
A Reference Model for Grid Architectures and
Its Analysis

Carmen Bratosin, Wil van der Aalst, Natalia Sidorova, and Nikola Trčka

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c.c.bratosin@tue.nl, w.m.p.v.d.aalst@tue.nl, n.sidorova@tue.nl,

n.trcka@tue.nl

Abstract. Computing and data intensive applications in physics,
medicine, biology, graphics, and business intelligence require large and
distributed infrastructures to address today’s and tomorrow’s challenges.
For example, process mining applications are faced with terrabytes of
event data and computationally expensive algorithms. Increasingly, com-
puter grids are used to deal with such challenges. However, despite the
availability of many software packages for grid applications, a good con-
ceptual model of the grid is missing. Grid computing is often approached
in an ad-hoc and engineering-like manner. This paper provides formal de-
scription of the grid in terms of a colored Petri net (CPN). The CPN can
be seen as a reference model for grids and clarifies the basic concepts at a
conceptual level. Moreover, the CPN allows for various kinds of analysis
ranging from verification to performance analysis. In this paper, we show
that our reference model allows for the analysis of various distribution
strategies using simulation.

Keywords: Computational grids; grid architecture; colored Petri nets.

1 Introduction

Developments in information technology offer solutions to many complex prob-
lems, but they also lead to new challenges. The idea of collaboration and distri-
bution of work in order to solve a given problem is promising but complicates
matters dramatically. Ideas like distributed computing or service oriented ar-
chitectures have been embraced by the scientific and industrial communities.
Grid computing uses available technologies to approach distributed computing
resources linked via networks as one computer.

Despite the availability of a wide variety of grid products, there is little con-
sensus on the definition of a grid and its architecture. In the last decade many
researchers tried to define what a grid is. Some argue that grid computing is
just another name for distributed computing, while others claim that it is a
completely new way of computing. Recently, in [17], the author presented the
outcome of a survey conducted among grid researchers all over the globe. The

R. Meersman and Z. Tari (Eds.): OTM 2008, Part I, LNCS 5331, pp. 898–913, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Reference Model for Grid Architectures and Its Analysis 899

main conclusion, on which the most of the respondents agree, is that grid com-
puting is about sharing resources in a distributed environment. This definition,
however, only offers an idea of what a grid is and not how it is actually working.

In order to classify all the functionalities that a grid system should pro-
vide, [13] describes a grid architecture as composed of five layers: (1) fabric,
providing resources such as computational units and network resources; (2) con-
nectivity layer composed of communication and authentication protocols; (3)
resource layer implementing negotiation, monitoring, accounting, and payment
for individual resources; (4) collective layer focusing on global resource man-
agement; and finally, (5) the layer composed of user applications. Similar clas-
sification is given in [1] where the architecture is composed of four layers: (1)
resources, composed of the actual grid resources like computers and storage fa-
cilities; (2) network, connecting the resources; (3) middleware layer, equivalent
to the collective layer of [13], but also including some of the functionality of the
resource layer (e.g. monitoring); and (4) application layer. In both [13] and [1],
as well as in most of the other similar works done by practitioners, the grid archi-
tecture is described only at a very high level. The separation between the main
parts of the grid is not well defined. Moreover, there is a huge gap between the
architectural models, usually given in terms of informal diagrams, and the actual
grid implementations which use an engineering-like approach. A good conceptual
reference model for grids is missing.

This paper tries to fill the gap between high-level architectural diagrams and
concrete implementations, by providing a colored Petri net (CPN) [14] describ-
ing a reference grid architecture. Petri nets [16] are a well established graphical
formalism, able to model concurrency, parallelism, communication and synchro-
nization. CPNs extend Petri nets with data, time and hierarchy, and combine
their strength with the strength of programming languages. For these reasons,
we consider CPNs to be a suitable language for modeling grid architectures. The
CPN reference model, being formal, resolves ambiguities and provides semantics.
Its graphical nature and hierarchical composition contribute to a better under-
standing of the whole grid mechanism. Moreover, as CPN models are executable
and supported by CPN Tools [11] (a powerful modeling and simulation frame-
work), the model can be used for rapid prototyping, and for all kinds of analysis
ranging from model checking to performance analysis.

Literature refers to different types of grids, based on the main applications
supported. For example, a data grid is used for managing large sets of data
distributed on several locations, and a computational grid focuses on offering
computing power for large and distributed applications. Each type of grid has
its particular characteristics making it a non-trivial task to unify them. This
paper focuses only on computational grids. However, we also take into account
some data aspects, such as input and output data of computational tasks and
the duration of data transfer, as these are important aspects for the analysis.

