
Discovery, Verification and Conformance of
Workflows with Cancellation

W.M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tue.nl

Abstract. Petri nets are frequently used for the modeling and analysis
of workflows. Their graphical nature, well-defined semantics, and analysis
techniques are attractive as information systems become more “process-
aware”. Unfortunately, the classical Petri net has problems modeling can-
cellation in a succinct and direct manner. Modeling cancellation regions
in a classical net is impossible or results in a “spaghetti-like” net. Can-
cellation regions are supported by many workflow management systems,
but these systems do not support advanced analysis techniques (process
mining, verification, performance analysis, etc.). This paper proposes to
use reset workflow nets (RWF-nets) and discusses (1) the discovery of
RWF-nets (i.e., extracting information from event logs to construct such
models), (2) the verification of RWF-nets (i.e., checking whether a work-
flow process has deadlocks, livelocks, etc.), and (3) the conformance of an
event log with respect to a RWF-net (i.e., comparing real with modeled
behavior).

Keywords: Petri Nets, Reset Nets, Soundness, Verification, and Process Mining.

1 Introduction

Information systems have become “process-aware”, i.e., they are driven by pro-
cess models [26]. Often the goal is to automatically configure systems based on
process models rather than coding the control-flow logic using some conven-
tional programming language. Early examples of process-aware information sys-
tems were called WorkFlow Management (WFM) systems [5, 30, 36, 50]. In more
recent years, vendors prefer the term Business Process Management (BPM) sys-
tems. BPM systems have a wider scope than the classical WFM systems and
are not just focusing on process automation. BPM systems tend to provide more
support for various forms of analysis and management support. Both WFM and
BPM aim to support operational processes that we refer to as “workflow pro-
cesses” or simply “workflows”.

The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Figure 1 shows
a so-called workflow net (WF-net), i.e., a Petri net with a start place and an



end place such that all nodes are on some path from start to end. WF-nets were
introduced in [1, 2].1

Fig. 1. A WF-net N1 modeling the booking of trips. Note that after one “NOK” the
trip will be cancelled eventually. There are 23−1 = 7 situations modeled by transitions
c1, c2, . . . , , c7. Although the model is already complicated it fails to model that there
should not be any booking activities after the first “NOK”, because the trip will be
cancelled anyway.

The WF-net in Figure 1 models the booking of trips. After registration a
flight, a hotel, and a car are booked. Each of these booking activities can suc-
ceed (“OK”) or fail (“NOK”). For reasons of simplicity, only the successful or
unsuccessful completion of these activities is shown in Figure 1 (i.e., activities
are considered to be atomic). If all booking activities succeed, then a payment
follows. If one of them fails, a cancellation activity follows. Since each of the 3
booking activities can succeed or fail, there are 23 = 8 scenarios. Only for one
of these eight scenarios, payment is executed. For all other seven scenarios, the
trip is cancelled.

Figure 1 is already rather complex but fails to model that there should not
be any unnecessary work, i.e., after the first failure (“NOK”), no other booking
activities should be executed as cancellation is inevitable. To model this, the
seven c-transitions (c1, c2, . . . , , c7) are not adequate as there are 33 − 23 = 19
1 According to Google Scholar (visited on April 23rd, 2008), [2] got more than thou-

sand references illustrating the interest in the topic. In fact, [2] is the second most
cited workflow paper after [30].



possible states after registration and before payment/cancellation in which there
is at least one “NOK”. Hence, 19−7 = 12 additional c-transitions are needed to
capture this. Moreover, we simplified the model by assuming that the activities
are atomic. This is not realistic because the booking of the flight, the hotel, and
the car may happen in parallel and if one of them fails the other ones need to
be withdrawn. If we incorporate this in the model, there there are 43 − 33 = 37
states after registration and before payment/cancellation in which there is at
least one “NOK”.2 This implies that to fully model the example 37 c-transitions
are needed to remove the tokens from the right places. This illustrates that
cancellation is difficult to model in WF-nets. Therefore, we propose to use reset
arcs [24, 25, 29]. A reset arc removes tokens from a place but does not block the
corresponding transition if the place is empty. This is a very useful construct
that allows for the modeling of various cancellation operations supported by
contemporary workflow languages, e.g., the withdraw construct of Staffware, the
cancellation region of YAWL, the cancel event of BPMN, etc. In our example, the
37 c-transitions that are needed to remove the tokens from the right places, can
be replaced by a single transition with reset arcs. This illustrates the usefulness
and relevance of reset arcs. Therefore, we introduce the so-called Reset WorkFlow
nets (RWF-nets) as an extension to the classical WF-nets [1, 2].

Taking RWF-nets as a starting point we explore a spectrum of analysis ques-
tions. Concretely, we investigate the following three challenges:

– Discovering RWF-Nets. Given an event log extracted from some database,
transaction log, or set of use cases/audit trails, we want to automatically infer
a process model. Since cancellation is important when modeling workflows,
it is also important to discover cancellations when observing systems and
processes.

– Verification of RWF-Nets. Many of the modern workflow languages offer
some form of cancellation. Hence, it is important to be able to verify such
models and point out deadlocks, livelocks, etc.

– Conformance with respect to a RWF-Net. The alignment of model and sys-
tems on the one hand and real-life processes on the other often leaves much
to be desired. Therefore, it is important to be able to compare event logs
with models. Since real-live processes and their models exhibit cancellation,
it is important to take this into account when checking conformance of event
logs and models.

The remainder of this paper is organized as follows. First, we present reset
workflow nets and introduce three challenges (discovery, verification, and con-
formance), followed by Section 3 which introduces the concept of event logs.
Section 4 focuses on the verification of workflows with cancellation. Section 5
shows that conformance can be checked by “playing the token game” based on
the event log. Section 6 presents the challenge to discover reset workflow nets.

