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Workflow languages offer constructs for coordinating tasks. Among these constructs are various types
of splits and joins. One type of join, which shows up in various incarnations, is the OR-join. Different
approaches assign a different (often only intuitive) semantics to this type of join, though they do
share the common theme that branches that cannot complete will not be waited for. Many systems
and languages struggle with the semantics and implementation of the OR-join because its non-local
semantics require a synchronisation depending on an analysis of future execution paths. The presence
of cancellation features and other OR-joins in a workflow further complicates the formal semantics of
the OR-join.

In this paper the concept of the OR-join is examined in detail in the context of the workflow
language YAWL, a powerful workflow language designed to support a collection of workflow patterns
and inspired by Petri nets. The paper provides a suitable (non-local) semantics for an OR-join and gives
a concrete algorithm with two optimisation technigues to support the implementation. This approach
exploits a link that is proposed between YAWL and reset nets, a variant of Petri nets with a special
type of arc that can remove all tokens from a place when its transition fires. Through the behaviour of
reset arcs, the behaviour of cancellation regions can be captured in a natural manner.
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1. Introduction

Workflow systems aim to provide automated support for the conduct of certain business
processes. Workflow systems are driven by specifications which among others, capture the
execution interdependencies between various activities. These interdependencies are mod-
elled by means of different control flow constructors, e.g., sequence, choice, parallelism
and synchronisation. It is shown in the workflow patterns research that the support for and
the interpretation of various control flow constructs varies substantially across workflow
systems*. Two of the most problematic patterns relate to@R-joinand tocancellation
Typically, synchronisation of parallel activities in workflows can be achieved using
one of three join constructs: AND-join, XOR-join and OR-join. The AND-join construct
requires strict synchronisation. All paths must be completed before the task following the
AND-join can be started. As a result, the entire workflow can deadlock if not every path can
be completed. On the other hand, the XOR-join can be started when one path is completed
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and hence, the task following the XOR-join may be completed multiple times. In some
cases, this may be undesirable or expensive. An OR-join provides a middle ground between
these two join structures by allowing a workflow to continue when only certain paths are
completed and it is certain that other paths can never complete.

The presence of cancellation feature further complicates the formal semantics of the
OR-join. The cancellation feature is commonly used to model external events that can
change the behaviour of a running workflow. It can be used to either disable activities in
certain parts of a workflow or to stop currently running activities. Even though it is possible
to cancel activities in workflow systems using some sort of abort function, many workflow
systems do not provide direct support for this feature in the workflow language. Sometimes,
cancellation affects only a selected part of a workflow and other activities can continue af-
ter performing a cancellation action. In those cases, an OR-join is the only synchronisation
construct flexible enough to ensure that the process is completed correctly. As cancella-
tion occurs naturally in business scenarios, comprehensive support and a corresponding
implementation in workflow systems is required.

In practice, there is a need for a construct like the OR-join as is evident from e.g.
the fact that many commercial workflow systems (e.g., IBM MQSeries, InConcert, ePro-
cess, WebSphere MQ Workflow, Eastman, Domino) and business process modelling tools
support OR-join-like constructs (e.g., Event Process Chains (EPCs) and Business Process
Modelling Notation (BPMN)). Support for cancellation features are also provided in the
Business Process Modelling Notation (BPMN), the Business Process Execution Langauge
(BPEL) and the Unified Modelling Language (UML).

Even though the OR-join construct is useful in process modelling, its formal seman-
tics is difficult to capture and to implement. Different approaches assign a different (often
only intuitive) semantics to this type of join, though they do share the common theme that
synchronisation is only to be performed for the active paths that are being executed in a
given workflow instance. The difficult question arises as to when an OR-join should wait
and when it should go ahead. This decist@mnot be made locallyhat is, just by evalu-
ating the current state of the workflow. The decision requires the awareness of the current
state as well as possible future states of the workflow. State space analysis could be used
to determine all future states of the workflow. However, this analysis becomes much more
complicated when there are multiple OR-joins in the workflow or when other complex con-
structs such as cancellation and loops are present in the workflow. Defining the non-local
semantics of an OR-join is not trivial even when a workflow language does not support
complex constructs (e.g., cancellation) and/or puts certain restrictions on the models (e.qg.,
no loops or only allow structures where an OR-join is preceded by an OR-split).