(Computational) grids are used in different domains ranging from biology and
physics to weather forecasting and business intelligence. Although the results
presented in this paper are highly generic, we focus on process mining as an

900 C. Bratosin et al.

application domain. The basic idea of process mining is to discover, monitor and
improve real processes (i.e., not assumed processes) by extracting knowledge
from event logs [4,3]. It is characterized by an abundance of data (i.e., event
logs containing millions of events) and potentially computing intensive analysis
routines (e.g., genetic algorithms for process discovery). However, as many of its
algorithms can be distributed by partitioning the log or model, process mining
is an interesting application domain for grid computing.

At TU/e we are involved in many challenging applications of process min-
ing that could benefit from the grid (a recent example is our analysis of huge
logs coming from the “CUSTOMerCARE Remote Services Network” of Philips
Medical Systems). We need a good experimental framework that allows us to
experiment with different scheduling techniques and grid application designs. To
show how our CPN model can be applied in this direction, and that is not only
suitable as a descriptive model, we perform a simulation study. Using a small
(but typical) process mining application as input we conduct several simple ex-
periments to see how parameters such as the arrival rate, distribution strategies,
and data transfer, influence the throughput time of an application and resource
utilization. The simulations are done under the realistic hypothesis that the re-
sources are unreliable, i.e., can appear and disappear at any moment in time.
For the visualization and analysis of the results we use the link of CPN tools
with the SPSS software [2] and ProM framework [5]. Note that in this paper we
do not aim to come with a novel middleware design, or invent a new scheduling
policy, but rather to illustrate the powerful capabilities of the model and its
simulation environment.

The rest of the paper is organized as follows. In the remainder of this section
we discuss some related work. In Section 2 we present a grid architecture and its
CPN model. The simulation experiments are presented in Section 3. Section 4
concludes the paper.

Related Work. While formal techniques are widely used to describe grid work-
flows [12,6,8], only a few attempts have been made to specify the semantics of a
complete grid. In [15] a semantical model for grid systems is given using Abstract
State Machines [7] as the underlying formalism. The model is very high level (a
refinement method is only informally proposed) and no analysis is performed.
[18] gives a formal semantic specification (in terms of Pi-calculus) for dynamic
binding and interactive concurrency of grid services. The focus is on grid service
composition.

In order to analyze grid behavior several researchers developed grid simulators.
(The most notable examples are SimGrid [10] and GridSim [9].) These simulators
are typically Java or C implementations, meant to be used for the analysis of
scheduling algorithms. They do not provide a clear reference model as their
functionality is hidden in code. This makes it difficult to check the alignment
between the real grid and the simulated grid.

In [8] we proposed to model Grid workflows using CPNs, and we also used
process mining as a running example. In that paper, however, we fully covered
only the application layer of the grid; for the other layers the basic functionality

A Reference Model for Grid Architectures and Its Analysis 901

was modeled, just to close the model and make the analysis possible. We also
completely abstracted from data aspects.

2 Modeling a Grid with CPNs

In this section we present a grid architecture and give its semantics using colored
Petri nets.1 The proposed architecture is based on an extensive review of litera-
ture. As mentioned in the introduction, CPNs are graphical and have hierarchy,
so we use the CPN model itself to explain the architecture.

The main page of the model is given in Figure 1. It shows the high-level view
of the grid architecture. As seen in the figure, the grid consists of three layers:
(1) the resource layer, (2) the application layer, and (3) the middleware. The
application layer is where the users describe the applications to be submitted
to the grid. The resource layer is a widely distributed infrastructure, composed
of different resources linked via Internet. The main purpose of the resources
is to host data and execute jobs. The middleware is in charge of allocating
resources to jobs, and of other management issues. The three layers communicate
by exchanging messages, modeled as (interface) places in CPNs.

User applications consist of jobs, atomic units of work. The application layer
sends job descriptions to the middleware, together with the locations of the
required input data. It then waits for a message saying whether the job was
finished or it was canceled. When it receives a job description the middleware
tries to find a resource to execute this job. If a suitable resource is found, it is
first claimed and then the job is sent to it. The middleware monitors the status of
the job and reacts to state changes. The resource layer sends to the middleware
the acknowledgments, and the information on the current state of resources, new
data elements, and finished jobs. When instructed by the application layer, the
middleware removes the data that is no longer needed from the resources.

We now zoom-in the submodules in Figure 1 and present each layer and its
dynamics in more detail.

