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Abstract. Despite the abundance of analysis techniques to discover
control-flow errors in workflow designs, there is hardly any support for
data-flow verification. Most techniques simply abstract from data, while
data dependencies can be the source of all kinds of errors. This paper
focuses on the discovery of data-flow errors in workflows. We present an
analysis approach that uses so-called “anti-patterns” expressed in terms
of a temporal logic. Typical errors include accessing a data element that
is not yet available or updating a data element while it may be read
in a parallel branch. Since the anti-patterns are expressed in terms of
temporal logic, the well-known, stable, adaptable, and effective model-
checking techniques can be used to discover data-flow errors. Moreover,
our approach enables a seamless integration of control-flow and data-flow
verification.

1 Introduction

A Process-Aware Information System (PAIS) is a software system that man-
ages and executes operational processes involving people, applications, and/or
information sources on the basis of process models [6]. Examples of PAISs are
workflow management systems, case-handling systems, enterprise information
systems, etc. Many of these systems are driven by explicit process models, i.e.,
based on a process model, a system is configured that supports the modeled
process. In this paper, we primarily focus on the analysis of the models used to
configure workflow management systems [2, 9, 11, 22]. However, our approach is
also applicable to other PAISs.

In the last 15 years, many analysis techniques have been developed to analyse
workflow models [2]. Most analysis techniques focus on verification, i.e., the dis-
covery of design errors. Although many process representations have been used or
proposed, most researchers are using Petri nets as a basic model [1, 21]. The flow-
oriented nature of workflow processes makes the Petri net formalism a natural
candidate for the modeling and analysis of workflows. Most workflow manage-
ment systems provide a graphical language that is close to Petri nets. Even when
the routing elements are different from Petri nets, the informal semantics of the



language is typically token-based and hence a (partial) mapping is relatively
straightforward.

Unfortunately, lion’s share of attention has been devoted to control-flow while
ignoring other perspectives such as data-flow and resource allocation. Analysis
techniques typically check for errors such as deadlocks, livelocks, etc. while ab-
stracting from data and resources. Existing approaches typically suffer from the
following two problems: (1) they look at only one perspective in isolation (e.g.,
only control-flow), and (2) the types of errors they capture are usually not config-
urable and mainly driven by the verification algorithms themselves rather than
by user requirements.

To address some of the limitations of existing approaches, we propose a new
analysis framework based on (a) workflow nets with data, (b) temporal logic,
and (c) “anti-patterns”. A WorkFlow net with Data (WFD-net) is a special type
of a Petri net, with a clear start and end point and annotations related to the
handling of data (e.g., an activity may read, write, or destroy a particular data
element). Assuming a WFD-net representation, we define several anti-patterns
related to the data flow. The term “anti-patterns” was coined in 1995 by Andrew
Koenig [12]. He stated that “An anti-pattern is just like pattern, except that
instead of solution it gives something that looks superficially like a solution, but
isn’t one” [12]. The goal of anti-patterns is to formally describe repeated mistakes
such that they can be recognized and repaired. In this paper, we use the temporal
logic CTL∗ (and its subclasses CTL and LTL) to formalize our anti-patterns. This
formalization can be used to discover the occurrence of such anti-patterns in
WFD-nets by standard model-checking techniques [4]. Although not elaborated
on in this paper, the same techniques can be used to define correctness notions
related to the control flow and check these in an integral way (see [20]).

An example of an anti-pattern is DAP-1: Missing data. This anti-pattern
describes the situation where some data element needs to be accessed, i.e. read
or destroyed, but either it has never been created or it has been deleted without
having been created again. This property can be expressed in both CTL and LTL.
Hence, given a WFD-net it can be easily checked using standard model checkers.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 introduces WFD-nets. This representation is used in Section 4
to define a comprehensive set of data-flow anti-patterns. The formalization of
these anti-patterns is given in Section 5. Section 6 concludes the paper.

