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Abstract. Several methods for enterprise systems analysis rely on flow-oriented representations of

business operations, otherwise known as business process models. The Business Process Modeling

Notation (BPMN) is a standard for capturing such models. BPMN models facilitate communica-

tion between domain experts and analysts and provide input to software development projects.

Meanwhile, there is an emergence of methods for enterprise software development that rely on

detailed process definitions that are executed by process engines. These process definitions re-

fine their counterpart BPMN models by introducing data manipulation, application binding and

other implementation details. The de facto standard for defining executable processes is the Busi-

ness Process Execution Language (BPEL). Accordingly, a standards-based method for developing

process-oriented systems is to start with BPMN models and to translate these models into BPEL

definitions for subsequent refinement. However, instrumenting this method is challenging because

BPMN models and BPEL definitions are structurally very different. Existing techniques for trans-

lating BPMN to BPEL only work for limited classes of BPMN models. This paper proposes a

translation technique that does not impose structural restrictions on the source BPMN model.

At the same time, the technique emphasizes the generation of readable (block-structured) BPEL

code. An empirical evaluation conducted over a large collection of process models shows that the

resulting BPEL definitions are largely block-structured. Beyond its direct relevance in the con-

text of BPMN and BPEL, the technique presented in this paper addresses issues that arise when

translating from graph-oriented to block-structure flow definition languages.
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1 Introduction

Business Process Management (BPM) is an established discipline for building, maintaining and

evolving large enterprise systems on the basis of business process models [6]. A business process
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model is a flow-oriented representation of a set of work practices aimed at achieving a goal,

such as processing a customer request or complaint, satisfying a regulatory requirement, etc.

The Business Process Modeling Notation (BPMN) [27] is gaining adoption as a standard

notation for capturing business processes [34]. The main purpose of business process models

generally, and BPMN models in particular, is to facilitate communication between domain

analysts and to support decision-making based on techniques such as cost analysis, scenario

analysis and simulation [34,36]. However, BPMN models are also used as a basis for specifying

software system requirements, and in such cases, they are handed over to software developers.

In this setting, the motivating question of this paper is: How can developers fully exploit BPMN

process models produced by domain analysts?

Meanwhile, the Business Process Execution Language (BPEL) [15] is emerging as a de facto

standard for implementing business processes on top of Web service technology. More than

a dozen platforms, such as Oracle BPEL, IBM WebSphere, and Microsoft BizTalk, support

the execution of BPEL process definitions (see http://en.wikipedia.org/wiki/BPEL for a

list). BPEL process definitions are more detailed than BPMN ones. For example, they include

elements related to data manipulation, Web service bindings and other implementation aspects

that are not present in their counterpart BPMN models.

In this setting, a standards-based approach to process-oriented systems development is to

take BPMN models as input and to translate these models into templates of BPEL process

definitions for subsequent manipulation by software developers. However, the instrumentation

of this method is hindered by a fundamental mismatch between BPMN and BPEL [35]. A

BPMN model consists of nodes that can be connected through control flow arcs in arbitrary

ways. Meanwhile, BPEL offers block-structured constructs to capture control flow, plus a notion

of “control link” to connect a collection of activities in an acyclic graph. In other words, BPMN

supports arbitrary control-flow structures, whereas BPEL supports only restricted control-flow

structures. As a result, existing mappings between BPMN and BPEL [23,27] impose restrictions

on the structure of the source models. For example, they are restricted to BPMN models such

that every loop has one single entry point and one single exit point and such that each point

where the flow of control branches has a corresponding point where the resulting branches

merge back.

The ensuing problem is to some extent similar to that of translating unstructured flowcharts

into structured ones (or GOTO programs into WHILE programs) [28]. A major difference

though is that process modeling languages include constructs for capturing parallel execu-

tion and constructs for capturing choices driven by the environment (also called event-driven

choices), as opposed to choices driven by data such as those found in flowcharts. It turns out
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that due to these additional features, the class of structured process models is strictly contained

in the class of unstructured process models as discussed in [18]. This raises the question:

Can every BPMN model be translated into a BPEL model?

This paper shows that the answer is yes. However, the resulting translation heavily uses a

construct in BPEL known as “event handler” which serves to encode event-action rules. Specif-

ically, the original BPMN process model is decomposed into a collection of event-action rules

that trigger one another to encode the underlying control flow logic. Arguably, the resulting

BPEL code is not readable and thus difficult to modify and to maintain. For the generated

BPEL code to be readable, the control flow logic should be captured using BPEL’s block-

structured control flow constructs and control links, as opposed to a construct intended for

event handling. But since BPEL’s control flow constructs are syntactically restricted, it is not

always possible to generate BPEL code satisfying these readability criterion. Therefore, the

paper also addresses the question:

Are there classes of BPMN models that can be translated into “readable” BPEL process

definitions, i.e. process definitions in which control flow dependencies in the source model

are not encoded as event handlers?

This paper identifies two such classes of BPMN models. The first one corresponds to the

class of structured process models as defined in [18]. Such models can be mapped onto the

structured control flow constructs of BPEL. The second class corresponds to the class of syn-

chronising process models as defined in [17], which can be mapped onto BPEL control links.

An acyclic BPMN model, or an acyclic fragment of a BPMN model, falls under this class if

it satisfies a number of semantic conditions such as absence of deadlock. We apply Petri net

analysis techniques to statically check these semantic conditions on the source BPMN model.

The paper also shows how the proposed translation techniques can be combined, such that

a technique yielding less readable code is only applied when the other techniques can not,

and only for model fragments of minimal size. The combined translation technique has been

implemented as an open-source tool, namely BPMN2BPEL.

It is beyond the scope of this paper to discuss every detail of a translation from BPMN to

BPEL. Many of these details, such as how to map tasks and events into BPEL, are discussed

in an appendix of the BPMN standard specification [27]. Instead, this paper concentrates on

open issues arising from the mismatch between BPMN and BPEL discussed above.

Beyond its direct relevance in the context of BPMN and BPEL, this paper address difficult

problems that arise generally when translating between flow-based languages with parallelism.
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In particular, the main results are still largely applicable to automate a mapping from UML

Activity Diagrams [26] to BPEL.

The rest of the paper is structured as follows: Section 2 overviews BPMN and BPEL,

and defines an abstract syntax for each of them. Section 3 presents three approaches which

comprise an overall algorithm for translating BPMN into BPEL. The translation algorithm is

then illustrated through two examples in Section 4. Section 5 discusses the tool support for

our translation approach and uses a set of 568 business process models from practice to test

whether the approach really yields readable BPEL models. Finally, Section 6 compares the

proposal with related work while Section 7 concludes and outlines future work. In addition, a

formal semantics of BPMN in terms of Petri nets is given in Appendix A.

2 Background: BPMN and BPEL

2.1 Business Process Execution Language for Web Services (BPEL)

BPEL [15] combines features found in classical imperative programming languages with con-

structs for capturing concurrent execution and constructs specific to Web service implementa-

tion. A BPEL process definition consists of a set of inter-related activities. An activity is either

a basic or a structured activity. Basic activities correspond to atomic actions such as: invoke,

invoking an operation on a Web service; receive, waiting for a message from a partner; empty ,

doing nothing; etc. To enable the presentation of complex structures the following structured

activities are defined: sequence, for defining an execution order; flow , for parallel routing; if ,

for conditional routing; pick , for race conditions based on timing or external triggers; while

and repeatUntil , for structured looping; and scope, for grouping activities into blocks to which

event, fault and compensation handlers may be attached.

An event handler is an event-action rule associated with a scope. It is enabled while the

scope is under execution and may execute concurrently with the scope’s main activity. When

an occurrence of the event (a message receipt or a timeout) associated with an enabled event

handler is registered, the body of the handler is executed. The completion of the scope as

a whole is delayed until all active event handlers have completed. Fault and compensation

handlers are designed for exception handling and are not used further in this paper.

In addition to these block-structured constructs, BPEL provides a construct known as con-

trol links which, together with the associated notions of join condition and transition condition,

allow the definition of directed acyclic graphs of activities. A control link between activities A

and B indicates that B cannot start before A has either completed or has been skipped. More-

over, B can only be executed if its associated join condition evaluates to true, otherwise B is
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skipped. This join condition is expressed in terms of the tokens carried by control links leading

to B. These tokens may take either a positive (true) or a negative (false) value. An activity

X propagates a token with a positive value along an outgoing link L iff X was executed (as

opposed to being skipped) and the transition condition associated to L evaluates to true. Tran-

sition conditions are boolean expressions over the process variables (just like the conditions in

an if activity). The process by which positive and negative tokens are propagated along control

links, causing activities to be executed or skipped, is called dead path elimination. A control

link is always defined inside a flow activity. In the definition of our mapping, it is convenient to

differentiate between flow activities that have control links attached to them, from those that

do not. Accordingly, we use the term link-based flow (or link-flow for short) to refer to a flow

activity that has at least one control link directly attached to it.

Below is an abstract syntax of BPEL used in the rest of the paper. Since BPEL process

definitions consist primarily of nested activities, we choose to represent this abstract syntax

using a functional notation. Note that we use a superscript seq for specifying an ordered list of

elements, and set for a normal set of elements. A BPEL process is a (top-level) scope activity.

Definition 1 (Abstract syntax of BPEL).

event = msgReceipt: messageType | alarm: timeSpec

cond = bool expression

activity = invoke: messageType | empty |

receive: messageType | reply | wait | assign | exit |

sequence: activityseq |

if: (cond × activity)seq | pick: (event × activity)set |

while: cond × activity | repeatUntil: cond × activity |

flow: activityset | link-flow: linksInfo × activityset |

scope: (event × activity)set × activity

linksInfo = Struct(Links: (activity × activity)set ,

TransCond: (link × cond)set ,

JoinCond: (activity × cond)set)

The abstract syntax introduces an abstract datatype for BPEL activities and defines a

number of constructors for this type (one per type of activity). Some of these constructors

are parameterised. For example, the sequence constructor takes as parameter a sequence of

activities. The abstract syntax does not cover all constructs, but only those that are used in the

rest of the paper. Also, the syntax does not capture some syntactic constraints such as the fact

that the set of control links in a process definition can not form cycles. A more comprehensive

abstract syntax for BPEL can be found in [31].
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2.2 Business Process modeling Notation (BPMN)

BPMN [27] essentially provides a graphical notation for business process modeling, with an

emphasis on control-flow. It defines a Business Process Diagram (BPD), which is a kind of

flowchart incorporating constructs tailored to business process modeling, such as AND-split,

AND-join, XOR-split, XOR-join, and deferred (event-based) choice.

A BPD is made up of BPMN elements as shown in Figure 1. There are objects and sequence

flows. A sequence flow links two objects in a BPD and shows the control flow relation (i.e.

execution order). An object can be an event , a task or a gateway . An event may signal the

start of a process (start event), the end of a process (end event), a message that arrives, or a

specific time-date being reached during a process (intermediate message/timer event). A task

is an atomic activity and stands for work to be performed within a process. There are seven

task types: service, receive, send , user , script , manual , and reference. For example, a receive

task is used when the process waits for a message to arrive from an external partner. Also, a

task may be none of the above types, which we refer to as a blank task. A gateway is a routing

construct used to control the divergence and convergence of sequence flow. There are: parallel

fork gateways for creating concurrent sequence flows, parallel join gateways for synchronizing

concurrent sequence flows, data/event-based XOR decision gateways for selecting one out of

a set of mutually exclusive alternative sequence flows where the choice is based on either

the process data (data-based) or external events (event-based), and XOR merge gateways for

joining a set of mutually exclusive alternative sequence flows into one sequence flow. An event-

based XOR decision gateway must be followed by either receive tasks or intermediate events

to capture race conditions based on timing or external triggers (e.g. the receipt of a message

from an external partner). This restriction is not imposed for data-based decision gateways.