2.1 Application Layer

The upper level of the grid architecture is composed of user applications. These
applications define jobs to be executed on the resources. Since these jobs may
causally depend on one another, the application layer needs to specify the “flow
of work”. Therefore, we use the term grid workflow to refer to the processes
specified at the application layer. There may be different grid workflows using
the same infrastructure, and there may be multiple instances of the same grid
workflow, referred to as cases.

The purpose of a grid architecture is to offer users an infrastructure to ex-
ecute complex applications and at the same time hide the complexity of the
resources. This means that the user should not be concerned with, e.g., resource
1 We assume that the reader is familiar with the formalism; if otherwise, [14] provides

a good introduction.

902 C. Bratosin et al.

CPN'Replications.nreplications 10

CPN'Replications.nreplications 10

Resources
Resources

Middleware
Middleware

ApplicationLevel
ApplicationLevel

RegisterDataForRes

ConcreteRes

RegisterDataAck

AckDataReg

ClaimResponse

ClaimResponse

ClaimRequest

Claim

RegisterData

DataCatalogue

CancelJob

Job

DataRemoval

ResDataList

RemoveData

DataNameList

ConcreteResInformation

ConcreteResListT
Finished Job

JobAllocatedSentJob

JobAllocatedAndTransferList

FinishedJob

Job

Job

Job

ApplicationLevel

Middleware

Resources

Fig. 1. Grid architecture

discovery or data movement. In order to achieve this goal the application layer
provides a grid workflow description language that is independent of resources
and their properties. Defined workflows can therefore be (re)used on different
grid platforms.

In our case, CPNs are themselves used to model grid workflows. However,
they are expected to follow a certain pattern. The user describes each job as a
tuple (ID, AP, OD) where ID is the set of input data, AP is the application to
be executed, and OD is the set of output data. Every data element is represented
by its logical name, leaving the user a possibility to parameterize the workflow
at run-time with actual data. All data is case related, i.e. if the user wants to
realize multiple experiments on the same data set, the data is replicated and
the dependency information is lost. It is assumed that the set ID contains only
the existing data, i.e. that at least one resource has this data (e.g. created by
previous jobs). It is also assumed that AP is an existing application at the level
of resources.

In Figure 2 we present the CPN model of the application layer. In this case
the layer consists of only one workflow, but multiple cases can be generated by
the GenCases module. Every workflow is preceded by the substitution transition
RegisterData. This transition, as the name implies, registers for every new case
the location of the input data required for the first job. The workflow from
Figure 2 thus needs a “Log” and a “FilterFile”. When all the jobs in a case are
executed, the application layer sends a message to the middleware instructing
that all the data of the case is deleted (transition Garbage Removal).

In Figure 3, an example of a workflow is presented, describing a simple, but
very typical, process mining experiment. The event log (“Log”) is first filtered
using a filter described in “Filter File”. Then, the obtained “Filtered Log” is

A Reference Model for Grid Architectures and Its Analysis 903

c

[{caseid=c,dataid=""}]

c

Workflow

Workflow

GenCases

GenCases

RegisterData

RegisterData

Garbage
Removal

RegisterDataAck
In AckDataReg

RegisterData
Out

DataCatalogue

CancelJob
In Job

Filter

"FilterFile"

DataID

Log

"Log"

DataID

P2

CaseID

P1

CaseID

RemoveData
Out

DataNameList

End

CaseID

Start

CaseID

Gen

GenTaskID

Job
Out Job

FinishedJob
In

Job
In

Out

Out
In

Out

In

RegisterData

GenCases

Workflow

Fig. 2. Application Layer

ConformanceChecking
ConformanceChecking

Mining
Mining

Filter
Filter

P3

CaseID

P2

CaseID

CCResult

"CCResult"

DataID

PN

"PN"

DataID

FinishedJob
In

JobJob
Out Job

P1
In

CaseID

Log
I/O

"Log"

DataID

Gen
I/O GenTaskID

CancelJob
I/O

Job

Filter
I/O

"FilterFile"

DataID

P4

Out CaseID

Flog

"FLog"

DataID

Out

I/O

I/O

I/O

I/O

In

Out

In

Filter Mining ConformanceChecking

Fig. 3. Workflow example

mined and the result of the mining algorithm (“PN”) is assessed by using the
conformance checker (to see, e.g. how many traces from the log can be repro-
duced by the mined model).

