
Pattern-based Analysis of Windows Workflow

Marco Zapletal∗ †, Wil M. P. van der Aalst†, Nick Russell†, Philipp Liegl∗, Hannes Werthner∗
∗Vienna University of Technology, Austria

Email: marco@ec.tuwien.ac.at, liegl@big.tuwien.ac.at, werthner@ec.tuwien.ac.at
† Eindhoven University of Technology, The Netherlands

Email: w.m.p.v.d.aalst@tue.nl, n.c.russell@tue.nl

Abstract

The Windows Workflow Foundation (WF) has been intro-
duced as part of the .NET framework as a means of creating
workflow-centric applications. Its intended field of applica-
tion is broad, ranging from fat-client applications and web
applications to enterprise application integration solutions.
Unlike other approaches, Windows Workflow supports two
distinct approaches to workflow specification - sequential
workflows and state machine workflows - which deal with
fundamentally different types of business scenarios. To date
there has been minimal investigation into its capabilities
and limitations, especially with respect to the two different
control-flow styles it offers. To remedy this, in this paper
we present a rigorous analysis of Windows Workflows’s
ability to deal with common control-flow scenarios. As a
framework for this evaluation we use the Workflow Patterns.
Our analysis outlines the strength and shortcomings of Win-
dows Workflow’s control-flow expressiveness and compares
it to BPEL and jBPM - two other popular approaches for
the design and implementation of business processes in a
service-oriented context.

1. Motivation

The Windows Workflow Foundation is an emerging ap-
proach for creating workflow-centric applications in .NET.
It enables developers to capture common business scenar-
ios by providing a graphical and declarative approach for
modeling business processes. It supports the realization of
highly automated processes as well as workflows requiring
human interaction. The Windows Workflow Foundation was
released in 2006 and since then it has achieved significant
popularity in both the business and academic communities.
Several books and publications have been released about
Windows Workflow, however, they mainly focus on funda-
mental aspects of its operation and configuration. This paper
goes beyond the basic application of Windows Workflow and
takes a look behind the scenes, analyzing its soundness and

This research is conducted in the context of the Patterns for Process-
Aware Information Systems (P4PAIS) project which is supported by the
Netherlands Organisation for Scientific Research (NWO)

completeness as a language for workflow support. For our
analysis we utilize the Workflow Patterns, a well established
basis for evaluating workflow languages.

Workflow control-flow patterns [1] were established by
Van der Aalst et. al as part of the Workflow Patterns Ini-
tiative. The goal of this initiative is to provide a conceptual
basis for process technology. This research aims at analyzing
the various perspectives of process technologies i.e. control-
flow, data, resource, and exception handling. The original
set of 20 control-flow patterns was later extended to a total
of 43 patterns [2]. Since their inception, workflow patterns
have gained considerable attention from the academic com-
munity, businesses, and tool vendors. The expressiveness of
a wide variety of business process modeling languages and
workflow systems [3]–[8] have been examined by analyzing
their support for the workflow patterns.

Due to the recent emergence of Windows Workflow,
no research has yet been conducted to assess its support
for the workflow control-flow patterns. In this paper we
analyze Windows Workflow and examine its support for
the workflow patterns. In our research we specifically focus
on control-flow patterns and concentrate on implementation
details rather than conducting a high level process language
analysis [9], [10]. We show, that although Windows Work-
flow provides a well-engineered framework, many of the
proposed patterns are not supported.

The remainder of this paper is structured as follows:
Section 2 gives an overview of Windows Workflow and in-
troduces the main concepts necessary for understanding the
pattern analysis. Section 3 analyzes the different workflow
control-flow patterns in detail and gives an assessment of
the level of support Windows Workflow provides for the
patterns. Section 4 concludes the paper by comparing our
research results with those for the comparable workflow
languages BPEL and jBPM.

2. The Windows Workflow Foundation

The Windows Workflow Foundation is a technology
introduced by Microsoft for the definition and execution
of workflows. Since 2006 it has been part of the .NET
Framework. The key concepts of the architecture of the



Windows Workflow Foundation are depicted in Figure 1.
Note, that we use the term Windows Workflow Foundation
to describe the overall technology and by Windows Work-
flow we refer to the workflow language itself. A thorough
description of the technology can be found in [11] and
[12]. Workflows run within a host process which can be

b
Windows Workflow Architecture

Runtime Engine

Runtime Services

Base Activity Library

Custom Activities

Workflows

Figure 1: Overview of the Windows Workflow Foundation

any type of .NET application. The runtime engine provides
intrinsic behavior for supporting activities e.g. workflow
execution, state management etc. Runtime services are
optional components, which realize functionality such as
workflow persistence or workflow tracking/logging out-of-
the-box. The basic building blocks of a workflow are ac-
tivities. Windows Workflow distinguishes between the base
activity library and custom activities. The former represent
an out-of-the-box library of activities for common purposes
such as control flow activities (sequence, parallel, if/else
etc.), transaction activities (transaction scope, compensable
transaction scope), error handling (throw, fault handler),
lifetime activities (suspend, terminate), event waiting activi-
ties (listen, delay) and web service activities. From .NET 3.5
onwards, the Windows Communication Foundation (WCF)
can be utilized in Windows Workflow for performing dis-
tributed communication (e.g., using Web Services, .NET
Remoting, Message Queues, etc.) by means of the send
activity and the receive activity. The simplest activity is a
code activity, where a user can easily add any .NET code
interacting with the workflow. In order to foster reuse of
workflows users can specify custom activities, which imple-
ment specific business logic in a self-contained and reusable
manner (e.g. persist order). Windows Workflow supports two
workflow paradigms: sequential and state-machine work-
flows. A sequential workflow describes a workflow in a
prescriptive manner using a series of consecutive execution
directives. In general sequential workflows are more rigid
than state-machine workflows. Although loops and branches
with conditions can be used, the execution path through
the workflow is basically deterministic. Typically sequential
workflows are used in scenarios where a rigid protocol has
to be applied and little or no human or any other external
interaction with the workflow takes place. The sequential
approach is predominant in contemporary process languages
and workflow systems and for example is used in BPEL
[13] or jPDL [14]. In addition, Windows Workflow supports
the concept of state machine workflows, which are driven
by external events, controlling the processing order of the

workflow. A state machine workflow consists of states and
transitions between the different states. The execution of the
workflow is governed by events that are either released by
the workflow itself or by an external source such as human
interaction, which fires the transitions between states. State
machine workflows are a hybrid approach between a state-
based approach and the sequential workflow style. The latter
one is used within states in order to describe the execution
logic after events have been triggered. The usage scenarios
for Windows Workflow are diverse ranging from regular
application development to building middleware solutions
- e.g. based on Microsoft’s BizTalk server [15], [16]. In
the upcoming version of BizTalk (2009), business processes
will be modeled using Windows Workflow. This involves
scenarios such as business-to-business communication, mes-
sage broking or enterprise application integration, depending
on the scenario the BizTalk server is used in.

3. The Workflow Patterns in Windows Work-
flow

In this section, we analyze the support of the Windows
Workflow Foundation to implement the 43 workflow control-
flow patterns. For each pattern we discuss if it is directly
supported, partially supported or not supported by Windows
Workflow. For most of the solutions, we provide exam-
ples in XAML in addition to the textual descriptions of
the solutions. XAML (pronounced [za:ml]) is an XML-
based language to describe the structure of Windows Work-
flow models - an alternative approach to regular .NET code.
For the sake of readability, we will simplify the XAML code
in order to emphasize the most important aspects.