2 Each of the booking activities has 4 states: enabled, running, succeeded (i.e., “OK”),
and failed (i.e., “NOK”). Therefore, there are 43 = 64 possible states and 33 = 27
of these states are non-failure states.



An overview of related work is provided in Section 7 and Section 8 concludes
the paper.

2 Reset Workflow Nets

The WF-net in Figure 1 is a nice illustration of the inability of classical Petri
nets to model cancellation. Therefore, we use reset nets, i.e., classical Petri net
extended with reset arcs.

Definition 1 (Reset net). A reset net is a tuple (P, T, F, W,R), where:

– (P, T, F ) is a classical Petri net with places P , transitions T , and flow rela-
tion F ⊆ (P × T ) ∪ (T × P ),

– W ∈ F → IN \ {0} is an (arc) weight function, and
– R ∈ T → 2P is a function defining reset arcs.

A reset net extends the classical Petri net with reset arcs. These are used to
remove all tokens from a place independent of the number of tokens. R(t) is the
set of places that are emptied when firing t. Also note that we are using arc
weights. Arc weights specify the number of tokens to be consumed or produced.
W (p, t) is the number of tokens transition t consumes from input place p and
W (t, p) is the number of tokens transition t produces for output place p.

Figure 2 shows a reset net. In this example all arc weights are 1, i.e., W (x, y) =
1 for (x, y) ∈ F . Transition c has seven reset arcs connected to it. When c fires
all tokens are removed from places fOK , hOK , cOK , NOK , bf , bh, and bc. For
the enabling of c these reset arcs is irrelevant, i.e., c is enabled if and only if
there is a token in place NOK .

The state of a reset net, also referred to as marking, is described as a multiset.
Therefore, we introduce some notation. Let A be a set, e.g., the set of places P .
IB(A) = A → IN is the set of multi-sets (bags) over A, i.e., X ∈ IB(A) is a multi-
set where for each a ∈ A: X(a) denotes the number of times a is included in the
multi-set. The sum of two multi-sets (X+Y ), the difference (X−Y ), the presence
of an element in a multi-set (x ∈ X), and the notion of sub-multi-set (X ≤ Y )
are defined in a straightforward way and they can handle a mixture of sets and
multi-sets. πA′(X) is the projection of X onto A′ ⊆ A, i.e., (πA′(X))(a) = X(a)
if a ∈ A′ and (πA′(X))(a) = 0 if a 6∈ A′.

To represent a concrete multi-set we use square brackets, e.g., [fOK , hOK ,
cOK ] is the marking with a token in each of the “OK places” and [NOK 3] is
the marking with three tokens in place NOK .

Because of the arc weights the classical preset and postset operators re-
turn bags rather than sets: •a = [xW (x,y) | (x, y) ∈ F ∧ a = y] and a• =
[yW (x,y) | (x, y) ∈ F ∧ a = x]. For example, •pay = [fOK , hOK , cOK ] is the
bag of input places of pay and pay• = [end ] is the bag of output places of pay .

Now we can formalize the notions of enabling and firing.

Definition 2 (Firing rule). Let N = (P, T, F,W,R) be a reset net and M ∈
IB(P ) be a marking.



Fig. 2. A RWF-net N2 modeling the booking of trips. Note that unlike the WF-net in
Figure 1, unnecessary work is avoided. Moreover, the number of nodes to handle the
cancellation is constant and the number of arcs is linear in the number of booking ac-
tivities (flight, hotel, car, etc.) and activity states (enabled, running, succeeded, failed,
etc.).

– A transition t ∈ T is enabled, notation (N, M)[t〉, if and only if, M ≥ •t.
– An enabled transition t can fire while changing the state to M ′, notation

(N, M)[t〉(N,M ′), if and only if, M ′ = πP\R(t)(M − •t) + t•.

The resulting marking M ′ = πP\R(t)(M−•t)+t• is obtained by first removing
the tokens required for enabling: M − •t. Then all tokens are removed from the
reset places of t using projection. Applying function πP\R(t) removes all tokens
except the ones in the non-reset places P \ R(t). Finally, the specified numbers
of tokens are added to the output places. Note that t• is a bag of tokens

(N, M)[t〉(N, M ′) defines how a Petri net can move from one marking to
another by firing a transition. We can extend this notion to firing sequences.
Suppose σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net
N with initial marking M . (N, M)[σ〉(N, M ′) means that there exists a sequence
of markings 〈M0, M1, . . . , Mn〉 where M0 = M , Mn = M ′, such that for any 0 ≤
i < n: (N, Mi)[ti+1〉(N, Mi+1). Using this notation we define the set of reachable
markings R(N, M) as follows: R(N, M) = {M ′ ∈ IB(P ) | ∃σ(N, M)[σ〉(N, M ′)}.



Note that by definition M ∈ R(N,M) because the initial marking M is trivially
reachable via the empty sequence (n = 0).

We would like to emphasize that any reset net with arc weights can be trans-
formed into a reset net without arc weights, i.e., all arcs have weight 1. Therefore,
in proofs can assume arc weights of 1 when convenient and still use them in con-
structs. See [6] for a construction.

The idea of a workflow process is that many cases (also called process in-
stances) are handled in a uniform manner. The workflow definition describes the
ordering of activities to be executed for each case including a clear start state
and end state. These basic assumptions lead to the notion of a WorkFlow net
(WF-net) [1, 2] which can easily be extended in the presence of reset arcs.

Definition 3 (RWF-net). An reset net N = (P, T, F, W,R) is a Reset Work-
Flow net (RWF-net) if and only if

– There is a single source place i, i.e., {p ∈ P | • p = ∅} = {i}.
– There is a single sink place o, i.e., {p ∈ P | p• = ∅} = {o}.
– Every node is on a path from i to o, i.e., for any n ∈ P ∪ T : (i, n) ∈ F ∗ and

(n, o) ∈ F ∗.
– There is no reset arc connected to the sink place, i.e., ∀t∈T o 6∈ R(t).

