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Abstract. As the need for concepts such as cancellation and OR-joins occurs naturally in
business scenarios, comprehensive support in a workflow language is desirable. However,
there is a clear trade-off between the expressive power of a language (i.e., introducing com-
plex constructs such as cancellation and OR-joins) and ease of verification. When a workflow
contains a large number of tasks and involves complex control flow dependencies, verifica-
tion can take too much time or it may even be impossible. There are a number of different
approaches to deal with this complexity. Reducing the size of the workflow, while preserving
its essential properties with respect to a particular analysis problem, is one such approach.
In this paper, we present a set of reduction rules for workflows with cancellation regions and
OR-joins and demonstrate how they can be used to improve the efficiency of verification. Our
results are presented in the context of the YAWL workflow language.
Keywords: Verification of process models, soundness property, reduction rules, cancellation,
OR-join, reset nets, YAWL.

1 Introduction

Verification is concerned with determining, in advance, whether a process model exhibits certain
desirable behaviours. By performing this verification at design time, it is possible to identify po-
tential problems, and if so, the model can be modified before it is used for execution. As some
systems (e.g., workflow systems) rely on process models for execution of work, careful analysis
of process models at design time can greatly improve the reliability of such systems. When dealing
with complex business processes (e.g., in the context of a workflow implementation or the con-
figuration of some process-aware information system), it is important but sometimes difficult to
determine whether a process contains any errors due to its complexity. Cancellation and OR-joins
are two complex features that are common in many business processes. Cancellation captures the
interference of an activity in the execution of others in certain circumstances. Cancellation can
be triggered by either a customer request (e.g., a customer wishes to withdraw a credit card ap-
plication) or by exceptions (e.g., an order cannot be processed due to insufficient stock level). In
general, cancellation results in one of two outcomes: disabling some scheduled activities or stop-
ping currently running activities. The complicating factor is that due to concurrency issues, the
cancellation action may or may not result in cancelling certain activities, i.e., the process may be
in a state before or after the part that is supposed to be cancelled. This can introduce deadlocks



(the state where a business process is stuck and cannot proceed). An OR-join is used in situations
when we need to model “wait and see” behaviour for synchronisation. For example, a purchase
process could involve the separate purchase of one or two different items and the customer can
decide whether he/she wants to purchase one or the other or both. The subsequent payment task
is to be performed only once and this requires synchronisation if the customer has selected both
products. If the customer selected only one product, no synchronisation is required before pay-
ment. The OR-join in its general form (see [17]) requires the ability to “wait and see” whether
more completion signals can be expected based on the current state of the process.

The presence of cancellation and OR-joins poses new challenges for deciding workflow cor-
rectness. A correct workflow is said to satisfy the soundness property [1]. Soundness is a compos-
ite property, concerned firstly with whether a workflow, when started, can complete. Secondly, the
workflow should never have tasks still running when completion is signalled. Thirdly, the workflow
should not contain tasks that can never be executed. While there is a substantial body of work in
the area of Petri-net based verification of workflows, the results do not easily transfer to languages
that use cancellation and OR-joins. The cancellation concept is not directly supported in Petri nets
as this would require the ability to directly remove all tokens from a place and its presence has
substantial implications for analysis. Similar considerations apply to the OR-join. In our earlier
work [18], we proposed a new verification approach to determine the soundness property of such
workflows using reset nets, which are Petri nets with reset arcs that can remove tokens from arbi-
trary places when a transition fires [8]. To determine whether a workflow satisfies the soundness
property, we explore the state space and carry out reachability analysis. The upside is that there
is now a verification technique for such complex workflows. The downside is that verification can
become intractable for large workflows due to a large state space that needs to be investigated.
Applying reduction rules before carrying out verification alleviates this problem by cutting down
the size of the workflow while preserving the essential properties including soundness.

