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Abstract. Petri nets are often used to model and analyze workflows.
Many workflow languages have been mapped onto Petri nets in order to
provide formal semantics or to verify correctness properties. Typically,
the so-called Workflow nets are used to model and analyze workflows
and variants of the classical soundness property are used as a correctness
notion. Since many workflow languages have cancelation features, a map-
ping to workflow nets is not always possible. Therefore, it is interesting
to consider workflow nets with reset arcs. Unfortunately, soundness is
undecidable for workflow nets with reset arcs. In this paper, we provide
a proof and insights into the theoretical limits of workflow verification.

1 Introduction

Information systems have become “process-aware”, i.e., they are driven by pro-
cess models [11]. Often the goal is to automatically configure systems based on
process models rather than coding the control-flow logic using some conventional
programming language. Early examples of process-aware information systems
were called WorkFlow Management (WFM) systems [4, 19, 27]. In more recent
years, vendors prefer the term Business Process Management (BPM) systems.
BPM systems have a wider scope than the classical WFM systems and are not
just focusing on process automation. BPM systems tend to provide more support
for various forms of analysis and management support. Both WFM and BPM
aim to support operational processes that we refer to as “workflow processes”
or simply “workflows”.

The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. This paper
focuses on the so-called workflow nets (WF-nets) introduced in [1, 2]. A WF-net
is a Petri net with a start place i and an end place o such that all nodes are on
a path from i to o. A case, i.e., process instance, is initiated via the source place
i and successfully completes by putting a token in the sink place o.

In the context of WF-nets a correctness criterion called soundness has been
defined [1, 2]. A WF-net with source place i and sink place o is sound if and



only if the following three requirements are satisfied: (1) option to complete: for
each case starting in source place i it is always still possible to reach the state
which just marks sink place o, (2) proper completion: if sink place o is marked
all other places are empty for a given case, and (3) no dead transitions: it should
be possible to execute an arbitrary activity by following the appropriate route
through the WF-net. In [1, 2] it was shown that soundness is decidable and that
it can be translated into a liveness and boundedness problem, i.e., a WF-net is
sound if and only if the corresponding short-circuited net is live and bounded.
In the last decade, the soundness property has become the standard correctness
notion for workflow. This is illustrated by the fact that [2] is among the most
cited papers both in the workflow/BPM community and Petri net community.

Since the mid-nineties many people have been looking at the verification of
workflows. These papers all assume some underlying model (e.g., WF-nets) and
some correctness criterion (e.g., soundness). However, in many cases a rather
simple model is used (WF-nets or even less expressive) and practical features
such a cancelation are missing. Many practical languages have a cancelation
feature, e.g., Staffware has a withdraw construct, YAWL has a cancelation region,
BPMN has cancel, compensate, and error events, etc. Therefore, it is interesting
to investigate the notion of soundness in the context of WF-nets with reset
arcs [9, 10, 14]. A reset arc connects a place to a transition. For the enabling
of this transition the reset arc plays no role. However, whenever this transition
fires, then place is emptied. Clearly, this concept can be used to model various
cancelation concepts encountered in modern workflow languages. This paper
will prove that soundness is undecidable for reset WF-nets. This result is not
trivial since other properties such as e.g. coverability are decidable for reset nets.
Moreover, as we will show, there is not a simple mapping between soundness and
reachability which is known to be undecidable for reset net [9, 10, 14].

The remainder of this paper is organized as follows. First, we briefly present
an overview of related work (Section 2). Then, Section 3 presents some of the
preliminaries (mathematical notations and Petri net basics). Section 4 presents
the basic notion of reset WF-nets. In Section 5 the classical notion of soundness
is introduced. Section 6 presents the main result: undecidability of soundness for
reset WF-nets. Moreover, we will show that soundness is also undecidable for
weaker notions such as relaxed soundness [6, 7]. Section 7 concludes the paper.

2 Related Work

Since the mid nineties, many researchers have been working on workflow verifi-
cation techniques. It is impossible to give a complete overview here. Moreover,
most of the papers on workflow verification focus on rather simple languages,
e.g., AND/XOR-graphs which are even less expressive than classical Petri nets.
Therefore, we only mention the work directly relevant to this paper.