Figures 1 and 2 both show a RWF-net. The requirement that ∀t∈T o 6∈ R(t) has
been added to emphasize that termination should be irreversible, i.e., it is not
allowed to complete (put a token in o) and then undo this completion (remove
the token from o).

Let us now compare figures 1 and 2 showing RWF-nets N1 and N2 respec-
tively. In the the original net without reset arcs (N1) the number of cancellation
transitions is exponential in the number of bookings while in the second net (N2)
there is just one cancellation transition and the number of reset arcs is linear in
the number of bookings. Also note that in N2 tokens are also removed from the
input places of the booking activities to make sure than no unnecessary work
is conducted. Extending N1 to obtain the same behavior requires the addition
of 12 more cancellation transitions. This clearly shows the benefits of using re-
set arcs. Moreover, figures 1 and 2 also illustrate the need for the modeling of
cancellations in real-life workflow processes.

3 Event Logs

Traditionally, the focus of workflow analysis at design-time has been on model-
based verification and simulation while at run-time the focus has been on mea-
suring simple key performance indicators such as flow times, service levels, etc.
Because more and more information about processes is recorded by information
systems in the form of so-called “event logs”, it seems vital to also use this
information while analyzing processes. A wide variety of process-aware infor-
mation systems [26] is recording excellent data on actual events taking place.
ERP (Enterprise Resource Planning), WFM (WorkFlow Management), CRM



(Customer Relationship Management), SCM (Supply Chain Management), and
PDM (Product Data Management) systems are examples of such systems. De-
spite the omnipresence and richness of these event logs, most software vendors
have been focusing on relatively simple questions under the assumption that the
process is fixed and known, e.g., the calculation of simple performance metrics
like utilization and flow time. However, in many domains processes are evolv-
ing and people typically have an oversimplified and incorrect view of the actual
business processes. Therefore, process mining techniques attempt to extract non-
trivial and useful information from event logs. One aspect of process mining is
control-flow discovery, i.e., automatically constructing a process model (e.g., a
Petri net) describing the causal dependencies between activities [11, 12, 17, 20].

Later in this paper, we discuss process discovery and conformance checking
using RWF-nets. These are particular process mining techniques that require
event logs as input. Therefore, we define the notion of an event log.

Definition 4 (Event log). Let A be a set of activities. A trace σ can be de-
scribed as a sequence of activities, i.e., σ ∈ A∗. An event log L is a multiset of
traces, i.e., L ∈ IB(A∗).

A trace can be considered as the execution path of a single process instance
(case). Note that this is a rather simplified view, i.e., in real life events have times-
tamps (When did the activity happen?), resource information (Who executed
the activity?), data (What information was used and produced?), etc. How-
ever, for this paper we focus on the control-flow only. A trace possible according
to Figure 2 is σ = 〈register , book flight NOK , c, cancel〉. An example event log
consisting of 5 traces is L = [〈register , book hotel NOK , c, cancel〉3, 〈register ,
book hotel OK , book car OK , book flight OK , pay〉2].

As already indicated in Section 1, this paper focuses on three challenges:

– Discovering RWF-Nets. Given an event log L, we want to infer a RWF-net
N .

– Verification of RWF-Nets. Given a RWF-net N , we want to discover errors
such as deadlocks, etc.

– Conformance with respect to a RWF-Net. Given an event log L and a RWF-
net N , we want to discover discrepancies between L and N .

The remainder of this paper will focus on these three challenges. We start by
elaborating on the verification of RWF-nets.

4 Verification of RWF-Nets

Based on the notion of RWF-nets we now investigate the fundamental question:
“Is the workflow correct?”. If one has domain knowledge, this question can be
answered in many different ways. However, without domain knowledge one can
only resort to generic questions such as: “Does the workflow terminate?”, “Are
there any deadlocks?”, “Is it possible to execute activity A?”, etc. Such kinds of
generic questions triggered the definition of soundness [1, 2]. Different soundness



notions have been proposed, e.g., k-soundness [32, 33], weak soundness [39], gen-
eralized soundness [32, 33], relaxed soundness [21], etc. However, here we focus
on the original definition given in [1].

Definition 5 (Classical soundness [1, 2]). Let N = (P, T, F,W,R) be a
RWF-net. N is sound if and only if the following three requirements are sat-
isfied:

– Option to complete: ∀M∈R(N,[i]) [o] ∈ R(N, M).
– Proper completion: ∀M∈R(N,[i]) (M ≥ [o]) ⇒ (M = [o]).
– No dead transitions: ∀t∈T ∃M∈R(N,[i]) (N, M)[t〉.

A RWF-net such as the one sketched in Figure 1 is sound if and only if the
following three requirements are satisfied: (1) option to complete: for each case it
is always still possible to reach the state which just marks place end, (2) proper
completion: if place end is marked all other places are empty for a given case,
and (3) no dead transitions: it should be possible to execute an arbitrary activity
by following the appropriate route through the RWF-net. It is easy to see that
N1 and N2 (figures 1 and 2) are sound.

Fig. 3. A RWF-net N3 that is not sound. From the initial marking [start ] e.g. the mark-
ing shown (i.e., [bh, fOK , end ]) is reachable. This shows that the first two requirements
stated in Definition 5 do not hold.

RWF-net N3 shown in Figure 3 is an example of a workflow that is not sound.
Since c does not remove tokens from the places before the booking activities,



tokens may be left behind. In fact, it is still possible to book a hotel after
transition cancel has put a token in end (cf. Figure 3). This example shows that
it is easy to make errors when modeling workflows with cancellation.