In this paper, we present a set of soundness-preserving reduction rules for YAWL workflows
with cancellation regions and OR-joins. These reduction rules are inspired by the well-known
reduction rules for Petri nets [7, 9]. However, most of the classical rules do not apply to processes
with cancellation and OR-joins. The expressiveness of these constructs invalidates the original
rules, i.e., the classical reduction rules need to be adapted and new rules are added. We take Yet
Another Workflow Language (YAWL) [3] as the vehicle through which our results are expressed as
YAWL provides direct support for cancellation regions and OR-joins. However, the contribution
of our work is not limited to the YAWL workflow language as the support for the notions of
cancellation and OR-joins can also be found in many of today’s process modelling languages.
For instance, the Business Process Modelling Notation (BPMN) provides an “OR gateway” and
various cancellation constructs. The Business Process Execution Language (BPEL) supports OR-
joins (through the “flow” construct) and cancellation. Event-driven Process Chains (EPCs) can
model OR-join but not cancellation. The Activity Diagrams of the Unified Modelling Language
(UML) do not support OR-join but offer different cancellation behaviours. The support for efficient
verification of these constructs is vital. The set of reduction rules proposed in this paper is equally
applicable to other languages supporting cancellation and/or OR-joins.

The organisation of the rest of the paper is as follows. Section 2 contains background infor-
mation on YAWL and reset nets and also discusses a set of reduction rules for reset nets. This is
because YAWL nets with cancellation regions are formally mapped to reset nets and we make use
of the reset net reduction rules to derive a set of reduction rules for YAWL nets with cancella-
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tion regions. Section 3 presents ten reduction rules for YAWL nets with cancellation regions and
without OR-joins and Section 4 presents two additional reduction rules for OR-joins. The reduc-
tion rules defined in Section 3 are also applicable to nets with OR-joins. Section 5 describes the
implementation of our approach in the YAWL editor and presents results from verification of a
complex YAWL workflow making use of YAWL reduction rules. Section 6 discusses related work
and Section 7 concludes the paper.

Relationship to our other work on reduction rules: This journal article is the first published
result for a set of YAWL reduction rules. In [19], a set of reduction rules for reset nets are pre-
sented. In [15], a set of reduction rules for reset/inhibitor nets are presented. Both technical re-
ports together with a technical report version of this journal paper are available from BPM Center
(http://www.bpmcenter.org).

2 Preliminaries

The workflow language YAWL [3] is a general and powerful language grounded in workflow pat-
terns [4] and in Petri nets [9]. YAWL is the result of an in-depth analysis in control flow constructs
in workflows, and provides direct support for those patterns hard to realise in Petri nets such as
cancellation, the OR-join and multiple instances. A YAWL net is made up of tasks, conditions and
flow relations between them. There are three kinds of split and three corresponding kinds of join;
AND, XOR, and OR (see Figure 1). A task is enabled when there are enough tokens in its input
conditions according to the join behaviour. When a task is executed, it takes tokens out of the
input conditions and puts tokens in its output conditions according to the join and split behaviour
respectively. An OR-join in YAWL waits for synchronisation, wherever possible. A task can have
a cancellation region associated with it (dotted lines denote the cancellation region of a task). If a
task is within the cancellation region of another task, it may be prevented from being started or its
execution may be terminated (depending on the timing). If there is a cancellation region associated
with a task, cancellation is triggered on the completion of that task.

A reset net is a Petri net with special reset arcs, that can clear the tokens in selected places [8].
The nature of reset arcs matches closely with the concept of cancellation in workflow modelling
and reset nets are used as a formalism for modelling workflows with cancellation. A mapping from
a YAWL net without OR-joins to a reset net has been defined in [17]. We briefly mention the main
idea behind these transformations here using Figure 1. In general, a condition is mapped onto a
place, and a task onto two sets of transitions and an intermediate place. The transitions in the first
set start the task (modelling the join behaviour), whereas the transitions in the second set complete
it (modelling the split behaviour). A task within a cancellation region in YAWL is mapped to a
reset arc (shown as a double-headed arrow) of its intermediate place in the corresponding reset
net. An example of this is given in the bottom-left corner of Figure 1. If there is a cancellation
region associated with a task, the execution of the task removes all the tokens from the conditions
and from the intermediate places of tasks in the cancellation region.

A YAWL net satisfies the following three structural restrictions: there is (1) exactly one begin
condition, (2) exactly one end condition and (3) every node in the graph is on a directed path
from the begin condition to the end condition (see Figure 16). Reset Workflow Nets (RWF-nets)
represent a subclass of reset nets with the same structural restrictions. Transforming a YAWL net
without OR-joins according to Figure 1 results in the corresponding RWF-net. A YAWL net with-
out OR-joins is considered sound if and only if the corresponding RWF-net is sound. An RWF-net
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Fig. 1. Transformations from YAWL constructs to reset net constructs

is sound if and only if the net satisfies the following three properties; an option to complete (for
every marking reachable from the initial marking with a token in the input place, there is an oc-
currence sequence leading to the end marking with a token in the output place), proper completion
(the end marking is the only marking with at least one token in the output place), and no dead
transitions (for every transition, there is a marking reachable from the initial marking such that
that transition can be enabled) [16].