On the other hand, the outgoing flows of a data-based XOR decision gateway are labelled with

conditional expressions, except for one of them which acts as a default flow (depicted by an

arrow with a backslash). The default flow is taken if the conditions associated with all other

outgoing conditional flows evaluate to false at run time. This ensures that exactly one outgoing

flow is taken.

The BPMN elements shown in Figure 1 cover what we call the core subset of BPMN. BPMN

defines several other control-flow constructs besides these “core” ones. These include: (1) task

looping, (2) multi-instance task, (3) exception flow, (4) sub-process invocation, (5) inclusive

OR decision gateway (also called OR-split), and (6) inclusive OR merge gateway (also called

OR-join). The mapping of the first five of these “non-core” constructs onto BPEL does not

entail additional challenges. Task looping, which corresponds to structured loops can be easily
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Figure 1. A set of BPMN elements covering the fundamental control flows in BPMN.

mapped to BPEL “while” activities. Similarly, a multi-instance task can be directly mapped

to a “parallel foreach” activity. Sub-processes can be mapped onto separate BPEL processes

which call one another. Any OR-split gateway can be expanded into a combination of AND-

split and XOR-split gateways [2]. Hence, it does not require a separate mapping rule. On the

other hand, the mapping of OR-joins requires a special treatment that falls outside the scope

of this work (see Section 7). In the rest of the paper we focus on BPDs composed only of core

constructs as per the following definition.

Definition 2 (Core BPD). A core BPD is a tuple BPD = (O, T , E, G, T R, ES , EI , EE ,

EI
M , EI

T , GF , GJ , GD , GM , GV , F , Cond) where:

– O is a set of objects which is divided into disjoint sets of tasks T , events E, and gateways G,

– T R ⊆ T is a set of receive tasks,

– E is divided into disjoint sets of start events ES , intermediate events EI , and end events EE ,

– EI is divided into disjoint sets of intermediate message events EI
M and timer events EI

T ,

– G is divided into disjoint sets of parallel fork gateways GF , join gateways GJ , data-based XOR

decision gateways GD , event-based decision gateways GV , and XOR merge gateways GM ,

– F ⊆ O ×O is the control flow relation, i.e., a set of sequence flows connecting objects,

– Cond: F 9 B is a function mapping sequence flows emanating from data-based XOR deci-

sion gateways to conditions,1 i.e. dom(Cond) = F ∩ (GD ×O).

The relation F defines a directed graph with nodes (objects) O and arcs (sequence flows)

F . For any given node x ∈ O, input nodes of x are given by in(x ) = {y ∈ O | yFx} and output

nodes of x are given by out(x ) = {y ∈ O | xFy}.

1 B is the set of all possible conditions. A condition is a boolean function operating over a set of propositional

variables. Note that we abstract from these variables in the control flow definition. We simply assume that a

condition evaluates to true or false, which determines whether or not the associated sequence flow is taken

during the process execution.
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Definition 2 allows for graphs which are unconnected, not having start or end events, con-

taining objects without any input and output, etc. Therefore we need to restrict the definition

to well-formed core BPDs.

Definition 3 (Well-formed core BPD). A core BPD as defined in Definition 2 is well

formed if relation F satisfies the following requirements:

– ∀ s ∈ ES , in(s) = ∅ ∧ | out(s) | = 1, i.e. start events have an indegree of zero and an

outdegree of one,

– ∀ e ∈ EE , out(e) = ∅ ∧ | in(e) | = 1, i.e., end events have an outdegree of zero and an

indegree of one,

– ∀ x ∈ T ∪ EI , | in(x ) | = 1 and | out(x ) | = 1, i.e. tasks and intermediate events have an

indegree of one and an outdegree of one,

– ∀ g ∈ GF ∪ GD ∪ GV : | in(g) | = 1 ∧ | out(g) | > 1, i.e. fork and both types of decision

gateways have an indegree of one and an outdegree of more than one,

– ∀ g ∈ GJ ∪GM , | out(g) | = 1 ∧ | in(g) | > 1, i.e. join and merge gateways have an outdegree

of one and an indegree of more than one,

– ∀ g ∈ GV , out(g) ⊆ EI ∪ T R, i.e. event-based XOR decision gateways must be followed by

intermediate events or receive tasks,

– ∀ g ∈ GD , ∃ an order < which is a strict total order over the set of outgoing flows of g (i.e.

{g}×out(g)), and for x ∈ out(g) such that ¬ ∃f ∈{g}×out(g)(f<(g , x )), (g , x ) is the default

flow among all the outgoing flows from g,

– ∀ x ∈ O, ∃ s ∈ ES , ∃ e ∈ EE , sF∗x ∧ xF∗e,2 i.e. every object is on a path from a start

event to an end event.

In the remainder we only consider well-formed core BPDs, and will use a simplified notation

BPD = (O, F , Cond) for their representation. Moreover, we assume that both ES and EE are

singletons, i.e. ES = {s} and EE = {e}.3

3 Mapping BPMN onto BPEL

This section presents a mapping from BPMN models to BPEL processes. As mentioned before,

the basic idea is to map BPD components onto suitable “BPEL blocks” and thereby to incre-

mentally transform a “componentized” BPD into a block-structured BPEL process. We apply
2 F∗ is the reflexive transitive closure of F , i.e. xF∗y if there is a path from x to y and by definition xF∗x .
3 A BPD with multiple start events can be transformed into a BPD with a unique start event by using an

event-based XOR decision gateway. A BPD with multiple end events can be transformed into a BPD with a

unique end event by using an OR-join gateway which is however not covered in this paper.
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three different approaches to the mapping of components.4 A component may be well-structured

so that it can be directly mapped onto BPEL structured activities. If a component is not well-

structured but is acyclic, it may be possible to map the component to control link-based BPEL

code. Otherwise, if a component is neither well-structured nor can be translated using control

links (e.g. a component that contains unstructured cycles), the mapping of the component will

rely on BPEL event handlers via the usage of event-action rules (this will always work but the

resulting BPEL code will be less readable). We identify the above categories of components

and introduce the corresponding translation approaches one by one. Finally, we propose the

algorithm for mapping an entire BPD onto a BPEL process.

3.1 Decomposing a BPD into Components

We would like to achieve two goals when mapping BPMN onto BPEL. One is to define an

algorithm which allows us to translate each well-formed core BPD into a valid BPEL process,

the other is to generate readable and compact BPEL code. To map a BPD onto (readable)

BPEL code, we need to transform a graph structure into a block structure. For this purpose,

we decompose a BPD into components. A component is a subset of the BPD that has one entry

point and one exit point. We then try to map components onto suitable “BPEL blocks”. For

example, a component holding a purely sequential structure is mapped onto a BPEL sequence

construct while a component holding a parallel structure is mapped onto a flow construct.

Below, we formalise the notion of components in a BPD. To facilitate the definitions, we

specify an auxiliary function elt over a domain of singletons, i.e., if X ={x}, then elt(X )=x .

Definition 4 (Component). Let BPD = (O, F , Cond) be a well-formed core BPD. C = (Oc,

Fc, Condc) is a component of BPD if and only if:

– Oc ⊆ O\(ES ∪ EE ), i.e., a component does not have any start or end event,

– | (
⋃

x∈Oc
in(x ))\Oc | = 1, i.e., there is a single entry point outside the component,5 which

can be denoted as entry(C) = elt((
⋃

x∈Oc
in(x ))\Oc),

– | (
⋃

x∈Oc
out(x ))\Oc | = 1, i.e., there is a single exit point outside the component, which

can be denoted as exit(C) = elt((
⋃

x∈Oc
out(x ))\Oc),

– | out(entry(C)) ∩ Oc | = 1, i.e., there is a unique source object ic = elt(out(entry(C)) ∩ Oc),

– | in(exit(C)) ∩ Oc | = 1, i.e., there is a unique sink object oc = elt(in(exit(C)) ∩ Oc),

– ic 6= oc,
4 It should be noted that the first two approaches are inspired by the mapping from Petri nets to BPEL as

described in [4].
5 Note that in(x ) is not defined with respect to the component but refers to the whole BPD. This also applies

to out(x ).
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– Fc = F ∩ (Oc ×Oc),

– Condc = Cond[Fc ], i.e. the Cond function where the domain is restricted to Fc.

Note that all event objects in a component are intermediate events. Also, a component con-

tains at least two objects: the source object and the sink object. A BPD without any component,

which is referred to as a trivial BPD , has only a single task or intermediate event between the

start event and the end event. Translating a trivial BPD into BPEL is straightforward and will

be covered by the final translation algorithm (see Section 3.5).

The decomposition of a BPD helps to define an iterative approach which allows us to

incrementally transform a “componentized” BPD into a block-structured BPEL process. Below,

we define the function Fold that replaces a component by a single (blank) task object in a BPD.

This function can be used to iteratively reduce a componentized BPD until no component is

left in the BPD. The function will play a crucial role in the final translation algorithm where

we incrementally replace BPD components by BPEL constructs.

Definition 5 (Fold). Let BPD = (O,F ,Cond) be a well-formed core BPD and C = (Oc ,Fc ,Condc)

be a component of BPD. Function Fold replaces C in BPD by a task object tc 6∈ O, i.e.

Fold(BPD, C, tc) = (O′, F ′, Cond′) with:

– O′ = (O\Oc) ∪ {tc},

– T ′ = (T \Oc) ∪ {tc} is the set of tasks in Fold(BPD, C, tc),

– T R′ = (T R\Oc) is the set of receive tasks in Fold(BPD, C, tc),

– F ′ = (F ∩ ((O\Oc)× (O\Oc))) ∪ {(entry(C), tc), (tc , exit(C))},

– Cond ′ =

Cond[F ′] if entry(C) 6∈ GD

Cond[F ′] ∪ {((entry(C), tc),Cond(entry(C), ic))} otherwise

3.2 Structured Activity-based Translation

As mentioned before, one of our goals for mapping BPMN onto BPEL is to generate readable

BPEL code. For this purpose, BPEL structured activities comprising sequence, flow, if, pick,

while and repeatUntil, have the first preference if the corresponding structures appear in the

BPD. Components that have a direct and intuitive correspondence to one of these six structured

constructs are considered as well-structured components (WSCs). Below, we classify different

types of WSCs resembling these six structured constructs.

Definition 6 (Well-structured components). Let BPD = (O,F ,Cond) be a well-formed

core BPD and C = (Oc, Fc, Condc) be a component of BPD. ic is the source object of C and

oc is the sink object of C. The following components are WSCs:

10



(a) C is a SEQUENCE-component if Oc ⊆ T ∪ EI (i.e. ∀ x ∈ Oc, |in(x )|=|out(x )| = 1) and

entry(C) 6∈ GV . C is a maximal SEQUENCE-component if there is no other SEQUENCE-

component C′ such that Oc ⊂ Oc′ where Oc′ is the set of objects in C′,

(b) C is a FLOW-component if

- ic ∈ GF ∧ oc ∈ GJ ,

- Oc ⊆ T ∪ EI ∪ {ic , oc},

- ∀ x ∈ Oc\{ic , oc}, in(x ) = {ic} ∧ out(x ) = {oc}.

(c) C is a IF-component if

- ic ∈ GD ∧ oc ∈ GM ,

- Oc ⊆ T ∪ EI ∪ {ic , oc},

- ∀ x ∈ Oc\{ic , oc}, in(x ) = {ic} ∧ out(x ) = {oc}.