Although Windows Workflow is a declarative and graph-
ical workflow language, it is essentially an abstraction
of the underlying .NET code. As outlined in Section 2,
developers may execute custom .NET code by creating
their own custom activities targeting specific business needs.
Consequently, each of the identified workflow patterns could
be implemented in Windows Workflow by developing a
corresponding custom activity. For this analysis, however,
we only consider the base activity library of the Windows
Workflow Foundation.

In our evaluation we focus on solutions using the sequen-
tial workflow paradigm of Windows Workflow. However,
some patterns are not realizable using the sequential style
and require a state-based approach. In such cases, if a pattern
is implemented using the state machine workflow style of
Windows Workflow, we consider it to be fully supported.
Due to space limitations, we do not discuss state machine-
based solutions for patterns where sequential workflows
already provide an appropriate solution.



3.1. Basic Workflow Patterns

WCP1 Sequence. An activity in a process is enabled after
the completion of the preceding activity in the same process.

Solution: WCP1. This pattern is directly supported by the
sequence activity. Listing 1 shows the XAML representation
of a sequence activity containing two child activities. The
construct is often used as an auxiliary construct. Since most
of the composite activities allow only one child activity,
a sequence activity may be used for nesting a series of
activities.

Listing 1: Sequence (WCP1)
1 <S e q u e n t i a l W o r k f l o w A c t i v i t y>
2 <C o d e A c t i v i t y Name=” a c t i v i t y A 1 ” />
3 <C o d e A c t i v i t y Name=” a c t i v i t y A 2 ” />
4 </ S e q u e n t i a l W o r k f l o w A c t i v i t y>

WCP2 Parallel Split. A branch in a process forks into two
or more branches, which are executed concurrently.

WCP3 Synchronization. Two or more branches are merged
into a single subsequent branch. The thread of control is
passed to the subsequent branch as soon as all incoming
branches have been enabled. Consequently, this pattern syn-
chronizes the threads of the incoming branches into a single
thread of control. The synchronized threads must belong to
the same process instance.

Solutions: WCP2 & WCP3. Arbitrary activities are ex-
ecuted concurrently by including them in branches of a
parallel activity (lines 1 to 8 in Listing 2). There is no
limitation to the number of branches within the parallel
activity. Each branch of a parallel activity is modeled as a
sequence activity. The parallel activity waits for all branches
to finish execution (line 8) before passing the thread of
control to the subsequent activity (line 9), thereby realizing
the synchronization pattern.

Listing 2: Parallel Split (WCP2) and Synchronization (WCP3)
1 <P a r a l l e l A c t i v i t y Name=”P”>
2 <S e q u e n c e A c t i v i t y Name=” S1 ”>
3 <C o d e A c t i v i t y Name=”A1” />
4 </ S e q u e n c e A c t i v i t y>
5 <S e q u e n c e A c t i v i t y Name=” S2 ”>
6 <C o d e A c t i v i t y Name=”A2” />
7 </ S e q u e n c e A c t i v i t y>
8 </ P a r a l l e l A c t i v i t y>
9 <C o d e A c t i v i t y Name=”A3” />

It is important to note that Windows Workflow uses a
single thread model for executing workflow instances - i.e.,
only a single thread executes within a workflow instance at
any time. Consequently, there is no real parallel execution
of activities across multiple branches. Parallel behavior is
in fact realized by the workflow runtime by scheduling
activities for execution in an interleaved manner. In other
words, the branches of a parallel activity are executed by

interleaving their execution. The order of execution is non-
deterministic. If there is a blocking activity in a certain
branch (e.g., a delay activity), the next activity of another
branch is scheduled for execution.

WCP4 Exclusive Choice. A branch is split into two or more
subsequent branches. Using a decision mechanism exactly
one of the subsequent branches is enabled (i.e., an XOR-
split).

WCP5 Simple Merge. The fusion of two or more branches
into a single subsequent branch without synchronizing them.
The simple merge is generally used to merge branches that
resulted from an exclusive choice. Therefore, the simple
merge assumes that only one of the alternative branches is
enabled.

Solutions: WCP4 & WCP5. The exclusive choice and sim-
ple merge patterns are supported by the if/else activity (cf.
Listing 3). Within an if/else activity two or more branches
may be nested. Each branch except the last one must have an
associated condition. Conditions are evaluated sequentially
starting from the first modeled branch to the last one. The
first branch, whose condition evaluates to true, is executed.
All remaining branches are canceled. The condition of the
last branch is optional, which corresponds to the semantics
of else, i.e., it is the default branch.

Listing 3: Exclusive Choice (WCP4) and Simple Merge (WCP5)
1 <I f E l s e A c t i v i t y>
2 <I f E l s e B r a n c h A c t i v i t y Name=”B1”>
3 <I f E l s e B r a n c h A c t i v i t y . C o n d i t i o n>
4 <R u l e C o n d i t i o n R e f e r e n c e Condit ionName=”C1” />
5 </ I f E l s e B r a n c h A c t i v i t y . C o n d i t i o n>
6 <C o d e A c t i v i t y Name=”A1” />
7 </ I f E l s e B r a n c h A c t i v i t y>
8 <I f E l s e B r a n c h A c t i v i t y Name=”B2”>
9 <C o d e A c t i v i t y Name=”A2” />

10 </ I f E l s e B r a n c h A c t i v i t y>
11 </ I f E l s e A c t i v i t y>
12 <C o d e A c t i v i t y Name=”A3” />

3.2. Advanced Branching and Synchronization Pat-
terns

WCP6 Multi-Choice. The divergence of one branch in a
process into two or more subsequent branches. Based on a
certain decision mechanism one or more of the alternative
branches are enabled, which corresponds to the behavior of
an OR-split.

WCP7 Structured Synchronizing Merge. The merger
of two or more branches that originated from a previous
multi-choice into a single subsequent branch. Depending
on the multi-choice one or more incoming branches are
executed. This pattern waits for all active incoming branches
to complete before passing control to the subsequent activity.



Solutions: WCP6 & WCP7. In Windows Workflow support
for these patterns is achieved via the conditioned activity
group activity (CAG). A CAG may comprise one or many
child activities. Child activities may have a when condition
defined. Where a child activity has no when condition,
it is executed exactly once. Otherwise, it is executed for
long as the when conditions remains true. In addition, a
CAG may have an until condition. If the until condition is
present, the execution stops as soon as it evaluates to true.
Upon initialization of a CAG, first of all the until condition
is evaluated. If false, the when condition for each child
is evaluated. When a child activity completes execution,
the until condition as well as the when conditions of all
other children that are currently pending are re-evaluated.
As a result the completion of one child may influence the
execution of another child. If no until condition is specified,
the CAG completes when all child activities are completed.
The different combinations of when and until conditions
allow for different styles of execution of the CAG - e.g.,
parallel execution and looping behavior. For implementing
the multi-choice and the structured synchronizing merge
patterns, each diverging branch is nested as a child activity
within the CAG. In Listing 4, the CAG comprises three
branches (lines 2 to 6, 7 to 11, and 12 to 16, respectively).
The when conditions are used to reflect the conditional
activation of a branch. To ensure that each child is executed
exactly once, each when condition has an additional Boolean
variable assigned that indicates if a child has already been
executed. For example, condition C1 (line 4) may be defined
as condA && !aExecuted, where condA corresponds to the
logic for determining upon the execution of activityA and
aExecuted is a Boolean variable. The Boolean is set to false
at the initialization of the CAG and has to be set to true
during the execution of activityA. Since no until condition
is specified for the CAG, it waits until each child activity
that has been activated has completed execution. Only then
does it pass the thread of control to the next activity.