We now briefly summarise seven soundness preserving reduction rules for RWF-nets (see Fig-
ure 2). These rules are based on well-known Petri net reduction rules [7, 9] and have been extended
and generalised as necessary to accommodate reset arcs. These reset net reduction rules are used
to derive a set of reduction rules for YAWL nets with cancellation regions. They have been proven
correct with respect to the soundness property in [16].

1. Fusion of series places rule for RWF-nets: (φR
FSP)

The φR
FSP rule allows for the merging of two sequential places p and q with one transition t in

between them into a single place r which takes on the same reset arcs as p and q (if any). The
rule only holds if transition t does not have any reset arcs and the two places are reset by the
same set of transitions.

2. Fusion of series transitions rule: (φR
FST)

The φR
FST rule allows for the merging of two sequential transitions t and u with one place p in

between them into a single transition v. Additional requirements (required to allow for reset
arcs) are that place p and output places of u should not be the source of any reset arcs and
transition u should not reset any place. The rule allows reset arcs from transition t and these
arcs will be assigned to the new transition v in the reduced net.

3. Fusion of parallel places rule: (φR
FPP)

The φR
FPP rule allows for the merging of places in Q (i.e., p1 to pL) that have the same inputs

and outputs into a single place q. The rule holds if all places are reset by the same set of
transitions. In particular, it means that the rule is applicable if no place is a reset place. Place
q in the reduced net has the same input, output and reset arcs as any place p ∈ Q.

4. Fusion of parallel transitions rule: (φR
FPT)

The φR
FPT rule allows for the merging of transitions V (i.e., t1 to tL) that have the same inputs
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and outputs into a single transition v. If no transition has reset arcs, then the rule holds. If one
transition resets a place, then the other transitions must also reset the same place. Transition v
in the reduced net has the same input, output and reset arcs as any transition t ∈ V .

5. Abstraction rule: (φR
A)

The φR
A rule allows the removal of a place s and a transition t, where s is the only input of

t, t is the only output of s and there is no direct connection between the inputs for s and the
outputs for t. The rule holds if and only if transition t does not reset any place, place s is not
reset by any transition, and outputs for t are not reset by any transition. Input transitions for
place s can have reset arcs.

6. Elimination of self-loop transitions rule: (φR
ELT)

The φR
ELT rule allows removal of a transition t which has a single place as its input and its

output. The additional requirement is that transition t has no reset arcs.
7. Fusion of equivalent subnets: (φR

FES)
The φR

FES rule allows the removal of multiple identical subnets by replacing them with only
one subnet. The rule requires that pairs of transitions have the same input and output places.
This rule is very effective in reducing YAWL models as it will be seen in the next section.

In this section, we have consolidated our previous work in the area of workflow verification and
reduction rules for RWF-nets. These RWF-net reduction rules together with the mappings from
YAWL to reset nets are used to derive the YAWL reduction rules. In the next two sections, we
focus on the new results: a set of reduction rules for workflow nets with cancellation regions and
OR-joins.

3 Reduction rules for nets with cancellation regions and without OR-joins

Due to the mappings shown in Figure 1, it is possible to perform reduction of YAWL nets with
cancellation regions and without OR-joins by first transforming the net into the corresponding
RWF-net and then applying the RWF-net reduction rules. However, we decided to define a set of
reduction rules at the YAWL net level so that (1) YAWL nets can be reduced without mapping
to reset nets first and (2) it is possible to derive additional reduction rules for YAWL nets with
OR-joins.