(d) C is a PICK-component if

- ic ∈ GV ∧ oc ∈ GM ,

- Oc ⊆ T ∪ EI ∪ {ic , oc},

- ∀ x ∈ Oc\({ic , oc} ∪ out(ic)), in(x ) ⊆ out(ic) ∧ out(x ) = {oc}.6

(e) C is a WHILE-component if

- ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,

- Oc = {ic , oc , x},

- Fc = {(ic , oc), (oc , x ), (x , ic)}.

(f ) C is a REPEAT-component if

- ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,

- Oc = {ic , oc , x},

- Fc = {(ic , x ), (x , oc), (oc , ic)}.

(g) C is a REPEAT+WHILE-component if

- ic ∈ GM ∧ oc ∈ GD ∧ x1, x2 ∈ T ∪ EI ∧ x1 6= x2,

- Oc = {ic , oc , x1, x2},

- Fc = {(ic , x1), (x1, oc), (oc , x2), (x2, ic)}.

Figure 2 illustrates how to map each of the above WSCs onto the corresponding BPEL

structured activities. Using function Fold in Definition 5, a component C is replaced by a single

task tc attached with the corresponding BPEL translation of C. Note that the BPEL code for

the mapping of each task ti (i = 1, ...,n) is denoted as Mapping(ti). Based on the nature of these

task objects they can be mapped onto the proper types of BPEL basic activities. For example, a
6 Note that out(ic) ⊆ T R∪EI is the set of receive tasks and intermediate events following the event-based XOR

decision gateway ic , i.e. for any x ∈ T R ∪ EI : | in(x ) | = | out(x ) | = 1. Moreover, between the merge gateway

oc and each of the objects in out(ic) there is at most one task or event object.
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service task is mapped onto an invoke activity, a receive task (like tr in Figure 2(d)) is mapped

onto a receive activity, and a user task may be mapped onto an invoke activity followed by a

receive activity. Since the goal of this paper is to define an approach for translating BPDs with

arbitrary topologies to valid BPEL processes, we do not discuss further how to map simple tasks

in BPMN onto BPEL. The interested reader may refer to [27] for some guidelines on mapping

BPMN tasks into BPEL activities. Finally, the task ti may result from the folding of a previous

component C′, in which case, Mapping(ti) is the code for the mapping of component C′.

With the examples shown in Figure 2, we now generalise the mapping of a given WSC C

using the BPEL syntax defined in Definition 1, as follows:

– A SEQUENCE-component is mapped to sequence([Mapping(x ) | x ← [Oc ]<]). The notation

[Oc ]< represents the (sequentially) ordered list of objects in C, and x ← [Oc ]< indicates

that each object x is taken in the order as they appear in the list [Oc ]<;

– A FLOW-component to flow({Mapping(x ) | x ∈ Tc ∪ Ec});

– An IF-component to if([(Condc(ic , x ),Mapping(x )) | x ← [out(ic)]<]). The source object

ic is the data-based decision gateway in the component, and [out(ic)]< captures the order

of the outgoing (conditional) flows of the gateway so that the conditional branches in the

resulting if construct are evaluated in the same order;

– In a PICK-component, an event-based decision gateway must be followed by receive tasks

or intermediate message or timer events7. We use function Map2Event to capture the

fact that the above receive task or intermediate message will be mapped to a BPEL

msgReceipt event (<onMessage> in BPEL concrete syntax) and the timer event to a BPEL

alarm event (<onAlarm>). Therefore, the mapping of a PICK-component can be written as

pick({(Map2Event(x ),Mapping(succ(x ))) | x ∈ out(ic)}). Note that for any object x that

has an outdegree of one, succ(x ) refers to the only output object of x ;

– A REPEAT-component to repeatUntil(Condc(oc , exit(C)),Mapping(succ(ic)));

– A WHILE-component is mapped to a while construct of while(Condc(oc , x ),Mapping(x ))

where x = elt(in(ic) ∩ out(oc)); and

– A REPEAT+WHILE-component to a while construct of the above being nested within a

construct of repeatUntil(Condc(oc , exit(C)), sequence([Mapping(succ(ic)),while])).

3.3 Control Link-based Translation

Since BPMN is a graph-oriented language in which nodes can be connected almost arbitrarily,

a BPD may contain non-well-structured components, i.e. components that do not match any of
7 For this reason, a sequence-component cannot be preceded by an event-based XOR decision gateway (as

defined by entry(C) 6∈ GV in Definition 6(a)).
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Figure 2. Mapping a WSC C onto a BPEL structured activity and folding C into a single task object tc attached

with the BPEL code for mapping.
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the “patterns” as defined in Definition 6. Recall that BPEL provides a non-structured construct

called control link, which allows for the definition of directed acyclic graphs and thus can be used

for the translation of a large subset of acyclic BPD components. As mentioned in Section 2.1,

the term “link-based flow construct” is used to refer to a flow activity in which all sub-activities

are connected through links to form directed acyclic graphs.

It is important to emphasize two issues related to link semantics. First, the use of control

links may hide errors such as deadlocks. This means that the designer makes a modeling error

that in other languages would result in a deadlock, however, given the dead-path elimination

semantics of BPEL the error is masked. As an example, the use of control links can lead to

models where one or several actions are “unreachable”, i.e., these actions will never be executed.

The interested reader may refer to [31] for examples of such undesirable models. Second, since

an activity cannot “start until the status of all its incoming links has been determined and the,

implicit or explicit, join condition has been evaluated” (Section 11.6.2 of [15]), each execution of

an activity can trigger at most one execution of any subsequent activity to which it is connected

via a control link.

Consider, as shown in Figure 3, the two acyclic components that are not well-structured

(in the sense of Definition 6). The one in (a) can be mapped onto a link-based flow construct

without any problem.8 However, for the one shown in (b), if condition b does not hold at the

data-based decision gateway D2, task T4 will never be performed, causing the component to

deadlock at the join gateway J4 (which requires that both tasks T3 and T4 are executed).

Also, task T3 will be executed twice, a behavior that cannot be represented using control links

which only trigger the target activity at most once.

In Petri net terminology, a component like the one shown in Figure 3 cannot be qualified as

being “sound” and “safe”. Intuitively, if a BPD component is sound, it is free from deadlocks

and dead tasks (i.e. tasks that can never be executed), and once the component is executed,

the execution always starts at the source object and will always reach the sink object. If a

BPD component is safe, it implies that any object in the component that is already activated

cannot receive another activation signal unless the current activation of the object is completed.

Further discussions on soundness and safeness properties within the context of Petri nets are

given in Appendix A.3.

8 A model with similar topology as Figure 3(a) has been used in the proof of the existence of “arbitrary,

well-behaved, workflow models that cannot be modelled as structured workflow models” on page 438 of [18].
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Figure 3. Two non-well-structured acyclic components: (a) can be mapped onto a link-based flow construct,

whereas (b) is not sound and safe and therefore cannot be translated.

3.3.1 Components for Control Link-based Translation

We use the term Synchronising Process Component (SPC) to refer to an acyclic component

that is sound and safe and is free from event-based gateways (see Definition 7). Each SPC can

be mapped to a link-based flow construct preserving the same semantics. The name SPC is

inspired by the concept of synchronising process models, in which “an activity can receive two

types of tokens, a true token or a false token. Receipt of a true token enables the activity, while

receipt of a false token leads to the activity being skipped and the token to be propagated” [17].

This way the semantics of control links are well captured and thus the activities can be viewed

as being connected via control links.

Definition 7 (Synchronising process component). Let C = (Oc ,Fc ,Condc) be a compo-

nent of a well-formed core BPD. C is an SPC if it satisfies the following three conditions:

(a) There are no cycles (i.e., ∀ x ∈ Oc, (x , x ) 6∈ F∗c);

(b) There are no event-based gateways (i.e., if GV denotes the set of event-based gateways in

the BPD, then Oc ∩ GV = ∅); and

(c) C is sound and safe (this can be determined based on a Petri net semantics of C).

It is worth noting that some WSCs such as SEQUENCE-component, FLOW-component and

IF-component are also SPCs. When mapping a BPD onto BPEL we will always try to use the

structured activity-based translation described in Section 3.2, until there are no WSCs left in

the BPD. Therefore, the control link-based translation only applies to a subset of SPCs that

are not well-structured. In addition, we will always try to detect a minimal SPC for translation.

An SPC C = (Oc ,Fc ,Condc) is minimal if there is no other component C′ = (Oc′ ,Fc′ ,Condc′)

such that Oc′ ⊂ Oc . It is easy to discover that such a component always starts with a fork or

data-based decision gateway and ends with a join or merge gateway, given the fact that there

are no WSCs left (they have been iteratively removed).
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3.3.2 Control Link-based Translation Algorithm

The basic idea behind this algorithm is to translate the control-flow relation between all task

and event objects within an SPC into a set of control links. Before translation, it is necessary to

pre-process the component using the following two steps. First, as aforementioned, a minimal

SPC always has a gateway as its source or sink object. Since control links connects only task

or event objects, it is necessary to insert an empty task (i.e. a task of doing nothing) before the

source gateway object of the component, and to insert an empty task after the sink gateway

object of the component. We call the resulting component a wrapped component .

Definition 8 (Wrapped component). Let C = (Oc ,Fc ,Condc) be a component of a well-

formed core BPD. By inserting an empty task ah before the source object ic of C and an

empty task at after the sink object oc of C, we obtain the wrapped component of C as being the

component Cw = (Ow ,Fw ,Condw ) where:

– Ow = Oc ∪ {ah , at},

– Fw = Fc ∪ {(ah , ic), (oc , at)},

– Condw = Condc

Next, the BPMN specification states that the conditional branches of a data-based decision

gateway “should be evaluated in a specific order” (Section 9.5.2 on page 72 of [27]). In more

detail, “the first one that evaluates as TRUE will determine the Sequence Flow that will

be taken. Since the behavior of this Gateway is exclusive, any other conditions that may

actually be TRUE will be ignored”. Also, the default branch, which is always the last branch

considered, will be chosen if none of the other branches evaluate to true (see Definition 3).

When using control links to replace a data-based decision gateway, we need to ensure that the

above semantics of the gateway are preserved. This can be done by refining the conditions on

each of the outgoing flows of a data-based decision gateway. We use {f1, ..., fn} to denote the

set of outgoing flows from a data-based decision gateway and use Cond(fi) (16i6n) to denote

the condition on flow fi . Assume that Cond(fi) is evaluated in the order from f1 to fn , and fn

is the default branch. The refined condition on flow fi is given by

RefinedCond(fi) =


Cond(f1) i = 1

¬(Cond(f1) ∨ ... ∨ Cond(fi−1)) ∧ Cond(fi) 1<i<n

¬(Cond(f1) ∨ ... ∨ Cond(fn−1)) i = n

It is easy to prove that the above pre-processing will not change the behavior of an SPC.

We now derive from the structure of a wrapped SPC, the set of control links used to connect

all tasks and events in the component. First, we would like to capture the control flow logic
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between every two task or event objects that are directly or indirectly (via gateways) connected

within the component. To this end, we define two functions as shown in Figure 4. One named

PreTEC-Sets (lines 1-7), takes an object x and generates the set of sets of pairs each containing

a preceding task or event and a boolean expression for x . If any data-based decision gateways

are involved, the boolean expression is used to capture the conditions specified on the outgoing

flows of these gateways; otherwise, it has a boolean value of TRUE by default. Also, for any object

x that has an indegree of one, pred(x) refers to the only input object of x .

Except for the source object (line 4), PreTEC-Sets relies on the second function named

PreTEC-SetsFlow (lines 9-30) to compute the results for all the other objects in the component.