2 Related Work

Since the mid-nineties, many researchers have been working on workflow ver-
ification techniques [1, 16]. It is impossible to give a complete overview of the
related work here (see [3] for references). Therefore, we only mention the work
directly relevant to this paper, namely verification approaches in which control
and data flow are both taken into account for verification.

The importance of data-flow verification in workflow processes was first men-
tioned in [15]. There, several possible errors in the data-flow are identified, like,



e.g., the missing and the redundant data error, but no means for checking these
errors is provided. Later, [18] conceptualized the errors from [15] using UML
diagrams, and gave supporting verification algorithms. This work was further
extended and generalized in [19]. None of these approaches consider data re-
moval. The exact details of the erroneous scenarios are not always clear, being
hidden in the verification algorithms, and good diagnostics are missing. More-
over, the methods are not adaptive enough, as new properties cannot be easily
added to the checks.

In [8], a model called dual workflow nets is proposed, that can describe both
the data-flow and the control-flow. The notion of classical soundness from [1]
is extended to support the case when data-flow can influence control-flow. No
explicit data correctness properties are considered.

The ADEPTflex tool [14] supports a limited set of checks for data-flow cor-
rectness. The focus is entirely on dynamic changes in workflow models.

The work closest to ours is [7]. There, model checking is used to verify busi-
ness workflows, from both the control- and data-flow perspective. The underlying
workflow language is UML diagrams as opposed to the Petri net approach taken
in this paper. Only a few data data correctness properties are identified and no
systematic classification is presented. Data can only be read or written, but not
destroyed. Finally, [7] only considers LTL model-checking, although several of
our anti-patterns are not expressible in LTL.

In the field of software verification, static analysis of software and model
checking have been successfully used to discover program bugs that are caused
by, e.g., non-initialized or dead variables [17]. In this, totally different, application
domain, concurrency issues are rarely treated and systematic classification of
errors is missing.

3 Workflow Nets with Data

In this paper, we focus on the verification of workflow models with data. Al-
though any workflow design will incorporate data, few analysis techniques take
data into account. To illustrate the relevance of this, consider the Protos model
shown in Fig. 1. Protos (Pallas Athena) uses a Petri-net-based modeling nota-
tion and is a widely used business process modeling tool. It is used by more than
1500 organizations in more than 20 countries and is the leading business process
modeling tool in the Netherlands. Like most other tools it allows for the mod-
eling of both control flow and data flow. The left-hand side of Fig. 1 shows the
control flow while the right-hand side shows the different data elements. There
are 9 data elements (a, . . . , h, u), and these elements are linked to tasks in the
process. The left-most task (t1) is the initial task that reads data element a and
writes data elements c, e, and f . The colors show the relationships of t1, and
the bottom window of Fig. 1 shows the nature of these relationships.

In this paper, we consider four types of relationships between tasks and data
elements. First of all, a task may read a particular data element. This implies
that the data element is expected to have a value before the task is executed.



Fig. 1. A Protos model showing both the control-flow and data-flow

Second, a task may write a particular data element. This means that the data
element gets a new value. If it did not have a value yet, it is created. Otherwise it
is overwritten. Third, a task may destroy a particular data element. Afterwards,
the data element has no value. Finally, a task may use a particular data element
in its guard (optional). In Fig. 1 there is a choice following t3 that depends on
data element b. If the boolean expression pred(b) evaluates to true, t4 is selected,
otherwise t5.

Workflow nets (WF-nets) are commonly used as a basic representation for
workflow processes [1]. A WF-net is a Petri net with one unique source place
and one unique sink place such that all nodes are on a path from the source
place to the sink place. The transitions in a WF-net represent tasks. A WF-net
is instantiated for a particular case by putting a token on the source place. The
completion of this instance is denoted by a token on the sink place. WFD-nets
extend WF-nets with data elements and the four relationships between tasks and
data elements mentioned earlier (read, write, destroy, and guard). The following
definition introduces Workflow nets with Data (WFD-nets).