In [1, 2] it was shown that soundness is decidable for WF-nets, i.e., RWF-
nets without reset arcs. A WF-net N = (P, T, F ) (without reset arcs and arc
weights) is sound if and only if the short-circuited net (N, [i]) with N = (P, T ∪
{t∗}, F∪{(o, t∗), (t∗, i)}) is live and bounded. Since liveness and boundedness are
both decidable, soundness is also decidable. For some subclasses (e.g., free-choice
nets), this is even decidable in polynomial time [1, 2].

Since the mid-nineties many people have been looking at the verification of
workflows. These papers all assume some underlying model (e.g., WF-nets) and
some correctness criterion (e.g., soundness). However, in many cases a rather
simple model is used (WF-nets or even less expressive) and practical features
such as cancellation are missing. Many practical languages have a cancellation
feature, e.g., Staffware has a withdraw construct, YAWL has a cancellation re-
gion, BPMN has cancel, compensate, and error events, etc. Therefore, it is in-
teresting to investigate the notion of soundness in the context of RWF-nets, i.e.,
WF-nets with reset arcs [24, 25, 29]. Unfortunately, soundness is not decidable
for RWF-nets with reset arcs.

Theorem 1 (Undecidability of soundness). Soundness is undecidable for
RWF-nets.

For a proof we refer to [6]. Although far from trivial, it is possible to construct
a RWF-net N ′ given an arbitrary reset net N such that N ′ is sound if and only
if M ′ is not reachable from M in N . Since reachability is undecidable for reset
nets [24, 25, 29], this implies that soundness is also undecidable for RWF-nets.

Theorem 1 is non-trivial because properties such as coverability (Is it possible
to reach a marking M ′ that covers M , i.e., M ′ ≥ M?) are decidable for reset
nets.

Note that although soundness is undecidable for RWF-nets, for many rep-
resentatives of this class, it may still be possible to conclude soundness or non-
soundness. There may be rules of the form “If WF-net N has property X, then
N is sound” or “If WF-net N has property Y , then N is not sound”. As shown
in [41] it is possible to find many errors using such an approach. In [41] a set
of more than 2000 process models from practice (including more than 600 pro-
cesses from the SAP reference model) was analyzed. It could be shown that at
least 10 percent of these models is not sound. These examples show that even if
soundness is undecidable, errors can be discovered. Similarly, for many models it
is still possible to guarantee soundness even if the general verification problem
is undecidable.

In the related work section, we provide some pointers to analysis techniques
using brute force (e.g. coverability graphs), structural techniques (invariants),
and/or reduction rules. For example, RWF-nets can be reduced using the reduc-
tion rules presented in [48] to speed-up analysis and improve diagnostics.



5 Conformance with Respect to a RWF-Net

As indicated in Section 3, lion’s share of analysis efforts has been devoted to
model-based analysis (verification, simulation, etc.) and measuring simple per-
formance indicators. However, given the abundance of event logs it is interesting
to “discover models” based on event logs (see Section 6) or to measure the con-
formance of existing models based on the real behavior recorded in logs. In this
section, we focus on the latter question, i.e., “Do the model and the log conform
to each other?”. Conformance checking aims at the detection of inconsistencies
between a process model N and its corresponding execution log L, and their
quantification by the formation of metrics. In [4, 42, 43] two basic conformance
notions have been identified (fitness and appropriateness). First of all, the fit-
ness between the log and the model is measured (i.e., “Does the observed process
comply with the control flow specified by the process model?”). Second, the ap-
propriateness of the model can be analyzed with respect to the log (i.e., “Does
the model describe the observed process in a suitable way?”). Appropriateness
can be evaluated from both a structural and a behavioral perspective [43].

In this paper, we only consider fitness. However, it is important to stress that
a model with good fitness may not be appropriate. For example, the model with
just a single place that serves as a self-loop for all transitions T is able to parse
any trace in T ∗ [4, 42, 43].

One way to measure the fit between event logs and process models is to
“replay” the log in the model and somehow measure the mismatch. The replay
of every trace starts with the marking of the initial place in the model, e.g.,
[start ] in Figure 1. Then, the transitions that belong to the logged events in the
trace are fired one after another. While replay progresses, we count the number
of tokens that had to be created artificially (i.e., the transition belonging to the
logged event was not enabled and therefore could not be successfully executed)
and the number of tokens that were left in the model, which indicate that the
process was not properly completed. Based on counting the number of missing
tokens during replay and the number of remaining tokens after replay, we define
a function f that has a value between 0 (=poor fitness) and 1 (=good fitness).

Definition 6 (Fitness). Let N = (P, T, F, W,R) be a RWF-net and let L ∈
IB(A∗) be an event log where we assume that T = A. Let k be the number
of traces in event log L. For each log trace i (1 ≤ i ≤ k), mi is the number
of missing tokens, ri is the number of remaining tokens, ci is the number of
consumed tokens, and pi is the number of produced tokens during log replay of
trace i. The token-based fitness metric f is defined as follows:

f(N, L) =
1
2
(1−

∑k
i=1 mi∑k
i=1 ci

) +
1
2
(1−

∑k
i=1 ri∑k
i=1 pi

)

Note that the above definition is rather informal. In [42, 43] this metric was
defined for WF-nets, i.e., workflows without cancellation. However, as shown
here the metric can easily be extended for RWF-nets. Let us consider some



trace i consisting of a sequence of n events σi = 〈e1, e2, . . . , en〉 ∈ T ∗. The
initial state of N is [i] and the desired end state is [o]. If (N, [i])[σi〉(N, [o]),
then there is a perfect fit, i.e., the trace can be replayed without leaving to-
kens behind. So, (N, [i])[σi〉(N, [o]) if and only if f(N, [σi]) = 1. Let σ1 =
〈register , book hotel NOK , c, cancel〉. It is easy to see that f(N2, [σ1]) = 1, i.e.,
the trace can be replayed without missing or remaining tokens. (Recall that N2 is
the RWF-net shown in Figure 2.) Now consider σ2 = 〈register , book hotel OK , c,
pay〉. It is possible to execute the partial trace 〈register , book hotel OK 〉. How-
ever, to execute c, there has to be a token in NOK (i.e., one token is missing). If
we force c to fire anyway, the resulting state is [ec]. In this state, we cannot fire
pay as there are three missing tokens. This brings the number of missing tokens
to 4. After forcing pay to fire, the resulting state is [ec, end ]. Hence one token
remains in place ec.