The function PreTEC-SetsFlow produces the same type of output as PreTEC-Sets but takes as

input a flow rather than an object. It operates based on the type of the source object of the flow.

If the flow’s source is a task or an event (line 21), a set is returned containing a singleton set of

a pair comprising that task or event and a default boolean value of TRUE since there is no data-

based decision gateway on the flow. Otherwise, if the flow’s source is a gateway, the algorithm

keeps working backwards through the component, traversing other gateways, until reaching a

task or an event. In particular, if a flow originates from a data-based decision gateway (line 14),

the (refined) condition on the flow is added via conjunction to each of boolean expressions in

the resulting set. This captures the fact that the condition specified on an outgoing flow of

a data-based decision gateway is part of each trigger that enables the corresponding object

following the gateway. In the case of a flow originating from a merge or a join gateway, the

function is recursively called for each of the flows leading to this gateway. For a merge gateway

(line 23), the union of the resulting sets captures the fact that when any of these flows is taken,

the gateway may be executed. For a join gateway (line 24), the combination9 of the resulting

sets captures the fact that when all of these flows are taken, the gateway may be executed.

Based on the above, Figure 5 defines an algorithm which derives from a wrapped SPC Cw ,

the set of control links for connecting the tasks and events in Cw , the set of transition condi-

tions associated with each of the links, and the set of join conditions associated with each of

the tasks and events. The algorithm consists of four functions. The main function Map2Links

(lines 1-9) returns the final result by calling three other functions, namely GetLinks (lines 11-14),

GetTransCond (lines 16-24), and GetJoinCond (lines 26-30). A control link is defined as a pair

comprising the source and the target objects. A transition condition associated with a control

link is a boolean expression that functions as a guard on the link. For a given task or event x ,

the task or event object in each of the pairs (i.e. (taskevent, boolexpr)) in PreTEC-Sets(x ) rep-

9 This is performed by first calculating the cartesian product of a number of n sets and then converting each

element in the resulting set from a tuple of cardinality n to a set of union of the n elements in the tuple.
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————————————————————————————–
1: function PreTEC-Sets(x ∈ Tw ∪ Ew : a task/event object in Cw )

2: : Set of (Set of ((Tw ∪ Ew )×Bool-Expr))

3: begin

4: if x = ah // the source object of Cw
5: return ∅
6: else return PreTEC-SetsFlow(pred(x ), x )

7: end

8:
9: function PreTEC-SetsFlow((x , y) ∈ Fw : a flow relation in Cw )

10: : Set of (Set of ((Tw ∪ Ew )×Bool-Expr))

11: begin

12: case x ∈ Tw ∪ Ew : return {{(x , TRUE)}}
13: case x ∈ GF

w : return PreTEC-SetsFlow(pred(x ), x )

14: case x ∈ GD
w :

15: let cx ,y = RefinedCond(x , y);

16: let {{(a1, cond1), ... , (ai , condi)},
17: let{ . . .

18: let{ {(ai+j , condi+j ), ... , (an , condn)}} =

19: let{ PreTEC-SetsFlow(pred(x ), x )

20: return {{(a1, cond1 ∧ cx ,y), ... , (ai , condi ∧ cx ,y)},
21: return{ . . .

22: return{ {(ai+j , condi+j ∧ cx ,y), ... , (an , condn ∧ cx ,y)}}
23: case x ∈ GM

w : return
S

z∈in(x) PreTEC-SetsFlow(z , x )

24: case x ∈ GJ
w :

25: let {(s1,1, ... , s1,n), ... , (sm,1, ... , sm,n)} =

26: let PreTEC-SetsFlow(z1, x )× ...× PreTEC-SetsFlow(zn , x )

27: where {z1, ... , zn} = in(x )

28: return {s1,1 ∪ ... ∪ s1,n , ... , sm,1 ∪ ... ∪ sm,n}
29: end case

30: end
————————————————————————————–

Figure 4. Algorithm for deriving the set of preceding tasks or events with conditions sets for any object in a

wrapped SPC Cw= (Ow ,Fw , Condw ).

resents the source object of a link; and for this link, its transition condition can be derived as

a disjunction of all the boolean expressions in the pairs that share the same task or event as

their first element. Next, a join condition associated with a task or event object is specified as

a boolean expression over the linkstatus of each of the links leading to that object. For a given

task or event x , the join condition of all the incoming links to x can be derived capturing the

fact that a combination (which implies a conjunction) of the links obtained from each set of the

pairs in PreTEC-Sets(x ), represent an alternative way (which implies a disjunction) to reach x .

Now, with the set of links returnd by Map2Links(Cw ), we can map the entire component Cw

onto a link-based flow construct. The mapping of each task or event object x in Cw is denoted

as Mapping(x ). Using the BPEL syntax given in Definition 1, the resulting link-based flow

construct can be written as link-flow(Map2Links(Cw ), {Mapping(x ) | x ∈ Tw ∪ Ew}).

Finally, it is important to mention the interplay between the structured activity-based

approach (Section 3.2) and the control link-based approach for translating BPDs into BPEL.

First, the structured activity-based translation is applied iteratively. If there are no longer
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———————————————————————————————————–
1: function Map2Links(Wrapped SPC Cw )

2: : Struct(Links: Set of (T Ew×T Ew ),

3: : Struct TransCond: Set of ((T Ew×T Ew )×Bool-Expr),

4: : Struct JoinCond: Set of (T Ew×(Bool-Fun: (Set of linkstatus(T Ew×T Ew ))→Bool)))

5: begin

6: return Struct(Links: GetLinks(Cw ),

7: return Struct TransCond: GetTransCond(Cw ),

8: return Struct JoinCond: GetJoinCond(Cw ))

9: end

10:
11: function GetLinks(Wrapped SPC Cw ): Set of (T Ew×T Ew )

12: begin

13: return
S

x∈T Ew
(
S

s∈PreTEC-Sets(x)(
S

p∈s{(taskevent(p), x )}))
14: end

15:
16: function GetTransCond(Wrapped SPC Cw ): Set of ((T Ew×T Ew )×Bool-Expr)

17: begin

18: transCond := {}
19: for all l ∈ GetLinks(Cw ) do

20: condl :=
W

s∈PreTEC-Sets(taskevent(l))(
W

p∈s∧taskevent(p)=taskevent(l) boolexpr(p))

21: transCond := transCond ∪ {(l , condl)}
22: end for

23: return transCond

24: end

25:
26: function GetJoinCond(Wrapped SPC Cw )

27: : Set of (T Ew×(Bool-Fun: (Set of linkstatus(T Ew×T Ew ))→Bool))

28: begin

29: return
S

x∈T Ew
{(x ,

W
s∈PreTEC-Sets(x)(

V
p∈s(taskevent(p), x )))}

30: end
———————————————————————————————————–

Figure 5. Algorithm for deriving the set of control links, the set of transition conditions, and the set of join

conditions from a wrapped SPC.

WSCs, the control link-based translation is used. Applying the control link-based translation

may again enable a structured activity-based translation, etc. Hence it is possible that both

types of reductions alternate. Unfortunately, there are BPDs that cannot be translated into

BPEL using these two approaches. The next subsection shows a “brute force” approach that

can be used as a last resort, i.e., it always works but may lead to less readable models.

3.4 Event-Action Rule-based Translation

A well-formed core BPD may also contain components that are neither well-structured nor can

be translated using control links. For example, a component capturing a multi-merge pattern,

which allows each incoming branch to continue independently of the others thus enabling

multiple threads of execution on the subsequent branch [2], or an unstructured loop, i.e., a loop

with more than one entry point and/or more than one exit point. We present an approach that
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can be used to translate such component into a scope activity by exploiting the “event handler”

construct in BPEL. Since an event handler is an event-action rule associated with a scope, we

name the approach, in a more general sense, event-action rule-based translation approach. It

should be mentioned that this approach can be applied to translating any component to BPEL.

However, it produces less readable BPEL code and hence we resort to this approach only when

there are no components left in the BPD, which are either well-structured or which can be

translated using control links.

The basic idea behind the event-action rule-based approach is to map each object (task,

event or gateway) onto event handler(s). An incoming flow of the object captures the “event”

of receiving a message which triggers the corresponding event handler. The actions taken by

the event handler must ensure to invoke (i.e. send) message(s) signaling the completion of the

object execution. Note that the word “event” we mention here refers to the event within the

context of event-action rules, and therefore is different from BPMN event objects.

Figure 6 illustrates how to map each type of BPMN objects onto BPEL event handlers.

We use m(y,x) to denote a message that is created once the sequence flow connecting object y

to object x is taken. This message signals the completion of y so that the execution of x may

start. The event of receiving a message m(y,x) can be written as msgReceipt(m(y,x)). Each task,

event, fork gateway, or decision gateway object is mapped onto one event handler, which is

triggered upon the receipt of the message from the only incoming flow of the object. For a task

or event object x , let z denote the only output object of x , the resulting event handler first

executes x (whose mapping is denoted as Mapping(x )), and then invokes the message m(x ,z )

once the sequence flow from object x to object z is taken, signaling the completion of the

execution of x . For a fork or decision gateway, the resulting event handler invokes a number

of messages to capture the outgoing flows in order as defined by the gateway. To this end, the

BPEL flow activity is used for the mapping of a fork gateway, the if activity is used for a

data-based decision gateway, and the pick activity is used for an event-based decision gateway

with the immediately followed events and/or receive tasks. Next, a merge gateway is mapped

onto multiple event handlers in a way that each of them can be triggered upon the receipt of

the message from one of the multiple incoming flows of the gateway. Finally, for a join gateway,

the mapping is less straightforward because BPEL only supports the situation where an event

handler is triggered by the occurrence of a single event. As shown in Figure 6, a join gateway x

can be mapped onto one event handler by separating, for example, the receipt of the message

(m(y1,x)) on the first incoming flow, from those (m(y2,x), ..., m(yn ,x)) on the rest of the incoming

flows. Although the resulting event handler can be triggered by the receipt of message m(y1,x),
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Figure 6. Mapping BPMN objects onto BPEL event handlers.

the real action, i.e. invoking the message m(x ,z ), will not be performed until all the remaining

messages m(y2,x) to m(yn ,x) have been received.

Based on the above, Figure 7 defines a function named Map2EHs which takes as input a

component C in a well-formed core BPD, and returns the set of event handlers as the mappings

of all the objects in C. The resulting code is written in BPEL syntax as defined in Definition 1.