The CAG is a structured concept - metaphorically speak-
ing the beginning of the CAG corresponds to the multi-
choice pattern and its end to the structured synchronizing
merge. A branch of a CAG has exactly one entry and one exit
point. No additional entry/exit points to/from the branches
of a CAG are possible.

Listing 4: Multi-Choice (WCP6) and Structured Synchronizing Merge (WCP7)
1 <C o n d i t i o n e d A c t i v i t y G r o u p>
2 <C o d e A c t i v i t y Name=” a c t i v i t y A ”>
3 <C o n d i t i o n e d A c t i v i t y G r o u p . WhenCondi t ion>
4 <R u l e C o n d i t i o n R e f e r e n c e Condit ionName=”C1” />
5 </ C o n d i t i o n e d A c t i v i t y G r o u p . WhenCondi t ion>
6 </ C o d e A c t i v i t y>
7 <C o d e A c t i v i t y x:Name=” a c t i v i t y B ”>
8 <C o n d i t i o n e d A c t i v i t y G r o u p . WhenCondi t ion>
9 <R u l e C o n d i t i o n R e f e r e n c e Condit ionName=”C2” />

10 </ C o n d i t i o n e d A c t i v i t y G r o u p . WhenCondi t ion>
11 </ C o d e A c t i v i t y>
12 <C o d e A c t i v i t y x:Name=” a c t i v i t y C ”>
13 <C o n d i t i o n e d A c t i v i t y G r o u p . WhenCondi t ion>
14 <R u l e C o n d i t i o n R e f e r e n c e Condit ionName=”C3” />
15 </ C o n d i t i o n e d A c t i v i t y G r o u p . WhenCondi t ion>
16 </ C o d e A c t i v i t y>
17 </ C o n d i t i o n e d A c t i v i t y G r o u p>
18 <C o d e A c t i v i t y Name=” a c t i v i t y D ” />

WCP8 Multi-Merge. Two or more branches are merged into
a single subsequent branch, whereby each enabled incoming
branch passes a thread of control to the subsequent branch.
As a result, more than one thread is active within the
subsequent branch.

Solution: WCP8. There is no support for this pattern in
Windows Workflow due to its single-threaded nature (cf.
WCP2). A state machine workflow instance can only reside
in a single state at a given point of time. The block-oriented
structure of sequential workflows prevents two threads of
control from being active along the same path in a single
process instance.

WCP9, WCP28 & WCP29 Discriminator Patterns. The
discriminator patterns merge two or more branches, which
result from a parallel split into a single subsequent branch.
When the first incoming branch is enabled the thread of
control is passed to the subsequent branch. All further
incoming branches have no effect and are ignored. The
structured discriminator pattern (WCP9) lets the remaining
branches complete. The blocking discriminator (WCP28)
is intended for environments that allow multiple execution
threads within the same process instance. It blocks further
enabled incoming branches from entering a specified region
after it has activated. A reset is performed when all incoming
branches to the blocking discriminator have been enabled
once. The canceling discriminator (WCP29) differs from
the structured discriminator in that it cancels the remaining
branches instead of allowing them to complete.

Solutions: WCP9, WCP28 & WCP29. Discriminator be-
havior is to some extent realizable by a conditioned activity
group (CAG) together with an optional until condition.
Furthermore, a Boolean variable is required to indicate if one
of the branches has already finished execution. The first child
activity to finish manipulates the Boolean variable (e.g.,
named finished ), so that the until condition of the CAG eval-
uates to true. The CAG immediately cancels all remaining
branches and passes the thread of control to the subsequent
activity. The solution provides full support for the canceling
discriminator pattern (WCP29). The evaluation criteria for
the structured discriminator (WCP9) rates canceling the
activities instead of letting them complete as partial support.
The blocking discriminator (WCP28) requires that multiple
concurrent threads are executed in the same process instance.
Due to the single-threaded nature of Windows Workflow,
there is no concept for blocking one of multiple threads.

WCP30 – WCP32 Partial Join Patterns. The partial join
patterns correspond to a generalization of the semantics
of the discriminator patterns (WCP9, WCP28 & WCP29),
where the join fires after two or more incoming branches are
enabled depending on a given condition. In fact, the join is



activated when n out of the total number (m) of incoming
branches are enabled (where 2 ≤ n < m).

The structured partial join (WCP30) allows the remaining
branches, which are not required to trigger the join, to com-
plete whereas the canceling partial join (WCP32) pattern
terminates the remaining branches. Finally, the blocking par-
tial join (WCP31) behaves like the blocking discriminator
(WCP28) except that it joins two or more active branches.

Solutions: WCP30 – WCP32. The implementation of the
partial join patterns in Windows Workflow is similar to
the discriminator patterns. In fact, they differ only in the
specification of the until condition and the need for Boolean
or counter variables: If the join behavior requires specific
branches to complete for the join to fire (e.g.,(A&&B)||C),
then each branch requires a Boolean variable to indicate
whether it has finished execution or not. Otherwise, if a
specific number of enabled incoming branches trigger the
join, a single counter variable is needed. Evidently, the
corresponding join semantics have to be reflected in the until
condition of the CAG.

The support for this pattern is similar to that for the
discriminator patterns: There is partial support for the struc-
tured partial join (WCP30) and full support for the canceling
partial join (WCP32). The blocking partial join is not
supported (WCP31).

WCP33 Generalized AND-Join. The generalized AND-
join fires after all incoming branches have been enabled.
In contrast to the synchronization pattern (WCP3) further
triggers on incoming branches between two firings are
retained for a later activation of the join. This conserves
triggers on incoming branches of an AND-join in situations
where multiple threads operate on the same process instance.

Solution: WCP33. Since it is not possible in Windows
Workflow for multiple threads to execute in a single process
instance this pattern is not supported.

WCP37 Local Synchronizing Merge. The merger of two or
more branches that have split earlier into a single subsequent
branch. The subsequent branch is enabled after each active
incoming branch has been enabled. The local synchronizing
merge must determine how many branches are active and,
hence, require synchronization. In general, the pattern does
not assume a structured process model. Furthermore, the
synchronization decision is based on information that is
locally available to the merge construct.

Solution: WCP37. We consider this pattern to be partially
supported by the join capabilities of the conditioned activity
group (CAG). Full support is not possible as the branches
of a CAG can only contain structured process models.

WCP38 General Synchronizing Merge. Two or more alter-
native branches that have diverged earlier are synchronized
into a single subsequent branch such that the outgoing
branch can be enabled when each active incoming branch
has completed execution. The pattern provides a general
approach to OR-join implementation [2], thereby relying
on non-local semantics [17]. The pattern assumes that the
process model is non-structured and may have arbitrary
looping structures. In addition, there may be multiple entry-
and/or exit points to/from the branches that are subject to
synchronization. The merge is triggered when all active
incoming branches are enabled and it is determined that none
of the remaining branches will be enabled at any future time.
Determination of when to activate the merge involves the
calculation of possible future states of the whole process
instance, which is a complex and costly computation. For
a detailed elaboration of WCP37 and WCP38 (as well as
differences between them) we refer the interested reader to
the workflow pattern descriptions in [2].