We now present ten soundness preserving reduction rules for various YAWL constructs1. In
this paper, we limit ourselves to describing one of the rules, the Fusion of series tasks rules (φY

FST),
in full detail and briefly explaining the other rules due to space reasons. The detailed formalisation
of all the rules can be found in [16]. First, we present some notations used in the definition of the
φY

FST rule. A YAWL net is formally represented by the tuple (C, i,o, T, F, split , join, rem) where
C is a set of conditions, ii, oo are unique input and output conditions, T is a set of tasks, F is the
flow relation, split and join specify the split and join behaviours of each task and rem specifies
the cancellation region for a task. The notations split(t) and join(t) for a task t ∈ T return one
of AND, XOR, OR. The notation rem(t) for a task t returns the (possibly empty) set of tasks and
conditions that it resets. We also write rem↼(x) for any x ∈ (C ∪ T ), which returns the set of
tasks that can reset x. For any x ∈ (C ∪ T ), •x and x• denote the set of inputs and outputs. If the
net involved cannot be understood from the context, we explicitly include it in the notation and we
write N• x and x

N• .

1 We do not claim these rules to be complete.
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– Fusion of series tasks rule: φY
FST

The Fusion of Series Tasks Rule for YAWL nets (φY
FST) allows for the merging of two sequen-

tial tasks t and u in a YAWL net that have only one condition p in between them into a single
task v. Figure 3 visualises the φY

FST rule. The φY
FST rule makes use of the φR

FST rule and the
φR

FSP rule for RWF-nets. The application requirements are similar to those for the respective
rules except that we refer to tasks and conditions instead of transitions and places. In addition,
we require that tasks t and u are AND-split tasks and tasks t and u are cancelled by the same
set of transitions that remove tokens from condition p (if any). It is possible that task t resets
certain places. Two tasks t and u are merged into a new task v and condition p is abstracted
from the reduced net. Task v also takes on the reset arcs of task t (if any).

Definition 1 (Fusion of Series Tasks Rule: φY
FST). Let N1 and N2 be two YAWL nets without

OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and N2 = (C2, i, o, T2, F2, split2,
join2, rem2). (N1, N2) ∈ φY

FST if there exists tasks t, u ∈ T1, a condition p ∈ C1 and a task
v ∈ T2 \ (T1 ∪ C1) such that:

Conditions on N1:
1. {t} = •p (t is the only input of p)
2. {u} = p• (u is the only output of p)
3. {p} = •u (p is the only input of u)
4. rem↼

1 (p) = rem↼
1 (t) = rem↼

1 (u) = ∅ (t, u and p are not reset by any task)
5. rem1(u) = ∅ (u does not reset)
6. for all c ∈ u• : rem↼

1 (c) = ∅ (outputs of u are not reset by any task)
7. split1(t) = split1(u) = AND (both t and u are AND-split tasks)

Construction of N2:
8. C2 = C1 \ {p}
9. T2 = (T1 \ {t, u}) ∪ {v}

10. F2 = (F1 ∩ ((C2 ×T2)∪ (T2 ×C2)))∪ (N1• t×{v})∪ ({v}×u
N1• )∪ ({v}× (tN1• \{p}))

11. rem2 = {(z, rem1(z) ∩ (C2 ∪ T2))|z ∈ T2 ∩ T1} ∪ {(v, rem1(t))}
12. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v,AND)}
13. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ {(v, join1(t))}

Theorem 1 (The φY
FST rule is soundness preserving). Let N1 and N2 be two YAWL nets

without OR-joins such that (N1, N2) ∈ φY
FST. N1 is sound iff N2 is sound.

Proof By construction. Figure 3 visualises the φY
FST rule and sketches the proof of this rule.

– Fusion of series conditions rule: φY
FSP

The Fusion of Series Conditions Rule for YAWL nets (φY
FSP) rule allows for the merging of

two sequential conditions p and q in a YAWL net that have only one task t in between them
into a single condition r (see Figure 4). The application requirements are similar to those for
the φR

FSP rule. In addition, we require that task t is cancelled by the same set of tasks that
remove tokens from conditions p and q.
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– Fusion of parallel conditions rule: φY
FPP

The Fusion of Parallel Conditions Rule for YAWL nets (φY
FPP) allows for the merging of two

or more parallel conditions in a YAWL net with the same input tasks and the same output tasks
into a single condition (see Figure 5). We require that all input tasks for these conditions are
AND-split tasks and all output tasks for these conditions are AND-join tasks. In addition, we
require that these conditions are reset by the same set of tasks, if any.