With the set of event handlers returned by Map2EHs(C), we can then map the entire compo-

nent C onto a BPEL scope construct. Let m(entry(C ),ic) denote the message being created once

the sequence flow is taken which connects from the entry point entry(C) (outside the compo-

nent C) to the source object ic . Using the BPEL syntax definition, the resulting scope can be

written as scope(Map2EHs(C), invoke(m(entry(C),ic))). Here, the main activity of the scope is

to invoke message m(entry(C),ic). Upon receiving this message, the event handler for the source
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—————————————————————————————————————————–
1: function Map2EHs(C: a component of a well-formed BPD)

2: : BPEL’s (event × activity)set

3: begin

4: EHs := {}
5: for all x ∈ Oc do

6: case x ∈ Tc ∪ Ec :

7: EH := {(msgReceipt(m(pred(x),x)), sequence([Mapping(x ), invoke(m(x ,succ(x)))]))}
8: case x ∈ GF

c :

9: EH := {(msgReceipt(m(pred(x),x)), flow({invoke(m(x ,y)) | y ∈ out(x )}))}
10: case x ∈ GD

c :

11: EH := {(msgReceipt(m(pred(x),x)), if([(Condc(x , y), invoke(m(x ,y))) | y ← [out(x )]<]))}
12: case x ∈ GV

c :

13: EH := {(msgReceipt(m(pred(x),x)), pick({(Map2Event(y), invoke(m(y,succ(y)))) | y ∈ out(x )}))}
14: case x ∈ GM

c :

15: EH := {(msgReceipt(m(y,x)), invoke(m(x ,succ(x)))) | y ∈ in(x )}
16: case x ∈ GJ

c :

17: select any yi ∈ in(x ) do

18: EH := {(msgReceipt(m(yi ,x)),

19: EH := { sequence([flow({receive(m(y,x)) | z∈in(x )\yi}), invoke(m(x ,succ(x)))]))}
20: end select

21: end case

22: EHs := EHs ∪ EH

23: end for

24: return EHs

25: end
—————————————————————————————————————————–

Figure 7. Algorithm for deriving the set of event handlers from a well-formed BPD component.

object ic will be triggered. Then, the event handlers for the remaining objects will be executed

according to the execution order specified in C. Finally, the entire scope will complete after the

executions of its main activity and all active event handlers are completed.

3.5 Overall Translation Algorithm

Based on the mapping of each of the components aforementioned, we define an algorithm

for translating a well-formed core BPD into BPEL. Figure 8 shows this algorithm, namely

BPD2BPEL, which takes a well-formed core BPD Q with one start event s and one end event e,

and produces the resulting mapping to a BPEL process. Let OQ denote the set of objects

in Q , and Components(Q) the set of components in Q . The translation procedure starts with

mapping each primitive task and each event that is not immediately preceded by an event-based

decision gateway onto BPEL basic activities. This is denoted by function Map2BasicAct. Also,

for a given object x , the mapping of x to BPEL is given by Mapping(x ). Next, if Q contains

at least one component (i.e. Q is a non-trivial BPD), the basic idea is to select a component

in Q , provide its BPEL translation, and fold the component (lines 12-39). This is repeated

until no component is left in Q (i.e. Q is a trivial BPD). The translation of a trivial BPD is

straightforward, which involves the mapping of the only object (root) between the start and
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—————————————————————————————————————————–
1: function BPD2BPEL(Well-formed core BPD Q): BPEL process

2: begin

3: s := start event of Q

4: e := end event of Q

5: Mapping := {}
6: for all x ∈ T ∪ E \ ({s, e} ∪

S
y∈GV out(y)) do

7: Mapping := Mapping ∪ {(x , Map2BasicAct(x ))}
8: end for

9: if Components(Q) 6= ∅
10: then // mapping of a non-trivial BPD

11: repeat

12: if exists a maximal sequence-component C ∈ Components(Q)

13: then Bpel frag := sequence([Mapping(x ) | x ← [Oc ]<])

14: else if exists a (non-sequence) WSC C ∈ Components(Q)

15: case C of a flow-component: Bpel frag := flow({Mapping(x ) | x ∈ Tc ∪ Ec})
16: case C of a if-component:

17: case C Bpel frag := if([(Condc(ic , x ), Mapping(x )) | x ← [out(ic)]<])

18: case C of a pick-component:

19: case C Bpel frag := pick({(Map2Event(x ), Mapping(succ(x ))) | x ∈ out(ic)})
20: case C of a while-component:

21: case C Bpel frag := while(Condc(oc , x ), Mapping(x )) where x = elt(in(ic) ∩ out(oc))

22: case C of a repeat-component:

23: case C Bpel frag := repeatUntil(Condc(oc , exit(C)), Mapping(succ(ic)))

24: case C of a repeat+while-component:

25: case C Bpel frag := while(Condc(oc , x ), Mapping(x )) where x = elt(in(ic) ∩ out(oc));

26: case C Bpel frag := sequence([Mapping(succ(ic)), Bpel frag ]);

27: case C Bpel frag := repeatUntil(Condc(oc , exit(C)), Bpel frag)

28: end case

29: else select a minimal non-WSC C ∈ Components(Q)

30: if C is a synchronising process component

31: then Cw := Wrapped(C);
32: then Bpel frag := link-flow(Map2Links(Cw ), {Mapping(x ) | x ∈ Tw ∪ Ew})
33: else Bpel frag := scope(Map2EHs(C), invoke(e(entry(C),ic)))

34: end if

35: end if

36: tc := a new blank task object

37: Mapping := Mapping ∪ {(tc , Bpel frag)}
38: Q := Fold(Q , C, tc)

39: until Components(Q) = ∅
40: else root := elt(OQ\{s, e}) // Mapping of a trivial BPD

41: end if

42: return Mapping(root)

43: end
—————————————————————————————————————————–

Figure 8. Algorithm for translating a well-formed core BPD into a BPEL process.
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the end events in the BPD (line 40). The resulting BPEL process can be then retrieved from

Mapping(root) (line 42).

In more details, for a non-trivial BPD, the component mapping always starts from a max-

imal SEQUENCE-component after each folding (lines 12 to 13). When there are no sequences

left in the BPD, other WSCs are processed (lines 14 to 28). Since all non-sequence WSCs are

disjoint, the order of mapping these components is irrelevant. Next, when no WSCs are left,

the algorithm selects a minimal non-WSC for translation (line 19). Note that C is a minimal

non-WSC, if within the same BPD there is no other component C′ such that the set of nodes

in C′ is a subset of the set of nodes in C. The algorithm selects a minimal non-WSC C and

not a maximal one to avoid missing any “potential” WSC that may appear after the folding

of C. This means that there is always a preference for smaller structured activities rather than

large flows. The algorithm then checks if C is a SPC so that the control link-based translation

approach can be applied (lines 30-32). Note that as part of the SPC identification, one needs

to check if the component is sound and safe. This can be done by mapping the component

into a Petri net and then checking the soundness and safeness properties of this Petri net

(see Appendix A). Also, for any well-formed BPD component, the function Wrapped returns

the correspondingly wrapped component as defined in Definition 8. Next, if C is not a SPC,

the event-action rule-based translation approach is used as a last resort (line 33). Using the

event-action rule-based translation only as a last resort, reflects the desire to produce readable

BPEL code. In most cases, event-action rule-based translations can be avoided or play a minor

part in the translation. This is illustrated by the two examples in the next section and by the

empirical evaluation presented in Section 5.

With the above algorithm, a non-trivial well-formed core BPD can always be componentized

and each component is either a WSC or a non-WSC. Every WSC or non-WSC can be mapped

onto a certain BPEL construct or a combination of BPEL constructs according to the algorithm.

By following-up every mapping operation with a corresponding folding operation the source

BPD is gradually simplified and ultimately reduced to a trivial BPD. As part of this process,

the target BPEL code is gradually excluded and finalized when the trivial BPD is mapped.

4 Examples

This section provides two examples of business process models in BPMN. We show how these

two models can be translated into BPEL using the algorithm presented in the previous section.
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4.1 Example 1: Complaint Handling Process

Consider the complaint handling process model shown in Figure 9. It is described as a well-

formed core BPD. First the complaint is registered (task register), then in parallel a ques-

tionnaire is sent to the complainant (task send questionnaire) and the complaint is processed

(task process complaint). If the complainant returns the questionnaire in two weeks (event

returned-questionnaire), task process questionnaire is executed. Otherwise, the result of the

questionnaire is discarded (event time-out). In parallel the complaint is evaluated (task eval-

uate). Based on the evaluation result, the processing is either done or continues to task check

processing. If the check result is not OK, the complaint requires re-processing. Finally, task

archive is executed. Note that labels DONE , CONT , OK and NOK on the outgoing flows of each

data-based XOR decision gateway, are abstract representations of conditions on these flows.

Following the algorithm in Section 3, we now translate the above BPD to BPEL. Figure 10

sketches the translation procedure which shows how this BPD can be reduced to a trivial BPD.

Six components are identified. Each component is named Ci where i specifies in what order

the components are processed, and Ci is folded into a task object named t i
c . Also, we assign an

identifier ai to each task or intermediate event and gi to each gateway in the initial BPD. We

use these identifiers to refer to the corresponding objects in the following translation. It should

be mentioned that since we focus on the control-flow perspective, the resulting BPEL process

definition is presented in simplified BPEL syntax which defines the control flow for the process

and omits the details related to data definitions such as partners, messages and variables.

1st Translation. The algorithm first tries to locate SEQUENCE-components. In the initial

BPD shown in Figure 9, component C1 consisting of tasks a6 and a7 is the only SEQUENCE-

component that can be identified. Hence, C1 is folded into a task t1
c attached with the BPEL

translation sketched as:

<sequence name="t1
c ">

<invoke name="process complaint".../>

<invoke name="evaluate".../>

</sequence>

Figure 9. A complaint handling process model.

25



Figure 10. Translating the complaint handling process model in Figure 9 into BPEL.

2nd Translation. When no SEQUENCE-components can be identified, the algorithm tries to

discover any non-sequence WSC. As a result, component C2 is selected. It is a PICK-component

and is folded into a task t2
c attached with the BPEL code sketched as:

<pick name="t2
c ">

<onMessage operation="returned-questionnaire"...>

<invoke name="process questionnaire".../>

</onMessage>

<onAlarm for=‘P14DT’>

<empty/>

</onAlarm>

</pick>

Assume that the maximal waiting period for the returned questionnaire is two weeks, i.e. 14

days. In BPEL, this is encoded as P14DT.

3rd Translation. Folding C2 into t2
c introduces a new SEQUENCE-component C3 consisting

of tasks a2 and t2
c . C3 is folded into a task t3

c attached with the BPEL translation sketched as:

<sequence name="t3
c ">

<invoke name="send questionnaire".../>

<pick name="t2
c "> ... </pick>

</sequence>
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4th Translation. After the above three components C1 to C3 have been folded into the

corresponding tasks t1
c to t3

c , there is no WSCs left in the BPD. The algorithm continues to

identify any minimal non-WSC. As a result, the component C4 is selected. Since C4 contains

cycles, it is not a SPC. Below, we map C4 onto a scope with event handlers.

