
Trace Clustering in Process Mining

M. Song, C.W. Günther, and W.M.P. van der Aalst

Eindhoven University of Technology
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{m.s.song,c.w.gunther,w.m.p.v.d.aalst}@tue.nl

Abstract. Process mining has proven to be a valuable tool for analyzing
operational process executions based on event logs. Existing techniques
perform well on structured processes, but still have problems discovering
and visualizing less structured ones. Unfortunately, process mining is
most interesting in domains requiring flexibility. A typical example would
be the treatment process in a hospital where it is vital that people can
deviate to deal with changing circumstances. Here it is useful to provide
insights into the actual processes but at the same time there is a lot of
diversity leading to complex models that are difficult to interpret. This
paper presents an approach using trace clustering, i.e., the event log is
split into homogeneous subsets and for each subset a process model is
created. We demonstrate that our approach, based on log profiles, can
improve process mining results in real flexible environments. To illustrate
this we present a real-life case study.

Key words: Process mining, trace clustering, process discovery, data
mining, K-means, Quality threshold, SOM, case study

1 Introduction

The field of process mining is concerned with extracting useful information about
process execution, by analyzing these event logs. Process mining approaches can
be used to measure the conformance of process executions to a prescribed process
model [10], or to extend a known process model with additional information
extracted from event logs. The major application of process mining, however, is
discovery, i.e. the extraction of abstract process knowledge (e.g., process models)
only from event logs [1, 2, 4, 9, 12].

For well-structured processes, e.g. workflows, the discovery aspect of process
mining has limited appeal, since it is bound to confirm the prescribed character-
istics of the process. However, most real-life business processes are not strictly

enforced by the supporting information system. This means that, while there
exists a notion of the process, involved actors are able to deviate from it, or even
completely ignore it. Examples for such flexible environments are healthcare,
product development, or customer support. In these environments, discovering
the actual process which is being executed is valuable. Such assessment of the
current situation is a prerequisite for any process improvement or quality control
endeavor.

2 M. Song et al.

There are, however, inherent problems of applying process mining to flexible
environments. Since these environments typically allow for a wide spectrum of
potential behavior, the analysis results are equally unstructured. The typical
problems observed in resulting process models are an overwhelming number of
task nodes, and equally large numbers of relations, resulting in the stereotypical
“spaghetti models”. One dominant factor contributing to unstructured mining
results is diversity of an event log, i.e. single cases differ significantly from one
another. It is, in such cases, a valid assumption that there are a number of tacit

process variants hidden within one event log, each significantly more structured
than the complete process.

The problem with diversity, i.e. that a set of cases are structured very dif-
ferently, obviously grows with the number of cases being analyzed. Thus, one
solution to this problem is to reduce the number of cases which are analyzed at
once. Tacit processes will usually not be explicitly known, i.e. there is no avail-
able knowledge on how to partition the set of cases. One can, however, measure
the similarity of cases and use this information to divide the set of cases into
more homogeneous subsets.

In this paper, we present a trace clustering methodology which implements
this divide-and-conquer approach in a systematic manner. It is based on a set
of profiles, each measuring a number of features for each case from a specific
perspective. Based on these feature matrices, a number of distance metrics can
be applied to compute the relative distance between any two cases in the log.
Finally, data clustering algorithms can be applied, grouping closely related cases
into subsets. These subsets can subsequently be analyzed independently from one
another, which improves the quality of mining results significantly for flexible
environments. We have implemented this approach in the context of the ProM
framework, and verified its effectiveness in various case studies.

This paper is organized as follows. The next section introduces a running
example, which is used to illustrate concepts. Section 3 introduces log profiles,
which are used to characterize cases. Subsequently, Section 4 describes algo-
rithms for clustering cases based on these profiles. Section 5 demonstrates the
usefulness of our approach using a real-life case study (a hospital). Related work
is featured in Section 6, and Section 7 concludes the paper.

