
On a Quest for Good Process Models:
The Cross-Connectivity Metric

Irene Vanderfeesten1, Hajo A. Reijers1, Jan Mendling2,
Wil M.P. van der Aalst1,2, Jorge Cardoso3

1 Technische Universiteit Eindhoven,
Department of Technology Management,

PO Box 513, 5600 MB Eindhoven, The Netherlands
{i.t.p.vanderfeesten, h.a.reijers, w.m.p.v.d.aalst}@tue.nl

2 Queensland University of Technology,
Faculty of Information Technology,

Level 5, 126 Margaret Street, Brisbane, Australia
jan.mendling@qut.edu.au

3 SAP Research CEC, SAP AG
Chemnitzer Strasse 48, 01187 Dresden, Germany

jorge.cardoso@sap.com

Abstract. Business process modeling is an important corporate activ-
ity, but the understanding of what constitutes good process models is
still rather limited. In this paper, we turn to the cognitive dimensions
framework and identify the understanding of the structural relationship
between any pair of model elements as a hard mental operation. Based
on the weakest-link metaphor, we introduce the cross-connectivity metric
that measures the strength of the links between process model elements.
The definition of this new metric builds on the hypothesis that process
models are easier understood and contain less errors if they have a high
cross-connectivity. We undertake a thorough empirical evaluation to test
this hypothesis and present the findings. The good performance of this
novel metric underlines the importance of cognitive research for advanc-
ing the field of process model measurement.
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1 Introduction

Business process models are widely used for a variety of purposes, such as sys-
tem development, training, process enactment, costing and budgeting. In many
business applications their primary purpose is to act as a means of communica-
tion such that a process model facilitates the understanding of complex business
processes among various stakeholders [17,20,27]. A process model may be used
towards this end much as an architect will use a model to ascertain the views
of users, to communicate new ideas, and to develop a shared understanding



amongst participants. Beyond that, process models are also used as a formal
specification for the development of information systems. Altogether, it is highly
desirable that process models do not contain execution errors such as deadlocks
and that they are easy to understand for the involved stakeholders.

Even though theoretical quality frameworks [19] and practical modeling guide-
lines [2] are available for quite some time, it is only a very recent development
that empirical insights emerge into the factors that influence the quality of pro-
cess models. For instance, recent studies suggest that larger, real-world process
models tend to contain more formal flaws (such as e.g. deadlocks) than smaller
models [23,25]. The other study worth mentioning supports the notion that when
model size is kept constant (i) a higher density of arcs between the nodes in a
model and (ii) a larger number of paths through a model’s logical connectors
negatively affect its understandability [24].

These results are important stepping stones to what we think is a highly de-
sirable asset for process modelers: Concrete guidelines on how to create process
models in such a way that they are easy to understand for people while reduc-
ing the risk on errors. It is important to realize that a reengineering project
within a multinational company may already involve the creation of thousands
of process models [31]. This implies that effective modeling guidelines may lead
to substantial economic benefits. This is of particular importance since most
modelers are non-experts and hardly familiar with sophisticated design issues
[30]. It is a considerable problem for these application areas of process modeling
in practice that the current situation in understanding measurable factors of
process model quality is still immature. While the mentioned experiments have
progressed process model measurement, existing metrics tend to explain not
more than half of the variability in a subject’s understanding of process models
[24]. Clearly, there is a need for a more theoretical stance to advance the design
of process model metrics. In this paper, we build on insights from cognitive re-
search into visual programming languages for the development of a new metric,
the Cross-Connectivity (CC) metric, that aims to capture the cognitive effort to
understand the relationship between any pair of process model elements.

The structure of the paper is as follows. In the next section, we will provide
the motivation for the CC metric and its formalization. In Section 3 we will
describe the empirical evaluation of this metric. Then, we will give an overview
of related work, before giving reflections and conclusions in the final section.