<scope name="t4
c ">

<!-- mapping of g4 -->

<onEvent msgReceipt(m(g1,g4))>
<invoke m(g4,t1c )/>

</onEvent>

<onEvent msgReceipt(m(g6,g4))>
<invoke m(g4,t1c )/>

</onEvent>

<!-- mapping of t1
c -->

<onEvent msgReceipt(m(g4,t1c ))>
<sequence>

<sequence name="t1
c "> ... </sequence>

<invoke m(t1c ,g5)/>

</sequence>

</onEvent>

<!-- mapping of g5 -->

<onEvent msgReceipt(m(t1c ,g5))>
<if>

<case condition="branchVar=‘DONE’">

<invoke m(g5,g7)/>

</case>

<case condition="branchVar=‘CONT’">

<invoke m(g5,a8)/>

</case>

</if>

</onEvent>

<!-- mapping of a8 -->

<onEvent msgReceipt(m(g5,a8))>
<sequence>

<invoke name="check processing".../>

<invoke m(a8,g6)/>

</sequence>

</onEvent>

<!-- mapping of g6 -->

<onEvent msgReceipt(m(a8,g6))>
<if>

<case condition="branchVar=‘OK’">

<invoke m(g6,g7)/>

</case>

<case condition="branchVar=‘NOK’">
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<invoke m(g6,g4)/>

</case>

</if>

</onEvent>

<!-- mapping of g7 -->

<onEvent msgReceipt(m(g5,g7))>
<invoke m(g7,g8)/>

</onEvent>

<onEvent msgReceipt(m(g6,g7))>
<invoke m(g7,g8)/>

</onEvent>

<!-- to trigger source object g4 -->

<invoke m(g1)/>

</scope>

5th Translation. Folding C3 to t3
c and C4 to t4

c introduces a FLOW-component C5. C5 is

folded into a task t5
c attached with the BPEL code sketched as:

<flow name="t5
c ">

<sequence name="t3
c "> ... </sequence>

<scope name="t4
c "> ... </scope>

</flow>

6th Translation. After C5 has been folded into t5
c , a new SEQUENCE-component C6 is intro-

duced. This is also the only component left between the start event and the end event in the

BPD. Folding C6 into task t6
c leads to the end of the translation, and the final BPEL process

is sketched as:

<process name="complaint handling">

<sequence name="t6
c ">

<invoke name="register">

<flow name="t5
c "> ... </flow>

<invoke name="archive">

</sequence>

</process>

4.2 Example 2: Order Fulfillment Process

Figure 11 depicts an order fulfillment process at the customer side using BPMN. The process

starts by making a choice between two conditional branches, depending on whether the shipper

supports the Universal Business Language (UBL) or the Electronic Data Interchange (EDI)

standard. The choice between these two standards is exclusive and EDI is always the default

one to choose. If UBL is used, the process needs to receive both the despatch advice and the

invoice from the shipper before it can continue. Alternatively, if EDI is used, the process needs
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to receive both EDI 856 for the Advanced Shipment Notice (ASN) and EDI 810 for the Invoice

before it can proceed. Next, upon the receipt of either EDI 810 or the invoice (formatted in

UBL), a payment request can be sent to the shipper. Once the payment request has been sent

out and either EDI 856 or the despatch advice (formatted in UBL) has been received, the

customer sends the fulfillment notice and then the process completes.

Figure 11. An order fulfillment process model.

Figure 12 sketches how the above BPD can be reduced to a trivial BPD. In total two

components are identified. Below, we describe the translation procedure step by step.

Figure 12. Translating the order fulfillment process model in Figure 11 into BPEL.

1st Translation. Initially, no WSCs can be detected in the BPD shown in Figure 11. Compo-

nent C1 consisting of tasks a1 to a5 is the only minimal non-WSC identified. Since it is acyclic,

has no event-based gateway, and is also proven to be sound and safe (see Appendix A), the

component C1 is a SPC and can be mapped to a link-based flow construct.

First, we pre-process the component C1 as illustrated in Figure 13. Two empty tasks ah

and at are inserted respectively before the data-based decision gateway d1 (source object of C1)

and after the join gateway j6 (sink object of C1). This way we obtain a wrapped component

of C1. Also, the conditions on the outgoing flows of d1 are refined. The component C1, after

the above pre-processing, is then renamed C ′1.

29



Figure 13. Pre-processing the component C1 shown in Figure 12.

Second, we generate the set of preceding tasks with conditions sets for each task object in

component C ′1 (C ′1 has no event objects). There are totally seven sets as listed below:

PreTEC-Sets(ah) = ∅,

PreTEC-Sets(a1) = PreTEC-Sets(a2) = {{(ah ,UBL)}},

PreTEC-Sets(a3) = PreTEC-Sets(a4) = {{(ah ,¬UBL∧EDI )}},

PreTEC-Sets(a5) = {{(a2,TRUE)}, {(a4,TRUE)}}, and

PreTEC-Sets(at) = {{(a1,TRUE), (a5,TRUE)}, {(a3,TRUE), (a5,TRUE)}}

Third, we derive the set of control links for connecting all the tasks in C ′1, the set of

transition conditions associated with the links, and the join conditions for each of the tasks.

Map2Links(C ′1) =

Struct(Links:{(ah , a1), (ah , a2), (ah , a3), (ah , a4),

Struct(Links:{(a2, a5), (a4, a5), (a1, at), (a3, at), (a5, at)})

Struct(TransCond:{((ah , a1),UBL), ((ah , a2),UBL),

Struct(TransCond:{((ah , a3),¬UBL ∧ EDI ), ((ah , a4),¬UBL ∧ EDI ),

Struct(TransCond:{((a2, a5), TRUE), ((a4, a5), TRUE),

Struct(TransCond:{((a1, at), TRUE), ((a3, at), TRUE), ((a5, at), TRUE))

Struct(JoinCond:{(ah , TRUE), (a1, linkstatus(ah , a1)), (a2, linkstatus(ah , a2)),

Struct(JoinCond:{(a3, linkstatus(ah , a3)), (a4, linkstatus(ah , a4)),

Struct(JoinCond:{(a5, linkstatus(a2, a5) ∨ linkstatus(a4, a5)),

Struct(JoinCond:{(at , (linkstatus(a1, at) ∨ linkstatus(a3, at)) ∧ linkstatus(a5, at))}

Note that task ah is the source object of component C ′1 and has no incoming links. Hence,

JoinCond(ah) = TRUE implies that no join condition needs to be specified for ah in the corre-

sponding BPEL definition.

Finally, based on the above, component C1 can be folded into a task t1
c attached with the

BPEL translation sketched as:

<flow name="t1
c ">

<links>
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<link name="l(ah ,a1)" condition="UBL"/>

<link name="l(ah ,a2)" condition="UBL"/>

<link name="l(ah ,a3)" condition="¬UBL∧EDI"/>
<link name="l(ah ,a4)" condition="¬UBL∧EDI"/>
<link name="l(a2,a5)" condition="TRUE"/>

<link name="l(a4,a5)" condition="TRUE"/>

<link name="l(a1,at )" condition="TRUE"/>

<link name="l(a3,at )" condition="TRUE"/>

<link name="l(a5,at )" condition="TRUE"/>

</links>

<empty name="ah">

<source linkName="l(ah ,a1)"/>

<source linkName="l(ah ,a2)"/>

<source linkName="l(ah ,a3)"/>

<source linkName="l(ah ,a4)"/>

</empty>

<invoke name="receive despatch-advice"

<invoke joinCondition="bpws:getLinkStatus(l(ah ,a1))">
<target linkName="l(ah ,a1)"/>

<source linkName="l(a1,at )"/>

</invoke>

<invoke name="receive invoice"

<invoke joinCondition="bpws:getLinkStatus(l(ah ,a2))">
<target linkName="l(ah ,a2)"/>

<source linkName="l(a2,a5)"/>

</invoke>

<invoke name="receive EDI 856"

<invoke joinCondition="bpws:getLinkStatus(l(ah ,a3))">
<target linkName="l(ah ,a3)"/>

<source linkName="l(a3,at )"/>

</invoke>

<invoke name="receive EDI 810"

<invoke joinCondition="bpws:getLinkStatus(l(ah ,a4))">
<target linkName="l(ah ,a4)"/>

<source linkName="l(a4,a5)"/>

</invoke>

<invoke name="send payment-request"

<invoke joinCondition="bpws:getLinkStatus(l(a2,a5)) or
<invoke joinCondition="bpws:getLinkStatus(l(a4,a5))">

<target linkName="l(a2,a5)"/>

<target linkName="l(a4,a5)"/>

<source linkName="l(a5,at )"/>

</invoke>

<empty name="at"

<empty joinCondition="(bpws:getLinkStatus(l(a1,at )) and
<empty joinCondition="(bpws:getLinkStatus(l(a5,at ))) or
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<empty joinCondition="(bpws:getLinkStatus(l(a3,at )) and
<empty joinCondition="(bpws:getLinkStatus(l(a5,at )))">

<target linkName="l(a1,at )"/>

<target linkName="l(a3,at )"/>

<target linkName="l(a5,at )"/>

</empty>

</flow>

2nd Translation. After C1 has been folded into t1
c , a new SEQUENCE-component C2 is intro-

duced. This is also the only component left between the start event and the end event in the

BPD. Folding C2 into task t6
c leads to the end of the translation, and the final BPEL process

is sketched as:

<process name="order fulfillment">

<sequence name="t2
c ">

<flow name="t1
c "> ... </flow>

<invoke name="send fulfillment-notice">

</sequence>

</process>

5 Tool Support and Evaluation

The combined translation technique has been implemented as an open-source tool, namely

BPMN2BPEL. It is available at http://www.bpm.fit.qut.edu.au/projects/babel/tools.

The tool takes as input a BPD represented in XML format and produces a template of a BPEL

skeleton. The source XML format follows simple conventions, with elements for different types

of nodes (tasks, gateways, events) and for arcs (flows). The generated BPEL skeleton includes

structured activities and placeholders for basic activities. The tool provides an extensibility

feature to enrich the source BPMN model with implementation details. Specifically, XML

elements containing BPEL code can be inserted in the source model and these BPEL code

fragments are then copied at the appropriate places in the generated BPEL process definition.

Thus, if a BPMN modeling tool is able to produce BPEL code for each individual task and

event (e.g. by using additional metadata provided by a developer), the BPMN2BPEL tool can

then assemble these BPEL code fragments to produce executable BPEL code. To validate the

correctness of the generated BPEL process definitions we created a sample of BPMN models

that required a Structured Activity-based, a Control Link-based, or Event-Action Rule-based

Translation with their respective variants. This way we could assure that all control paths of the

algorithm were taken. We then loaded the generated BPEL code into the Oracle BPEL Process

Manager (version 10.1.2)10 to check for syntactical correctness. Finally, we navigated through
10 http://www.oracle.com/technology/products/ias/bpel/
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both the original BPMN and the generated BPEL to verify that the respective behaviors

coincide.

Below, we report the results of an evaluation of our approach and its respective implemen-

tation BPMN2BPEL. We use a set of 568 BPMN models from practice and transform them

automatically using the BPMN2BPEL tool and analyze the generated BPEL models. This

way we aim to get insight into the readability of the resulting models. The sample of the 568

BPMN models was drawn from a larger set of process models that was collected from four

real-world modeling projects and described in [24]. The first collection is the SAP Reference

Model [16]. It includes a documentation of processes supported by the SAP system. The second

collection stems from a German process reengineering project in the service sector. The project

was conducted in the late 1990s. The third model collection contains the models of a process

documentation project in the Austrian financial industry. The fourth collection covers process

models from three different consulting companies. The sample basically includes those models

of this larger collection that had exactly one start and one end event, no OR-splits or OR-joins,

and that were sound. The number of nodes in these models ranges from three to 59 with an

average of ten nodes. We used a script program to trigger the transformation for each of these

models and generated a table showing which BPEL elements were created for each of the input

models. Finally, we examined the occurrence of structured activities in the BPEL files that

were created by the BPMN2BPEL tool.

In a first step we investigated how an increasing number of nodes influences the identification

of structured activities by the transformation algorithm. In particular, we aimed to rule out the

hypothesis that structure identification would be only applicable for small models. Indeed, this

is not the case. Figure 14 illustrated the connection between number of nodes and the number

of structured activities that are identified. It can be seen that an increase in nodes results

in more structured activities. All models take a position in a corridor from the left bottom

to the right top of the diagram. Furthermore, we used inferential statistics to support this

observation. Firstly, we found a strong correlation of 0.885 (significance level: 0.001) between

both parameters. Secondly, we calculated a linear regression confirming that 87.4% of the

variability in the number of structured activities can be explained by the number of nodes

(measured as adjusted R2). Based on an estimated coefficient of 0.312 (significance level: 0.001),

we can summarize that the addition of three nodes to a process model led to one additional

structured activity in our sample, no matter if the model was large of small. To put it different,

the identification of structured activities really paid off since apparently large parts of process

models from practice can be mapped to structured activities.
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Figure 14. Number of nodes versus number of generated structured activities in the 568 process models.