The use of Petri nets in workflow verification has been studied extensively. In
[1, 2] the foundational notions of WF-nets and soundness are introduced. In [15,
16] two alterative notions of soundness are introduced: k-soundness and general-



ized soundness. These notions allow for dead parts in the workflow but address
problems related to multiple instantiation. In [20] the notion of weak sound-
ness is proposed. This notion allows for dead transitions. The notion of relaxed
soundness is introduced in [6, 7]. This notion allows for potential deadlocks and
livelocks, however, for each transition there should be at least one proper execu-
tion. Lazy soundness [22] is another variant that only focuses on the end place
and allows for excess tokens in the rest of the net. Finally, the notions of up-
to-k-soundness and easy soundness are introduced in [24]. More details on these
notions proposed in the literature are given in Section 5.

Most soundness notions (except generalized soundness [15, 16]) can be inves-
tigated using classical model checking techniques that explore the state space.
However, such approaches can be intractable or even impossible because the
state-space may be infinite. Therefore, alternative approaches that avoid con-
structing the (full) state space have been proposed. [3] describes how structural
properties of a workflow net can be used to detect the soundness property. [25]
presents an alternative approach for deciding relaxed soundness in the presence
of OR-joins using invariants. The approach taken results in the approximation
of OR-join semantics and transformation of YAWL nets into Petri nets with
inhibitor arcs. In [28] it is shown that the backward reachability graph can be
used to determine the enabling of OR-joins in the context of cancelation. In the
general area of reset nets, Dufourd et al.’s work has provided valuable insights
into the decidability status of various properties of reset nets including reach-
ability, boundedness and coverability [9, 10, 14]. Moreover, in [26] it is shown
that reduction rules can be applied to reset nets (and even to inhibitor nets) to
speed-up analysis and improve diagnostics. For decidability results for ordinary
Petri nets we refer to [12, 13].

3 Preliminaries

This section introduces some of the basic mathematical and Petri-net related
concepts used in the remainder of this paper.

3.1 Multi-sets, Sequences, and Matrices

Let A be a set. IB(A) = A → IN is the set of multi-sets (bags) over A, i.e.,
X ∈ IB(A) is a multi-set where for each a ∈ A: X(a) denotes the number of
times a is included in the multi-set. The sum of two multi-sets (X + Y ), the
difference (X − Y ), the presence of an element in a multi-set (x ∈ X), and the
notion of sub-multi-set (X ≤ Y ) are defined in a straightforward way and they
can handle a mixture of sets and multi-sets. |X| = ∑

a∈A X(a) is the size of the
multi-set. πA′(X) is the projection of X onto A′ ⊆ A, i.e., (πA′(X))(a) = X(a)
if a ∈ A′ and (πA′(X))(a) = 0 if a 6∈ A′.

To represent a concrete multi-set we use square brackets, e.g., [a, a, b, a, b, c],
[a3, b2, c], and 3[a] + 2[b] + [c] all refer to the same multi-set with six elements: 3
a’s, 2 b’s, and one c. [ ] refers to the empty bag, i.e., |[ ]| = 0.



For a given set A, A∗ is the set of all finite sequences over A (including
the empty sequence 〈〉). A finite sequence over A of length n is a mapping
σ ∈ {1, . . . , n} → A. Such a sequence is represented by a string, i.e., σ =
〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.

For a relation R on A, i.e., R ⊆ A×A, we define R∗ as the reflexive transitive
closure of R.

3.2 Reset Petri nets

This subsection briefly introduces some basic Petri net terminology [8, 17, 23]
and notations used in the remainder of this paper. Our starting point is a Petri
net with reset arcs and arc weights. Such a Petri net is called a reset net.

Definition 1 (Reset net). A reset net is a tuple (P, T, F, W,R), where:

– (P, T, F ) is a classical Petri net with a finite set of places P , a finite set of
transitions T , and a flow relation F ⊆ (P × T ) ∪ (T × P ),

– W ∈ F → IN \ {0} is an (arc) weight function, and
– R ∈ T → 2P is a function defining reset arcs.

A reset net extends the classical Petri net with arc weights and reset arcs. The
arc weights specify the number of tokens to be consumed or produced and the
reset arcs are used to remove all tokens from the reset places independent of
the number of tokens. To illustrate these concepts we use Figure 1. This figure
shows a reset net with seven places and six transitions. The arc from t1 to p3
has weight 6, i.e., W (t1, p3) = 6. Moreover, W (p5, t5) = 6, W (p3, t4) = 2, and
W (t4, p5) = 2. All other arcs have weight 1, e.g., W (p1, t1) = 1. Transition
tr has four reset arcs, i.e., R(tr) = {p2, p3, p4, p5}, and R(t) = ∅ for all other
transitions t.