2 The Cross-Connectivity Metric

Up to now there has been little work in measuring business process models that
considers the cognitive effort of a model reader for understanding it. One of the
few examples is the research on the Control Flow Complexity (CFC) metric. In
its motivation Cardoso refers to the mental states that may be generated by
a process model and the different types of routing elements [7]. Beyond that,
a recent survey into complexity metrics identifies the cognitive motivation as a
potential backbone [9]. Most other existing model metrics, however, are adapta-



tions of software artifact quality metrics that do not dig too deep into cognitive
foundations. In such cases, the theoretical basis for their application on process
models is indirect at best.

In general, we observe that most existing model metrics lack a theoretical
foundation whatsoever. To break away from this tendency, we draw inspiration
from the Cognitive Dimensions Framework, as first introduced in [12]. The moti-
vation behind this framework is to use research findings from applied psychology
for assisting designers of notational systems. Designers can use the framework to
evaluate their designs with respect to the impact that they will have on the users
of these designs. Since its introduction, it has gained widespread adoption in the
evaluation and design of information artifacts; for an overview of results, see [4].
For the purpose of this paper, the most important dimension of this framework
consists of the hard mental operations that may be incurred through a particular
notation, i.e. the high demand on a user’s cognitive resources. Reading a pro-
cess model implies some hard mental operations in this regard that behavioral
relationships between model elements have to be constructed in the mind of the
reader. In particular, it is quite difficult also for experts to understand whether
pairs of activities in a model with lots of parallelism and choices are exclusive or
not. Furthermore, even if activities are on a directed path, it is not directly clear
on which other elements they depend if there are lots of routing elements in be-
tween them. The Cross-Connectivity (CC) metric that we define below aims to
quantify the ease of understanding this interplay of any pair of model elements.
It builds on the weakest-link metaphor assuming that the understanding of a
relationship between an element pair can only be as easy, in the best case, as
the most difficult part. Therefore, we identify suitable weights for nodes and arcs
along a path between two model elements. Our assertion then is that a lower CC
value is assigned to those models that are more likely to include errors, because
they are more difficult to understand for both stakeholders and model designers.

Below a set of definitions is given, which together form the basis of the
Cross-Connectivity metric. The term ‘Cross-Connectivity’ is chosen because the
strength of the connections between nodes is considered across all nodes in the
model. To appreciate the formalization below, it is important to note firstly
that the CC metric expresses the sum of the connectivity between all pairs of
nodes in a process model, relative to the theoretical maximum number of paths
between all nodes (see Definition 5). Secondly, we assume that the path with the
highest connectivity between two nodes determines the strength of the overall
connectivity between those nodes (see Definition 4). Thirdly, the tightness of a
path (i.e., degree of connectivity) is determined by the product of the valuations
of the links connecting the nodes on the path (see Definition 3). So, a single
weak link has its effect on the entire connection. Finally, differences in the types
of nodes that a path consists of determine the tightness of the arcs connecting
nodes (see Definitions 1 and 2). For example, an AND connector on a path gives
a stronger relation than an XOR connector. At the end of the formalization,
an illustrative example of the application of the CC metric for a small process
model is given.



Definition 1 (Weight of a Node).
Let a process model be given as a graph consisting of a set of nodes (n1, n2, ... ∈
N) and a set of directed arcs (a1, a2, ... ∈ A). A node can be of one of two types:
(i) task, e.g. t1, t2 ∈ T , and (ii) connector, e.g. c1, c2 ∈ C. Thus, N = T ∪ C.
The weight of a node n, w(n), is defined as follows:

w(n) =





1 , if n ∈ C ∧ n is of type AND
1
d , if n ∈ C ∧ n is of type XOR

1
2d−1

+ 2d−2
2d−1

· 1
d , if n ∈ C ∧ n is of type OR
1 , if n ∈ T

with d the degree of the node (i.e. the total number of ingoing and outgoing arcs
of the node).