All jobs follow the pattern from Figure 4. Each logical data name (from ID
and OD) is modeled as a distinct place. In this way we can easily observe the data
dependencies between jobs. These dependencies can be used in an optimization
algorithm to decide whether some data is no longer needed, or when some data

904 C. Bratosin et al.

p

job

jobid

d2d

{
 caseid=c,
 taskid=t
}

c

job
{
 caseid=c,
 taskid=t+1
}

getCase(jobid)

{caseid=c, taskid=t}

jobid

p

CancelJob

[getCase(jobid) = getCaseOfJob(job)]

End
Job

[jobid=(#jobid(job))]

CancelJob
I/O Job

P1
In

CaseID

FinishedJob
In

Job

Job
Out Job

Gen
I/O GenTaskID

End
Out CaseID

PN
I/O

DataID

Log
I/O

DataID

PType

PLG2

PluginType

RunJob

JobID

I/O I/O

Out

I/O

Out

In

In

I/O

{
 jobid={
 caseid=c,
 taskid=t
 },
 plugintype=p,
 inputdatalist=[
 {
 dataid=d,
 copymove=true,
 del=true
 }
],
 outputdatalist=[d2]
}

Start
Job

Fig. 4. Job example

is more suitable to be replicated. The PluginType place contains the information
on which application to execute at the resource level (the parameter AP from the
above). In our case this place contains the name of a process mining algorithm.
Every job starts by receiving a unique id and sending its description to the
middleware. It ends with either a proper termination (the job was executed and
required output data was created), or a cancelation (the middleware can not find
a resource to execute the job; in our model that only happens when some input
data does no longer exist on any grid resource). The application layer cancels
the whole case if at least one of the jobs gets canceled.

2.2 Middleware

The link between user applications and resources is made via the middleware layer
(Figure 5). This layer contains the intelligence needed to discover, allocate, and
monitor resources for jobs. We consider just one centralized middleware, but our
model canbe easily extended to adistributedmiddleware.Wealso restrict ourselves
to a middleware working according to a “just-in-time” strategy, i.e., the search for
anavailable resource is doneonly at themomenta jobbecomes available. If there are
multiple suitable resources, an allocation policy is applied. Look ahead strategies
and advanced planning techniques are not considered in this paper.

The place GlobalResInformation models an information database containing
the current state of resources. The middleware uses this information to match
jobs with resources, and to monitor the behavior of resources. The database
is updated based on the information received from the resource layer and the
realized matches.

DataCatalog is a database containing information about the location of data ele-
mentsandtheamountofstorageareathattheyoccupy.This information isalsoused