Because of the arc weights the classical preset and postset operators re-
turn bags rather than sets: •a = [xW (x,y) | (x, y) ∈ F ∧ a = y] and a• =
[yW (x,y) | (x, y) ∈ F ∧ a = x]. For example, •t5 = [p4, p56, pr] is the bag of
input places of t5 and t1• = [p2, p36, pr] is the bag of output places of t1.

Now we can formalize the notions of enabling and firing.

Definition 2 (Firing rule). Let N = (P, T, F,W,R) be a reset net and M ∈
IB(P ) be a marking.

– A transition t ∈ T is enabled at M , denoted by (N,M)[t〉, if and only if,
M ≥ •t.

– An enabled transition t can fire while changing the state to M ′, denoted by
(N, M)[t〉(N,M ′), if and only if M ′ = πP\R(t)(M − •t) + t•.
The resulting marking M ′ = πP\R(t)(M−•t)+t• is obtained by first removing

the tokens required for enabling: M − •t. Then all tokens are removed from the
reset places of t using projection. Note that πP\R(t) removes all tokens except
the ones in the non-reset places P \R(t). Finally, the specified numbers of tokens
are added to the output places. Note that t• is a bag of places.



Fig. 1. A reset net. Transition tr is enabled if pr is marked and removes all tokens
from p2, p3, p4, p5.

In Figure 1, transition tr is enabled if and only if there is a token in place
pr, i.e., reset arcs do not influence enabling. However, after the firing of tr all
tokens are removed from the four places p2, p3, p4, and p5.

(N, M)[t〉(N, M ′) defines how a Petri net can move from one marking to
another by firing a transition. We can extend this notion to firing sequences.
Suppose σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net
N with initial marking M . (N, M)[σ〉(N,M ′) means that there is also a sequence
of markings 〈M0,M1, . . . , Mn〉 where M0 = M , Mn = M ′, and for any 0 ≤ i < n:
(N, Mi)[ti+1〉(N, Mi+1). Using this notation we define the set of reachable mark-
ings R(N,M) as follows: R(N, M) = {M ′ ∈ IB(P ) | ∃σ∈T∗(N, M)[σ〉(N, M ′)}.
Note that by definition M ∈ R(N,M) because the initial marking M is trivially
reachable via the empty sequence (n = 0).

We would like to emphasize that any reset net with arc weights can be trans-
formed into a reset net without arc weights, i.e., all arcs have weight 1. Therefore,
in proofs we can assume arc weights of 1. Figure 2 illustrates how a Petri net
with arc weights of 2 can be transformed into a Petri net without arc weights. If
k is the maximum arc weight, the construction illustrated by Figure 2 requires
the splitting of place p into k places (p1, . . . , pk). See [5] for details.

4 Reset Workflow Nets

In the previous section, we considered arbitrary Petri nets without having an
application in mind. However, when looking at workflows, we can make some
assumptions about the structure of the Petri net. The idea of a workflow process
is that many cases (also called process instances) are handled in a uniform man-
ner. The workflow definition describes the ordering of activities to be executed
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Fig. 2. Construction illustrating that it is possible to transform any reset net with arc
weights into an equivalent Petri net without arc weights.

for each case including a clear start state and end state. These basic assump-
tions lead to the notion of a WorkFlow net (WF-net) [1, 2]. In the introduction,
we already informally introduced the notion of WF-nets and now it is time to
formalize this notion in the presence of reset arcs.

Definition 3 (RWF-net). A reset net N = (P, T, F, W,R) is a Reset Work-
Flow net (RWF-net) if and only if

– There is a single source place i, i.e., {p ∈ P | • p = [ ]} = {i}.
– There is a single sink place o, i.e., {p ∈ P | p• = [ ]} = {o}.
– Every node is on a path from i to o, i.e., for any n ∈ P ∪ T : (i, n) ∈ F ∗ and

(n, o) ∈ F ∗ (where F ∗ is the transitive closure of F ).
– There is no reset arc connected to the sink place, i.e., ∀t∈T o 6∈ R(t).

Figure 1 shows a RWF-net. The requirement that ∀t∈T o 6∈ R(t) has been added
to emphasize that termination should be irreversible, i.e., it is not allowed to
complete (put a token in o) and then undo this completion (remove the token
from o).