In a second step, we analyzed how often certain transformation rules were applied. Figure 15

illustrates the results. Please note the logarithmic scale on the x-axis. The statistics strongly

support our claim that our algorithm presented in Figure 8 tends to create readable BPEL

code with structured activities. In the sample we used, only three out of 568 models required a

mapping to a BPEL flow with control links and three models with cycles had to be mapped to

BPEL event handlers. All the remaining control flow could be represented by 1678 structured

activities including sequence, if, flow without links, and while.

6 Related Work

White et al. [27, 38] informally outline a translation from BPMN to BPEL. However, this

translation does not cover BPDs with arbitrary topologies. Specifically, [27] states that acyclic

Figure 15. Structured activities and their occurrence in the 568 generated BPEL models.
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graphs with arbitrary topologies could be translated to BPEL flow activities with control links,

but the details of this translation are left as future work. A method for translating some classes

of unstructured cycles is outlined, but no automated and general method is given. Also, several

steps in White’s translation require human input to identify patterns in the source model. A

number of commercial tools can generate BPEL code from BPMN models using methods similar

to those outlined by White et al. However, these tools impose intricate syntactic restrictions

on the source BPMN model.11

Research into structured programming has led to techniques for translating unstructured

flowcharts into structured ones [5,10,28,33]. However, these techniques are not applicable when

AND-splits and AND-joins are introduced. An identification of situations where unstructured

process models can not be translated into equivalent structured ones (under weak bisimulation

equivalence) can be found in [18,21], while an approach to overcome some of these limitations

for processes without parallelism is sketched in [19,39].

Our translation technique relies on the identification of Single-Entry, Single-Exit (SESE)

components in the process diagram. Johnson et al. [14] outline an algorithm that identifies

all SESE regions in a control flow graph. These regions are arranged in a so-called Program

Structure Tree (PST) in which each node corresponds to a SESE region and the SESE region

corresponding to a node contains every SESE region corresponding to its children. While our

tool implementation currently relies on an algorithm that identifies SESE components one by

one, a more efficient implementation could be achieved by exploiting the concept of PST.

In [23] we review a number of techniques for translating graph-oriented process models

to BPEL. We classify these translations into four strategies. Firstly, the so-called Structure-

Identification Strategy works like the structured activity-based translation approach presented in

this paper. This strategy is applied in many commercial tools that implement BPMN-to-BPEL

translations. However, this strategy can not deal with process models with arbitrary topologies.

Next, the Element-Preservation Strategy aims at translating acyclic graph-oriented models into

BPEL process definitions with control links. In the element-preservation strategy, each BPMN

gateway is mapped to an empty activity in BPEL, in order to explicitly capture the structure

of the source model. This strategy is adopted for example in the mappings from UML Activity

Diagrams to BPEL by Gardner [11] and by Mantell [22] as well as in a mapping from Petri

nets to BPEL [20]. The Element-Minimization Strategy is similar to the element-preservation

strategy, except that it tries to reduce the number of empty activities that are introduced in

the resulting BPEL definition. In this paper, we have formally characterized the set of acyclic

process models that can be mapped to BPEL process definitions with control links, and we have

11 For a discussion on such restrictions, refer to: http://www.webcitation.org/5SsMacscU
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presented an algorithm that implements this translation according to an element-minimization

strategy. Finally, the Structure-Maximization Strategy tries to derive a BPEL process with as

many structured activities as possible and for the remaining unstructured fragments, it tries

to apply the strategies that rely on control links. This strategy is applied in [37], but the

authors use a simple version of this strategy assuming that the process model is sequential.

The technique presented in this paper follows the structure-maximization strategy (combined

with the element-minimization one) but without imposing restrictions on the structure of the

source model.

This paper combines insights from our previous studies. In [3], we describe a case study

where the requirements of a bank system are captured as Coloured Petri nets and the system is

then implemented in BPEL. In this study, we used a semi-automated mapping from Coloured

Petri nets to BPEL that has commonalities with a subset of the translation discussed in this

paper. This mapping is implemented by a tool called Workflownet2BPEL4WS [4] and is also

supported by recent versions of ProM12. Importantly, this tool does not attempt to automat-

ically map every Coloured Petri net. Instead, it maps as many fragments of the net as it can

using a pre-defined library of patterns. When the tool can not apply any of the available pat-

terns, the user must intervene to identify at least one remaining fragment that can be translated

by some means, possibly leading to a new translation pattern being added into the library. The

approach has been empirically tested on 100 process models created in student projects [4].

Finally, in [29] we present a mapping from a graph-oriented language supporting AND-splits,

AND-joins, XOR-splits, and XOR-joins, into sets of BPEL event handlers, and in [30] we take

into account the mapping to BPEL block-structured constructs. In this paper, we have extended

the previous mappings to cover a broader set of BPMN constructs and to exploit the use of

BPEL control links. To improve the readability of the generated BPEL code to a maximum

extent, we propose an overall translation algorithm which makes greater use of BPEL’s block-

structured constructs and control links. Also, in parallel work, Giner et al. [12] have defined

and implemented a model transformation from the meta-model used by the the BPMN editor

provided by the SOA Tools Platform (STP) to a BPMN meta-model corresponding to our

BPMN2BPEL tool, thus providing a seamless bridge between the two tools.

Our work contributes to the broader area of model-driven software development since

BPMN can be regarded as a platform-independent model and BPEL as a platform-specific

model. Our transformation algorithm clearly shows that mapping between both languages is

not always straightforward and requires a trade-off between different design considerations, in

our case the benefit of readable structured activities versus the burden of analyzing the BPMN

12 The ProM framework is available from http://www.processmining.org
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graph. An alternative approach to generating executable code from process models would be to

adapt concepts from domain-specific language design [7,13,32]. Our approach is framed in the

context of the co-existence of BPMN and BPEL and it aims at bridging these two languages,

and more generally, graph-oriented and block-structured process modeling languages.

7 Conclusion

This paper presented an integrated set of techniques to translate models captured using BPMN

into BPEL. The proposed techniques are capable of generating readable BPEL code by dis-

covering “patterns” in the BPMN models that can be mapped onto BPEL block-structured

constructs or acyclic graphs of control links. One of the techniques can deal with unstructured

BPMN models by translating the control dependencies in the BPMN model into a collection

of BPEL event handlers that trigger one another to emulate these dependencies. This latter

technique enables any core BPMN process model to be translated into BPEL, but at the price

of reduced readability. The integration of the proposed techniques is therefore defined in a way

that maximises the use of structured BEL constructs and minimises the use of event handlers.

The integrated technique has been implemented as an open-source tool, namely BPMN2BPEL,

available at http://www.bpm.fit.qut.edu.au/projects/babel/tools. Testing has been per-

formed against the case studies presented in this paper as well as examples extracted from the

BPMN standard specification. The correctness of the generated BPEL process definitions has

been validated by loading them into the Oracle BPEL Process Manager (version 10.1.2) and

navigating through both the original BPMN and the generated BPEL to verify that the cor-

responding behaviors are the same. Furthermore, our evaluation confirms that large parts of

process models from practice can be mapped to structured activities.

A possible avenue for future work is to extend the proposed techniques to cover a larger sub-

set of BPMN models, e.g. models involving exception handling and other advanced constructs

such as OR-joins. Unfortunately, many advanced constructs of BPMN are under-specified and

are still being refined by the relevant standardization body. A preliminary step to extend the

translation is therefore to unambiguously define these constructs, for example by extending

the Petri net semantics of core BPMN models defined in this paper (e.g. using YAWL as an

intermediate step).

The work reported in this paper is motivated by the fact that business process models,

while primarily intended for process documentation, communication and improvement, are of-

ten also used as input for developing process-oriented software systems. Thus a translation

between BPMN models and languages used by developers, e.g. BPEL, is a first step in instru-
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menting end-to-end methods for this class of systems. But as the BPEL process definition is

modified during implementation, inconsistencies may arise between the original business pro-

cess models and the implemented process definitions. To tackle this issue, it would be desirable

to have reversible transformations, so that the modified BPEL models can be viewed in BPMN

and any deviations with respect to the original BPMN model can be easily identified. We

conjecture that for the class of structured and synchronising process models, such reversible

transformations are possible. However, characterising larger classes of BPMN models for which

reversible transformations can be defined is a challenging problem. In addition, defining the

notion of “reversibility” in the context of BPMN-to-BPEL translations may prove to be a

challenge on its own.

Overall, our work shows that the co-existence of BPMN and BPEL is not optimal due

to their significant mismatch. Market and standardization forces, possibly underpinned by

conflicting demands and preferences from different types of stakeholders (e.g. business analysts

and software developers), have led to this co-existence. Our contribution bridges these two

languages, but still, it does not erase all the disadvantages of their co-existence. We suggest

that future standardization efforts should aim at more closely aligning BPMN and BPEL and

to reduce the mismatches exposed in this work.
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Appendix A Petri-net Semantics of BPMN

We use Petri nets [25] to define formal semantics for BPMN.13 Below, we first introduce the

basic Petri net terminology and notations. Readers familiar with Petri nets can skip this intro-

duction. Then, we specify a mapping from a BPD component to Petri nets. Based on this, we

finally define the notions of soundness and safeness of a BPD component.

A.1 Petri Nets

The classical Petri net is a directed bipartite graph with two types of nodes called places and

transitions. The nodes are connected via directed arcs, and connections between two nodes of

the same type are not allowed. Places are represented by circles and transitions by rectangles.

Definition 9 (Petri net). A Petri net is a triple PN = (P ,T ,F ):

– P is a finite set of places,

– T is a finite set of transitions (P ∩ T = ∅),

– F ⊆ (P × T ) ∪ (T × P) is a set of arcs (flow relation).

A place p is called an input place of a transition t iff there exists a directed arc from p to t .

Place p is called an output place of transition t iff there exists a directed arc from t to p. We

use •t to denote the set of input places for a transition t . The notations t•, •p and p• have

similar meanings, e.g., p• is the set of transitions sharing p as an input place.

At any time a place contains zero or more tokens. The state, often referred to as marking ,

is the distribution of tokens over places. A Petri net PN and its initial marking M are denoted

by (PN ,M ). The number of tokens may change during the execution of the net. Transitions

are active components in a Petri net: they change the state of the net based on the following

firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one token.
13 The current BPMN specification [27] describes BPMN in natural language and does not contain a formal

semantics of BPMN.
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(2) An enabled transition may fire. If transition t fires, then t consumes one token from each

input place p of t and produces one token for each output place p of t .

The firing rule specifies how a Petri net can move from one state to another. If at any

time multiple transitions are enabled, a non-deterministic choice is made. A firing sequence

σ = t1t2...tn is enabled if, starting from the initial marking, it is possible to subsequently fire

t1, t2, ..., tn . A marking M is reachable from the initial marking if there exists an enabled firing

sequence resulting in M . Using these notions we define some standard properties for Petri nets.

Definition 10 (Live). A Petri net (PN ,M ) is live iff, for every reachable state M ′ and every

transition t, there is a state M ′′ reachable from M ′ which enables t.

Definition 11 (Bounded, safe). A Petri net (PN ,M ) is bounded iff for each place p there

is a natural number n such that for every reachable state the number of tokens in p is less

than n. The net is safe iff for each place the maximum number of tokens does not exceed 1.

A.2 Semantics of BPD Components

Figure 16 depicts the mapping from core BPMN objects to Petri-net modules. A task or an

intermediate event is transformed into a transition with one input place and one output place.