A Reference Model for Grid Architectures and Its Analysis 905

M
on

it
or

in
g

M
on

it
or

in
g

S
ch

ed
u
lin

g

S
ch

ed
u
lin

g

Jo
b
R
ec

ei
vi

n
g

Jo
b
R
ec

ei
vi

n
g

Fa
u
lt
-H

an
d
lin

g

Fa
u
lt
-H

an
d
lin

g

D
at

a
M

an
ag

em
en

t

D
at

aM
an

ag
em

en
t

R
eg

is
te

rD
at

aF
or

R
es

In
C
on

cr
et

eR
es

R
eg

is
te

rD
at

aA
ck

O
u
t

A
ck

D
at

aR
eg

Fa
ile

d
Jo

b
s

Jo
b
To

S
ch

ed
Li

st

C
la

im
R
es

p
on

se
In

C
la

im
R
es

p
on

se

C
la

im
R
eq

u
es

t
O

u
t

C
la

im

Jo
b

In
Jo

b

R
eg

is
te

rD
at

a
In

D
at

aC
at

al
og

u
e

C
an

ce
lJ

ob
O

u
t

Jo
b

Fi
n
is

h
ed

 J
ob

In
Jo

b
A
llo

ca
te

d

S
en

t
Jo

b

O
u
t

Jo
b
A
llo

ca
te

d
A
n
d
Tr

an
sf

er
Li

st

Fi
n
is

h
ed

Jo
b

O
u
t

Jo
b

S
en

t
Fo

r
G

ar
b
ag

e
re

m
ov

al
O

u
t

R
es

D
at

aL
is

t
R
em

ov
eD

at
a

In

D
at

aN
am

eL
is

t

D
at

aC
at

al
og

u
e

[] D
at

aC
at

al
og

u
e

C
on

cr
et

eR
es

In
fo

rm
at

io
n

In
C
on

cr
et

eR
es

Li
st

T

G
lo

b
al

R
es

In
fo

rm
at

io
n

R
L

R
es

Li
st

Jo
b
sT

oS
ch

ed
u
le

[] Jo
b
To

S
ch

ed
Li

st

In

In
O

u
t

O
u
t

O
u
t

In

O
u
t

In

In

O
u
t

In

O
u
t

In

D
at

aM
an

ag
em

en
t

Fa
u
lt
-H

an
d
lin

g

S
ch

ed
u
lin

g

M
on

it
or

in
g

E
S
TI

M
A
TI

O
N

E
st

Pa
ra

m

K
n
ow

le
d
g
e

D
at

ab
as

e

Jo
b
R
ec

ei
vi

n
g

F
ig

.5
.M

id
dl

ew
ar

e
la

ye
r

906 C. Bratosin et al.

in the scheduling process.The transitionDataManagement models the registration
of data for new cases and the removal of records from the catalogue. A message
containing a list of “garbage data” can be sent to the resources at any time.

When a job is received (JobReceiving module), the middleware first extends
its description with an estimate of how much storage area is needed. A user-
provided knowledge database is used for this task. Next, the job is added to the
jobs pool list, ordered based on the arrival time. If multiple jobs arrive at the
same time, the order is non-deterministic. The scheduling process now starts
(Figure 6), according to the chosen policy.

Scheduling is done in two steps. First, a match between a resource and a
job is found. The matching phase succeeds is there is a resource with a free
CPU and enough free space to store the input and the output data. Second, the
found resource is claimed. This step is necessary because the matching process
is based on a (possibly outdated) local copy of the state of the resources. The
middleware sends a claim request to the allocated resource in order to check that
its resource image is still correct. If the claim is successful, the middleware sends
the job description to the resource, extended with the list of data that need to
be obtained from other resources (using the so-called transfer list). If the claim
fails, the middleware puts the job back into the pool.

After the job was sent to the resource, the middleware monitors the resource
state. Basically, it listens on the signal received from the resource layer. Each
time a message is received, the middleware compares the received state with its
local copy. Since these messages can be outdated (e.g., when a resource sends
a message just before a job arrives), the middleware reacts using a timeout
mechanism. A resource is considered unavailable if no information is received
from it for a given period of time, and a job is considered canceled if no message
related to the job is received for several consecutive updates.

removeJobFromResID(rl,rid,job2sched,catalogue)

rl

newData(catalogue,rid,job2sched)

{job={resid=rid,job=job2sched},
 response=b}

{
 resid=rid,
 job=job2sched,
 transferlist=createTransferList(rid,job2sched,catalogue)
}

job2schedlist

takeRes(rl,rid,job2sched,catalogue)

job2schedlist

catalogue

catalogue

addJob(job2sched,job2schedlist)

rl

{resid=rid,job=job2sched}

{job={resid=rid,job=job2sched},
 response=b}

delJob(job2sched,job2schedlist)
{resid=rid,job=job2sched}

{resid=rid,job=job2sched}

sch

{
 resid=rid,
 job=job2sched
}

Match

[existResToAlloc(rl,catalogue,job2schedlist,sch)]

ClaimSucceed

ClaimFail

[b=false]

Sent Job

Out JobAllocatedAndTransferList

DataCatalogue

I/O
DataCatalogue

GlobalResInformation

I/O ResList

ClaimRequest
Out Claim

ClaimResponse
In

ClaimResponse

Jobs
Pool

I/O JobToSchedList

Scheduling
policy

SCHEDULER

Scheduler

Matched

JobAllocatedI/O In

Out

I/O

I/O

Out

catalogue

[b=true]

Fig. 6. Scheduling page

A Reference Model for Grid Architectures and Its Analysis 907

When the middleware receives the message that a job is finished, it updates the
global resource information database and forwards this message to the application
layer.

Jobs can fail at the resource layer. Therefore, a fault handling mechanism
is defined (transition Fault-Handling). When a job fails, the middleware tries
to re-allocate it. However, if the necessary input data is no longer available at
the resource level, the middleware is unable to execute the job and it sends a
message to the application layer that the job is canceled.

2.3 Resource Layer

Every resource is described in terms of the available computing power (expressed
in number of CPUs), the amount of storage area available for hosting data, the
list of supporting applications, and the set of running and allocated jobs. The
resources are unaware of job issuers and of job dependencies. Every job is exe-
cuted on just one resource. However, resources can work on multiple jobs at the
same time. Figure 7 presents the conceptual representation of the functionalities
of the resource layer in terms of CPNs.