5 Soundness

Based on the notion of RWF-nets we now investigate the fundamental question:
“Is the workflow correct?”. If one has domain knowledge, this question can be
answered in many different ways. However, without domain knowledge one can
only resort to generic questions such as: “Does the workflow terminate?”, “Are
there any deadlocks?”, “Is it possible to execute activity A?”, etc. Such kinds of
generic questions triggered the definition of soundness [1, 2].

Definition 4 (Classical soundness [1, 2]). Let N = (P, T, F,W,R) be a
RWF-net. N is sound if and only if the following three requirements are sat-
isfied:



– Option to complete: ∀M∈R(N,[i]) [o] ∈ R(N, M).
– Proper completion: ∀M∈R(N,[i]) (M ≥ [o]) ⇒ (M = [o]).
– No dead transitions: ∀t∈T ∃M∈R(N,[i]) (N, M)[t〉.

The RWF-net depicted in Figure 1 is sound.
The first requirement in Definition 4 states that starting from the initial

state (just a token in place i), it is always possible to reach the state with
one token in place o (state [o]). If we assume a strong notion of fairness, then
the first requirement implies that eventually state [o] is reached. Strong fairness,
sometimes also referred to as “impartial” or “recurrent” [18], means that in every
infinite firing sequence, each transition fires infinitely often. Note that weaker
notions of fairness are not sufficient, see Figure 2 in [18]. However, such a fairness
assumption is reasonable in the context of workflow management since all choices
are made (implicitly or explicitly) by applications, humans or external actors. If
we required termination without this assumption, all nets allowing loops in their
execution sequences would be called unsound, which is clearly not desirable.
The second requirement states that the moment a token is put in place o, all
the other places should be empty. The last requirement states that there are no
dead transitions (tasks) in the initial state [i].

By carefully looking at Definition 4 one can see that the second requirement
is implied by the first one. Hence we can ignore the second requirement in Defini-
tion 4. The reason that we include it anyway is because it represents an intuitive
behavioral requirement.

As pointed out in [1, 2], classical soundness of a WF-net without reset arcs
corresponds to liveness and boundedness of the so-called short-circuited net. The
short-circuited net is the Petri net obtained by connecting o to i, thus making
the net cyclic. After the initial paper on soundness of WF-nets [1, 2] many other
papers followed. Some extend the results while others explore alternative notions
of soundness. These notions strengthen or weaken some of the requirements men-
tioned in Definition 4. Some examples are: k-soundness [15, 16], weak soundness
[20], up-to-k-soundness [24], generalized soundness [15, 16], relaxed soundness [6,
7], lazy soundness [22], and easy soundness [24].

A detailed discussion of these soundness notions is beyond the scope of this
paper, see [5] for a complete overview. Nevertheless, we would like to define
relaxed soundness as an example of an alternative soundness notion.

Definition 5 (Relaxed soundness [6, 7]). Let N be a RWF-net. N is relaxed
sound if and only if for each transition t ∈ T :
∃M,M ′∈R(N,[i]) (N, M)[t〉(N, M ′) ∧ [o] ∈ R(N, M ′).

Classical soundness considers all possible execution paths and if for one path
the desired end state is not reachable, the net is not sound. In a way this implies
that the workflow is “lunacy proof”, e.g., the user cannot select a path that
will deadlock. The notion of relaxed soundness assumes a responsible user or
environment, i.e., the net does not have to be “lunacy proof” as long as there
exist “good” execution paths, i.e., for each transition there has to be at least
one execution from the initial state to the desired final state that executes this
transition.



6 Decidability

In this section we explore the decidability of soundness in the presence of reset
arcs. First, we show that classical soundness is undecidable, then we show that
relaxed soundness is also undecidable for RWF-nets.

6.1 Classical soundness is undecidable for RWF-nets

In this subsection, we explore the decidability of soundness for RWF-nets. If a
WF-net has no reset arcs, soundness is decidable. Such a WF-net N = (P, T, F )
(without reset arcs) is sound if and only if the short-circuited net (N, [i]) with
N = (P, T ∪ {t∗}, F ∪ {(o, t∗), (t∗, i)}) and t∗ 6∈ T is live and bounded. Since
liveness and boundedness are both decidable, soundness is also decidable. For
some subclasses (e.g., free-choice nets), this is even decidable in polynomial time
[1, 2].