In a workflow language that supports all these constructs without restrictions, there are
a number of complicating factors when it comes to definiggmeral approacho OR-join
semantics. Firstly, for workflows with multiple OR-joins, it is an open issue how a state
space analysis for a certain OR-join should treat other OR-joins. Secondly, for workflows
with infinite loops (e.g., a continuous monitoring activity), the state space could be infinite.
Thirdly, cancellation regions complicate the computation of future states. A task that an
OR-join is waiting for that is in the cancellation region of some other task may or may not
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be disabled. Such considerations make state space analysis computationally expensive. In
this paper, we take on this challenge and propose a general approach to OR-join semantics
in the presence of cancellation features and without imposing extra structural restrictions
for OR-joins. The OR-join semantics is defined and presented in terms of the workflow
language YAWL that provides support for cancellation regitins

The contributions of this paper are threefold. Firstly, the OR-join semantics as pro-
posed by van der Aalst and ter Hofsteldis re-examined. We will argue that its behaviour
does not match the informal semantics in the context of other OR-joins. Secondly, the map-
ping of YAWL nets to reset nets is exploited to find an algorithmic solution to the non-trivial
problem of OR-join enablement. Thirdly, two restriction techniques are proposed to make
the OR-join algorithm more efficient.

The rest of the paper is organised as follows. In Section 2, various attempts at defining
and supporting OR-join semantics from the literature are presented, including the problems
associated with the original OR-join semantics in YAWIlas well as possible improve-
ments. Section 3 formally defines a new semantics for the OR-join in YAWL. Section 4
demonstrates an algorithm to determine when an OR-join is enabled. This algorithm is
based on backwards search techniques drawn from the area of Well-Structured Transition
systems»!3, Section 5 presents two restriction techniques to improve the efficiency of the
analysis. Section 6 describes the implementation in the context of the open source system
YAWL and provides a detailed analysis of its performance. Section 7 describes a realistic
YAWL model for the general skill migration visa application to Australia, which contains
multiple cancellation regions and multiple OR-joins. Execution times for analysing OR-
joins in this visa application model are also presented. Section 8 discusses related work
and Section 9 concludes the paper. Appendix A contains background definitions for Well-
Structured Transition Systems and Appendix B contains proofs for restriction techniques.

This paper extends work by the authors previously reportédlimthe following ways.

More examples have been added to illustrate the OR-join semantics in Section 2. Structural
restriction and active projection techniques have been proposed to improve the performance
in Section 5. A number of experiments have been carried out to determine the correctness of
the OR-join enablement algorithm in various settings. The results from these experiments

have been reported in Section 6. Section 7 shows how the OR-join analysis is carried out

for the visa application example.

2. OR-join semantics

In this section, we first present the different variants of an OR-join semantics from the
literature. The informal semantics of an OR-join in the YAWL language is then explained
using a number of examples. Problems associated with the original OR-join semantics in
YAWL for multiple OR-joins are then discussed. Two alternative treatments for dealing
with multiple OR-joins are then proposed.
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2.1. Different interpretations and implementations of an OR-join

Several variants and interpretations of the OR-join have been proposed in the literature.
In Rittgen’s report'®, several possible interpretations of OR-join semantics in the con-
text of Event-driven Process Chains (EPCs) are discussed. If the OR-join is preceded by
a matching OR-split, the OR-join semantics is taken to be “wait for the completion of all
paths activated by the matching split”. The presence of a matching split makes the process
"structured”. If there is no matching split, there could be at least three interpretations of
an OR join: “wait-for-all”, “first-come” and “every-time™®. The Business Process Mod-
elling Notation (BPMN) also contains an OR-join like construct called inclusive OR-join
gateway?. The semantics of an OR-gateway in BPMN 1.0 is given Sepcification as “it
will wait for (synchronize) all Tokens that have been produced upstream. If an upstream
Inclusive OR produces two out of a possible three Tokens, then a downstream Inclusive
OR will synchronize those two Tokens and not wait for another Token, even though there
are three incoming Sequence Flow”. However, the OR-join gateway does not capture the
correct behaviour for unstructured BPMN mod#lsit seems to be challenging to select a
suitable OR-join semantics and to implement it efficiently. Van der Aalst &haghlight
the technical, conceptual and practical problems with the formal semantics of the OR-join
in EPCs. The authors demonstrate the problems using “vicious circles”, which are formed
when two or more OR-joins are in a feedback loop and each OR-join waits for the other
OR-join to complete first. It was suggested that there is no sound formal semantics for
EPCs that seems to satisfy the intuitive semantics and that any formal semantics for EPCs
will impose some restrictions or will deviate from the informal semantics to some extent.