Definition 1 (WFD-net). A tuple 〈P, T, F,D,GD,Read,Write,Destroy,Guard〉
is a Workflow net with data (a WFD-net) iff:

– 〈P, T, F 〉 is a WF-net, with places P , transitions T and arcs F ;
– D is a set of data elements;
– GD is a set of guards over D;
– Read : T → 2D is the reading data labeling function;
– Write : T → 2D is the writing data labeling function;
– Destroy : T → 2D is the destroying data labeling function; and
– Guard : T → GD is the guarding function, assigning guards to transitions.

ut
Fig. 2 shows an example of a WFD-net. This WFD-net is essentially the

same workflow model as shown in Fig. 1 (using the Protos notation), but now
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Fig. 2. A WFD-net

all annotations are shown explicitly. For example: Read(t6) = {a, h}, Write(t6) =
{u, v}, Destroy(t6) = {d}, and Guard(t6) = true (i.e., no guard). If one ignores
the read, write, destroy, and guard annotations, Fig. 2 is simply a WF-net with
source place start and sink place end . All cases start with task t1 and end with
task t8. In-between, t2 and t6 are executed in sequence, in parallel with the lower
process fragment that starts with t3 and ends with t7. Between t3 and t7 either
t4 or t5 is executed. This choice depends on the evaluation of pred(b).

WFD-nets can be seen as an abstraction from notations deployed by widely
used modeling tools. As illustrated by Fig. 1, the language used by Protos is
close to Definition 1. Also other notations such as the Business Process Mod-
eling Notation (BPMN), extended Event-driven Process Chains (eEPCs), UML
activity diagrams, etc. allow for the modeling of both control flow and data flow.
In fact, the basic idea to link data elements to tasks originates from IBM’s Busi-
ness Systems Planning (BSP) methodology developed in the early eighties. Here
a so-called CRUD matrix is used showing Create, Read, Update, and Delete re-
lationships between tasks and data elements. The Read relationship in a CRUD
matrix is similar to the Read function and the Delete relationship is similar to
the Destroy function in Definition 1. The Update relationship is similar to the
Write function, but may also refer to a combination of read and write. The Cre-
ate relationship can be seen as the first write action for a data element. In Protos
a variant of the CRUD matrix is used and the basic relations are Mandatory,
Created, Deleted, and Modified. Other tools use other variants. However, all
of these operations can be translated into the primitives given in Definition 1.
Hence, the applicability of the results presented in the remainder extends to
other notations (BPMN, eEPCs, etc.) and variants of the CRUD matrix.

Soundness [1] is the most widely used correctness notion for workflows. The
basic idea is that the process cannot deadlock or livelock, i.e. that is always still
possible to terminate properly. However, the classical soundness notions do not
consider data. This is serious limitation. For example, the workflow design shown
in Fig. 2 is sound but has some serious design flaws when considering the data
annotations. For example, data element b may be destroyed in task t4 while it
is needed in the following task t7 for reading. To identify such problems we use
so-called data-flow anti-patterns.



4 Data-Flow Anti-Patterns

In this section we introduce data-flow anti-patterns and explain them using the
WFD-net shown in Fig. 2. Using data for the evaluation of guards is similar to
reading data. For the sake of readability, when saying “data element d is read”
in the descriptions of anti-patterns, we actually mean “data element d is read or
used for the evaluation of a guard”. Evaluating predicate pred on data element
v in Fig. 2 will thus be interpreted as reading v by transitions t4 and t5.

DAP 1 (Missing Data) This anti-pattern describes the situation where some
data element needs to be accessed, i.e. read or destroyed, but either it has never
been created or it has been deleted without having been created again.

In Fig. 2, data elements a and b are missing. Note that a needs to be read
immediately by the first task, although it has not been created yet. Data element
b is created by t3, but it can be destroyed by t4 before it reaches t7, which needs
to read it.