The set of resources is assumed to be fixed, but resources are considered
unreliable. They can appear/dissapear at any moment in time, except when
transferring data. Transition Resource Dynamics, governed by a stochastic clock,
simulates the possibility that a resource becomes unavailable. When this happens
all the data is lost and all running jobs are aborted on this resource.

After a successful match by the middleware, the transition Claim is used to rep-
resents a guarantee that the allocated resource can execute the job. Recall that
this phase is necessary because the allocation at the middleware level is based
on a possibly outdated information of the state of the resources. If the claiming
succeeds, one CPU and the estimated necessary storage area are reserved at the
resource. The resource is now ready to perform the job, and is waiting for the full
job description to arrive. The job description also contains the locations of the in-
put data and the information on which application to execute. The substitution
transition Transfer models the gathering of necessary input data from other re-
sources. If the input data is no longer present on a source node, the job is aborted.
If the transfer starts, we assume that it ends successfully. Note that the reserved
CPU remains unoccupied during the transfer. When all the input data is present
on the allocated resource, the job starts executing.

The resources can always offer their capabilities and, so, the resource layer
constantly updates the middleware on the current state of the resources. There
are two types of updates sent: (1) recognition of new data (transferred data, or
data generated by job execution) and (2) signals announcing to the middleware
that a resource is still available. While the former is sent on every change in the
resource status, the latter info is periodical.

Remove Data transition models the fact that any data can be deleted from
a resource at the request of the middleware. These requests can arrive and be
fulfilled at any moment in time.

908 C. Bratosin et al.

ri
d
@

+
ch

an
g
eR

es
S
ta

te
Ti

m
e(

re
sL

is
t,

ri
d
)

ri
d

re
sL

is
t

u
p
d
at

eA
va

ila
b
ili

ty
(r

es
Li

st
,r

id
)

{
re

si
d
=

ri
d
,t

yp
eu

p
=

JO
B
}

ta
ke

C
R
es

(r
es

Li
st

,r
id

,j
ob

2
sc

h
ed

)

re
sL

is
t

{
jo

b
 =

 {
jo

b
=

jo
b
2
sc

h
ed

,r
es

id
=

ri
d
}
,

re
sp

on
se

 =
 c

la
im

 (
ri
d
,r

es
Li

st
,j

ob
2
sc

h
ed

)}

{
jo

b
=

jo
b
2
sc

h
ed

,

re
si

d
=

ri
d

}

{
re

si
d
=

ri
d
,

jo

b
=

jo
b
2
sc

h
ed

,

tr
an

sf
er

lis
t=

tr
l

}

d
n
l

re
m

ov
eD

at
aF

ro
m

R
es

(r
es

Li
st

,d
n
l)

re
sL

is
t

ad
d
Jo

b
To

R
es

(r
es

Li
st

,r
id

,j
ob

2
sc

h
ed

)

re
sL

is
t

{
re

si
d
=

ri
d
,

jo

b
=

jo
b
2
sc

h
ed

,

tr
an

sf
er

lis
t=

tr
l

}

R
es

ou
rc

e
D

yn
am

ic
s

S
en

d
In

fo
rm

at
io

n

S
en

d
In

fo
rm

at
io

n

R
u
n

R
u
n

Tr
an

sf
er

Tr
an

sf
er

C
la

im

R
em

ov
eD

at
a

R
ec

ei
ve

Jo
b

R
eg

is
te

rD
at

aF
or

R
es

O
u
t

C
on

cr
et

eR
es

Tr
ig

g
er

U
p
d
at

e

Tr
ig

g
er

U
p
d
at

e

C
la

im
R
es

p
on

se
O

u
t

C
la

im
R
es

p
on

se

C
la

im
R
eq

u
es

t
In

C
la

im

C
on

cr
et

eR
es

In
fo

rm
at

io
n

O
u
t

C
on

cr
et

eR
es

Li
st

T

W
ai

tT
ra

n
sf

er

Jo
b
A
llo

ca
te

d
A
n
d
Tr

an
sf

er
Li

st

R
es

ou
rc

es

C
R
L

C
on

cr
et

eR
es

Li
st

C
lo

ck

R
C
LO

C
K

R
C
lo

ck

S
en

t
Fo

r
G

ar
b
ag

e
re

m
ov

al
In

R
es

D
at

aL
is

t

S
en

t
Jo

b

In

Jo
b
A
llo

ca
te

d
A
n
d
Tr

an
sf

er
Li

st

Fi
n
is

h
ed

 J
ob

s

O
u
t

Jo
b
A
llo

ca
te

d
O

u
t

In

In

O
u
t

In

O
u
t

O
u
t

Tr
an

sf
er

R
u
n

S
en

d
In

fo
rm

at
io

n

F
ig

.7
.
R

es
ou

rc
e

la
ye

r

A Reference Model for Grid Architectures and Its Analysis 909

The reference model presented in this section offers a clear view and a good
understanding of our grid architecture. The next section shows how we can use
this model to also analyze the behavior of the grid.