Note that the definition above assumes that the process model consists of tasks
and connectors. Tasks have at most one input and output arc while connectors
can have multiple input and output arcs. A connector of type AND with multiple
input arcs is a so-called AND-join, i.e., it synchronizes the various flows leading
to the join. The OR-split connector has a behavior in-between an XOR-split (one
output arc is selected) and AND-split (all output arcs are chosen). A connector
can be both a join and a split (i.e. having multiple input and multiple output
arcs), provided that both are of the same type. Definition 1 does not correspond
to a concrete process modeling language with well-defined semantics. It captures
those routing elements that can be expressed with standard process modeling
languages such as EPCs, UML Activity Diagrams, Petri nets, BPMN, or YAWL
[1].

Most of values for w(n) in Definition 1 are straightforward given the intent of
this metric, e.g., arcs connected to an AND connector will have a higher weight
than arcs connected to an XOR connector because the latter involves considering
optionality. The only value that requires some explanation is the value for the
OR connector. For the OR connector it is not clear upfront how many of the arcs
will be traversed during an execution of the process, e.g., in case of an OR split
with two outgoing arcs either one of the arcs can be traversed, or both of the
arcs might be used. This behavior is reflected in the definition of the weight for
an OR connector. The number of all possible combinations of d arcs is: 2d − 1.
Only one of those combinations (i.e. 1 out of 2d − 1) is similar to the situation
in which the node would have been an AND, namely the situation in which all
arcs are traversed. This particular combination gets a weight of 1 (since that is
the weight for an AND connector from Definition 1). Therefore, the first part of
the formula for the OR connector is: 1

2d−1
· 1 = 1

2d−1
. All other combinations of

arcs can be seen as separate XOR nodes with weight 1
d . Thus, in 2d − 2 out of

2d − 1 combinations a weight of 1
d is added, which leads to the second part of

the formula.
The following definition shows that the weight of an arc is based on the

weight of the corresponding nodes.



Definition 2 (Weight of an Arc).
Let a process model be given by a set of nodes (N) and a set of directed arcs (A).
Each directed arc (a) has a source node (denoted by src(a)) and a destination
node (denoted by dest(a)).
The weight of arc a, W (a), is defined as follows:

W (a) = w(src(a)) · w(dest(a))

Definition 3 (Value of a Path).
Let a process model be given by a set of nodes (N) and a set of directed arcs (A).
A path p from node n1 to node n2 is given by the sequence of directed arcs that
should be followed from n1 to n2: p =< a1, a2, ..., ax >. The value for a path p,
v(p), is the product of the weights of all arcs in the path:

v(p) = W (a1) ·W (a2) · ... ·W (ax)

Definition 4 (Value of a Connection).
Let a process model be given by a set of nodes (N) and a set of directed arcs (A)
and let Pn1,n2 be the set of paths from node n1 to n2. The value of the connection
from n1 to n2, V (n1, n2), is the maximum value of all paths connecting n1 and
n2:

V (n1, n2) = max
p∈Pn1,n2

v(p)

If no path exists between node n1 and n2, then V (n1, n2) = 0. Also note that
loops in a path should not be considered more than once, since the value of
the connection will not be higher if the loop is followed more than once in the
particular path.

Based on the above valuation of connectivity (i.e., tightness of the connection
between two nodes), we define the Cross-Connectivity metric.

Definition 5 (Cross-Connectivity (CC)).
Let a process model be given by a set of nodes (N) and a set of directed arcs (A).
The Cross-Connectivity metric is then defined as follows:

CC =

∑
n1,n2∈N V (n1, n2)
|N | · (|N | − 1)

Example 1. To illustrate the use of the CC metric an example is elaborated.
Figure 1 contains a process model with five tasks (i.e. T = {A,B, C, D,E}),
three connectors (i.e. C = {XOR,AND, OR}) and seven directed arcs (i.e.
A = {a1, a2, a3, a4, a5, a6, a7}). To calculate the value for Cross-Connectivity
the weight for each node is calculated first (see Table 1).