Unlike some other anti-patterns we will present later, we do not introduce a
strong and a weak variant for missing data depending on the fact whether we
will certainly miss a data element, or we miss it only at some execution paths
that might be chosen. We require that data should be present independently of
the choices made in the workflow—the absence of data necessary for an action
indicates a flaw in the workflow.

DAP 2 (Strongly Redundant Data) A data element is strongly redundant
if there is a writing activity after which in all possible continuations of the ex-
ecution this data element is never read before it gets destroyed or the workflow
execution is completed.

In Fig. 2, data elements c and d are strongly redundant. Task t1 creates c
but it is never read in the workflow, while task t2 creates d and t6 destroys d
without reading it.

DAP 3 (Weakly Redundant Data) A data element is weakly redundant if
there is some execution scenario in which it is written but never read afterwards,
i.e. before it is destroyed or the workflow execution is completed.

If a data element is strongly redundant (DAP 2), it is also weakly redundant
(DAP 3), while the opposite does not hold in general. Consider data element e
in Fig. 2. It is created by t1 and it is only read by t4. In case t5 and not t4 is
chosen, e remains unread, and hence it is weakly redundant. On the other hand,
if t5 is chosen, e is read between its creation and destruction, and therefore e is
not strongly redundant.

Strongly redundant data indicates in most situations a real flaw in the work-
flow. Weakly redundant data can in principle refer not to a flaw but to a design
decision aimed, e.g., at the uniformization/simplification of data requests (asking
all clients to provide data d1, . . . , dk, while dk is of interest only for the clients



with a particular value of d1) or at the improvement of the performance (com-
puting some weakly redundant data element d in parallel to some other activity
whose result will make it clear whether d is needed afterwards or not; in case d
is needed, it is immediately available, and it is ignored otherwise).

DAP 4 (Strongly Lost Data) A data element is strongly lost if there is a
writing activity after which in all possible continuations of the execution this
element gets overwritten without having been read first.

In Fig. 2, element f is strongly lost, since t1 writes to f , t7 rewrites it, and
f cannot be read in between.

DAP 5 (Weakly Lost Data) A data element is weakly lost if there is an ex-
ecution sequence in which it is overwritten without been read first.

Strongly lost data (DAP 4) implies weakly lost data (DAP 5) but, in general,
not the other way around. In Fig. 2, g and h are weakly lost. Task t3 writes to g,
then g may be overwritten by t4, after which g is read by t7. In case t5 is chosen
instead of t4, g is read by t7 without having been overwritten. The example
of h shows a concurrency-related instance of this anti-pattern. In case of the
execution sequence t1t2t6t3t4t7t8, t2 writes to h, t6 reads it, t7 writes again and
t8 reads h. If t6 is scheduled to be executed later, and the execution sequence is
t1t2t3t4t7t6t8, t2 writes to h, then t7 rewrites it, and only then h is read. Note
that in the latter case both t6 and t8 use the value of h produced by t7.

Strongly lost data normally indicates a real flaw in the workflow, while weakly
lost data may be a design decision, but may also be a flaw. Examples where
weakly lost data may be an instance of a normal behavior are, e.g., reading some
client’s data (address, telephone number, etc.), which might remain possible
along the whole workflow. The fact that they are updated (overwritten) without
ever having been read is then a normal scenario.

DAP 6 (Inconsistent Data) Data is inconsistent if a task is using this data
while some other task (or another instance of the same task) is writing to this
data or is destroying it in parallel.

In Fig. 2, u is inconsistent since t5 and t6 may write to u in parallel and it
is not clear which version of u will be used by t7 and t8. Data element v is also
inconsistent, as t6 might change its value before or after the predicate pred is
evaluated. Inconsistent data normally indicates a real flaw in the workflow.

DAP 7 (Never destroyed) A data element is never destroyed if there is a
scenario in which it is created but not destroyed afterwards.

For example, in Fig. 2 a is never destroyed after its creation by t2, which
indicates the possibility of leaving garbage by the workflow.