3 Simulation Analysis of the CPN Model

In order to measure performance of the grid we perform an extensive simulation
study on the reference model. The simulations are done using the capabilities of
CPN Tools. We use the SPSS software [2] and ProM framework [5] to visualize
and analyze the results. SPSS is a known package for statistical analysis; ProM is
a powerful, extendable and open-source, framework supporting model discovery,
analysis, and conversion. The purpose of this section is mostly to show the reader
what kind of analysis can be done using the model, and to illustrate the powerful
capabilities of the environment.

Our main goal is to see how does the grid behave under the heavy load of
process mining applications. The measures of interest are the average throughput
time of application (user view), and the average utilization of resources (sys-
tem view). We first thoroughly explore the behavior of the model based on the
simulation data. Then, we try to improve our scheduling policy by changing the
data transfer strategy.

(a) CPU Load (b) Storage Area Occupancy

(c) Throughput Time

Fig. 8. Simulation Results

910 C. Bratosin et al.

The testbed for our experiment is as follows. We consider a resource pool con-
taining 6 identical resources, each having 3 CPUs and a storage area of 1000GB.
The resources are unreliable, and can appear/disappear at any moment. Their
dynamics is governed by a uniform distribution. We assume that the resources
are used exclusively for our process mining applications. Every resource can
perform the three process mining operations, i.e. Filtering, Mining and Confor-
mance Check. All user applications follow the workflow structure from Figure 3.
The individual cases arrive according to an exponential distribution, and have
uniformly distributed input file (i.e. of the log and the filter file) sizes . We take
the scheduling policy to be first-ready-first-served, but the scheduling algorithm
gives priority to the more advanced cases, i.e., Conformance Check jobs have
higher priority than Filtering jobs. The motivation for this comes from the fact
that garbage removal takes place only at case completion.

The performance measures in question are examined for job arrival rates of
2,4,6,8, and 10, jobs per 100 time units. We perform 10 independent simula-
tions for each of the examined configurations, and we calculate 95% confidence
intervals. Each simulation run is limited to 2000 jobs.

In our first calculation we assume that data required for a job is always copied
to the allocated resource, and never moved (i.e., it stays on the source resource).
This strategy, on the one side, overloads the grid with a lot of replicated data
and, therefore, reduces performance. On the other side, however, it gives the
middleware more options when allocating a job, thus improving the performance.

Figure 8 shows the evolution of the performance parameters when the arrival
rate is varied. Figures 8(a) and 8(b) show the evolution of the resource utilization,
in terms of the number of CPUs used (called CPU load when in percentage)
and the amount of storage area occupied; Figure 8(c) shows the evolution of

Fig. 9. Performance Sequence Diagram showing the execution patterns

A Reference Model for Grid Architectures and Its Analysis 911

Fig. 10. Bottlenecks found with Performance Analysis with Petri Nets plugin and
Fuzzy Miner

Fig. 11. Dot Plot plugin showing the transfer event frequency

the throughput time. We observe that when the CPU load is less then 80%,
the throughput time is around 200 time units for all the arrival rates. When
the arrival rate is around 8/100, the resource load stabilizes to around 100%,
but the throughput time starts to increase swiftly.

To find bottlenecks we do a more detailed inspection using ProM. We first ap-
ply the Performance Sequence Diagram plugin, which gives us the result shown
in Figure 9. The chart represent the individual execution patterns for the case
of the highest arrival rate. We observe that the execution time for filtering (in-
cluding the queueing time) is higher than for the other jobs. As the resource
occupation is very high, the newly arrived cases wait long to be scheduled. The
patterns 2 and 3 are the cancelation executions. The execution time value for
canceled jobs is higher than for those with a normal execution (Pattern 1). This
is because the middleware cancels jobs based on a time out mechanism. Similar
conclusions can be made by using the Performance Analysis with Petri Nets
plugin, and the Fuzzy Miner plugin, as seen in Figure 10. Using the Dot Plot
plugin (Figure 11) we observe that when the arrival rate is 1/10, the frequency
of data transfer is significantly higher than for the lower arrival rates. As this
arrival rate is very high, after a job is finished the next job of the same case is
unlikely to be scheduled on the same resource.