Table 1. The degrees and weights for the nodes in the process model of Figure 1

Node (n) Degree (m) Weight (w(n))

A 1 1
B 1 1
C 1 1
D 1 1
E 1 1

XOR 3 1
3

AND 3 1

OR 3 1
23−1

+ 23−2
23−1

· 1
3

= 3
7

Then, the weight for each arc is calculated:

W (a1) = w(A) · w(XOR) = 1 · 1
3

=
1
3

W (a2) = w(B) · w(XOR) = 1 · 1
3

=
1
3

W (a3) = w(XOR) · w(AND) =
1
3
· 1 =

1
3

W (a4) = w(C) · w(AND) = 1 · 1 = 1

W (a5) = w(AND) · w(OR) = 1 · 3
7

=
3
7

W (a6) = w(OR) · w(D) =
3
7
· 1 =

3
7

W (a7) = w(OR) · w(E) =
3
7
· 1 =

3
7

A

C
XOR

D

a1 a2

a3

a4

a5

a6

E

a7

B

AND

OR

Fig. 1. A simple example with five tasks and three connectors. T = {A, B, C, D, E},
C = {XOR, AND, OR}, A = {a1, a2, a3, a4, a5, a6, a7}.



The paths between each pair of nodes are determined and the value for the con-
nection between the pair of nodes is computed. For example node A and node D
are connected through the path < a1, a3, a5, a6 >. In this case, this is the only
path from A to D. Thus, the value of this path is the maximum value over all
paths from A to D:

V (A, D) = v(< a1, a3, a5, a6 >) = W (a1)·W (a3)·W (a5)·W (a6) =
1
3
·1
3
·3
7
·3
7

=
1
49

.

Similarly, the value for the connection from the XOR-node to the OR-node is
computed:

V (XOR, OR) = v(< a3, a5 >) = W (a3) ·W (a5) =
1
3
· 3
7

=
1
7
.

For all values, see Table 2.

Table 2. Table showing the values for the connections between all pairs of nodes.

A B C D E XOR AND OR Total

A 0 0 0 1
49

1
49

1
3

1
9

1
21

235
441

B 0 0 0 1
49

1
49

1
3

1
9

1
21

235
441

C 0 0 0 9
49

9
49

0 1 3
7

88
49

D 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0
XOR 0 0 0 3

49
3
49

0 1
3

1
7

88
147

AND 0 0 0 9
49

9
49

0 0 3
7

39
49

OR 0 0 0 3
7

3
7

0 0 0 6
7

Finally, the CC value is determined as the sum of the values for all connections,
divided by the number of nodes times the number of nodes minus one:

CC =
235
441 + 235

441 + 88
49 + 0 + 0 + 88

147 + 39
49 + 6

7

8 · 7 =
2255
441

56
≈ 0.09131

3 Evaluation

In this section, we report on how the CC metric has been subjected to a thorough
empirical evaluation. First, we will describe the evaluation with respect to the
metric’s capability to predict error probabilities in process models. Next, we will
present on its suitability to explain which process models are easier to understand
than others.



3.1 Validation for Error Prediction

An indication for a metric’s predictive power is that it can accurately distinguish
between models with errors and without errors. Because this evaluation uses a
large set of Event-driven Process Chains (EPCs), we use the EPC soundness
criterion as defined in [22] for determining whether an involved model has errors
or not and assume that a decrease in CC is likely to result in more errors.
Therefore, our hypothesis is:

H1: A decrease in CC implies an increase in error probability.

To evaluate this hypothesis, the EPCs of the SAP Reference Model are used.
The development of the SAP reference model started in 1992 and first models
were presented at CEBIT’93 [18, p.VII]. Since then, it was developed further
until version 4.6 of SAP R/3, which was released in 2000. The SAP reference
model includes 604 non-trivial EPCs. The advantage of considering this set of
models is that there is extensive literature available that explains its creation,
e.g., [18]. Furthermore, it is frequently referenced in research papers as a typical
reference model and used in previous quantitative analyses, as e.g. reported in
[21,23,25]. This way, our results can be compared to these related works.