– Fusion of alternative conditions: φY
FAP

The Fusion of Alternative Conditions Rule for YAWL nets (φY
FAP) allows for the merging of

two or more alternative conditions in a YAWL net with the same input tasks and output tasks
(Figure 6). This rule is similar to the φY

FSP rule except for the fact that all input tasks for these
conditions are XOR-split tasks and all output tasks are XOR-join tasks.

– Fusion of parallel tasks rule: φY
FPT

The Fusion of Parallel Tasks Rule for YAWL nets (φY
FPT) allows for the merging of two or

more identical tasks in a YAWL net into a single task (see Figure 7). Two tasks are identical
if both have the same input set and output set, the same split and join behaviour, do not cancel
anything, and are not cancelled by any other tasks. We require that all tasks are AND-split and
AND-join tasks.
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– Fusion of alternative tasks rule: φY
FAT

The Fusion of Alternative Tasks Rule for YAWL nets (φY
FAT) also allows for the merging of

two or more identical tasks in a YAWL net into a single task (Figure 8). The only difference
between the φY

FPT rule and the φY
FAT rule is that tasks in the φY

FAT rule are XOR-split and
XOR-join tasks.

– Elimination of self-loop tasks rule: φY
ELT

The Elimination of Self-Loop Tasks Rule for YAWL nets (φY
ELT) allows removal of a self-loop

task in a YAWL net (see Figure 9). The φY
ELT rule makes use of the φR

FST and the φR
ELT rule

for RWF-nets. In addition, we require that t and p are not part of any cancellation region. Task
t and associated arcs from t to p are abstracted in the reduced net.

– Elimination of self-loop conditions rule: φY
ELP

The Elimination of Self-Loop Conditions Rule for YAWL nets (φY
ELP) allows removal of a self-

loop condition in a YAWL net (see Figure 10). The φY
ELP rule makes use of the φR

FSP and the
φR

ELT rule for RWF-nets. Condition x and associated arcs from x to t are abstracted in the
reduced net.
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– Fusion of AND-split and AND-join rule: φFAND

The Fusion of AND-split and AND-join tasks for YAWL nets (φFAND) allows for the merging
of structured AND-split and AND-join tasks into a single task in a YAWL net (see Figure 11).
We require that tasks t, u, and conditions p1, ..., pN are not part of any cancellation region nor
do neither t nor u reset any places.

– Fusion of XOR-split and XOR-join tasks rule: φFXOR

The Fusion of XOR-split and XOR-join tasks for YAWL nets (φFXOR) allows for the merging
of structured XOR-split and XOR-join tasks into a single task in a YAWL net (see Figure 12).
We require that tasks t, u, and conditions p1, ..., pN are not part of any cancellation region.

4 Reduction rules for nets with cancellation regions and OR-joins

As verification techniques for YAWL nets with OR-joins utilise reachability analysis using the
YAWL semantics [18], state space explosion is a real concern. Our objective is to identify possible
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reduction rules for YAWL nets with OR-joins that could be used under certain context assumptions
so that verification can be performed more efficiently. To achieve this, first we propose to apply the
reduction rules defined for YAWL nets without OR-joins to those parts of a YAWL net that do not
have any OR-joins. This is possible as any OR-join behaviour is not affected by these reduction
rules (i.e., If a token could arrive in one of its inputs, then it can also arrive after the reductions, and
if a token could not arrive then it is also not possible after the reductions.). So, the ten reduction
rules that are presented in Section 3 for YAWL nets without OR-joins apply equally to YAWL nets
with OR-joins.

Next, we present two additional reduction rules directly related to the OR-join construct: the
φFOR rule and the φFIE rule. Both reduction rules presented here are provided under the context
assumption of safeness. A condition is safe if it is not possible to have more than one token at
a time. This is especially important for conditions which are on the path to an OR-join task. By
making the assumption of safeness, we can ensure that more tokens cannot arrive at input places
to an OR-join without firing the OR-join again. Hence, the OR-join enabling rule can be localised.