Many workflow systems and languages also struggle with the semantics and imple-
mentation of the OR-join. This is because its non-local semantics requires a synchronisa-
tion depending on an analysis of future execution paths, which requires some non-trivial
reasoning. Workflow management systems like InConcert, eProcess, and WebSphere MQ
Workflow have solved problems related to the OR-join using syntactical restrictions. IBM
WebSphere MQ Workflow?® (used as a basis for the BPEL standard) appears to offer full
support for the OR-join for acyclic workflow's As a consequence of the requirement for
workflows to be acyclic, loops are disallowed and the only way to introduce loops is by
specifying a postcondition for a subprocess; the subprocess is then repeated until the post-
condition evaluates to true. Other systems like Eastman and Domino Workflow also support
an OR-join concept with non-local semantics. The use of the non-local semantics may re-
sult in poor performance as is stated in the manual of Eastman and the recommendation to
avoid this type of routing'®. Even the OR-join definition from the Workflow Management
Coalition does not support non-local semantics. An OR-join is defined as “a point within
the workflow where two or more alternative activity(s) workflow branches re-converge to a
single common activity as the next step within the workflow. (As no parallel activity execu-
tion has occurred at the join point, no synchronisation is required.)”. For a more complete
discussion on OR-join semantics, we refer the reader elsewfidre!?:16,

In the collection of workflow patterns, the synchronising merge pattern captures the
essence of an OR-joilt. The OR-join construct in YAWL, is intended to provide direct
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support for OR-join semantics while imposimg syntactical restrictionsHowever, the
original OR-join semantics as defined it could yield counter-intuitive results such as
e.g., an OR-join firing prematurely for workflows with multiple OR-joins and OR-joins in
sub-processes. Hence, we believe that there is scope for further improving the semantics of
an OR-join concept in YAWL.

2.2. OR-join semantics in YAWL

A YAWL model is made up of tasks, conditions (in a Petri net, these would be referred to
as places) and a flow relation between tasks and conditions. Tasks are active components in
a YAWL model and when a task fires, tokens are consumed from its input conditions and
tokens are generated for its output conditions depending on its split and join behaviours.
There are three kinds of split and three corresponding kinds of join; they are AND, XOR
and OR. The splits, joins, conditions and cancellation symbols for YAWL are shown in
Figure 1. Each YAWL model has one start condition and one end condition. A task is en-
abled when there are enough tokens in its input conditions according to the join behaviour.
Informally, an AND-join task is enabled if there are tokens in all its input conditions. An
XOR-join task is enabled if there is at least one token in one of the input conditions. The
decision for enabling tasks with AND-joins or with XOR-joins can be made locally as it
onlydepends on the existence of tokens in the input conditions. In YAWL, the semantics of
an XOR-join is considered to be local. 1ir®, the XOR-join is also assumed to have non-
local semantics. When a task is executed, it takes tokens out of its input conditions and puts
tokens in its output conditions according to the join and split behaviour respectively. A task
can have a cancellation set associated with it. If there is a cancellation set associated with
a task, the execution of the task removes all the tokens from the conditions and tasks in the
cancellation set. Cancelling a task is achieved by removing tokens from internal conditions
of the task.

In general, an OR-join task is enabled if there is at least one token in one of its input
conditions and it is not possible for more tokens to arrive in other (currently empty) input
conditions in the future states (i.e, there is no need to wait for synchronisation). If it is
possible for tokens to arrive in currently empty input conditions in the future states, then
the OR-join task should wait before proceeding. This is the desired behaviour of an OR-join
and we will refer to this as thimformal semanticef an OR-join.

A more technical explanation of the OR-join semantics is as follows: an OR-join is

() ® 00...0H

start end
condition condition condition remove
tokens
XOR-split AND-split OR-split XOR-join AND-join OR-join
task task task task task task

Fig. 1. Splits, joins, conditions and cancellation in YAWL
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enabled at a marking if and only if at least one of its input conditions is marked and it is not
possible to reach a marking that still marks all currently marked input conditions (possibly
with fewer tokens) and at least one that is currently unmarked.

Next, a series of YAWL nets are presented to establish the need for complex analysis to
determine whether an OR-join is enabled. For simplicity, the YAWL nets use short labels
(e.g., A, cl, etc.) to identify tasks and conditions. This allows us to focus on the control
flow requirements for a particular net. We also give here an informal explanation of some
Petri net terminology, such as marking and reachability, which is also used in YAWL. As
with Petri nets, the terrmarking is used to describe the state of a YAWL model and is
represented as the number of tokens in certain conditions of a netX€.g, ¢l + ¢5
represents a state of the workflow where there is one token each in conditiansd ¢5).