As a first step, we use correlation analysis. In particular, we investigated
to what extent the CC metric is capable to rank non-error and error models.
This capability can be estimated using the rank correlation coefficient by Spear-
man. For CC it is -0.434. For this metric there is a strong and 99% significant
correlation, which matches the expectation of the hypothesis, i.e. H1 holds.

In a second step, we use multivariate logistic regression. This approach esti-
mates the coefficients B of a linear combination of input parameters for predict-
ing event versus non-event based on a logistic function. In our case, we predict
error versus non-error for the EPCs in the SAP reference model based on the CC
metric and a constant. The accuracy of the estimated model is assessed based on
the significance level of the estimated coefficients, the percentage of cases that
are classified correctly, and the share of the variation that is explained by the re-
gression. This share is typically measured using the Nagelkerke R2 ranging from
0 to 1 (1 being the best possible value). The estimated coefficient should have a
Wald statistic that is below 5% signalling that it is significantly different from
zero. For technical details of logistic regression we refer to [14]. For applications
in predicting errors in process models see [21,23,25].

We calculated a univariate logistic regression for CC first. Table 3 shows that
CC alone already yields a high Nagelkerke R2 of 0.586. The negative coefficient
matches the expectation of hypothesis H1. Furthermore, we stepwise introduced
other metrics to the model. We used those metrics that were found in [23] as the
best combination to predict errors in EPCs. In this context, it is interesting to
note that adding these metrics yields quite similar coefficients for them as in the
predicting function of [23]. This suggests that the CC metric indeed measures a
process model aspect that is orthogonal to metrics that have been defined before.



Table 3. Multivariate Logistic Regression Models with CC

Parameter Coefficient Std.Error Wald Sig. Nagelkerke Classification

Step 1 CC -13.813 1.229 126.386 0.000 0.586 0.791

. . . . . . . . . . . . . . . . . . . . . . . .

Step 5 CC -10.478 2.931 12.783 0.000 0.847 0.916
Structuredness -9.500 1.028 85.328 0.000

Diameter 0.139 0.032 18.829 0.000
Cyclicity 6.237 1.857 11.281 0.001

CNC 5.541 0.935 35.145 0.000

3.2 Validation for Understandability

To evaluate the capability of the CC metric to explain which process models
are easier to understand than others, we used the empirical data described in
[24]. This data was obtained in a project that aims at the analysis of the impact
of both model and personal characteristics on the understandability of process
models. In particular, a set of 20 model characteristics were investigated, which
have been proposed and formally defined in [21]. Among these are, for example,
the density and structuredness of a process model, which respectively relate
to (i) the number of arcs in the model relative to the theoretical maximum of a
fully connected model and (ii) the extent to which a process model is built by
nesting blocks of matching join and split routing elements.

In total, 73 students filled out a questionnaire in the fall of 2006. All of
them were following courses in this period on process modelling, either at the
Eindhoven University of Technology, the University of Madeira, or the Vienna
University of Economics and Business Administration. A set of four process
models from practice, each having the same number of tasks (25), formed the
basis of the questionnaire. In addition, for each of these models two slightly
different variants were constructed by changing the type of some routing elements
(e.g. a particular XOR-split in a AND-split), which led to a total of 12 models
that had to be evaluated by the students. Inspired by a survey on the relative
complexity of different modelling techniques [32], we decided to use an EPC-
like notation in our questionnaire to minimize the impact of the notation on
understandability.

As part of the models’ evaluation, students were asked to answer questions
like “If task K is executed for a case, can task L be executed for the same case?”
and “Can tasks G, O, and P all be executed for the same case?”. Aside from
these closed questions, an additional open question was included as well: “Is there
any problem with this process (e.g. proper completion, deadlock, etc.)?”. As a
follow up to the latter question, students were asked to elaborate and specify
the perceived problem, if any.