We can show the calculation of the values m2, r2, c2, and p2 step-by-step
using four temporary variables. Initially, m = 0 (no missing tokens), r = 0
(no remaining tokens), c = 0 (no consumed tokens), and p = 1 (prior to the
execution of register the net is in state [start ], so the environment already put
a token in the initial place). After start fires state [bf , bh, bc] is obtained and
m = 0, c = 0 + 1 = 1, and p = 1 + 3 = 4. After book hotel OK fires marking
[bf , bc, hOK ] is reached and m = 0, c = 1+1 = 2, and p = 4+1 = 5. After c fires
state [ec] is obtained and m = 0 + 1 = 1 (missing token in NOK ), c = 2 + 4 = 6
(four tokens are removed, one by a “normal” arc and three by reset arcs), and
p = 5 + 1 = 6. After pay fires state [ec, end ] is reached and m = 1 + 3 = 4,
c = 6 + 3 = 9, and p = 6 + 1 = 7. Finally, the token is removed from end
and the remaining token is recorded, i.e., c = 9 + 1 = 10 and r = 1. Note
that in the calculation the marking of the source place is considered to be a
production step while the removal of the token from the sink place is considered
to be a consumption step. Also note that the removal of tokens through reset
arcs is calculated as a consumption step. Hence, m2 = 4, r2 = 1, c2 = 10, and
p2 = 7. Therefore, f(N2, [σ2]) = 1

2 (1 − 4
10 ) + 1

2 (1 − 1
7 ) = 51

70
∼= 0.73. The fitness

of f(N2, [σ1, σ2]) = 1
2 (1− 0+4

7+10 ) + 1
2 (1− 0+1

7+7 ) = 403
476

∼= 0.85.
Several definitions of fitness are possible. For example, Definition 6 gives equal

weights to missing tokens and remaining tokens. By replacing the weights 1
2 by

e.g. weight 3
4 and weight 1

4 in Definition 6, more emphasis is put on problems
related to missing tokens and less on proper termination.

Several metrics for fitness and various appropriateness notions have been im-
plemented in ProM for WF-nets [42, 43]. As shown in this section, these metrics
can be adapted for RWF-nets in a straightforward manner. Figure 4 illustrates
the current functionality of ProM. For a specific log, the fitness is calculated
with respect to the WF-net shown in Figure 1. As Figure 4 shows the fitness
is 0.80908644 (metric is shown in top right corner). Several places are anno-
tated with one or two numbers. Positive numbers refer to remaining tokens (i.e.,∑k

i=1 ri for a particular place) and negative tokens refer to missing tokens (i.e.,∑k
i=1 mi for a particular place). The input place of cancel (i.e., place ec in Fig-

ure 1) has the number “−25” indicating that in the whole log there were 25



Fig. 4. The conformance checker in ProM applied to the WF-net shown in Figure 1
and an event log containing 42 cases and 172 events.

situations where according to the log cancel had to fire while according to the
model this was not possible because ec was empty. As shown in Figure 4, nice
diagnostics can be given showing were in the model mismatches occur and how
severe they are.

Note that the transitions c1, c2, . . . , , c7 in Figure 1 are depicted differently
in the conformance checker (cf. Figure 4). The reason is that there are no events
related to c1, c2, . . . , , c7 in the log, i.e., these are “silent transitions” and cannot
be observed. The conformance checker in ProM can deal with such situations
using state-space analysis. The same technique is used to deal with “duplicates”,
i.e., two transitions having the same label. See [43] for details. Interestingly, all
ideas from [43] can be generalized to workflows with cancellation.

6 Discovering RWF-Nets

The last challenge addressed in this paper is the discovery of workflows with
cancellation, i.e., based on some event log L we want to automatically construct
a RWF-net N that “captures” the behavior seen in the log. Many techniques
have been proposed in literature [11, 8, 12, 17, 20, 22, 23, 49]. However, none of
these techniques discovers workflow models with cancellation features.

Figure 5 illustrates the concept of process discovery. Given an event log with-
out any explicit process information, we want to discover a process model. On
the right-hand side of Figure 5, a fragment of a larger event log is shown. As dis-
cussed in Section 3, event logs tend to have more information (e.g., timestamps,



register book_flight_OK book_hotel_OK book_car_OK pay

register book_hotel_OK book_flight_OK book_car_OK pay

register book_hotel_NOK book_flight_OK book_car_OK c2 cancel

register book_car_OK book_hotel_OK book_flight_OK pay

register book_hotel_NOK book_flight_OK book_car_OK c2 cancel

register book_flight_OK book_hotel_OK book_car_OK pay

register book_flight_OK book_hotel_OK book_car_NOK c1 cancel

register book_hotel_NOK book_flight_OK book_car_OK c2 cancel

register book_flight_OK book_car_OK book_hotel_OK pay

register book_flight_NOK book_car_NOK book_hotel_NOK c7 cancel

register book_hotel_OK book_car_OK book_flight_OK pay

register book_car_OK book_flight_OK book_hotel_OK pay

register book_flight_NOK book_car_NOK book_hotel_NOK c7 cancel

register book_hotel_OK book_car_NOK book_flight_NOK c6 cancel

...