A marking isreachablefrom another marking, if there is a sequence of tasks that can fired
from the first marking to arrive at the second marking.

l
(»

Onlll! O, ~m)

l
X

Fig. 2. A structured YAWL net with an OR-split task A and an OR-join task E

Figure 2 is a net where A is an OR-split task and E is an OR-join task. The initial
marking for the net has exactly one token in the start condition. At the initial marking, task
Ais enabled and can be fired. Aftéris executed, tokens are put into conditieisc2, and
¢3 according to OR-split behaviour. Note that the OR-split allows one or more paths to be
selected after executing the task. Consider a marking c1 + ¢5, which results from the
scenario where two outgoing paths leading to B and to C, were selected after completing
task A, and where task C has been executed\/Athere is a token in the input condition
c5 of OR-join task E. To determine whether task E should be enabléd,ate need to
find out whether tokens could be put intd or ¢6 in the reachable markings af. It is
possible to reach a new markidg’ = ¢4 + ¢5 from M by firing task B and therefore, E
should not be enabled at. Now consider whether task E would be enabled at marking
M' = c4 + ¢5. At M, ¢4 andc5 have one token each and there are no other tokens in the
net. Hence, it is not possible fo6 to be marked in the reachable markings\éf. Task E
is enabled afi/’. As this is a “structured” net, task E is not enabled until the tokens from
all the active threads from task A reach the input conditions of E.

From the above example, it could be thought that an OR-join evaluation only depends
on the number of active paths out of an OR-split. If that is true, it is possible to know in
advance the number of active paths to wait for synchronisation. Figure 3 represents a slight
modification to the YAWL net of Figure 2 and it shows that this notion is false. In Figure 3,
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¢4 is an input condition of task F aneh andc6 are input conditions of task E. Consider

a markingM=cl + ¢5. In this case, there is no reachable marking frbimthat has any
tokens inc6 and therefore, E is enabled/af. So, even though two active paths are chosen
after OR-split task A, the OR-join evaluation should not wait for tokens from both paths,
as it is possible that not all the tokens are on the path to an OR-join task.

e @

(= ° ()

Fig. 3. A YAWL net modified from Figure 2
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Fig. 4. A YAWL net with two OR-join tasks C and D
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Fig. 5. The reachability graph of the YAWL net in Figure 4

¢}

Next, the behaviour of OR-join is described using an example with one OR-split and
two OR-joins. The example in Figure 4 demonstrates a net with AND-split task A, AND-
join task E, OR-split task B and OR-join tasks C and D. The graph of Figure 5 shows
the reachable markings from the initial markingo the end marking. A node in the
reachability graph represents a reachable marking and an edge represents a task that is
executed to reach that particular marking. First consider a matking: c1 + ¢2 + ¢3
where there is a token in input conditioh of OR-join task C and in input conditioeB of
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OR-join task D in addition to the token in input condition of task B. To determine whether
tasks C and D should be enabled\dét we need to find out whether either conditiehor

c5 is marked in the reachable markings fravh. We can see that by executing task B, it
is possible to reach markingd + ¢3 + ¢5 or cl + ¢3 + ¢4 + ¢b that marke5, an input
condition of task D not marked if/. Alternatively, markingg1+c3+c4, c1+c¢3+4c4d+c5
could be reached by executing task B and they madrkan input condition of task C not
marked inM. As it is possible to reach a new marking framh which can put a token in

an unmarked input condition of the OR-join tasks C and D, neither task C nor D is enabled
at M. If a markingM’ = c1 + ¢3 + c4 is considered, where all the input conditions of C
(i.e.,c1 andc4) are marked, then C is enabledMdt. Task D will also be enabled atl’ as

it is not possible for another token to arrive at input condititdnNote that in the scenario
where we move frond/ to M’, task D was not enabled it¥ and, although no tokens were
added to the input conditions of this task, it became enabled’inin this example, the
two OR-joins do not interfere with one another as they do not share input conditions.

]

¢ |- b @
]

Fig. 6. A YAWL net with a cancellation task C and an infinite loop

Now, let us consider OR-joins in the context of cancellation. Figure 6 describes a net
with (i) task C removing tokens from the conditions, ¢2 and from internal conditions
of task B when firing, (ii) an OR-join task E and (iii) two infinite loops betwegdn 2,
¢3, C and D. At a marking\/ = ¢2, one of the input conditions of E is marked and an
analysis needs to be performed to decide whether #bndc3 are marked in reachable
markings ofM . The following sequence of reachable markings frbfrcan be observed:
25352 cl+e23 225 ¢3. Similarly, there is another sequenee: 5 ¢3 >
cl + 2 5 ¢3, note that this is due to the cancellation feature of C removing tokens from
c2 when firing. Regardless of which path is taken from the markiyga markinge3 is
reached and not a markirg + ¢3 (i.e., at the expense eR). The conclusion is that it is
not possible to reach a marking + ¢3 or bigger fromM and therefore, E is enabled at
M. Suppose now that task C no longer has a cancellation set associated with it in Figure 6.
From the marking// = ¢2, the following sequence of reachable markings can be observed:
2533 cd+e25 225 2+ ¢3. Asitis possible to react2 + ¢3 which marks
more input conditions of E, E should not be enabled/atThis example demonstrates the
possible effect that the cancellation feature of a task has on the OR-join analysis.

