs (run 6, 8, 19, 22, 41
and 45), the genetic algorithm mined a different model. In runs 6 and 8, the
genetic algorithm found a model that is a substructure of the original model
(precisionS = 1 and recallS = 0.875) and allows for more behavior than the
original model (precision = 0.933 and recall = 1). The mined model for both
runs was exactly the same. The Petri net representation for this mined model
is shown in Figure 10(a). Figure 10(b) shows the mined model for runs 19, 22,
41 and 45. Note that, as indicated by the metrics, this mined model has the
same behavior as the original one (precision = 1 and recall = 1) and a different
structure (precisionS = 0.875 and recallS = 0.875). The use of the structural
and behavioral precision/recall metrics allows us to measure how well the genetic
algorithm is doing when mining process models. The metrics make it possible
to analyze the similarity of the original and mined models in terms of possible
behavior and thus quantify their differences.

(a)
 (b)

(c)

A

B

C
 D

E

G

H

I

F

A
 B

C

D

E

G

H
 I

F

Fig. 8. Screenshot of the ProM framework showing three aspects of the Genetic algo-
rithm plug-in: (a) the configuration window allows for the setting of parameters, (b)
the discovered model in terms of the internal representation, and (c) the corresponding
Petri net.

Fig. 9. Precision and recall values for the best fitting individual mined by the genetic
algorithm, for 50 different seed values.

9 Conclusion

This paper has presented a novel approach to compare process models. Existing
approaches typically do not quantify equivalence, i.e., models are equivalent or
not. However, for many practical applications such an approach is not very useful,

(a.1)
 (a.2)

(a)

(b.1)
 (b.2)

(b)

A
 B

C

D
 E
 G

H
 I

F

A
 B

C

D
 E

G

H
 I

F

Fig. 10. Screenshot of the structural and behavioral metrics in the ProM framework for two different mined models. Note that the
original model is the Petri net shown in Figure 8(c).

because in most real-life settings we want to distinguish between marginally
different processes and completely different processes. We have proposed and
implemented notions of fitness, precision, and recall in the context of the ProM
framework. The key differentiator is that these notions take an event log with
typical execution sequences as a starting point. This allows us to overcome many
of the problems associated with approaches directly comparing processes at the
model level. Although our approach is based on Petri nets, it can be applied to
other models with executable semantics, e.g., formalizations of EPCs, BPMN,
or UML activity diagrams.

We have applied the approach in the context of process mining. However,
the notions of precision and recall can be applied in a wide variety of situations,
e.g., to measure the difference between an organization specific process model
and a reference model, to select a web service that fits best based on some
description (e.g., PIPs or abstract BPEL), or to compare an existing process
model with some redesign. In our future work, we would like to explore more of
these applications, e.g., comparing clinical guidelines.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2004.

3. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
48–69. Springer-Verlag, Berlin, 2005.

4. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Process
Equivalence: Comparing Two Process Models Based on Observed Behavior. In S.
Dustdar, J. Fiadeiro and A. Sheth, editors, International Conference on Business
Process Management (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 129–144. Springer-Verlag, Berlin, 2006.

5. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

6. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

7. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

8. A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven Univer-
sity of Technology, Eindhoven, 2006.

9. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA

Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

10. E. Best and M.W. Shields. Some equivalence results for free choice nets and simple
nets, and on the periodicity of live free choice nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Proceedings of CAAP ’83, volume 159 of Lecture Notes in
Computer Science, pages 141–154. Springer-Verlag, Berlin, 1987.

11. F. van Breugel. A Behavioural Pseudometric for Metric Labelled Transition Sys-
tems. In 16th International Conference on Concurrency Theory (CONCUR 2005),
volume 3653 of Lecture Notes in Computer Science, pages 141–155. Springer-
Verlag, Berlin, 2005.

12. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

13. J. Desel. Validation of Process Models by Construction of Process Nets. In W.M.P.
van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management:
Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Com-
puter Science, pages 110–128. Springer-Verlag, Berlin, 2000.

14. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

15. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

16. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

17. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

18. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural
Computing. Springer-Verlag, Berlin, 2003.

19. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

20. J.F. Groote and F.W. Vaandrager. An Efficient Algorithm for Branching and
Stuttering Equivalence. In M.S. Paterson, editor, Proceedings of the 17th Inter-
national Colloquium on Automata, Languages and Programming, volume 443 of
Lecture Notes in Computer Science, pages 626–638. Springer-Verlag, Berlin, 1990.

21. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

22. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

23. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04,
2004.

24. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

25. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Pro-
cess Mining: A Basic Approach and its Challenges. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 203–215. Springer-Verlag, Berlin,
2006.

26. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

27. S.S. Pinter and M. Golani. Discovering Workflow Models from Activities Lifespans.
Computers in Industry, 53(3):283–296, 2004.

28. L. Pomello, G. Rozenberg, and C. Simone. A Survey of Equivalence Notions of
Net Based Systems. In G. Rozenberg, editor, Advances in Petri Nets 1992, volume
609 of Lecture Notes in Computer Science, pages 420–472. Springer-Verlag, Berlin,
1992.

29. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

30. RosettaNet. RosettaNet Partner Interface Processes (PIPs). www.rosettanet.org,
2006.

31. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

32. P. Sarbanes and G. Oxley et. al. Sarbanes-Oxley Act of 2002, 2002.
33. A. Wombacher and B. Mahleko. Finding Trading Partners to Establish Ad-hoc

Business Processes. In On the Move to Meaningful Internet Systems, 2002 - Pro-
ceedings of the DOA/CoopIS/ODBASE Confederated International Conferences,
pages 339–355, Irvine CA, USA, October 2002. Springer Verlag.