DAP 8 (Twice Destroyed) A data element is twice destroyed if there is a
scenario in which it is destroyed twice in a row without having been created in
between.



This anti-pattern is similar to the strongly lost data error but concerns data
deletion.

DAP 9 (Not Deleted on Time) A data element is not deleted on time when
there is a task that reads it without destroying it, and after this task the data
element cannot be read again independently of the choices made in the workflow.

For example, t7 is the last (and the only) task reading g, but g is deleted later,
by t8. Thus g is not deleted on time. This anti-pattern is especially important
for scientific workflows, where data is often large, and its unnecessary storage
should be avoided.

5 Formalization and Implementation

After introducing the anti-patterns in an informal manner, we now show that
these patterns can be formalized and supported by standard model checking
tools. We first introduce CTL∗ and its subclasses LTL and CTL. Then we provide
a translation of WFD-nets to Kripke structures to facilitate the verification of
the desired temporal properties, and we provide formalizations for the dataflow
anti-patterns formulated in Section 4. Finally, we discuss how the approach can
be supported by existing tools.

5.1 Temporal Logic CTL∗

CTL∗ [4] is a powerful (state-based) temporal logic combining linear time and
branching time modalities. It is typically defined on Kripke structures, so we
introduce this model first.

Definition 2. A Kripke structure is a tuple (S, A,L,→) where S is a finite set
of states, A is a non-empty set of atomic propositions, L : S → 2A is a (state)
labeling function, and → ⊆ S × S is a transition relation. ut
If (s, s′) ∈ →, then there is a step from s to s′, then also written as s → s′. For
a state s, L(s) is the set of atomic propositions that hold in s.

A path from s is an infinite sequence of states s0, s1, s2, . . . such that s = s0,
and either sk → sk+1 for all k ∈ N, or there exists an n ≥ 0, such that sk → sk+1

for all 0 ≤ k < n, sn 6→ , and sk = sk+1 for all k ≥ n. For a path π = s0, s1, s2, . . .
and some k ≥ 0, πk denotes the path sk, sk+1, sk+2, . . . .

We now define the syntax of CTL∗.

Definition 3. The classes Φ of CTL∗ state formulas and Ψ of CTL∗ path for-
mulas are generated by the following grammar:

φ ::= a | ¬φ | φ ∧ φ | Eψ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

with a ∈A, φ ∈ Φ, and ψ ∈ Ψ . ut



Validity of CTL∗ formulas is defined as follows.

Definition 4. We define when a CTL∗ state formula φ is valid in a state s
(notation: s |= φ) and when a CTL∗path formula ψ is valid on a path π (notation:
π |= ψ) by simultaneous induction as follows:

– s |= a iff a ∈ L(s);
– s |= ¬φ iff s 6|= φ;
– s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2;
– s |= Eψ iff there exists a path π from s such that π |= ψ;
– π |= φ iff s is the first state of π and s |= φ;
– π |= ¬ψ iff π 6|= ψ;
– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2;
– π |= Xψ iff π1 |= ψ; and
– π |= ψ U ψ′ iff there exists a j ≥ 0 such that πj |= ψ′, and πk |= ψ for all

0 ≤ k < j. ut
A formula Xψ says that ψ holds next, i.e. in the second state of a considered

path. A formula ψ U ψ′ says that, along a given path, ψ holds (at least) until
ψ′ holds. We standardly write Fψ for > U ψ (“In the future ψ” or “ψ will hold
eventually”), Gψ for ¬F¬ψ (“Globally ψ” or “ψ holds always along a path”),
and Aψ for ¬E¬ψ (“ψ holds along all paths”). The combinators AG and EF can
then be interpreted as “in all states” and ”in some state” respectively.