Solution: WCP38. This pattern can neither be realized using
the sequential workflow style nor via the state machine-
based approach. The latter is not able to support the pattern
due to the single-threaded model of Windows Workflow and
the fact that only one state can be executed at a given
time. Furthermore, the general synchronizing merge cannot
be captured by the CAG, since this construct requires its
child activities to form a structured process fragment.

WCP41 Thread Merge. At a certain point within a process,
a designated number of concurrent execution threads in a
single branch in a process instance are merged into a single
execution thread.

WCP42 Thread Split. At a given point in a branch,
the execution thread is split into a specified number of
concurrent execution threads.

Solutions: WCP41 & WCP42. These patterns are not
supported in Windows Workflow, since it is not possible
to spawn or merge multiple threads in a single workflow
instance. A minimalistic workaround may be achieved by
triggering the number of required execution instances out-
side of the workflow as shown in Listing 5.

Listing 5: Thread Split (WCP41) and Thread Merge (WCP42)
1 <C a l l E x t e r n a l M e t h o d A c t i v i t y Name=”C1” MethodName=”m1” />
2 <C o d e A c t i v i t y Name=”A1” />
3 <C o d e A c t i v i t y x:Name=”A2” />
4 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H1” EventName=” e1 ” />

The call external method activity in line 1 of Listing 5
interacts with the host application. The call corresponds to
a synchronous method invocation that creates a thread of
execution. The workflow continues immediately with the
execution of the activities A1 and A2. The handle external



event activity in line 4 then waits for an event raised by the
host, which ”merges“ the externally created thread into the
execution thread of the workflow instance. Where multiple
workflow instances are waiting for the same type of event,
correlation with the appropriate instance is assured since
the event carries the unique ID of the workflow instance.
A similar workaround is achievable by using the send
activity / receive activity for creating threads of execution
on distributed components.

3.3. Multiple Instance Patterns

WCP12 Multiple Instances without Synchronization. At
a given point in the execution of a process multiple instances
of a task are initiated. The instances run concurrently and
are independent of each other. Upon completion of the
task instances no synchronization behavior is required. The
number of task instances that are initiated is known at design
time.

WCP13 – WCP15 Multiple Instances with Synchroniza-
tion. The multiple instances with synchronization patterns
describe the creation of multiple instances of a task at
a given point within a single workflow case. All three
patterns require synchronization after the completion of all
instances before commencing any subsequent activities. In
WCP13 the number of task instances is known at design-
time. WCP14 requires that number is known at run-time
before the instances are started. In WCP15 the number of
instances to be started is not known, but as long as instances
are running new ones can be initiated.

Solutions: WCP12, WCP13 & WCP14. The realization of
multiple instance behavior in Windows Workflow requires
the replicator activity. The replicator creates multiple in-
stances of its child activity at run-time. The number of
instances to be created is determined through an input
collection (i.e., an object that implements the .NET inter-
face System.Collections.IList). By default a replicator stops
when all instances of its child activity have finished. Using
the optional until condition a replicator can even stop before
all of the child activity’s instances have finished. Replicators
can be used in sequential or parallel mode. In the former
case the different child activity instances are executed one
after the other. In the latter replicated child activities are
executed in parallel, causing all instances of the child activity
to be created once the replicator commences execution.
Regardless of the execution mode used, the replicator waits
for each instance to complete before passing on control to
subsequent activities in the workflow, which realizes the
required synchronization behavior.

Listing 6 shows a simple example using the replicator. The
number of instances that are created of the code activity A1

is determined by the size of the collection aList. The collec-
tion can be manipulated (i.e., the complete set of items or a
specific item) until the replicator activity is enabled. This
behavior provides support for multiple instances without
synchronization (WCP12), multiple instances with a priori
design-time knowledge (WCP13) and multiple instances with
a priori run-time knowledge (WCP14) patterns. In regard to
WCP12, the instances are synchronized although this is not
explicitly required by the pattern description.

Listing 6: Multiple Instances with a Priori Design-Time(WCP13)/Run-Time
Knowledge (WCP14)

1 <R e p l i c a t o r A c t i v i t y I n i t i a l C h i l d D a t a =” a L i s t ” Execu t ionType =” P a r a l l e l ”>
2 <C o d e A c t i v i t y Name=”A1” />
3 </ R e p l i c a t o r A c t i v i t y>

Solution: WCP15. This pattern is not realizable in Windows
Workflow. As soon as the replicator is enabled, its input
collection is processed in order to determine the required
instances. Although the collection itself can be manipulated
during the execution of the replicator (e.g., aList in the
example in Listing 6) this has no effect on the instances
once they have been created.

WCP34 – WCP36: Partial Joins for Multiple Instances.
The partial join patterns describe different alternatives for
passing the thread of control to the subsequent activity after
multiple instances of a task have been created. In WCP34
(static partial join for MI), the number of instances (m) is
known when the first instance is started. The join condition
specifies how many instances (n, where n < m) have to
completed in order to pass the thread of control to the
subsequent task. The remaining instances complete, but do
not have any effect on the control flow. WCP35 (canceling
partial join for MI) is similar to WCP34, except that any re-
maining instances are canceled. In WCP36 (dynamic partial
join for MI) the number of instances to be initiated is not
known until the last instance completes. New instances may
be added as long as at least one instance is still executing
and creation of further instances has not been disabled.
Upon completion of each instance, the join condition is re-
evaluated. If it evaluates to true, control is passed to the
subsequent activity. Completion of any remaining instances
has no effect on the process instance.

Solutions: WCP34 & WCP35. Partial join behavior is to
some extent supported by the synchronization capabilities
of the replicator. The join semantics are specified using the
optional until condition of the replicator. The until condition
is evaluated upon activation of the replicator as well as after
completion of an instance. As soon as the until condition
evaluates to true, the instances that are still executing are
canceled. This constitutes full support for the canceling
partial join for multiple instances (WCP35). Similar to the
evaluation of the structured partial join (WCP30), we also



consider this to be partial support for the static partial join
for multiple instances (WCP34).

Solution: WCP36. This pattern is a variant of multiple
instances without a priori run-time knowledge (WCP15) and
is, thus, also not supported by the offering.

3.4. State-based Patterns

WCP16 Deferred Choice. At a given point in a process
one of several subsequent branches is activated based on a
certain event, which occurs in the operating environment of
the process. The event results in the activation of the first
activity in one the alternative branches. Once this occurs, any
alternate activities in other branches are withdrawn. Thus,
there is a race between the different branches rather than a
choice based on some condition.

Solution: WCP16. This pattern is directly supported by
the listen activity (see listing 7). The listen activity may
contain two or more branches represented by event driven
activities. The first activity within an event driven activity is
the receiver of the event (note: it must implement the Sys-
tem.Workflow.Activities.IEventActivity interface). The event
driven activity is simply a wrapper that is required by the
listen activity (and some other composite activities).

In Listing 7, the process waits at the listen activity (line
1) either to receive a message (line 3) or until a delay of one
minute in line 6 passed representing a timeout. Whichever
event occurs first is taken.