1. Fusion of an OR-join and another task rule: φFOR

The Fusion of an OR-join and another task for YAWL nets (φFOR) rule enables certain OR-join
tasks to be abstracted from the net under the context assumption of safeness (see Figure 13).
The rule requires that all inputs to an OR-join task (u) are from one task (t) (regardless of the
split behaviour of that task) and all outputs from t go directly into u. In addition, tasks t and u
are not allowed to have cancellation regions and all output places for t as well as tasks t and u
are part of the same cancellation regions (if any). If all requirements are satisfied, tasks t and
u are merged into a new task v in the reduced net. Task v takes on the split behaviour of u and
the join behaviour of t.
The φFOR rule is such that if all output conditions from t go directly into OR-join task u, then
u can be abstracted. We can see that the φFOR rule holds under such requirements. Assume
that task t is enabled at marking M and M ′ is reachable from M . If t is an AND-split task, M ′

marks all output conditions of t which are also input conditions of u and u is enabled. If t is an
XOR-split task, M ′ marks a subset of conditions in •u. The unmarked conditions in •u cannot
be marked again without potentially adding more tokens into already marked conditions in •u
and thus making this condition unsafe. As a result, no more tokens can be put into •u under
the safeness assumption and u is also enabled. The same is true when the split type of t is an
OR-split task. Under the context assumption of safeness, we can see that OR-join task u will
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Fig. 10. Elimination of Self-Loop Conditions Rule for YAWL nets: φY
ELP

fire once for every firing of t as t• = •u. Hence, we can conclude that if there is a marking M
that enables t, the reachable marking M ′ will enable OR-join task u. If there is no marking
that enables t, then both t and u are not enabled. In the reduced net, tasks t and u are replaced
by task v. The rule requires that inputs for t and v are the same, outputs for u and v are the
same, the join behaviours of t and v are the same and the split behaviours of u and v are the
same. Therefore, a marking that enables t also enables v. After the sequence tu fires, it puts
tokens into u• depending on the split behaviour of u. As v has the same split behaviour as u,
the resulting marking after firing the sequence tu is also the same as the marking after firing
v. If it is not possible to enable t in the original net, it is also not possible to enable v in the
reduced net and hence, the behaviour is still the same.

The φFOR rule is very useful as it can potentially transform the net into one without OR-
joins. It is then possible to perform verification of the resulting reduced YAWL net without
OR-joins using reset net analysis. However, the rule is quite restrictive because to apply this
rule, all output arcs from a task must go into an OR-join and the OR-join could not have any
additional input arcs from any other tasks. As a result, the φFOR rule is not applicable to OR-
joins with input arcs from multiple tasks. Hence, we propose a weaker rule that is intended to
remove arcs and not the OR-join.

2. Fusion of incoming edges to an OR-join rule: φFIE

The Fusion of Incoming Edges to an OR-join for YAWL nets (φFIE) rule allows for the merging

12



t
p1

pN

u v

YAWL net 
RWF- net

puuS

p1

pN

pt tE

2 x

puuSppt tE

pv

FPP
R

FSP
R

Fig. 11. Fusion of AND-split and AND-join tasks for YAWL nets: φFAND

t
p1

pN

u v

YAWL net 
RWF- net

pu

uS
p1

uS
pN

p1

pN

pt

tE
p1

tE
pN

pt

tu

tupN

pu

p1

tu

pv

FST
R

FPT
R

FSP
R

pt pu

Fig. 12. Fusion of XOR-split and XOR-join tasks for YAWL nets: φFXOR

of two or more conditions that have the same input task and the same output task (an OR-
join) into a single condition (see Figure 14). Also, we require that these conditions cannot be
cancelled.

It is easy to see that the φFIE rule holds. As conditions in p1, ..., pN and p have the same
input task t and output task u, if some subset of conditions in p1, ..., pN is marked at a marking
in the original net, p is also marked at the corresponding marking in the reduced net. Under the
assumption of safeness, if some conditions in p1, ..., pN cannot get marked, they cannot get marked
later as this would enable currently marked places to be marked twice, which is not safe. If p
cannot be marked, then conditions in p1, ..., pN cannot be marked. Therefore, the OR-join enabling
behaviour of u is identical in both nets regardless of whether there is only one condition p or
multiple conditions p1, ..., pN .

5 Implementation

Reduction rules together with the three-step approach for verification using reduced nets have been
implemented in the YAWL editor as follows.2

2 www.sourceforge.net
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1. Reduction rules are applied exhaustively to a net until it cannot be reduced further. For a
YAWL net with OR-joins, YAWL reduction rules are applied to obtain a reduced net. For a
YAWL net without OR-joins, the net is first translated to an RWF-net and reset reduction rules
are then applied to obtain a reduced RWF-net for verification. The mappings between different
nets are also stored for error reporting.