The correct answers for the questions were determined with the EPC analysis
tools introduced in [22]. While the closed answers were evaluated automatically,
the open answers had to be interpreted and matched with the errors detected
by the tools. The evaluation of the 12 models by the 73 students led to a total



of 847 complete model evaluations. On the basis of the answers provided by
the students, a score variable could be calculated per model as the mean sum
of correct answers it received. This score variable served as a way to make
understandability operational. For the 12 models under consideration, the score
ranged between 5.5 to 7.4 on a scale of 0 to 9.

From the earlier analysis of these results [24], the following main conclusions
were drawn with respect to model characteristics:

1. From the 20 factors considered, five model factors exhibited the hypothesized
relation with score:
– #or-joins: the number of OR-join split connectors in the model.
– density: the ratio between the actual number of arcs and the theoretical

maximal number of arcs.
– average connector degree: the average number of input and output

arcs of the routing elements in a model.
– mismatch: the sum of occurrences in the model where a split-connector

of some type is not matched by a join-connector of the same type.
– connector heterogeneity: the degree to which different connectors

appear in a model.
2. From these five model characteristics, only the correlations between density

and score (-0.618) and between average connector degree and score
(-0.674) correlated significantly, with respective P-values of 0.032 and 0.016.

3. From all linear regression models on the basis of a combination of these five
model factors, the regression model that only used average connector
degree displayed the best explanatory power for the variability in score,
with an adjusted R2=45% (Nagelkerke’s coefficient of determination).

To evaluate the CC metric, it was incorporated in the above analysis. We
arrive at the following conclusions:

– Just like the five model factors that emerged from the original analysis, the
CC metric displays the expected relation with score.

– Unlike the density and average connector degree factors, the correlation be-
tween score and the CC metric (0.549) is not significant at a 95% confidence
interval as the P-value of 0.065 slightly exceeds the 0.05 confidence interval.

– A regression model with a much better explanatory power for the variation in
score could be developed by including the CC metric: the adjusted R2 from
the original model increased from 45% to 76% in the new regression model. In
particular, by combining the #or-joins, density, average connector
degree, mismatch factors and the CC metric this result could be achieved.
A visualization of this regression model can be seen in Figure 2.

What this analysis suggests is that CC on its own is slightly less powerful
as an indicator for process model understandability than the two best candidate
metrics available, but that it can deliver a superior explanation of the variation
in understandability across models when combined with existing metrics.



Fig. 2. Linear regression model explaining the mean SCORE for the 12 process models

4 Related work

This section briefly describes the related work for business process metrics. In
essence, related work can be organized in two categories: process model met-
rics inspired by software measurement and experimental work on process model
metrics. In this section, we focus in particular on metrics that consider overall
structural aspects of the process model beyond simple count metrics. For an
overview of process model metrics in general refer to [9,13,21,37].

The early development of process model metrics is greatly inspired by and
based on software quality metrics. These metrics aim at obtaining program de-
signs that are less error-prone, easier to comprehend and easier to maintain. A
survey of existing software metrics can be found in e.g. [15,39]. In this area, the
quality of a design is often related to five design dimensions: (i) coupling, (ii)
cohesion, (iii) complexity, (iv) modularity, and (v) size [10,35,36]. A number of
studies demonstrate the significant correlation of software quality metrics with
errors in the software design (e.g. [3,5,16,33,34]). In the tradition of this work,
there are some works in the 1990s that are mainly rooted in software quality
measurement. Daneva et al. [11] introduce a set of complexity indicators for
EPCs based on the visual attributes of the model: function cohesion, event co-
hesion and cohesion of a logical connector. From their limited validation with
11 EPCs they conclude that their metrics help to identify error-prone model
fragments. Morasca proposes a set of simple metrics for software specifications
designed with Petri-nets [26]. He identifies size, length, structural complexity,
and coupling as interesting attributes of a design without striving for an empir-
ical validation. The works by Reijers and Vanderfeesten extends this research
stream by introducing a coupling-cohesion metric for guiding the design of a
workflow process [28,29]. This approach is based on the data flow in a business