Listing 7: Deferred Choice (WCP16)
1 <L i s t e n A c t i v i t y Name=”L1”>
2 <E v e n t D r i v e n A c t i v i t y Name=”ED1”>
3 <R e c e i v e A c t i v i t y Name=”R1” S e r v i c e O p e r a t i o n I n f o =” S1 . OP1” />
4 </ E v e n t D r i v e n A c t i v i t y>
5 <E v e n t D r i v e n A c t i v i t y Name=”ED2”>
6 <D e l a y A c t i v i t y T i m e o u t D u r a t i o n =” 00 : 0 1 : 0 0 ” Name=”D1” />
7 </ E v e n t D r i v e n A c t i v i t y>
8 </ L i s t e n A c t i v i t y>

WCP17 Interleaved Parallel Routing. A set of activities in
a process must be executed in some partial order. Some of
the activities may be ordered, others may be executed in an
arbitrary order. Each activity must be executed exactly once.
Furthermore, only one of these activities must be active at
the same time.

Solution: WCP17. This pattern is not realizable using
sequential workflows without serious restrictions. The only
possibility is modeling all possible execution sequences in
the process model, so that one of the execution sequence
may be chosen at runtime.

An effective solution for this pattern is provided by
Windows Workflow’s state machine workflow style. Listing
8 shows a state machine workflow composed of the five state
activities A to E. Based on a set of possible events in each

state, changes to other states occur (realized by set state
activities). In the example, we indicate the event handling
exemplarily by event driven activities and handle external
event activities. In consideration of the fact that each state
must be executed once, the possible execution sequences are
ABCDE, ABDCE, and ACBDE. In order ensure that each
state is not executed more than once, some programmatic
extensions are required in order to mark already executed
states (e.g., by a Boolean variable). As a certain event
occurs, the state machine must check if the designated state
has not already been executed (e.g, by an if/else activity
before the set state activity), which is not reflected in this
example. Despite the programmatic extensions, the pattern
is considered to be fully supported based on the evaluation
criteria for this pattern.

Listing 8: Interleaved Parallel Routing (WCP17)
1 <S t a t e M a c h i n e W o r k f l o w A c t i v i t y>
2 <S t a t e A c t i v i t y Name=”A”>
3 <E v e n t D r i v e n A c t i v i t y Name=” fromAtoB ”>
4 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H1” EventName=”AtoB” />
5 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”B” />
6 </ E v e n t D r i v e n A c t i v i t y>
7 <E v e n t D r i v e n A c t i v i t y Name=” fromAtoC ”>
8 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H2” EventName=”AtoC” />
9 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”C” />

10 </ E v e n t D r i v e n A c t i v i t y>
11 </ S t a t e A c t i v i t y>
12 <S t a t e A c t i v i t y Name=”B”>
13 <E v e n t D r i v e n A c t i v i t y Name=” fromBtoC ”>
14 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H3” EventName=” BtoC ” />
15 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”C” />
16 </ E v e n t D r i v e n A c t i v i t y>
17 <E v e n t D r i v e n A c t i v i t y Name=” fromBtoD ”>
18 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H4” EventName=”BtoD” />
19 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”D” />
20 </ E v e n t D r i v e n A c t i v i t y>
21 </ S t a t e A c t i v i t y>
22 <S t a t e A c t i v i t y x:Name=”C”>
23 <E v e n t D r i v e n A c t i v i t y Name=” fromCtoD ”>
24 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H5” EventName=”CtoD” />
25 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”D” />
26 </ E v e n t D r i v e n A c t i v i t y>
27 <E v e n t D r i v e n A c t i v i t y Name=” fromCtoE ”>
28 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H6” EventName=” CtoE ” />
29 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”E” />
30 </ E v e n t D r i v e n A c t i v i t y>
31 <E v e n t D r i v e n A c t i v i t y Name=” fromCtoB ”>
32 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H7” EventName=” CtoB ” />
33 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”B” />
34 </ E v e n t D r i v e n A c t i v i t y>
35 </ S t a t e A c t i v i t y>
36 <S t a t e A c t i v i t y x:Name=”D”>
37 <E v e n t D r i v e n A c t i v i t y Name=” fromDtoC ”>
38 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H8” EventName=”DtoC” />
39 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”C” />
40 </ E v e n t D r i v e n A c t i v i t y>
41 <E v e n t D r i v e n A c t i v i t y Name=” fromDtoE ”>
42 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H9” EventName=” DtoE ” />
43 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”E” />
44 </ E v e n t D r i v e n A c t i v i t y>
45 </ S t a t e A c t i v i t y>
46 <S t a t e A c t i v i t y Name=”E” />
47 </ S t a t e M a c h i n e W o r k f l o w A c t i v i t y>

WCP18 Milestone. A task in a process can only be activated
when a process instance is in a specific state. Prior or
subsequent to this specific state, this task can not be enabled.
Such a state represents a specific execution point in a process
known as milestone.

Solution: WCP18. Similar to WCP17, the realization of the
milestone pattern requires the state machine workflow style
of Windows Workflow (see Listing 9 for an example and
Figure 2 for a graphical representation of the state machine).

Listing 9: Milestone (WCP18)



1 <S t a t e M a c h i n e W o r k f l o w A c t i v i t y>
2 <S t a t e A c t i v i t y Name=”A”>
3 <E v e n t D r i v e n A c t i v i t y Name=” fromAtoB ”>
4 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H1” EventName=”AtoB” />
5 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”B” />
6 </ E v e n t D r i v e n A c t i v i t y>
7 </ S t a t e A c t i v i t y>
8 <S t a t e A c t i v i t y Name=” M i l e s t o n e ”>
9 <E v e n t D r i v e n A c t i v i t y Name=” fromMiles toneToD ”>

10 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H4” EventName=” Miles toneToD ” />
11 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”D” />
12 </ E v e n t D r i v e n A c t i v i t y>
13 <S t a t e A c t i v i t y Name=”B”>
14 <E v e n t D r i v e n A c t i v i t y Name=” fromBtoC ”>
15 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H2” EventName=” BtoC ” />
16 <S e t S t a t e A c t i v i t y Ta r ge tS t a t e Name =”C” />
17 </ E v e n t D r i v e n A c t i v i t y>
18 </ S t a t e A c t i v i t y>
19 <S t a t e A c t i v i t y Name=”C”>
20 <E v e n t D r i v e n A c t i v i t y Name=” fromCtoE ”>
21 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H3” EventName=” CtoE ” />
22 <S e t S t a t e A c t i v i t y Ta rge tS t a t eName =”E” />
23 </ E v e n t D r i v e n A c t i v i t y>
24 </ S t a t e A c t i v i t y>
25 </ S t a t e A c t i v i t y>
26 <S t a t e A c t i v i t y x:Name=” s t a t e D ”>
27 <E v e n t D r i v e n A c t i v i t y Name=” fromDtoB ”>
28 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H5” EventName=”DtoB” />
29 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”B” />
30 </ E v e n t D r i v e n A c t i v i t y>
31 </ S t a t e A c t i v i t y>
32 <S t a t e A c t i v i t y Name=”E” />
33 </ S t a t e M a c h i n e W o r k f l o w A c t i v i t y>

The example consists of five state activities (A to E) plus
a composite state activity representing the milestone (lines
8 to 25). States B and C are sub-states of the milestone
state. Moreover, the milestone state comprises an event
driven activity (lines 9 to 12), whose first activity (H4 )
is one that listens to an event MilestoneToD (line 10). If
the process is in either sub-state of the milestone state, the
transition to state D can be triggered by receiving the event
MilestoneToD. If the process is in any other state (A and E
in the example), state D can not be reached.