2 Running Example

The example process is the repair process of products within an electronic com-
pany that makes navigation systems and mobile phones. The process starts with
the “Receive an item and a repair request” task (A). The customer sends his
broken item to the company and requests repair. After receiving the request, a
preliminary check (B) is carried out to find its faults. In parallel, the warranty is
checked (C) if the product is a mobile phone. Then, based on the status of the
item and the warranty of the customer, repair costs are calculated and passed
back to the customer. If the customer decides to repair the product, the product
is repaired (E) and subsequently a bill for payment is issued (G). If the product

Trace Clustering in Process Mining 3

is a navigation system, a field test (F) is performed in-between repairing the
product and issuing payment. If the customer does not want to repair, a can-
cellation letter (H) is sent. After that, the item is returned (I) and the case is
closed.

Table 1 shows an event log in a schematic way. The log is consistent with
the process mentioned above. Each row refers to a single case and is represented
as a sequence of events. Note that we use the term “case” to refer to a specific
row and the term “trace” to the sequence of events within a case. Events are
represented by the case identifier (denoted by the row, e.g., 1), activity identifier
(first element, e.g., A), and originator (second element, e.g., John). Based on
this log, the α-algorithm automatically constructs the Petri net model depicted
in Figure 1.

To check the accuracy of the generated model, we can perform a conformance
check. In [10] two types of metrics are proposed: (1) fitness and (2) appropriate-
ness. Fitness quantifies how much of the observed behavior is possible according
to the model (i.e., “Does the observed process comply with the control flow spec-
ified by the process model?”). If a model is able to “replay” the traces in the
log, the model may still be inappropriate because it is unnecessary complex or
allows for too much behavior (i.e., behavior not supported by observations in
the log). Appropriateness tries to capture the idea of Occam’s razor, i.e., “One
should not increase, beyond what is necessary, the number of entities required to
explain anything”. In [10] a metric is given for behavioral appropriateness (i.e.,
“Does the model describe the observed process in a suitable way?”).

The model depicted in Figure 1 has a fitness of 0.9 and a behavioral appro-
priateness of the model is 0.97, i.e., even though there are just a few cases the
result is not optimal. Clearly, a better model could be constructed by using a
more advanced process mining algorithm. In fact most of the more recent tech-
niques will generate a perfectly fitting model. However, the goal of the example
is to show that it is possible to get a better model by clustering cases while still
using the α-algorithm.

Case ID log events

1 (A,John),(B,Mike),(D,Sue),(E,Pete),(F,Mike),(G,Jane),(I,Sue)

2 (A,John),(B,Fred),(C,John),(D,Clare),(E,Robert),(G,Mona),(I,Clare)

3 (A,John),(B,Pete),(D,Sue),(E,Mike),(F,Pete),(G,Jane),(I,Sue)

4 (A,John),(C,John),(B,Fred),(D,Clare),(H,Clare),(I,Clare)

5 (A,John),(C,John),(B,Robert),(D,Clare),(E,Fred),(G,Robert),(I,Clare)

6 (A,John),(B,Mike),(D,Sue),(H,Sue),(I,Sue)

Table 1. Example process logs (A: Receive a item and repair request, B: Check the
item, C: Check the warranty, D: Notify the customer, E: Repair the item, F: Test the
repaired product, G: Issue payment, H: Send the cancellation letter, I: Return the item)

If we divide the log into several subgroups and construct process models, we
can derive more accurate models. For example, based on the tasks, the log can

4 M. Song et al.

A

B

C

D

E

H

F G

I

Fig. 1. The example process model

be divided into three groups. The first group consists of cases where a navigation
system needs to be repaired (i.e., cases 1 and 3), i.e., the cases where the “Check
the warranty” task is missing but with the “Test the repaired product” task.
The second group corresponds to the process of repairing a mobile phone (i.e.,
cases 2 and 5). These cases do not have the “Test the repaired product” task,
but have the “Check the warranty” task. The third group corresponds to cases
where a repair is canceled, i.e., case 4 and case 6 belong to this group. Figure 2
shows process models from each group again constructed using the α-algorithm.
Both the fitness and behavioral appropriateness of these three models is 1.000.
This shows that trace clustering can support the identification of process variants
corresponding to homogenous subsets of cases. Moreover, the constructed models
have a much better quality.