2. Verification is performed on the reduced net.
3. If there are any warnings to be reported, the element names in the reduced net are mapped

back to the names of tasks and conditions in the original net.
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Fig. 15. Overview: the main YAWL net in the visa application process

We now illustrate the proposed reduction rules for verification using two process models. The
first one is a a real-life process model: Australian visa application process for general skilled
migration. This process is modelled “as is” using publicly available information from Department
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Fig. 16. YAWL (sub)nets: Perform main assessment, Check basic requirements, Allocate marks

of Immigration and Multicultural Affairs website.3 This represents an example process model to
showcase the various complex elements supported in YAWL. The second one is the Document
handling process during film production: YAWL4Film. This YAWL4Film represents an real-
world executable YAWL model that is currently being used to automate the document handling
aspects of a film production process and provided as one of the solutions of the YAWL framework.4

The visa application process starts when a visa application is received by the immigration de-
partment and ends when a decision is made to grant or to deny the visa. The model represents
the process from the viewpoint of a case officer who handles the visa application. The resulting
YAWL workflow contains four nets Overview, Perform main assessment, Check basic require-
ments, and Allocate marks. Figure 15 shows the main net called Overview. The Overview net is a
complex workflow as it contains multiple cancellation regions and two OR-joins, namely, Cancel
application and Make decision. In the net Overview, the Perform main assessment is represented
as a composite task and it unfolds into the YAWL net with the same name. Similarly, there are two
composite tasks: Check basic requirements and Allocate marks in the Perform main assessment
net and they also unfold into two YAWL nets with the corresponding names. Figure 16 shows the
three subnets in the process.

Table 1 shows applicable YAWL and reset reduction rules for all nets in the Visa application
process. The numbers in various columns represent the number of elements in the original net
and in the corresponding reduced net, either for a YAWL net or an RWF-net. The row Reduced

3 http://www.immi.gov.au accessed on 20 April 2006
4 http://www.yawlfoundation.org/solutions/yawl4film.html
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(both) displays the number of YAWL elements in column 1 and the number of RWF-net elements
in columns 2, 3, and 4. We found that the reductions have dramatic effects at times and moderate
effects on other occasions. For example, there are altogether 42 tasks and conditions (including
implicit conditions between two tasks) in the original Overview net and after applying one of the
YAWL reduction rules repeatedly, φY

FSP, the number is reduced to 27. Figure 17 shows the reduced
Overview net after the φY

FSP rule has been applied. A YAWL condition that represents a reduced
element is shaded grey. Please note that some of the reduced conditions might not be shown in
the figure. The table also highlights that sometimes both YAWL and RWF-net reduction rules are
necessary. For instance, the Check basic requirements net can only be reduced using the RWF-
net reduction rules and not with YAWL reduction rules. Also, the Allocate marks can be reduced
significantly from 37 to 3 elements if YAWL reduction rules are applied first followed by the reset
reduction rules.

The efficiency we gain from applying reduction rules is quite significant. The time it takes to
verify the soundness property of the Overview net decreased from 24.3 sec to 4 sec when reduction
rules are used. Similar gains can be seen for the other two nets: Check basic requirements and
Perform main assessment. As for the Allocate marks net, the results are quite spectacular after
applying the φY

FSP rule and the φFOR rule under the assumption of safeness. The net has a large
state space due to the various possible OR-split and OR-join combinations. Without the use of
reduction rules, the net suffers from the state explosion problem when determining the soundness
property. After applying the reduction rules, the reduced Allocate marks net becomes quite trivial
with just one input place, one output place and a task in between. As a result, the soundness
check is completed almost instantaneously (less than one second). This is a huge improvement
considering the fact that the soundness check for the Allocate marks net could not be completed
in a reasonable time frame (more than 5 mins) due to state explosion.