Statuscomputerworkflow

A

fromAtoB

Milestone

fromMilestoneToD

B

fromBtoC

C

fromCtoE

E

D

fromDtoB

Figure 2: Graphical representation of the WCP18 example

WCP39 Critical Section. Two or more branches of a
process form critical sections if tasks in only one of those
sections can be active at the same time. One critical section
must complete before another can become active.

Solution: WCP39. This pattern is directly supported by the
synchronization scope activity. Listing 10 shows the parallel
execution of two branches (S1 and S2). Each branch contains
a synchronization scope. Child activities in a synchronization
scope are provided with synchronized and mutually exclu-
sive access to common variables (e.g., mutex in Listing
10) shared across multiple synchronization scopes. In our
example, this ensures that activities A1 and A2 cannot be
executed at the same time.

Listing 10: Critical Section (WCP39)
1 <P a r a l l e l A c t i v i t y Name=” P1 ”>
2 <S e q u e n c e A c t i v i t y Name=” S1 ”>
3 <S y n c h r o n i z a t i o n S c o p e A c t i v i t y Name=” Sync1 ” S y n c h r o n i z a t i o n H a n d l e s =” mutex ”>
4 <C o d e A c t i v i t y Name=”A1” />
5 </ S y n c h r o n i z a t i o n S c o p e A c t i v i t y>
6 </ S e q u e n c e A c t i v i t y>
7 <S e q u e n c e A c t i v i t y Name=” S2 ”>
8 <S y n c h r o n i z a t i o n S c o p e A c t i v i t y Name=” Sync2 ” S y n c h r o n i z a t i o n H a n d l e s =” mutex ”>
9 <C o d e A c t i v i t y Name=”A2” />

10 </ S y n c h r o n i z a t i o n S c o p e A c t i v i t y>
11 </ S e q u e n c e A c t i v i t y>
12 </ P a r a l l e l A c t i v i t y>

WCP40 Parallel Routing. A set of tasks is executed in
arbitrary order. Each task is executed exactly once and no
two tasks in this set are allowed to execute at the same
time. Essentially, this pattern relaxes the partial ordering
requirement of WCP17.

Solution: WCP40. Although motivated by a different inten-
tion, this pattern may be realized by the same approach as
introduced for WCP39 before (see Listing 10). The parallel
activity comprises a branch for each of the interleaved
activities. Since only one the interleaved activities is allowed
to execute at a given time, each activity is enclosed by
a synchronization scope activity (accessing the same syn-
chronization handle). This construct allows for an arbitrary
execution order, but guarantees at the same time isolated
execution of each activity by means of the synchronization
scopes.

3.5. Cancellation and Force Completion Patterns

WCP19 Cancel Task, WCP20 Cancel Case & WCP25
Cancel Region. Cancel task (WCP19) withdraws an activity
prior to its execution. If it is already started, the activity
is halted. Cancel region (WCP25) disables a selected set
of activities in a single process instance. These activities
need not be a connected sequence. Cancel case (WCP20)
terminates the execution of a whole process instance.

Solutions: WCP19 & WCP25. In sequential workflows,
canceling an activity (WCP19) is supported by using fault
handlers. In Windows Workflow, one or more fault handler
activities may be associated with each composite activity
type. Each fault handler activity listens to a different type
of fault/exception. This achieves the same fault handling
approach as is utilized in object-oriented programming



languages (e.g., Java and .NET). However, this construct
only partially satisfies the evaluation criteria for WCP25,
because activities that are nested within a complex activity
form essentially a connected sequence. Thus, only activities
within the same scope (i.e., the same complex activity)
can be canceled, but not arbitrary activities. State machine
workflows provide support for both patterns as demonstrated
in the code snippet in Listing 11. State A is a composite state
having a sub-state B. Furthermore, state A is an event sink
for events of type e1 (lines 2 to 5), which implies that all
sub-states of A react to this event. Where an event of type e1
is received during the execution of state B (which just delays
the process for 10 seconds (line 8)), the execution of state B
(and hence the delay activity) is immediately canceled and
the process proceeds to state D (line 4; note that state D is
not shown in the Listing).

Within state A, arbitrary further states may be nested. The
sub-states are not required to form a connected sequence.
Each sub-state that executes, however, is canceled when
event e1 is received. Thus, state A corresponds to the
concept of a cancel region (WCP25).

Listing 11: Cancel Task (WCP19) and Cancel Region (WCP25)
1 <S t a t e A c t i v i t y Name=”A”>
2 <E v e n t D r i v e n A c t i v i t y Name=”ED1”>
3 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H1” EventName=” e1 ” />
4 <S e t S t a t e A c t i v i t y Ta rge tS t a t eName =”D” />
5 </ E v e n t D r i v e n A c t i v i t y>
6 <S t a t e A c t i v i t y Name=”B”>
7 <E v e n t D r i v e n A c t i v i t y Name=”ED2”>
8 <D e l a y A c t i v i t y T i m e o u t D u r a t i o n =” 00 : 0 0 : 1 0 ” Name=”D1” />
9 <S e t S t a t e A c t i v i t y Ta r ge tS t a t eName =”C” />

10 </ E v e n t D r i v e n A c t i v i t y>
11 </ S t a t e A c t i v i t y>
12 </ S t a t e A c t i v i t y>

Solution: WCP20. Cancel case is directly supported by
the terminate activity. A process instance that is ended
by a terminate activity is not considered as having ended
successfully.

WCP26 Cancel Multiple Instance Activity & WCP27
Complete Multiple Instance Activity. The two patterns
build upon the multiple instance patterns that provide syn-
chronization (WCP13–WCP15). At any time during the
execution of a multiple instance task it may be necessary to
either cancel (WCP26) or forcibly complete (WCP27) the
multiple instance task. In the former case, currently running
instances are canceled and the thread of execution is not
passed on. In the latter case, currently executing instances
can complete and the thread of execution is passed to the
subsequent activity. In both cases, all instances that have
not yet started are withdrawn and any completed instances
remain unaffected.

Solutions: WCP26 & WCP27. WCP26 is supported by
associating a fault handler activity with the replicator. When
the fault handler is activated any remaining instances, which
have not yet completed, are canceled. Since execution should

not continue with the subsequent activity, the fault handler
must rethrow the fault. There is no means of triggering
the completion of multiple instances that are still executing.
Thus, there is no support for WCP27.

3.6. Iteration Patterns

WCP10 Arbitrary Cycles. A process may contain cycles
having more than one entry or exit point, which results in
unstructured loops.

Solution: WCP10. Arbitrary cycles are not supported by
sequential workflows due to their block orientation. State
machine workflows support arbitrary cycles with the follow-
ing restriction: Since concurrent execution of two or more
states is not possible, there must not be a parallel branching
from one state in a process to multiple subsequent states.

WCP21 Structured Loop. A task or a subprocess may be
executed repeatedly. Each time before or after the task is
executed a condition is evaluated to determine if the task
should be executed again. The looping structure has a single
entry and exit point.

Solution: WCP21. Windows Workflow provides a dedicated
construct for structured loops in the form of the while
activity.

WCP22 Recursion. A task may invoke itself at a certain
of execution. The parent task instance waits until the child
instance has completed.

Solution: WCP22. There is no dedicated construct in Win-
dows Workflow to perform recursive invocations of tasks.

3.7. Termination Patterns

WCP11 Implicit Termination. A process instance com-
pletes when there is no remaining work to do. Instances
that complete in accordance with the implicit termination
pattern are deemed to have ended successfully.