(a) process model based on cases 1 and 3

(b) process model based on cases 2 and 5

(C) process model based on cases 4 and 6

A B D E F G I

A
C

B D H I

A

B

C

D E G I

Fig. 2. The derived process models from three groups

3 Trace Profiles

For every clustering application, it is crucial to appropriately design a way to de-
termine the similarity of points to be clustered. In this paper, points correspond
to cases, i.e., process instances that left a trace in the log. In our trace clustering
approach, each case is characterized by a defined set of items, i.e., specific fea-
tures which can be extracted from the corresponding trace. Items for comparing
traces are organized in trace profiles, each addressing a specific perspective of the
log.

In the following section, the typical set of information found in an event log is
introduced. Section 3.2 describes a set of profiles for characterizing traces, based
on that information.

Trace Clustering in Process Mining 5

3.1 Information in Event Logs

Event logs are the typical starting point for any process mining endeavor. In
order to provide a common basis for process mining research, the M ining XML

(MXML) format has been defined. MXML provides a framework for structuring
event logs, which is organized as follows.

The top-level entity of an MXML log is the WorkflowLog, which may group
any number of Process elements. Processes can contain an arbitrary number of
ProcessInstance elements, each corresponding to a case, i.e. one specific execution
of the process. Finally, process instances contain an ordered list of AuditTrailEn-

try elements, i.e. events. Every event needs to have a name, the WorkflowMod-

elElement, where two events with the same name are considered to represent the
same action. Another mandatory event attribute is the event type, identifying
lifecycle transitions (i.e., whether the event refers to a task having been started,
completed, etc.). Further optional data fields are the event’s timestamp (i.e., ex-
act date and time of occurrence) and originator (i.e., name of a resource having
triggered the event). To make the format extensible, every element (i.e., Work-
flowLog, Process, ProcessInstance, and AuditTrailEntry) may contain additional
data attributes, i.e. arbitrary key-value pairs of strings.

3.2 Profiles

Every clustering algorithm attempts to group sets of similar points, whereas for
trace clustering, the points to be clustered are log traces. Thus, in order to cluster
traces in a meaningful way, we first have to establish what makes two traces

similar. Event logs in the MXML format contain a large amount of structured
information. Some of this information is explicit (e.g., names of events), however
there is also derived information, e.g. the number of events within a trace.

In our approach, traces are characterized by profiles, where a profile is a set
of related items which describe the trace from a specific perspective. Every item
is a metric, which assigns to each trace a specific numeric value. Therefore, we
can consider a profile with n items to be a function, which assigns to a trace
a vector 〈i1, i2, ..., in〉. Profiling a log can be described as measuring a set of
traces with a number of profiles, resulting in an aggregate vector (containing the
values for each measured item in some defined order). These resulting vectors
can subsequently be used to calculate the distance between any two traces, using
a distance metric (cf. Section 4.1).

Table 2 shows the result of profiling the example log from Section 2 with
two profiles. The activity profile defines one item per type of activity (i.e., event
name) found in the log. Measuring an activity item is performed by simply
counting all events of a trace, which have that activity’s name. The originator

profile, which is also shown in this example, is similar to the activity profile. Its
items are the originators of the log, counting how many events have been caused
by each originator per trace. Each row of the table corresponds to the profile
vector of one trace in the log.

6 M. Song et al.

Table 2. Activity and originator profiles for the example log from Table 1.

Case ID
Activity Profile Originator Profile

A B C D E F G H I John Mike Sue Pete Jane Fred Clare Robert Mona

1 1 1 0 1 1 1 1 0 1 1 2 2 1 1 0 0 0 0

2 1 1 1 1 1 0 1 0 1 2 0 0 0 0 1 2 1 1

3 1 1 0 1 1 1 1 0 1 1 1 2 2 1 0 0 0 0

4 1 1 1 1 0 0 0 1 1 2 0 0 0 0 1 3 0 0

5 1 1 1 1 1 0 1 1 0 2 0 0 0 0 1 2 2 0

6 1 1 0 1 0 0 0 1 1 1 1 3 0 0 0 0 0 0

Based on the typical information found in event logs we can derive various
profiles. Some additional examples are:

Transition: The items in this profile are direct following relations of the trace.
For any combination of two activity names 〈A, B〉, this profile contains an
item measuring how often an event with name A has been directly followed
by another event name B. This profile is useful for comparing the behavior

of traces.