The complexity of checking CTL∗ formulas is linear in the size of the model
but exponential in the size of the formula. We define two most popular (syntac-
tic) restrictions of CTL∗ that allow for more optimal verification. A CTL∗ state
formula of the form Aψ, where ψ is a path formula containing no state formulas,
is a linear temporal logic (LTL) formula. A CTL∗ state formula in which every
sub-formula of the type ψ U ψ′ is prefixed by an A or E quantifier, is a com-
putational tree logic (CTL) formula. The complexity of LTL model checking is
the same as of CTL∗, but the advantage of LTL is that formulas can be checked
on-the-fly. The complexity of CTL model checking is linear in both the size of
the model and the size of the formula, and thus lower than for CTL∗. As we will
see later, all our correctness properties belong to either the LTL or the CTL sub-
set (or both). The reason we work with CTL∗ is to have a common framework,
and to be allowed to (temporarily) jump outside of the restricted domain when
rewriting one formula to another.

5.2 Unfolding of WFD-net

Since we use a state-based logic, the states of a Kripke structure representing
the behavior of a WFD-net should include information necessary for the for-
malization of our anti-patterns, namely what happens with the data when some
transition is executed. This information is lost if we just build the reachability
graph of a WFD-net—e.g. we can see that two transitions writing to a data
element d can be enabled at the same time, but we cannot see whether they can
be executed at the same time.
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Fig. 3. Decomposition of a transition in a WFD-net

Preprocessing To include the information about the data operations into the
states, we use a preprocessing step that converts a WFD-net into a WF-net,
while still keeping the original structure intact. This step consists of the following
smaller steps:

1. We split every transition t into its start ts and its end te connected by a
place pt. A token on pt means that transition t is being executed.

2. To capture the restrictions on the behavior due to guards, we add a “guard
layer” to our net: For every predicate pred appearing in some guard we
introduce places predtrue and predfalse. A token on predtrue indicates that the
predicate is evaluated to true for the current set of data values. A token on
predfalse means that pred evaluates to false.

3. For every transition t with a guard pred in the WFD-net, we add an arc
from predtrue to ts and an arc back from ts to predtrue to our preprocessed
net. This self-loop makes sure that t is only executed only when its guard
is evaluated to true. In case of guard ¬pred we add the arcs to the place
predfalse instead of predtrue.

4. A change of the value of a data element d that appears in a predicate pred
may potentially change the evaluation of pred. We reflect that by assuming
that every transition t writing to d might change the value of pred (or not).
Therefore, we split te into three transitions: two to represent possible changes
of the predicate value (from true to false and from false to true), and one
leaving the predicate value unchanged.1

Please note that in case the transition changes data items related to k pred-
icates, it will be in general split into 3k transitions.

Fig. 3 illustrates the preprocessing for transition t with a guard pred1(c) writ-
ing to data element b. We assume that b is used in some predicate pred2(b), guard-
ing some other transition(s) of the workflow. Places pred1(c)true, pred1(c)false (not

1 In this paper we assume that predicates do not depend on each other; our method,
however, can be easily extended to support dependencies.
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shown in the Fig.), pred2(b)true and pred2(b)false are added to represent the values
of the predicates. The transition is split into the start transition ts, controlled by
place pred1(c)true, and transitions te−true−false, changing the value of the pred-
icate pred2 from true to false, te−false−true, changing the value of the predicate
from false to true, and te leaving the value unchanged.

We make an arbitrary choice assuming that all predtrue places initially have
a token and predfalse places do not. We can afford making an arbitrary choice
since the errors related to the use of undefined data for the valuation of guards
is captured by DAP 1 and will be signaled as an error, in case it takes place.

Building the Kripke structure The Kripke structure is in fact an extended reacha-
bility graph of the preprocessed net. The states of the Kripke structure are states
(markings) of the reachability graph and the transition relation is the reachabil-
ity relation. We define the set of atomic propositions A= {p ≥ i | p ∈ P, i ∈ N}
to express properties of markings (p ≥ i means that place p holds at least i to-
kens). The labels of states map the markings to the sets of atomic propositions
as follows: for some p ∈ P and i ∈ N, (p ≥ i) ∈ L(m) iff m(p) ≥ i.