Solution: WCP11. Implicit termination is supported by se-
quential workflows. The workflow runtime recognizes when
there is no more work to do for a given workflow instance.
The instance is then completed and a corresponding event
is triggered by the workflow runtime for optional further
processing.

With respect to state machine workflows, implicit termina-
tion is not supported as outlined in the solution for WCP43.

WCP43 Explicit Termination. A process instance com-
pletes by reaching a designated endpoint in the process.
There may be remaining activities waiting for execution,
which are canceled immediately. Regardless of that fact, the
process is considered as having completed successfully.



Solution: WCP43. There is no dedicated construct for
representing explicit termination in sequential workflows.
State machine workflows, however, require the definition of
exactly one completed state per workflow model in order to
complete a workflow instance. It is interesting to note that
the definition of a completed state is not required to compile
and execute a workflow, but an instance with no completed
state remains idle if there is no more work to do.

3.8. Trigger Patterns

WCP23 Transient Trigger & WCP24 Persistent Trigger.
The execution of a task may be triggered by an internally
or externally raised event. A transient trigger (WCP23) can
only be consumed if there is a task instance waiting for it
and it must be processed immediately. Otherwise, it is lost.
In contrast, a persistent trigger (WCP24) is durable in nature
and is kept until the receiving task acts upon it.

Solution: WCP23. The concept of transient triggers is sup-
ported by the handle external event activity, which receives
events from the host. When a workflow instance enables a
handle external event activity, it blocks until a corresponding
event is received. When an event is sent to the workflow and
the instance is not in the appropriate state to deal with the
event (i.e., a corresponding handle external event activity
has not yet been activated), the trigger is discarded.

Solution: WCP24. Full support for persistent triggers can
be achieved through a workaround using the event handling
scope activity. This activity allows the workflow to respond
to events in parallel with the regular process flow. One or
more event handlers may be added to the event handling
scope in order to react to different types of event. The event
handling scope in Listing 12 waits for an event of type e1
(line 5). When e1 is received, it is retained using the code
activity in line 6 for later processing. Receiving events does
not affect the execution of the delay activity in line 2.

Listing 12: Persistent Trigger (WCP24)
1 <E v e n t H a n d l i n g S c o p e A c t i v i t y Name=”EHS1”>
2 <D e l a y A c t i v i t y T i m e o u t D u r a t i o n =” 00 : 0 1 : 0 0 ” Name=”D1” />
3 <E v e n t H a n d l e r s A c t i v i t y Name=”EH1”>
4 <E v e n t D r i v e n A c t i v i t y Name=”ED1”>
5 <H a n d l e E x t e r n a l E v e n t A c t i v i t y Name=”H1” EventName=” e1 ” />
6 <C o d e A c t i v i t y Name=”A1” />
7 </ E v e n t D r i v e n A c t i v i t y>
8 </ E v e n t H a n d l e r s A c t i v i t y>
9 </ E v e n t H a n d l i n g S c o p e A c t i v i t y>

4. Conclusion

It is the basic function of a workflow language to
implement the flow of a business process. Consequently,
a workflow language is required to support control-flow
scenarios that occur in real-world business processes. In
order to analyze the capabilities of a workflow language, it
is necessary to investigate its expressiveness when capturing

common control-flow structures [18]. In this paper, we
scrutinized the Windows Workflow Foundation, an upcom-
ing workflow framework currently gaining ground in the
.NET community, through a pattern-based analysis. For our
evaluation we used the Workflow Patterns [2], which is
widely accepted in academia as well as in industry. In
the past, other contemporary offerings in field of business
process management (BPM) and workflow languages have
been investigated using this framework.

Pattern WF WF* BPEL jBPM
Basic Control Flow
1. Sequence + + + +
2. Parallel Split + + + +
3. Synchronization + + + +
4. Exclusive Choice + + + +
5. Simple Merge + + + +
Advanced Synchronization
6. Multi Choice + + + -
7. Structured Synch. Merge + + + -
8. Multi Merge - - - +
9. Structured Discriminator +/- +/- - -
28. Blocking Discriminator - - - -
29. Canceling Discriminator + + - -
30. Structured Partial Join +/- +/- - -
31. Blocking Partial Join - - - -
32. Canceling Partial Join + + - -
33. Generalized AND-Join - - - +
37. Local Synchronizing Merge +/- +/- + -
38. General Synchronizing Merge - - - -
41. Thread Merge - - +/- +/-
42. Thread Split - - +/- +/-
Multiple Instances
12. MI without Synchronization + + + +
13. MI w. a pr. Design-Time Kwlg + + + -
14. MI w. a pr. Run-Time Kwlg + + - -
15. MI wo. a pr. Run-Time Kwlg - - - -
34. Static Partial Join for MI +/- +/- - -
35. Canceling Partial Join for MI + + - -
36. Dynamic Partial Join for MI - - - -
State-Based
16. Deferred Choice + + + +
17. Inter. Parallel Routing - + +/- -
18. Milestone - + - -
39. Critical Section + + + -
40. Interleaved Routing + + + -
Cancellation
19. Cancel Activity + + + +
20. Cancel Case + + + -
25. Cancel Region + + +/- -
26. Cancel MI Activity + + - -
27. Complete MI Activity - - - -
Iteration
10. Arbitrary Cycles - + - +
21. Structured Loop + + + -
22. Recursion - - - -
Termination
11. Implicit Termination + - + +
43. Explicit Termination - + - -
Trigger
23. Transient Trigger + + - +
24. Persistent Trigger + + + -

Table 1: Comparison matrix

Table 1 summarizes the analysis conducted in section 3.
The results for Windows Workflow are shown in the first



two columns, where the first one reflects the support by
sequential workflows only and the second one (WF*) allows
for solutions using state machine workflows. In order to
compare the results for Windows Workflow with other recent
analysis, we included the findings for the Business Process
Execution Language (BPEL) [3] and JBoss jBPM [4] in this
table.

The basic control flow patterns are directly supported in
all three offerings. With respect to the advanced branching
and synchronization patterns, support varies between the
different languages. In general, Windows Workflow lacks
support for patterns dealing with multiple threads that are
executed on the same workflow instance, since it has a
strict single-threaded execution model. This applies also
for state machine workflows, where a workflow instance
can only reside in one single state at a given time. If
Windows Workflow were to provide multi-threading for
state machine workflow instances, support for most of
the 43 patterns would be possible. Nevertheless, the state
machine workflows can support most patterns in which a
state-based notion is indispensable such as for example the
interleaved parallel routing and milestone patterns. Due to
it’s support for multiple threads, jBPM stands out in the
advanced branching category by supporting multi-merge, the
generalized AND-join as well as partially supporting thread
split/merge. Two constructs in Windows Workflow’s base
activity library are responsible for supporting a number
of patterns. The conditioned activity group provides multi-
choice as well as discriminator and partial join behavior.
Multiple instances with synchronization are supported by
the replicator activity. The synchronization capabilities of
the replicator are also able to facilitate partial join behavior.
BPEL as well as jBPM lack support for these patterns. The
state-based patterns are completely supported by Windows
Workflow. The state machine workflow style of modeling
can be used where the sequential style is not expressive
enough. Only limited support is provided by the other
offerings in this category.