Fig. 5. Based on a complete event log, the α-algorithm [11] can discover the WF-net
shown in Figure 1.

data, etc.), but here was assume that an event log is simply a multiset of traces.
For example, the first trace in Figure 5 refers to a scenario were all bookings
succeeded. The α-algorithm [11] is a very basic process mining algorithm that is
able to discover the model shown in Figure 5. Since the traces shown correspond
to possible traces of the WF-net N1 shown in Figure 1, it is nice to see that the
α-algorithm is actually able to discover N1 (modulo renaming of places). The α-
algorithm [11] is very simple but not very suitable for real-life applications. The
algorithm makes strong assumptions about the routing constructs to be used
and the completeness of the log. For example, it is not realistic that one actually
observes the routing transitions c1, c2, . . . , , c7. Unlike transition cancel which is
a real activity, c1, c2, . . . , , c7 have only been added for routing purposes. For-
tunately, better process mining algorithms are available today (see Section 7).
However, these do not capture cancellation as the underlying models do not allow
for a direct representation of such constructs.

The goal is to develop process mining algorithms that discover cancellations
in event logs and treat cancellation as a basic construct. Concretely, we want
to discover a RWF-net N with “suitable” reset arcs based on some event log L.
Since we do not what to develop a process mining algorithm from scratch, we
try to extend existing techniques.

The basic idea behind most of the existing process mining algorithms is to
add a causal dependency based on an analysis of the log. For example, a >L b iff
there is a trace in L where a is directly followed by b and a →W b iff a >W b and
b 6>W a. Using such information places are added, e.g., a and b are connected
through some place if a →W b. Hence, the places provide information about one
activity triggering another activity. However, there is no explicit information in



the log on disabling events (i.e., there is no “negative information” in the log).
Therefore, we suggest to use existing algorithms and do some post-processing
using reset arcs as a cleanup. Below is an informal sketch of the basic idea:

Step 1 Given an event log L construct a RWF-net N = (P, T, F,W,R) using
conventional process mining techniques (initially R(t) = ∅ for all t ∈ T ). It
is best to use a technique that avoids blocking transitions, i.e., no missing
tokens (mi) in the sense of Definition 6.

Step 2 Construct a relation 6ÀL⊆ T × T such that a 6ÀL b if and only if a is
never followed by b.

Step 3 Replay the log in N = (P, T, F, W,R) and record places with remain-
ing tokens and calculate the fitness. If there are no remaining tokens or all
alternatives below have been tried, return N .

Step 4 Pick a place p that has the most remaining tokens. Let Tp be the set of
output transitions of p, i.e., Tp = p•.

Step 5 T ′ = {t′ ∈ T \ Tp | ∀t∈TP
t′ 6ÀL t ∧ p 6∈ R(t′)}, i.e., transitions that

“seem” to disable Tp transitions but do not actually disable these transitions
yet. If T ′ = ∅, then go to Step 3, otherwise pick a tr ∈ T ′. Take the “earliest”
transition in T ′, e.g., using a relation similar to ÀL.

Step 6 Add a reset arc to N connecting p and tr, i.e., N ′ = (P, T, F, W,R′)
where R′(tr) = R(tr) ∪ {p} and R′(t) = R(t) for all other t.

Step 7 Return to Step 3 using N = N ′.

Note that the above is not indented to be a concrete algorithm. It is merely
a solution approach that needs to be made specific in the context of a concrete
process mining algorithm. To illustrate this let us use a log L2 that contains all
possible behaviors of the RWF-net shown in Figure 2. In the log transition c is
not visible as it is just there for routing purposes, i.e., an example trace in L2

is 〈register , book flight NOK , cancel〉. Applying the α-algorithm to L2 gives an
incorrect and rather meaningless result because of the invisible routing activity c
and the cancellation construct. If we apply the region-based approach presented
in [9, 44], then we obtain the Petri net shown in Figure 6. The region-based
approach guarantees that it is possible to replay all traces in the log without
missing tokens, but there may be remaining tokens. In terms of Definition 6,
this means mi = 0 and ri ≥ 0 for any trace i. This makes the technique of [9, 44]
suitable for the post-processing mentioned above. Note that there are six places
where tokens may remain.

The Petri net in Figure 6 is able to execute the sequence 〈register , book flight
NOK , cancel〉 but leaves two tokens behind. Note that the central place in-
between register and pay acts as a mutex place blocking all activities after the
first “NOK”. Also note that there is a not a sink place in Figure 6, i.e., it is
not a WF-net. This is due to the implementation of the plug-in in ProM and
is merely a technicality that can be resolved easily (e.g., by adding a dummy
end transition). Using the 7 steps described above reset arcs are added from the
six places with remaining tokens to transition cancel . However, also superfluous
reset arcs are added, e.g., from some of places with remaining tokens to pay .
This can be optimized in various ways. First of all, additions that do not improve



Fig. 6. Using regions, a Petri net is discovered that captures the behavior but where
tokens are left behind. The fitness is 0.897 as shown in top right corner.

fitness can be discarded. Second, improving T ′ to filter out transitions that do
not appear in traces that have problems (i.e., if there is no problem related to
sequences where transition t′ appears, then no reset of t′ on p is needed). Both
optimizations would get rid of the superfluous reset arcs. The resulting model
nicely captures the behavior recorded in the log including the cancellation after
the first “NOK” result.

There are alternatives to the post-processing approach described above. First
of all, it would be relatively easy to extend the genetic miner in ProM [7, 40]
to deal with reset arcs. For genetic mining basically only a good representa-
tion (RWF-nets) and fitness function (Definition 6) are needed [7, 40]. Second,
it would be interesting to extend mining approaches based on language-based
regions [45] to come up with special arcs. Figure 7 shows the application of the
language-based region miner in ProM using a very conservative setting for log
L2, i.e., the same log as used to construct Figure 6. Because of the conserva-
tive setting just a few places were added, however, a correct characterization of
the behavior is given. This shows the basic principle that a Petri net without
any places can parse any log and that adding places corresponds to adding con-
straints. Since this approach uses integer linear programming as a basis, it is
versatile and seems to be a good platform to add special types of arcs such as
reset arcs, inhibitor arcs, etc.