In addition to the visa application process model, we have also verified the soundness prop-
erty of a real YAWL process model used in the film production process with and without using
these reduction rules. The YAWL4Film process is data-intensive and the process captures the var-
ious activities that need to be carried out for each shooting day on a film set. The process model
makes use of a number of iterative loops to describe the repetitive modification of the documents
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Net Overview Main Assessment Basic Requirements Allocate Marks
Original (YAWL) 42 11 21 37
Reduced (YAWL) 27 7 None 3
YAWL rules φY

FSP φY
FSP None φY

FSP,φFOR

Original (reset) N/A 23 42 N/A
Reduced (reset) N/A 9 32 N/A
Reset rules N/A φR

FST φR
FSP N/A

Reduced (both) 27 9 32 3
Both rules φY

FSP φY
FSP,φR

FSP,φR
FST φR

FSP φY
FSP,φFOR,φR

FST

Soundness (original) 24.3 sec 1.9 sec 26.4 sec >5 mins
Soundness (reduced) 4 sec 0.8 sec 4.1 sec 0.7 sec
Table 1. Demonstrating the effects of reduction rules on the soundness property check for Visa application
process

involved. The process also contains an OR-join task to determine whether all the activities need
to be repeated for another shooting day. Figure 18 represents a screenshot from the YAWL Editor
that shows the soundness property results for the YAWL4Film process model. Even though the
number of elements in the model is relatively small (54 elements) and there are only 6755 mark-
ings in the state space, the state space analysis required for verification is time consuming as the
YAWL4Film model contains an OR-join and seven iterative loops on the path for different shoot-
ing days. Without the use of YAWL reduction rules the soundness check takes more than 30 mins
to complete due to the combination of the seven loops which results in many reachable markings
and the multiple calls to the expensive OR-join analysis algorithm requiring each enabling deci-
sion to take into account the many iterative loops on the path and construct a reset net every time.
In fact, this real-world process model with a number of iterative loops highlighted the need for an
additional reduction rule (the φY

ELP rule) which removes self-loop conditions from a net. This new
reduction rule has now been added to our collection. After applying the YAWL reduction rules
repeatedly (in this case, the φY

FSP rule, the φY
ELP rule and the φFAND rule), the net can be reduced

from 54 to 29 elements, the number of reachable markings in the state space is now 105 and the
soundness property check is performed in less than one second. This experiment further highlights
the importance of applying reduction rules for verification of YAWL nets.

6 Related work

Different verification approaches for workflows have been proposed in the literature. Graph re-
duction techniques are proposed to identify certain conflicts [10] and the authors claim that the
correctness of a workflow can be determined by whether it can be reduced to an empty graph after
repeated application of the reduction rules. In [2], it is shown that the reduction rules presented
by Sadiq and Orlowska are not complete and as a result some correct models are classified as
incorrect. In [14], the authors present an approach to decide the relaxed soundness property of
workflows with cancellation regions and OR-joins using invariants. The approach taken results in
an approximation of the OR-join semantics and transformation of YAWL nets into Petri nets with
inhibitor arcs to represent cancellation regions. Reduction rules have been suggested to be used
together with Petri nets for the verification of workflows. A number of authors have investigated
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Fig. 18. YAWL4Film: Soundness property results for a real-world YAWL model with an OR-join

reduction rules for Petri nets [5, 6, 9] and for free-choice Petri nets [7] and time Petri nets [11].
In Verbeek’s thesis [13], the author proposes reduction rules for WF-nets based on the Petri net
reduction rules. We follow a similar approach with a set of reduction rules for workflow nets with
cancellation regions and OR-joins using reset nets. The difference is that our approach takes into
account possible cancellation regions in workflows. In Streit’s paper [12], simple YAWL reduction
rules have been presented for the purpose of collapsing large business processes. This represents a
starting point for the use of reduction rules in visualisation. However, their reduction rules do not
hold for YAWL nets with cancellation regions.

7 Conclusion

Given that deployed workflows may execute for a long time and may take many actions that can-
not be undone in a simple manner, it is desirable to detect errors at design time. Existing Petri net
based verification techniques with reduction rules cannot be used for workflows with cancellation
regions and OR-joins as these constructs have non-local implications. In [18], a new verification
technique for workflows with cancellation and OR-joins was proposed using reset nets and reach-
ability analysis. For large workflows with cancellation regions and OR-joins, reduction rules can
undoubtedly speed up the verification process. In this paper, a set of soundness-preserving re-

18



duction rules has been proposed to speed up the verification process. We have also demonstrated
the effectiveness of the proposed YAWL reduction rules in achieving a more efficient analysis of
workflows with cancellation regions and OR-joins using the visa application example and a real
process model used for film production.
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