For the sake of readability, we introduce some abbreviations. We write p = i
for p ≥ i ∧ ¬(p ≥ i + 1). To directly formulate that some transition t is execut-
ing, we write exec(t) instead of pt ≥ 1. The workflow being in its final state
is denoted as term and it is defined as (end = 1 ∧ ∧

p∈P\{end}(p = 0)). To rep-
resent the fact that a data element d ∈ D is being read either as input or
for evaluating a guard of some transition, we write r(d), abbreviating thus∨

t:d∈Read(t)∪data(Guard(t)) exec(t).

We will use a convention that the order of operations within a transition
is fixed as first read, then write and after that destroy, which e.g. implies that
transition t8 in Fig. 2 first reads f and only after that destroys it, i.e. here there
is no attempt to read a destroyed data element.

Example We use a simplistic example to show that the addition of the guard
layer reduces the number of false positives and false negatives, compared to the
analysis on the net without it. Consider the WFD-net from Fig. 4. If guards are



ignored while generating the behavior, d′ will be reported missing in t4. This is
a false negative, as t4 can never be enabled—t2 can only be chosen when pred(d)
is false, and the value of the predicate remains the same when it is evaluated at
t4. On the other hand, a soundness check on the net with the guard layer will
correctly report that transition t4 is dead, while the check on the control flow
would result in a false positive, saying that the net is sound.

5.3 Formalization of Anti-Patterns

We explain the formalization process for some of the anti-patterns in detail, and
we merely provide the corresponding CTL∗ formulas for the rest.

DAP 1 Missing Data A data element d is missing if there is an execution path
along which no writing to d happens until reading d or destroying d takes place.
This can be expressed by E[¬w(d) U (r(d) ∨ d(d))]. A data element d is also
missing if d first get destroyed and then no writing takes place until d is read
of destroyed, which can be captured by EF[d(d) ∧ (¬w(d) U (r(d) ∨ d(d)))]. The
disjunction of these two expressions results in the formalization given in Table 1.

DAP 2 Strongly Redundant Data A data element is strongly redundant if there
is a path leading to a writing to d (i.e. EF[w(d) ∧ . . .)] such that in all possible
continuations of this path no reading takes place until the workflow terminates
or d get destroyed (AX [¬r(d)U(term ∨ (d(d)∧¬r(d)))]). We need X here because
we want to impose ¬r(d) restriction starting from the next state only, not from
the state where the writing in question takes place—reading there would precede
the writing, according to our convention. This convention is also the reason for
including ¬r(d) in the conjunction d(d) ∧ ¬r(d).

The formalization of DAP 3 Weakly Redundant Data differs from its strong
counterpart by one letter only: the A requirement is removed, since it is sufficient
to have one path showing the undesired behavior. The principle of formulating
DAP 4 is the same as for DAP 2, the principle of formulating DAP 5, DAP 7
and DAP 8 is the same as for DAP 3.

DAP 6 Inconsistent Data A data element d is inconsistent if some transition t
that changes d and some transition t′ that uses d can be executed at the same
time, captured by

∨

t∈T :d∈change(t)

EF[(exec(t) ∧
∨

t′ 6=t:d∈use(t′)

exec(t′))],

or if two or more instances of transition t changing d can be executed in parallel,
captured by ∨

t∈T :d∈change(t)

EF[pt ≥ 2].

Here change(t) stands for the set {d | d ∈ Write(t) ∪ Destroy(t)}, and use(t)
stands for the set {d | d ∈ Read(t) ∪ data(Guard(t)) ∪Write(t) ∪Destroy(t)}.