Unfortunately, soundness is not decidable for RWF-nets with reset arcs as is
shown by the following theorem.

Theorem 1 (Undecidability of soundness). Soundness is undecidable for
RWF-nets with reset arcs.

Proof. Let (N, MI) be an arbitrary marked reset net. In the general case it
is known that reachability is undecidable for reset nets [9, 10]. Without loss
of generality we can assume that N is connected and that every transition has
input and output places, since any reset net can be translated into a behaviorally
equivalent net that has these properties. Moreover, since coverability is decidable
for reset nets [9, 14], we can assume that all dead transitions have been removed.
(Because we can check whether •t is coverable from the initial marking, we can
test whether transition t is dead for any t ∈ T .) Hence we may assume that
(N, MI) is connected, every transition has input and output places, and there
are no dead transitions.

To show that soundness is undecidable, we construct a new net (N ′, [i])
which embeds (N,MI) such that N ′ is sound if and only if some marking MX

is NOT reachable from (N, MI). By doing so, we show that reachability in an
arbitrary reset net can be analyzed through soundness, making soundness also
undecidable.

The construction is shown in Figure 3. However, to explain this we first need
to introduce some notation. P is the set of places in N and T is the set of
transitions in N . Assume {i, o, u, s, v, w} ∩ P = ∅ and ({a, b, c, z} ∪ {zp | p ∈
P}) ∩ T = ∅. These are the “fresh” identifiers corresponding to the places and
transitions added to N to form N ′. I ⊆ P are all the places that are initially
marked in (N, MI) and X ⊆ P are the places that are marked in (N, MX). As
Figure 3 shows, transition c initializes the places in I, i.e., for p ∈ I: W (c, p) =
MI(p).3 Similarly, transition b can fire and consume all tokens from X if marking
3 Note that we are assuming weighted arcs here. However, as shown before these can

be removed using the construction in Figure 2.
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Fig. 3. Construction showing that soundness is undecidable for WF-nets with reset
arcs. The original net comprises the three dashed areas: I is the set of places of N
initially marked, X is the set of places that are marked in MX , and all other nodes of
N are shown in the dashed area in the middle. Note that I and X may overlap.

MX is reached, i.e., for p ∈ X: W (p, b) = MX(p), and transition a marks the
places in X appropriately, i.e., for p ∈ X: W (a, p) = MX(p). The transitions z
and zp (p ∈ P ) have reset arcs from all places in N ′ except the new sink place o.
Any transition in the original net has a bidirectional arc with s, i.e., a self-loop.
All other connections are as shown in Figure 3.

The constructed net (N ′, [i]) has the following behavior. First a fires, marking
u, v and the places in X. No transition t ∈ T can fire because s is still empty
and c is also blocked because w is empty. The only two transitions that can
fire are b and z. If z occurs, the net ends in marking [o]. If b fires, it will be
followed by c. The firing of c brings the net into marking MI + [s, v]. Note



that in marking MI + [s, v] the original transitions are not constrained in any
way and the embedded subnet can evolve as in (N, MI) until one of the newly
added transitions fires. Transitions {zp | p ∈ P} can fire as long as there is at
least one token in a place in P and z can fire as long as there is a token in
v. The firing of such a transition always leads to [o], i.e., firing a transition in
{z} ∪ {zp | p ∈ P} always leads to the proper end state. Transition b can fire as
soon as the embedded subnet has a marking which covers MX .

It is obvious that net N ′ shown in Figure 3 is a WF-net, i.e., there is one
source place i, one sink place o, all nodes are on a path from i to o, and there is
no reset on o.

Now we can show that N ′ is sound if and only if the specified marking MX

is NOT reachable from (N,MI):

– Assume marking MX is reachable from (N, MI). This implies that from
(N ′, [i]) the marking MX +[s, v] is reachable. Hence b can fire for the second
time resulting in a state [s, w]. In this state all transitions in T are blocked
because transitions have input places and all input places in P are empty.
Also all added transitions are dead in [s, w]. Hence a deadlock state [s, w] is
reachable from (N ′, [i]) implying that N ′ is not sound.

– Assume marking MX is not reachable from (N,MI) and MX is also not cov-
erable. This implies that b cannot fire for the second time. Hence, there al-
ways remain tokens in some place of P after initialization and it is always pos-
sible to terminate in state [o] by firing one of the “z transitions”. Moreover,
none of the transitions is dead in (N ′, [i]) because {a, b, c, z} ∪ {zp | p ∈ P}
can fire and the transitions in T are not dead in (N,MI) (because of the
initial cleaning). Therefore, N ′ is indeed sound.