Case Attributes: The items of this profile are the data attributes of the case.
In many practical situations, traces are annotated with meta-information,
which can be compared by this profile.

Event Attributes: The items in this profile are the data attributes of all events
in the log. Item values are measured according to how many events in a
trace are annotated with the respective attribute. This profile can capture
similarity of traces by comparing the meta-information of their contained
events.

Performance: In contrast to other profiles, this profile has a predefined set of
items. The size of a trace is defined as its number of events. When timestamp
information is available, further items measure the case duration, and the
minimum, maximum, mean, and median time difference between events for
each trace.

The profiles mentioned so far, capture the information typically available in
event logs. When additional information is available in an application domain, it
is however straightforward to extend our approach with custom profiles. These
may define an additional set of items based on domain knowledge, e.g. the value
of the shopping basket in a web-based ordering process. By carefully designing
such custom profiles, the precision (and, thus, the quality) of trace clustering
can be increased significantly.

Trace Clustering in Process Mining 7

4 Clustering Methods

In this section, we explain clustering methods. We first explain several distance
measures to calculate the similarity between cases. Then we briefly describes
four clustering techniques used in this paper.

4.1 Distance Measures

Clustering techniques can use several distance measures to calculate the similar-
ity between cases. The clustering results are influenced by the distance measures.
In this section, we explain several distance measures that can be used in clus-
tering.

The profile can be represented as a n-dimensional vector where n indicates
the number of items extracted from the process log. Thus, case cj corresponds
to the vector 〈ij1, ij2, .., ijn〉, where each ijk denotes the number of appearance
of item k in the case j. To calculate the distance between cases, we use three
distance measures in this paper. They are Euclidean distance [3], Hamming
distance [6], and Jaccard distance [11]. They are defined as follows.

– Euclidean distance(cj ,ck) =
√

∑n

l=1
|ijl − ikl|2

– Hamming distance(cj ,ck) =
∑n

l=1
δ(ijl, ikl)/n,

where δ(x, y) =

{

0 if (x > 0 ∧ y > 0) ∨ (x = y = 0)
1 otherwise

– Jaccard distance(cj ,ck) = 1−(
∑n

l=1
ijlikl)/(

∑n

l=1
i2jl +

∑n

l=1
i2kl−

∑n

l=1
ijlikl),

4.2 Clustering Algorithm

In this section, we briefly explain clustering algorithms. We use K-means, Qual-
ity Threshold (QT), Agglomerative Hierarchical Clustering (AHC), and Self-
Organizing Maps (SOM). Using the trace profile concept presented in Section 3,
the four clustering techniques can be applied to process mining and create classes
of homogenous cases.

K-means Clustering K-means clustering is the most commonly used in prac-
tice among partitioning methods, which constructs k clusters by dividing the
data into k groups.

Quality Threshold Clustering Quality Threshold clustering (QT) was de-
veloped for the field of bioinformatics, or more specifically for the clustering of
coexpressed genes. Although it is more computationally expensive than K-means
clustering, it is predictable (i.e., guaranteed to return the same set of clusters
over multiple runs) and does not require to specify the number of desired clus-
ters in advance. Clustering is guided by a quality threshold, which determines
the maximum diameter of clusters.

8 M. Song et al.

Agglomerative Hierarchical Clustering Unlike K-means and Quality Thresh-
old, Agglomerative Hierarchical clustering (AHC) gradually generate clusters by
merging nearest traces, i.e., smaller clusters are merged into large ones. The
result of AHC is usually illustrated as a dendrogram that shows hierarchy of
clusters.