Table 1. Formalization of anti-patterns for a data element d

Anti-pattern Formalization

DAP 1 E[(¬w(d) U (r(d) ∨ d(d))) ∨
Missing Data F[d(d) ∧ (¬w(d) U (r(d) ∨ d(d)))]]

DAP 2 EF[w(d) ∧ A X [¬r(d) U (term ∨ (d(d) ∧ ¬r(d)))]]
Strongly Redundant Data

DAP 3 EF[w(d) ∧ X[¬r(d) U (term ∨ (d(d) ∧ ¬r(d)))]]
Weakly Redundant Data

DAP 4 EF[w(d) ∧ A X [¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]]
Strongly Lost Data

DAP 5 EF[w(d) ∧ X[¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]]
Weakly Lost Data

DAP 6
W

t∈T :d∈change(t)

Inconsistent Data EF[(exec(t) ∧Wt′ 6=t:d∈use(t′) exec(t′)) ∨ pt ≥ 2]

DAP 7 EF[w(d) ∧ X[¬(d(d) ∨ w(d)) U term]]
Never destroyed

DAP 8 EF[d(d) ∧ X[¬w(d) U (d(d) ∧ ¬w(d))]]
Twice Destroyed

DAP 9
W

t∈T :d∈(Read(t)∪data(Guard(t)))\Destroy(t)

Not Deleted on Time AG[exec(t) ⇒ exec(t) U G(¬r(d))]

DAP 9 Not Deleted on Time To conclude that a data element d is not deleted
on time, we need a transition that reads d without destroying it (i.e. a transition
t ∈ T with d ∈ (Read(t)∪data(Guard(t))) \Destroy(t), such that the execution
of this transition is never followed by reading d. This means that for all paths
whenever t is executed (i.e. AG[exec(t) ⇒ . . .], d is never read again after finishing
the execution of t (captured by exec(t) U G(¬r(d))). An additional explanation
needed here is related to the fact that there can be several consecutive states for
which exec(t) is true, which means that there are events happening in parallel
branches while t continues its execution. The resulting formula is given in Table 1.

All the formulas except the last one (DAP 9) are (or can be rewritten to) CTL
formulas. Negations of formulas for DAPs 1, 3, 5, 6, 7 and 8 can be rewritten to
LTL. DAP 9 is a set of LTL formulas itself.

5.4 Tool Support

As explained in the previous section, all anti-patterns we identified (or their
negations) can be expressed in one of the two most commonly used temporal
logics, CTL or LTL. Therefore, to check for data correctness we do not need to
build our own tool or use some particular one, but we can choose from a num-
ber of Petri-net model-checkers available (e.g. [10, 13, 5]). The Model-Checking
Kit [10] allows for both CTL and LTL model-checking, and supports a variety
of Petri-net modeling languages as input. Maria [13] is an LTL model-checker,
and CPN Tools [5] is a powerful framework for modeling and analysis of Colored
Petri nets with the CTL model-checking facility.



We used CPN Tools in our verification experiments, and we were able to
easily state all the CTL anti-patterns, and to check them within a fraction of a
second.

6 Conclusion

This paper provides a systematic classification of possible flaws related to the
flow of data in business workflows. We formulated these errors as data-flow anti-
patterns. To avoid ambiguities inherent to formulations in a natural language,
we formalized the anti-patterns in the temporal logic CTL∗. All anti-patterns
belong to one of the two (or both) most popular subsets of CTL∗: CTL and LTL.
This opens a way to easy tool support for our approach, since there are many
model-checkers for both CTL and LTL.

Our approach is a first step towards a unifying framework for the integral
analysis of workflows taking into account both control and data flow. As we
showed in the example related to Fig. 4 (Subsection 5.2), by including data flow
along with control flow into consideration when checking classical properties of
workflow like soundness, we can reduce the number of false positives and false
negatives caused by (unavoidable) abstraction of data values.

In the future we will try to identify more anti-patterns. We will also build an
integrated tool-chain that first performs the preprocessing transformations and
Kripke structure generation, proceeds in looking for anti-patterns’ instances by
using an existing model-checker (e.g. [10]), and finally generates a verification
report for the workflow designer.
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