– Assume marking MX is not reachable from (N, MI) but MX is coverable.
This implies that in the embedded subnet it is only possible to reach states
M ′ that are not covering MX or that are bigger than MX , i.e., M ′ ≥ MX

implies M ′ 6= MX . For states smaller than MX we have shown that sound-
ness is not jeopardized. For states bigger than MX , b can fire. However, if
b fires, tokens remain in P and b cannot fire anymore. Hence, at least one
transition in {zp | p ∈ P} is enabled at any time because one of the places in
P is marked. As a result, it is always possible to terminate in state [o] and
N ′ is indeed sound.

Hence, if soundness is decidable for reset nets, then reachability is also decidable.
This leads to a contradiction. Hence soundness is not decidable. ut

Theorem 1 shows that the ability of cancellation combined with unbounded
places makes soundness undecidable. This is a relevant result because many
workflow languages have such features.

6.2 Relaxed soundness is undecidable for RWF-nets

Relaxed soundness differs fundamentally from notions such as classical sound-
ness, because it allows for deadlocks, etc. as long as there is a “good execution”



possible for each transition. Like classical soundness, relaxed soundness is de-
cidable for WF-nets without reset arcs. Unfortunately, relaxed soundness is also
undecidable for RWF-nets.

Theorem 2 (Undecidability of relaxed soundness). Relaxed soundness is
undecidable for RWF-nets with reset arcs.

Proof. Let (N, MI) be an arbitrary marked reset net. Without loss of generality
we can assume that N is connected and that every transition has input and
output places. Any net can be translated into a behaviorally equivalent net that
has these properties.

To show that relaxed soundness is undecidable, we construct a new net
(N ′, [i]) which embeds (N, MI) such that N ′ is relaxed sound if and only if some
specified marking MX is reachable from (N, MI). By doing so, we show that
reachability in an arbitrary reset net can be analyzed through relaxed sound-
ness, making relaxed soundness undecidable because reachability is undecidable
for reset nets [9, 10].

Note that here we choose a different strategy than in Theorem 1 where sound-
ness corresponds to the non-reachability of a given marking MX . Here, we make
a construction such that relaxed soundness of N ′ corresponds to the reachability
of MX in (N,MI).
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Fig. 4. Construction showing that reachability can be expressed in terms of relaxed
soundness for WF-nets with reset arcs. (Note that I and X may overlap.)



Figure 4 shows the basic idea underlying the construction of N ′ from N . P
is the set of places in N and T is the set of transitions in N . I ⊆ P is the set of
places marked in MI and X ⊆ P is the set of places marked in MX . Although
not shown in Figure 4, I and X may overlap. Let Tstart = {tstart | t ∈ T} and
Tend = {tend | t ∈ T} be new transitions and let S = {st | t ∈ T} be new
places, i.e., for each t ∈ T we add a self-loop place st and transitions tstart and
tend. Assume ({i, o, u, v, w} ∪ S) ∩ P = ∅ and ({a, b, c} ∪ Tstart ∪ Tend) ∩ T = ∅.
For any t: •tstart = [u] + S, tstart• = (•t) + [st, v], •tend = (t•) + [st, v], and
tend• = [u]+S. Also note the reset arcs of tend and that s ∈ •t ∩ t•. As Figure 4
shows, transition b initializes the places in I, i.e., for p ∈ I: W (b, p) = MI(p).
Similarly, transition c consumes all tokens from X if marking MX is reached,
i.e., for p ∈ X: W (p, c) = MX(p).

To better understand the structure of N ′ note that there are the following
place invariants: i+u+v+w+o and k.i+

∑
t∈T st+(k−1).v+k.o where k = |T |.

The first invariant indicates that there will always be one token in exactly one
of the places i, u, v, w, and o. The second invariant shows that there is a token
in i (weight k), or there is a token in o (weight k), or there are tokens in S∪{v}.
In the latter case, there may be one token in v with weight k− 1 and one token
in one of the places in S with weight 1. So the sum of these two tokens is also k.
Note that tstart consumes k tokens with weight one from S, returns one token
to place st ∈ S, and puts a token with weight k − 1 in place v. Transition tend

consumes one token from place st ∈ S and one token with weight k− 1 for place
v, and produces k tokens with weight one for S. It is easy to show that these are
indeed invariants because the reset arcs only affect the places in P and not any
of the newly added places.