In our second experiment we change the data transfer strategy, and no longer
replicate the data but move it. Figure 12 shows the confidence intervals for the

912 C. Bratosin et al.

(a) CPU Load (b) Storage Area Occupancy

(c) Throughput Time

Fig. 12. Comparison between the moving data strategy and replication strategy

two strategies, when the arrival rate is 1/10. With the new strategy storage
area occupation is decreased by half, and there is a slight improvement in the
throughput time.

4 Conclusions

In this paper, we presented a reference model for grid architectures in terms of col-
ored Petri nets, motivated by the absence of a good conceptual definition for the
grid. Our model is formal and offers a good understanding of the main parts of
the grid, their behavior and their interactions. To show that the model is not only
suitable for definition purposes, we conducted a simulation experiment. Under the
assumption that the grid is used for process mining applications, we compared the
performance of two scheduling strategies, different in the way they handle data
transfer.

The grid model is the starting point in the developing of both an experimental
simulation framework and a real grid architecture to support process mining
experiments.

References

1. Grid architecture,
http://gridcafe.web.cern.ch/gridcafe/gridatwork/architecture.html

http://gridcafe.web.cern.ch/gridcafe/gridatwork/architecture.html

A Reference Model for Grid Architectures and Its Analysis 913

2. SPSS software, http://www.spss.com/
3. Aalst, W., Reijers, H., Weijters, A., van Dongen, B., Medeiros, A., Song, M., Ver-

beek, H.: Business Process Mining: An Industrial Application. Information Sys-
tems 32(5), 713–732 (2007)

4. Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Process Mod-
els from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9),
1128–1142 (2004)

5. van der Aalst, W., van Dongen, B., Günther, C.W., Mans, R., de Medeiros, A.,
Rozinat, A., Rubin, V., Song, M., Verbeek, H.E., Weijters, A.: ProM 4.0: Com-
prehensive support for real process analysis. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

6. Alt, M., Gorlatch, S., Hoheisel, A., Pohl, H.-W.: A grid workflow language using
high-level Petri nets. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski,
J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 715–722. Springer, Heidelberg (2006)

7. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

8. Bratosin, C., van der Aalst, W.M.P., Sidorova, N.: Modeling grid workflows with
colored Petri nets. In: Proceedings of the Eighth Workshop on the Practical Use
of Coloured Petri Nets and CPN Tools (CPN 2007). DAIMI, vol. 584, pp. 67–86
(October 2007)

9. Buyya, R., Murshed, M.M.: Gridsim: a toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience 14(13-15), 1175–1220 (2002)

10. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In:
CCGRID 2001: Proceedings of the 1st International Symposium on Cluster Com-
puting and the Grid, Washington, DC, USA, p. 430. IEEE Computer Society, Los
Alamitos (2001)

11. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page,
http://wiki.daimi.au.dk/cpntools/

12. Feng, Z., Yin, J., He, Z., Liu, X., Dong, J.: A novel architecture for realizing grid
workflow using pi-calculus technology. In: Zhou, X., Li, J., Shen, H.T., Kitsure-
gawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 800–805. Springer,
Heidelberg (2006)

13. Foster, I.: The anatomy of the grid: Enabling scalable virtual organizations. In:
Proceedings of First IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2001, pp. 6–7 (2001)

14. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical.
Springer, Heidelberg (1992)

15. Nemeth, Z., Sunderam, V.: A formal framework for defining grid systems. In: Pro-
ceedings of the Second IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid, CCGRID 2002, Berlin (2002)

16. Reisig, W.: System design using Petri nets. In: Requirements Engineering, pp. 29–
41 (1983)

17. Stockinger, H.: Defining the grid: a snapshot on the current view. The Journal of
Supercomputing 42(1), 3–17 (2007)

18. Zhou, J., Zeng, G.: Describing and reasoning on the composition of grid services
using pi-calculus. In: CIT 2006: Proceedings of the Sixth IEEE International Con-
ference on Computer and Information Technology (CIT 2006), Washington, DC,
USA, pp. 48–54. IEEE Computer Society, Los Alamitos (2006)

http://www.spss.com/
http://wiki.daimi.au.dk/cpntools/

	A Reference Model for Grid Architectures and Its Analysis
	Introduction
	Modeling a Grid with CPNs
	Application Layer
	Middleware
	Resource Layer

	Simulation Analysis of the CPN Model
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