Self-Organizing Map Self-Organizing map (SOM) is one of neural network
techniques and is used to map high dimensional data onto low dimensional spaces
(e.g. 2D). The network includes a number of neural processing elements (neurons
or nodes) which are usually represented as rectangular or hexagonal grids. Each
of them is connected to the input. The aim of SOM is grouping similar cases
close together in certain areas of the value range. Similar cases are mapped onto
the same node or neighboring nodes in the SOM.

Using the trace profile concept presented in Section 3, four clustering techniques
described in this section can be applied to process mining and create classes of
homogenous cases.

5 Case Study

To validate the approach discussed in this paper, we have performed several case
studies. This section explains one of them in detail. Note that, we used the Prom
framework to perform the case studies. ProM1 has been developed to support
various process mining algorithms. We have implemented the trace clustering

plug-in in ProM to support the methods described in this paper. It allows us to
cluster cases in a log and further apply other process mining techniques to each
cluster.

The case study uses a process log from the AMC hospital in Amsterdam, a
large academic hospital in the Netherlands [8]. The raw data contains data about
a group of 619 gynecological oncology patients treated in 2005 and 2006 and for
which 52 diagnostic activities have been recorded. The process for gynecological
oncology patients is supported by several different departments, e.g. gynecology,
radiology and several labs. In the log, patients correspond to cases, thus there
are 619 cases. The log has 3,574 events and 34 departments are involved in the
process execution.

We use the heuristic mining algorithm to derive the process model. Figure 3
shows the process model for all cases obtained using the Heuristics Miner. The
generated model is spaghetti-like and too complex to understand easily, since
it consists of a lot of activities and many links exist between the activities.
We showed this diagram to domain experts in the hospital and they failed to
understand the process.

1 See http://www.processmining.org for more information and to download ProM and
the trace clustering plug-in developed in the context of this paper.

Trace Clustering in Process Mining 9

Fig. 3. Process model based on the entire log

Since the clustering results are usually influenced by the characteristics of
data, we performed several experiments with various distance measure and clus-
tering techniques in Section 3. In this particular case, the combination of the
Euclidean distance and the SOM algorithm is performing better than others.
Note that, we only consider the activity profile defined in Section 3. Figure 4
shows the clustering result obtained by applying the Trace Clustering plug-in.
Eleven clusters are obtained from the log. In the figure, the cases in the same
cell belong to the same cluster. The figure also shows a contour map based on
the so-called U-matrix [3] value of each cell. It is very useful to show the distance
relationships in a high dimensional data space.

By using this approach, we obtained several clusters of reasonable size. In this
paper, we show only the results for cluster (1,2) and cluster (3,1) that contain 352
cases and 113 cases respectively. Figure 5 shows the two heuristic nets derived
from these two clusters. Figure 5(a) shows the result from the cluster (1,2). Even
though the cluster has 352 cases, which are more than half of the entire cases, it
has only 11 activities and the generated model is relatively simple. However the
model from the cluster (3,1) is as complex as the original process model (cf. Fig-
ure 3). A closer inspection of these two clusters by domain experts showed that
cluster (1,2) (Figure 5(a)) corresponds to most of patients who are diagnosed by
another hospital and are referred to the AMC hospital for treatment. They only
visit the department once or twice and are referred to another department for
treatment. Interpreting the cluster (3,1) was difficult because of its complexity.
However, though only small number of activities and links are removed from the

10 M. Song et al.

original model, it enables the experts to interpret the meaning of the cluster.
The cluster (3,1) (Figure 5(b)) corresponds to patients who are not diagnosed.
Thus they need more complex and detailed diagnostic activities. Hence these
clusters correspond to meaningful processes. This confirms that trace clustering
indeed makes it possible to separate different kinds of processes from a process
log by dividing it into several groups in which cases have similar properties.