Fig. 7. A Petri net constructed using language-based regions theory [45].

7 Related Work

Since the mid nineties, many researchers have been working on workflow verifi-
cation techniques. It is impossible to give a complete overview here. Moreover,
most of the papers on workflow verification focus on rather simple languages,
e.g., AND/XOR-graphs which are even less expressive than classical Petri nets.
Therefore, we only mention the work directly relevant to this paper.

The use of Petri nets in workflow verification has been studied extensively.
In [1, 2] the foundational notions of WF-nets and soundness are introduced.
In [32, 33] two alterative notions of soundness are introduced: k-soundness and
generalized soundness. These notions allow for dead parts in the workflow but
address problems related to multiple instantiation. In [39] the notion of weak
soundness is proposed. This notion allows for dead transitions. The notion of
relaxed soundness is introduced in [21]. This notion allows for potential deadlocks
and livelocks, however, for each transition there should be at least one proper
execution.

Most soundness notions (except generalized soundness [32, 33]) can be inves-
tigated using classical model checking techniques that explore the state space.
However, such approaches can be intractable or even impossible because the
state-space may be infinite. Therefore, alternative approaches that avoid con-
structing the (full) state space have been proposed. [3] describes how structural
properties of a workflow net can be used to detect the soundness property. [46, 47]
presents an alternative approach for deciding relaxed soundness in the presence
of OR-joins using invariants. The approach taken results in the approximation
of OR-join semantics and transformation of YAWL nets into Petri nets with
inhibitor arcs. In [51] it is shown that the backward reachability graph can be
used to determine the enabling of OR-joins in the context of cancellation. In the



general area of reset nets, Dufourd et al.’s work has provided valuable insights
into the decidability status of various properties of reset nets including reach-
ability, boundedness and coverability [24, 25, 29]. Moreover, in [48] it is shown
that reduction rules can be applied to reset nets (and even to inhibitor nets) to
speed-up analysis and improve diagnostics.

Since the mid-nineties several groups have been working on techniques for
process mining [11, 8, 12, 17, 20, 22, 23, 49], i.e., discovering process models based
on observed events. In [10] an overview is given of the early work in this do-
main. The idea to apply process mining in the context of workflow management
systems was introduced in [12]. In parallel, Datta [20] looked at the discovery
of business process models. Cook et al. investigated similar issues in the context
of software engineering processes [17]. Herbst [34] was one of the first to tackle
more complicated processes, e.g., processes containing duplicate tasks.

Most of the classical approaches have problems dealing with concurrency.
The α-algorithm [11] is an example of a simple technique that takes concurrency
as a starting point. However, this simple algorithm has problems dealing with
complicated routing constructs and noise (like most of the other approaches
described in literature). In [22, 23] a more robust but less precise approach is
presented. The classical “theory of regions” [13, 14, 18, 19, 27] can also be used
to discover Petri-net-based models as shown in [9, 44]. Recently, some work on
language-based regions theory appeared [16, 45, 37, 38]. In [16, 45] it is shown
how this can be applied to process mining.

In this paper we do not consider issues such as noise. Heuristics [49] or genetic
algorithms [7, 40] have been proposed to deal with issues such as noise.

For an overview of related work with respect to conformance checking we
refer to [4, 42, 43]. Note that so far no process mining techniques (discovery
and/or conformance) have been proposed for models with cancellation such as
RWF-nets.

To conclude this related work section, we provide some pointers to the rela-
tionships between Petri nets and graph grammars/transformations [28, 31]. The
relationships between Petri nets and graph grammars have been well known for
quite some time [35]. In fact, graph grammars can be seen as a proper gen-
eralization of Petri nets. The firing of a transition corresponds to applying a
“production” to a graph while firing sequences correspond to graph derivations.
Reset arcs can easily be encoded in terms of graph grammars. In Section 3.2 of
[31], extensions of graph rewriting using multi objects are discussed, i.e., uni-
versally quantified operations are used to remove all objects of a particular type
in one go. Such ideas directly apply to reset nets. In [15] the relation between
“extended Petri nets” and graph rewriting is investigated in detail. In this pa-
per, Petri nets having read, inhibitor and reset arcs are mapped onto graph
grammars. Thus far little work has been done on the relation between graph
grammars/transformations on the one hand and workflow verification and pro-
cess discovery on the other. It would be interesting to explore this further.



8 Conclusion

In this paper we explored various analysis questions related to workflows with
cancellations. As a modeling language we used reset workflow nets (RWF-nets).
Taking RWF-nets as a starting point we explored challenges related to discovery
(process mining), verification, and conformance. For example, it was shown that
soundness is undecidable for RWF-nets. However, despite this result, analysis
is possible in most cases using e.g. reduction rules and structural techniques as
shown in [48]. Conformance checking can be done in a straightforward manner
by adapting the techniques described in [42, 43] to RWF-nets. From a process
mining viewpoint, no prior work has been done on the discovery of processes
with cancellations. In this paper we made some initial suggestions to develop
process discovery algorithms for RWF-nets. Given the importance of cancellation
in workflows, it is interesting to develop techniques and tools to further address
the challenges mentioned in this paper.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-net-based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer-
Verlag, Berlin, 2000.

4. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool
for Delta Analysis and Conformance Testing. Requirements Engineering Journal,
10(3):198–211, 2005.

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2004.

6. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classifica-
tion, Decidability, and Analysis. BPM Center Report BPM-08-02, BPMcenter.org,
2008.

7. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
48–69. Springer-Verlag, Berlin, 2005.

8. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

9. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther.
Process Mining: A Two-Step Approach using Transition Systems and Regions.
BPM Center Report BPM-06-30, BPMcenter.org, 2006.



10. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

11. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

12. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

13. E. Badouel, L. Bernardinello, and P. Darondeau. The Synthesis Problem for Ele-
mentary Net Systems is NP-complete. Theoretical Computer Science, 186(1-2):107–
134, 1997.

14. E. Badouel and P. Darondeau. Theory of regions. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in
Computer Science, pages 529–586. Springer-Verlag, Berlin, 1998.

15. P. Baldan, A. Corradini, and U. Montanari. Relating SPO and DPO Graph Rewrit-
ing with Petri nets having Read, Inhibitor and Reset Arcs. Electronic Notes in
Theoretical Computer Science, 127(2):5–28, 2005.

16. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on
Regions of Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, Inter-
national Conference on Business Process Management (BPM 2007), volume 4714
of Lecture Notes in Computer Science, pages 375–383. Springer-Verlag, Berlin,
2007.

17. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

18. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri
Nets from State-Based Models. In Proceedings of the 1995 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD ’95), pages 164–171. IEEE
Computer Society, 1995.

19. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

20. A. Datta. Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research, 9(3):275–301,
1998.

21. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

22. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, In-
ternational Conference on Conceptual Modeling (ER 2004), volume 3288 of Lecture
Notes in Computer Science, pages 362–376. Springer-Verlag, Berlin, 2004.

23. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining: Aggregating
Instances Graphs into EPCs and Petri Nets. In D. Marinescu, editor, Proceedings of
the Second International Workshop on Applications of Petri Nets to Coordination,
Workflow and Business Process Management, pages 35–58. Florida International
University, Miami, Florida, USA, 2005.

24. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and
Undecidability. In K. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the



25th International Colloquium on Automata, Languages and Programming, volume
1443 of Lecture Notes in Computer Science, pages 103–115, Aalborg, Denmark,
July 1998. Springer-Verlag.

25. C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Lectures on Concur-
rency and Petri Nets, volume 1644 of Lecture Notes in Computer Science, pages
301–310, Prague, Czech Republic, July 1999. Springer-Verlag.

26. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

27. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

28. H. Ehrig, H.J. Kreowski, U. Montanari, and G. Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 3: Concurrency,
Parallelism, and Distribution. World Scientific, 1999.

29. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, April 2001.

30. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

31. R. Heckel. Graph Transformation in a Nutshell. Electronic Notes in Theoretical
Computer Science, 148(1):187–198, 2006.

32. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of
Workflow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst
and E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of
Lecture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin, 2003.

33. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Generalised Soundness of Workflow
Nets Is Decidable. In J. Cortadella and W. Reisig, editors, Application and Theory
of Petri Nets 2004, volume 3099 of Lecture Notes in Computer Science, pages
197–215. Springer-Verlag, Berlin, 2004.

34. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

35. H.J. Kreowski. A Comparison Between Petri-Nets and Graph Grammars. In
H. Noltemeier, editor, Graph Theoretic Concepts in Computer Science, volume
100 of Lecture Notes in Computer Science, pages 306–317. Springer-Verlag, Berlin,
1981.

36. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

37. R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri Nets from
Finite Partial Languages. In T. Basten, G. Juhás, and S.K. Shukla, editors, In-
ternational Conference on Application of Concurrency to System Design (ACSD
2007), pages 157–166. IEEE Computer Society, 2007.

38. R. Lorenz and G. Juhás. How to Synthesize Nets from Languages: A Survey. In
S.G. Henderson, B. Biller, M. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton,
editors, Proceedings of the Wintersimulation Conference (WSC 2007), pages 637–
647. IEEE Computer Society, 2007.

39. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor,
Proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering (FASE 2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, Berlin, 2005.



40. A.K.A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University
of Technology, Eindhoven, 2006.

41. J. Mendling, G. Neumann, and W.M.P. van der Aalst. Understanding the Occur-
rence of Errors in Process Models Based on Metrics. In F. Curbera, F. Leymann,
and M. Weske, editors, Proceedings of the OTM Conference on Cooperative infor-
mation Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer Science,
pages 113–130. Springer-Verlag, Berlin, 2007.

42. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

43. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

44. V. Rubin, C.W. Günther, W.M.P. van der Aalst, E. Kindler, B.F. van Dongen,
and W. Schäfer. Process Mining Framework for Software Processes. In Q. Wang,
D. Pfahl, and D.M. Raffo, editors, International Conference on Software Process,
Software Process Dynamics and Agility (ICSP 2007), volume 4470 of Lecture Notes
in Computer Science, pages 169–181. Springer-Verlag, Berlin, 2007.

45. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, , and A. Serebrenik.
Process Discovery using Integer Linear Programming. Computer Science Report
(08-04), Eindhoven University of Technology, Eindhoven, The Netherlands, 2008.

46. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri
Nets. In D. Marinescu, editor, Proceedings of the Second International Workshop
on Applications of Petri Nets to Coordination, Workflow and Business Process
Management, pages 59–78. Florida International University, Miami, Florida, USA,
2005.

47. H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Verifying Work-
flows with Cancellation Regions and OR-joins: An Approach Based on Relaxed
Soundness and Invariants. The Computer Journal, 50(3):294–314, 2007.

48. H.M.W. Verbeek, M.T. Wynn, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Reduction Rules for Reset/Inhibitor Nets. BPM Center Report BPM-07-13, BPM-
center.org, 2007.

49. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

50. M. Weske. Business Process Management: Concepts, Languages, Architectures .
Springer-Verlag, Berlin, 2007.

51. M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Verify-
ing Workflows with Cancellation Regions and OR-joins: An Approach Based on Re-
set Nets and Reachability Analysis. In S. Dustdar, J.L. Faideiro, and A. Sheth, edi-
tors, International Conference on Business Process Management (BPM 2006), vol-
ume 4102 of Lecture Notes in Computer Science, pages 389–394. Springer-Verlag,
Berlin, 2006.