Initially a fires thus marking u and all places in S. In [u] + S, any of the
Tstart transitions can fire. Say tstart fires. In the resulting state ((•t) + [st, v]),
t is the only transition in T that can fire. Note that all other transitions in
T are blocked because the corresponding places in S \ {st} are not marked.
If t• ⊆ •t, then t does not have to fire and tend may fire directly. However, t
can fire. If •t ⊆ t•, then t may even fire multiple times. However, after firing
one of more times t, tend can fire and remove all tokens from t• using reset
arcs if needed. Note that the reset arcs in the original net do not play a role
here because transition t removes the tokens in •t and nothing more. In any
case, the sequence 〈tstart, t, tend〉 can be executed and results again in marking
[u] + S. Hence this could be repeated for all t ∈ T , still resulting in marking
[u] + S. In marking [u] + S also b can fire resulting in marking MI + S + [w].
Hence is it possible to move from marking [i] to marking MI + S + [w] by firing
σb = 〈a, . . . , tstart, t, tend, . . . , b〉, i.e., (N ′, [i])[σb〉(N ′,MI +S+[w]). Note that σb

is such that it contains all transitions except c. After executing σb, the transitions
in T can fire like in (N, MI), i.e., not constrained by the added constructs, until
c occurs. Suppose that c occurs, then all tokens in S are removed thus blocking
all transitions in T . After firing c a token is put into o and no transition can fire
anymore.



Now we can show that N ′ is relaxed sound if and only if the specified marking
MX is reachable in (N,MI):

– Assume marking MX is reachable from (N,MI). There exists a firing se-
quence σN such that (N, MI)[σN 〉(N, MX). This sequence is also enabled
in the state after executing σb: (N ′,MI + S + [w])[σN 〉(N ′,MX + S + [w]).
Hence, (N ′, [i])[σbσNc〉(N ′, [o]) and it becomes clear that N ′ is indeed re-
laxed sound.

– Assume N ′ is relaxed sound. Hence there is a sequence σ: (N ′, [i])[σ〉(N ′, [o]).
σ needs to have the following structure σb = 〈a, . . . , b, . . . , c〉 because in order
to mark o, c must have been the last step and must have been preceded by b
which in turn must have been preceded by a. Recall that i+u+ v +w + o is
a place invariant illustrating the main control-flow in the net and the linear
dependencies between a, b and c. It is also clear that a, b, and c can fire only
once. Just before firing c the marking must have been precisely MX +S+[w]
because c does not have any reset arcs. Just after firing b the marking must
have been MI + S + [w]. Hence, there exists a firing sequence σN such that
(N ′,MI +S + [w])[σN 〉(N ′,MX +S + [w]). Note that in σN only transitions
of T can be present (Tstart ∪ Tend are dead after removing the token from
u). Hence, σN is also enabled in the original net, i.e., (N,MI)[σN 〉(N, MX).
Therefore, MX must be reachable in (N,MI) thus completing the proof.

ut

As shown, relaxed soundness is also undecidable for RWF-nets. It is inter-
esting to note that for proving Theorem 2 we need to use an approach that is
completely different from the approach used in the proof of Theorem 1.

7 Conclusion

In this paper we explored decidability of soundness notions in the presence of
cancelation. As a basic model, we used RWF-nets, i.e., workflow nets with reset
arcs. As shown in Theorem 1, the classical notion of soundness becomes unde-
cidable by adding reset arcs. Moreover, the weaker notion of relaxed soundness
is also undecidable for RWF-nets (cf. Theorem 2). Interestingly, the strategies
used to prove undecidability are very different for both notions.

In a technical report [5] we also show that most other notions of soundness are
undecidable for RWF-nets. Of the many soundness notions described in literature
only generalized soundness may be decidable (this is still an open problem). All
other notions are shown to be undecidable.

We hope that our decidability results are useful for researchers working on
workflow verification. The results provide insights into the boundaries of work-
flow verification. We would like to stress that undecidability does not make things
hopeless. Many errors can be discovered using techniques such as invariants and
reduction rules [21, 25, 26, 28]. Motivated by the findings in [21], we are planning
more empirical studies on workflow verification.



References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
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