The occurrence of the transition models the execution of that task or event. Gateways, except

event-based decision gateways, are mapped onto small Petri-net modules where transitions are

used to capture their routing behavior. These transitions are considered as “silent” transi-

tions [25]. In the case of a fork or join gateway, only one transition is used, which is uniquely

identified by that gateway. For a data-based decision gateway, multiple transitions are used and

each of them is identified by the gateway and one of the gateway’s output objects. A merge

gateway is also mapped onto a number of transitions, and each of these transitions is identi-

fied by the gateway and one of the gateway’s input objects. For an event-based gateway, the

race condition between events or receive tasks is captured in a way that all the corresponding

event/task transitions share the same output place from the gateway’s input object. Finally,

places are used to link the Petri net modules of two connecting BPMN objects and therefore

is identified by both objects. Also, places are drawn in dashed borders to indicate that their

usage is not unique to one module. For example, if message event “E1” is followed by task

“T1”, the output place of transition E1 becomes the input place of transition T1. A formal

definition of the mapping from BPD components to Petri nets is given as follows.

Definition 12 (Petri net semantics of BPD components). Let C = (Oc, Fc, Condc) be a

component of a well-formed core BPD. By using the similar set notations as in the definition of

42



Figure 16. Mapping BPMN objects onto Petri-net modules.

a BPD (see Definition 2), we can write that Oc = Tc∪Ec∪Gc and Gc = GF
c ∪GJ

c ∪GD
c ∪GM

c ∪GV
c .

Also, ic denotes the single source object and oc denotes the single target object in C. C can be

mapped onto a Petri net PNc = (P ′,T ′,F ′) where:

P ′ = {p(entry(C),ic), p(oc ,exit(C))} ∪ – source/sink place

{p(x ,y) | xFcy ∧ x 6∈ GV
c } – other places

T ′ = Tc ∪ Ec ∪ – task/event

{tx | x ∈ GF
c ∪ GJ

c } ∪ – fork/join

{t(x ,y) | x ∈ GD
c ∧ y ∈ out(x )} ∪ – data decision

{t(x ,y) | x ∈ GM
c ∧ y ∈ in(x )} ∪ – merge

F ′ = {(p(x ,y), y) | y ∈ Tc ∪ Ec ∧ x∈in(y) ∧ x 6∈GV
c } ∪

{(y , p(y,z ))} | y ∈ Tc ∪ Ec ∧ z ∈ out(y)} ∪ – task/event

{(p(x ,y), ty)} | y ∈ GF
c ∪ GJ

c ∧ x ∈ in(y)} ∪
{(ty , p(y,z ))} | y ∈ GF

c ∪ GJ
c ∧ z ∈ out(y)} ∪ – fork/join

{(p(x ,y), t(y,z )) | y∈GD
c ∧ x∈in(y) ∧ z∈out(y)} ∪

{(t(y,z ), p(y,z )) | y ∈ GD
c ∧ z ∈ out(y)} ∪ – data decision

{(p(x ,y), t(y,x)) | y ∈ GM
c ∧ x ∈ in(y)} ∪

{(t(y,x), p(y,z )) | y∈GM
c ∧ x∈in(y) ∧ z∈out(y)} ∪ – merge

{(p(x ,y), z ) | y ∈ GV
c ∧ x∈in(y) ∧ z∈out(y)} – event decision

In the above definition, generally any sequence flow in a BPD is mapped onto a place except

for event-based decision gateways. With an event-based decision gateway (y), the choice is

delayed until one of its immediately following events or tasks (z ∈ out(y)) is triggered. Let x

denote the preceding object of y (i.e. x ∈ in(y)). The place p(x ,y), which models the sequence
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flow from x to y , is directly connected to each transition modeling the event or task z . This

way the mapping captures, for an event-based decision gateway, the moment of choice when

one of its alternative branches is actually started.

A.3 Soundness and Safeness of BPD Components

The main goal of providing a Petri net mapping for BPMN is that it allows us to discuss

the semantics and correctness in a concise and unambiguous manner. The application of the

mapping in Definition 12 to a BPD component results in a Petri net satisfying some desir-

able properties which make automated analysis easier. In particular, we are interested in the

soundness and safeness properties which are used for identifying a SPC for control link-based

translation approach in Section 3.3. To capture these properties, it is necessary to introduce

the concepts of WorkFlow nets (WF-net) [1] and free-choice nets [8]. A WF-net is a Petri net

which models the control-flow dimension of a workflow, while free-choice nets are an important

subclass of Petri nets for which strong theoretical results exist.

Definition 13 (Free-choice WF-net). A Petri net PN = (P ,T ,F ) is a WF-net (workflow

net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.

(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

Also, PN is a free-choice net if and only if for every two transitions t1, t2 ∈ T , •t1 ∩ •t2 6= ∅

implies that •t1 = •t2.

It can be seen that a WF-net has exactly one input place (called source place) and one

output place (sink place). A token in the source place corresponds to a case (i.e. process

instance) which needs to be handled, and a token in the sink place corresponds to a case which

has been handled. Also, in a WF-net there are no dangling tasks and/or conditions. Tasks are

modelled by transitions and conditions by places. Therefore, every transition or place should

be located on a path from source place to sink place in a WF-net.

Given a WF-net PN = (P ,T ,F ), we want to decide whether PN is sound . Soundness is a

notion of correctness. A procedure modelled by a WF-net is sound iff it satisfies the following

two requirements: (1) for any case, the procedure will terminate eventually and the moment

the procedure terminates there is a token in the sink place and all the other places are empty ;14

and (2) there should be no dead tasks, i.e., it should be possible to execute an arbitrary task

14 Sometimes the term “proper termination” is used to describe this requirement.
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by following the appropriate route through the WF-net. In [1] we have shown that soundness

corresponds to liveness and boundedness.

Theorem 1. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. See [1]. �

With Theorem 1 we can also use very efficient analysis techniques. In order to do this,

we need to show that any BPD component corresponds to a free-choice net. Free-choice Petri

nets have been studied extensively and are characterised by strong theoretical results and

efficient analysis techniques. In fact, soundness can be determined in polynomial time for free-

choice WF-nets [1]. Moreover, we require a WF-net to be safe, i.e., no marking reachable from

(PN , i) marks a place twice. Although safeness is defined with respect to some initial marking,

we extend it to WF-nets and simply state that a WF-net is safe or not (given an initial state i).

A sound free-choice WF-net is guaranteed to be safe [1].

Theorem 2. Let C be a component of a well-formed core BPD. PNc, which denotes the Petri

net mapping of C as given in Definition 12, is a free-choice WF-net.

Proof. We first prove that PNc is a WF-net. There is one source place p(entry(C),ic) and one sink

place p(oc ,exit(C)). Moreover, every node (place or transition) is on a path from p(entry(C),ic) to

p(oc ,exit(C)) since in the corresponding component C all objects are on a path from the source

object to the sink object and all sequence flows (connecting the objects) are preserved by the

mapping given in Definition 12.

Next we prove that PNc is free-choice. Considering places with multiple output arcs, these

places all correspond to decision gateways. All the other places have only one output arc (except

the sink place p(oc ,exit(C)) which has none). All outgoing sequence flows of a decision gateway are

mapped onto transitions with only one input place. If PNc = (Pc ,Tc ,Fc), the above indicates

that for all (p, t) ∈ Fc : |p•| > 1 implies |•t | = 1. Hence, PNc is free-choice. �

The abvove two theorems demonstrate that results related to safeness and boundedness of

free-choice nets can be used to check the soundness of a BPD component in polynomial time.

This can be formalized as follows. Let PNc be the short-circuited net of PNc , we use p(entry(C),ic)

to denote the state with only one token in the source place p(entry(C),ic) of PNc and thereby use

(PNc , p(entry(C),ic)) to denote the Petri net PNc with an initial state p(entry(C),ic). The WF-net

PNc is sound iff (PNc , p(entry(C),ic)) is live and bounded (and this can be checked in polynomial

time). Next, as a free-choice WF-net, PNc is guaranteed to be safe if it is proven to be sound.
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Example. During the translation of the BPMN model of the order fulfillment process into

BPEL in Section 4.2, we map component C1 shown in Figure 12 onto the Petri net shown in

Figure 17 which is a free-choice WF-net. We can prove that this free-choice WF-net is sound

and safe and therefore the component C1 in Figure 12 is sound and safe.

Figure 17. The Petri net mapping of component C1 shown in Figure 12.

Finally, a more comprehensive mapping from BPMN to Petri nets can be found in [9].

The tool implementation, namely BPMN2PNML, is freely available at http://is.tm.tue.

nl/staff/rdijkman/cbd.html#transformer. Petri nets that result from the application of

BPMN2PNML can be subjected to a subsequent analysis in ProM and Woflan. For example,

it can be checked whether they are sound and safe.

Appendix B An XML Format of BPMN

The BPMN2BPEL tool takes as input a BPD represented in XML format. This XML format

follows simple conventions, with elements for different types of nodes (tasks, gateways, events)

and for arcs (flows). For example, the BPD of the complaint handling process shown in Figure 9

can be written as an XML document shown below. Note that the node type is “task” by default.

<bpmn>

<process id=“ComplaintHandling”>

<variables>

<variable name=“DONE”/>

<variable name=“CONT”/>

<variable name=“OK”/>

<variable name=“NOK”/>

</variables>

<nodes>
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<node id=“a0” name=“start” type=“StartEvent”/>

<node id=“a1” name=“register”/>

<node id=“a2” name=“sendQuestionnaire”/>

<node id=“a3” name=“returnedQuestionaire” type=“MessageEvent”/>

<node id=“a4” name=“timeOut” type=“TimerEvent”/>

<node id=“a5” name=“processQuestionnaire”/>

<node id=“a6” name=“processComplaint”/>

<node id=“a7” name=“evaluate”/>

<node id=“a8” name=“checkProcessing”/>

<node id=“a9” name=“archive”/>

<node id=“a10” name=“end” type=“EndEvent”/>

<node id=“g1” type=“AND-Split”/>

<node id=“g2” type=“EB-XOR-Split”/>

<node id=“g3” type=“XOR-Join”/>

<node id=“g4” type=“XOR-Join”/>

<node id=“g5” type=“XOR-Split”/>

<node id=“g6” type=“XOR-Split”/>

<node id=“g7” type=“XOR-Join”/>

<node id=“g8” type=“AND-Join”/>

</nodes>

<arcs>

<arc id=“f0” source=“a0” target=“a1”/>

<arc id=“f1” source=“a1” target=“g1”/>

<arc id=“f2” source=“g1” target=“a2”/>

<arc id=“f3” source=“g1” target=“g4”/>

<arc id=“f4” source=“a2” target=“g2”/>

<arc id=“f5” source=“g2” target=“a3”/>

<arc id=“f6” source=“g2” target=“a4”/>

<arc id=“f7” source=“a3” target=“a5”/>

<arc id=“f8” source=“a5” target=“g3”/>

<arc id=“f9” source=“a4” target=“g3”/>

<arc id=“f10” source=“g3” target=“g8”/>

<arc id=“f11” source=“g4” target=“a6”/>

<arc id=“f12” source=“a6” target=“a7”/>
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<arc id=“f13” source=“a7” target=“g5”/>

<arc id=“f14” source=“g5” target=“g7” guard=“DONE”/>

<arc id=“f15” source=“g5” target=“a8” guard=“CONT”/>

<arc id=“f16” source=“a8” target=“g6”/>

<arc id=“f17” source=“g6” target=“g7” guard=“OK”/>

<arc id=“f18” source=“g6” target=“g4” guard=“NOK”/>

<arc id=“f19” source=“g7” target=“g8”/>

<arc id=“f20” source=“g8” target=“a9”/>

<arc id=“f21” source=“a9” target=“a10”/>

</arcs>

</process>

</bpmn>
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