process and uses the network structure of the product as a starting point rather
than the process model. In [38], Vanderfeesten, Cardoso, and Reijers propose
a weighted coupling metric, which puts a weight to the different types of con-
nections between two activities in the process model. While this metric lacks
a thorough cognitive motivation, it was used as a blueprint for the CC metric.
Cardoso has developed a Control Flow Complexity (CFC) metric [7] which was
validated against Weyuker’s complexity axioms [6] and tested with respect to
their correlation with perceived complexity [8]. In contrast to the CC metric, it
does not consider the connections between different model elements, but focuses
on routing elements in isolation.

Mendling et al. take an experimental approach towards process model met-
rics that is driven by the explanatory power of a metric in an empirical setting.
In [21,23] Mendling et al. have tested 28 business process metrics (including
size, density, structuredness, coefficient of connectivity, average connector de-
gree, control flow complexity, and others) as error predictors on a set of over
2000 process models from different samples. All metrics, except for density and
the maximum degree of a connector, are confirmed to be correlated to error-
proneness as expected. Another result of this study is a logistic regression model
is able to classify 90% of the process models correctly. Finally, a survey on un-
derstandability of process models is reported by Mendling, Reijers and Cardoso
in relation to the set of metrics mentioned in the previous study [24]. The main
results of this survey are already described in Section 3.2.

While the metrics used in these experiments are motivated theoretically, most
of them are not explicitly rooted in cognitive research. The CC metric considers
hard mental operations as defined in the cognitive dimensions framework [12]
as the main factor that drives understanding a process model. Indeed, the good
performance of the CC metric is a clear indication that advancing the field of
process model measurement will have to take insights from cognitive research as
a starting point.

5 Conclusion

In this paper, we motivated, formalized, and validated the Cross-Connectivity
metric for process models. The metric expresses how tightly the nodes in a
process model are connected building on a weakest-link metaphor. The definition
of the metric builds on the assumption that a higher value is associated with an
easier understanding of the model, which implies as a consequence a lower error-
probability. As follows from our evaluation of this metric for both these aspects,
it performs similarly well as the best available alternative model metrics. On top
of that, our results suggest that the CC metric adds a new cognitive perspective
on process model quality, which helps to deliver a better explanatory power when
it is combined with the existing ones.

In reflecting on the development of business process model metrics, it is fair
to say that it is a research area in development. Initially, proposals for process
model metrics were highly conceptual, on the basis of the perhaps tempting



idea that if metrics are useful to analyze software programs it should be equally
applicable for process models. By now, we have progressed to the stage where
model metrics are put to the test for determining their effectiveness in reality.
The good performance of the CC metric clearly shows that a more cognitive
theoretical stance is needed to advance the field of process model measurement.

Overall, feedback from empirical validations has improved the quality of pro-
cess model metrics: the metrics proposed in recent works, e.g. [21,23] and this
paper, perform much better in explaining the variation of understanding and
occurrence of errors in process models. In our future work, we will continue to-
wards further improvements. In particular, we aim at evaluating model quality
metrics on a wider scale, by considering larger sets of real-world models. In order
to achieve that, we are collaborating with consultancy companies that practice
process modeling on a day-to-day basis for their clients. Since most empirical
research has been done with EPC models, we are very much interested in Petri
net and BPMN process models. Furthermore, we are investigating additional fac-
tors that contribute to a comprehensive understanding of process model quality
as, for example, the visual layout a process model graph and the importance of
preliminary knowledge about the domain that is captured in the model. As the
ultimate goal of our research, we envision the development of a set of concrete
guidelines for process modelers, substantiated by solid theoretical foundations
and empirical evidence, which will help to create better process models in prac-
tice.
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