6 Related Work

There is a growing interest in process mining. Process mining allows for the
discovery of knowledge based on so-called “event logs”, i.e., a log recording the
execution of activities in some business processes [2]. Recently many techniques
and tools for process mining have been developed [2]. The mainstream of pro-
cess mining is to discover process models from process logs. It aims at creating a
process model that best describes the set of process instances. To check whether
the modeled behavior matches the observed behavior, the research on confor-
mance checking has been performed. The concept of conformance and several
measures are proposed in [10, 4]. Many case studies have been performed to
show the applicability of process mining, e.g., [1]. There are some approaches to
handle complex process models from real-life process logs, Günther and van der
Aalst [5] proposed the fuzzy mining technique that allows for simplifying process
models highlighting important flows. Greco et al. [4] used trace clustering to dis-
cover expressive process models. They only used activities and their transitions
to make clusters. However, in our approach, we generate profiles considering
several perspectives such as control-flow, organization, data, etc. Thus, it is pos-
sible to derive clusters based on not only activities and their transitions, but also

Fig. 4. Trace clustering result

Trace Clustering in Process Mining 11

(a) process model for cluster (1,2) (b) process model for cluster (3,1)

Fig. 5. Process models for the clusters (1,2) and (3,1): (a) turns out to be the diagnosis
process and (b) turns out to be the treatment process

originators, data, performance, etc. Moreover, unlike [4] we can also influence
the attributes used for clustering, thus making the results more intuitive.

The clustering methods [3] we used in this paper are very popular in data
mining area. Such data mining techniques have been widely applied in various
domains, but their application in process mining (i.e. discovering process models)
has been limited [9, 7].

7 Conclusion

Process mining techniques can deliver valuable, factual insights into how pro-
cesses are being executed in real life. This makes them especially important for
analyzing flexible environments, where actors and even process owners are often
unaware of how exactly the process is structured. In such domains, however, pro-
cess mining algorithms tend to generate complex, unstructured process models,
which are hard to understand, and thus of limited value. One reason for these
problems is diversity, i.e. processes which can generate a set of cases that are
structured very differently.

In this paper, we have presented a generic methodology for trace clustering,
which can effectively resolve diversity-related problems, by dividing the log into
smaller, more homogeneous subsets of traces. We have introduced the concept
of trace profiles, which are a suitable means for characterizing and comparing
traces. Based on these profiles, any clustering algorithm can be employed for
the actual partitioning of the log. We demonstrated the applicability of our
approach with a real process log. Our approach has been fully implemented in the

12 M. Song et al.

context of the ProM framework, and can be used as a generic log pre-processing
operation. Since trace clustering operates on the event log level, it can be used
to improve the results of any process mining algorithm. It is noteworthy that
both our approach and implementation are straightforward to extend, e.g. by
adding domain-specific profiles or further clustering algorithms.

Acknowledgements

This research is supported by EIT, NWO-EW, the Technology Foundation STW,
and the SUPER project (FP6). Moreover, we would like to thank the many
people involved in the development of ProM.

References

1. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

2. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

3. R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley-Interscience,
New York, NY, USA, 2000.

4. G. Greco, A. Guzzo, and L. Pontieri. Discovering Expressive Process Models by
Clustering Log Traces. IEEE Transactions on Knowledge and Data Engineering,
18(8):1010–1027, 2006.

5. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining–Adaptive Process Sim-
plification Based on Multi-Perspective Metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 328–343.
Springer-Verlag, Berlin, 2007.

6. R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System Tech
Journal, 9:147–160, 1950.

7. C. Li, M. Reichert, and A. Wombacher. Discovering Process Reference Models
from Process Variants Using Clustering Techniques. Technical Report TR-CTIT-
08-30 Centre for Telematics and Information Technology, University of Twente,
Enschede, 2008.

8. R.S. Mans, M.H. Schonenberg, M. Song, W.M.P. van der Aalst, and P.J.M. Bakker.
Process Mining in Health Care. In L. Azevedo and A.R. Londral, editors, Interna-
tional Conference on Health Informatics (HEALTHINF’08), pages 118–125. IEEE
Computer Society, January 2008.

9. A.K.A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University
of Technology, Eindhoven, 2006.

10. A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

11. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley Longman Publishing Co., Inc, Boston, MA, USA, 2005.

12. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