Except for the complete multiple instance activity pattern,
cancellation behavior is fully supported by Windows Work-
flow. In terms of iteration patterns, none of the offerings
provides direct support for recursion. Depending on their
underlying flow model, BPEL supports structured loops and
jBPM the arbitrary cycles pattern. Due to the two workflow
styles in Windows Workflow, it supports both patterns. The
same applies for the termination patterns, where state ma-
chines provide explicit termination and implicit termination
is handled by sequential workflows. It is interesting to note,
that the other offerings both provide implicit termination
behavior (and lack explicit termination). Finally, both trigger
patterns are supported in Windows Workflow, whereas the
other offerings only support one.

It is evident that Windows Workflow benefits from its
two workflow styles in regard to pattern support. From

the beginning, Windows Workflow has been designed to
support both, highly automated processes and workflows
involving human interactions. The former is commonly
realized using the sequential approach, whereas the latter
can be supported by a workflow model that has a notion of
state and is driven by external events. Although there are
recent proposals for fostering human interaction in BPEL
(BPEL4People [19] and WS-HumanTask [20]) its underly-
ing flow model is not particularly suited for dealing with
too much human interaction. BPEL seems to have inspired
the design of Windows Workflow: Aside from the flow
construct, the semantic of a BPEL process may be realized
using sequential workflows. However, there is no concept
like the flow construct in Windows Workflow [16]. Although
both, state machines in Windows Workflow and the flow
activity in BPEL allow for unstructured processes, their
behavior differs in the following way: BPEL’s flow activity is
limited to acyclic graphs, but multiple branches can execute
concurrently. State machines allow cyclic graphs with the
limitation that there is no parallel branching across multiple
states. The incompatibility between the flow models of these
two approaches when designing process-aware information
systems highlights an interesting fact: On the one hand,
Microsoft is part of BPEL’s standardization committee.
On the other hand, Microsoft is simultaneously Windows
Workflow, which has some fundamental differences in terms
of control-flow logic. But the reasons for these differences
are unclear and not motivated by their target audience.

In regard to the development of workflow-centric appli-
cations, Windows Workflow has the advantage that it can be
incorporated in any type of .NET application, e.g., console
applications, GUI-based applications, web applications, Web
Services, etc. The same applies for jBPM in regard to Java.
Both offerings are executable in a lightweight execution
runtime that can be included in a regular code just like a
common class library. In addition, Windows Workflow is
shipped with the .NET framework and thus is available
to every .NET developer. BPEL processes in contrast have
to be executed in a BPEL engine running on a dedicated
middleware platform (e.g., IBM WebSphere Process Server).
This should not be considered as a disadvantage, but is a
result of BPEL’s focus on realizing business processes in
terms of web service compositions.In a nutshell, Windows
Workflow is a promising approach for making workflows
first-class citizens. Its distinct benefit is that developers
have the choice between sequential workflows and state
machine workflows. Whatever workflow type is chosen as an
implementation approach depends on the business scenario
to be realized. Together, both workflow styles support a
considerable set of the common workflow patterns.

Disclaimer. We, the authors and the associated institutions,
assume no legal liability or responsibility for the accuracy
and completeness of any product-specific information con-



tained in this paper. However, we have made all possible
efforts to make sure that the results presented are, to the
best of our knowledge, up-to-date and correct.

References

[1] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. Barros, “Workflow patterns,” Distributed
and Parallel Databases, vol. 14, no. 1, pp. 5–51, July 2003.

[2] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst,
and N. Mulyar, “Workflow control-flow patterns: A revised
view,” BPM Center Report BPM-06-22, Tech. Rep., 2006,
http://www.BPMcenter. org.

[3] P. Wohed, W. M. P. van der Aalst, M. Dumas, and
A. H. M. ter Hofstede, “Analysis of web services
composition languages: The case of BPEL4WS,”
in 22nd International Conference on Conceptual
Modeling (ER 2003), ser. Lecture Notes in Computer
Science, vol. 2813, 2003, pp. 200–215. [Online]. Available:
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2003/BPM-
03-04.pdf

[4] P. Wohed, B. Andersson, A. H. M. ter Hofstede, N. Russell,
and W. M. P. van der Aalst, “Patterns-based Evaluation of
Open Source BPM Systems: The Cases of jBPM, OpenWFE,
and Enhydra Shark,” Eindhoven University of Technology,
Tech. Rep., 2007.

[5] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and P. Wohed, “On the suitability of uml 2.0 activity diagrams
for business process modelling,” in APCCM ’06: Proceedings
of the 3rd Asia-Pacific conference on Conceptual modelling.
Darlinghurst, Australia, Australia: Australian Computer Soci-
ety, Inc., 2006, pp. 95–104.

[6] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter
Hofstede, Business Process Management. Springer, 2006, ch.
On the Suitability of BPMN for Business Process Modeling,
pp. 161–176.

[7] W. M. P. van der Aalst, “Patterns and XPDL: A Critical Eval-
uation of the XML Process Definition Language,” Queensland
University of Technology, Tech. Rep. FIT-TR-2003-06, 2003.

[8] P. Wohed, E. Perjons, M. Dumas, and A. H. M. ter Hofstede,
“Pattern Based Analysis of EAI Languages - The Case of
the Business Modeling Language,” in ICEIS (3), 2003, pp.
174–184.

[9] E. Söderström, B. Andersson, P. Johannesson, E. Perjons, and
B. Wangler, “Towards a framework for comparing process
modelling languages,” in 14th International Conference on
Advanced Information Systems Engineering. London, UK:
Springer-Verlag, 2002, pp. 600–611.

[10] P. Green and M. Rosemann, “An Ontological Analysis of Inte-
grated Process Modelling,” in 11th International Conference
on Advanced Information Systems Engineering. London,
UK: Springer-Verlag, 1999, pp. 225–240.

[11] B. Bukovics, Pro WF: Windows Workflow in .NET 3.0.
Apress, 2007.

[12] P. Andrew, J. Conard, S. Woodgate, J. Flanders, G. Hatoun,
I. Hilerio, P. Indurkar, D. Pilarinos, and J. Willis, Presenting
Windows Workflow Foundation, 1st ed. Sams, 9 2005.

[13] Web Services Business Process Execution Language, OASIS,
2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html [acc.: 2009-03-19].

[14] JBoss, jBPM Process Definition Language (jPDL), 2009,
http://www.jboss.com/products/jbpm/, [acc.: 2009-03-19].

[15] Microsoft, BizTalk Server 2009,
http://www.microsoft.com/biztalk/, [acc.: 2009-03-19].

[16] D. Green, “Biztalk server, windows workflow foundation,
and bpm,” Keynote at the Fourth International Conference
on Business Process Management (BPM), Vienna, Austria,
2006.

[17] W. M. P. van der Aalst, J. Desel, and E. Kindler, “On the
semantics of EPCs: A vicious circle,” in Proceedings des GI-
Workshops und Arbeitskreistreffens Geschaeftsprozessman-
agement mit Ereignisgesteuerten Prozessketten (EPK 2002),
M. Nuettgens and F. J. Rump, Eds., 2002, pp. 71–79.

[18] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P. van der
Aalst, “Fundamentals of control flow in workflows,” Acta
Informatica, vol. 39, no. 3, pp. 143–209, March 2003.

[19] WS-BPEL Extension for People (BPEL4People), Active End-
points, Adobe, BEA, IBM, Oracle, SAP, 2007, version 1.0.

[20] Web Services Human Task (WS-HumanTask), Active End-
points, Adobe, BEA, IBM, Oracle, SAP, 2007, version 1.0.