From the above examples, itis clear that the OR-join semantics requires careful analysis
and the decision to enable an OR-join cannot be made locally. One possible technique is to
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perform the state space analysis of the entire workflow model. An OR-join algorithm can
evaluate possible reachable markings from a given marking to determine whether there is a
possibility of a token arriving at a currently unmarked input condition of an OR-join (while

all input conditions which were already marked remain marked though possibly with fewer
tokens). This algorithm potentially needs to be applied every time a marking changes and
the OR-join analysis could place a significant load on any workflow engine required to
execute it.

2.3. Problems with the original semantics

Two problems may be identified with the original OR-join semantics of YAWIThe

first problem is related to the treatment of other OR-joins preceding an OR-join under
consideration. The OR-join semantics ignores other OR-joins when analysing whether a
particular OR-join should be enabled at a given marking. In Figure 7, there are two OR-
join tasks, E and F in the net. Consider a markiidg= c1 + ¢3 where the OR-join analysis

for F is performed. After executing task C, it is possible to reach either c4, ¢3 + ¢ or
¢34c4+c5. One possible occurrence sequenad isc3 = ¢3+cd+ch = c3+cA+c6 =

¢3 + ¢7. Hence, M’ = ¢3 + ¢7 is a reachable marking from/. However, the original
OR-join semantics ignores other OR-joins on the path to F, so task E and the associated
conditions will not be taken into account, aiff is therefore not considered as a reachable
marking during the OR-join analysis of F. As a result, the analysis will conclude incorrectly
that there is no possibility of another token arriving:i F would be enabled &t/ and no
synchronisation takes place. This behaviour is probably not what one would expect from
this model. It would also result in multiple executions of F and then more than one token
would be produced fas. A net which can produce a token for the output conditiavhile

still having tokens in the other conditions is considered as not having proper completion
and is therefore not sound. We have seen that as the analysis of a given OR-join does not
consider the possibility of a token arriving from a path which has an OR-join, this could
result in premature enabling and multiple execution of OR-join tasks.

Bipy P $“@\

- Ohlk =C
&

Fig. 7. A YAWL net with an OR-join task E preceding another OR-join task F

The second (related) problem is due to unfolding of composite tasks during an OR-join
analysis. This implies that a net at a lower level cannot be considered as a black box. If the
lower level net contains OR-joins, it will impact on the OR-join analysis at a higher level
net. Consider a specification where task B in Figure 7 is a composite task that is unfolded
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into a net with an OR-split and an OR-join task as shown in Figure 2. The composite task
B will be unfolded to the net in Figure 2 (including the OR-join taiSkat lower level).

The composite task can be started with a tokerRiand after completion, will put a token

in ¢3. However, during OR-join analysis for F at a markiff) = ¢2 + ¢7, the net will be
unfolded and OR-join task’ at the lower level is ignored. The OR-join semantics will then
conclude incorrectly that' should be enabled &t/ because condition3. The analysis in

the original semantics takes into account the net at the lower level and composite tasks have
not been treated as black boxes. We propose that it is possible to abstract from constructs
that exist in a lower level net (including OR-joins).

2.4. Optimistic and pessimistic approaches

The informal semantics of an OR-join can be supported quite well when there is only one
OR-join in a given net. However, when dealing with multiple OR-joins where one precedes
the other, the semantics is not well-defined. The question arises as to “how to treat other
OR-joins in the workflow while we try to decide whether one OR-join should be enabled?”.
Next, we propose to solve this issue by considering one OR-join at a time during the anal-
ysis. Instead of ignoring other OR-join tasks during the analysis, two alternative treatments
have been proposed for those OR-joins: either as XOR-jaipsnfistig or as AND-joins
(pessimistik: We believe this strategy to be better than ignoring these OR-joins completely
during the analysis (as used in the original semantics proposed for YAWL). Both optimistic
and pessimistic approaches support the informal semantics by delaying enablement when
there is a possibility of more tokens arriving to unmarked input conditions of an OR-join.
These two alternatives result in formal semantics which is more closely related to the in-
formal semantics of OR-joins and still allow for sound semantics (i.e., avoids the fixpoint
problems discussed in van der Aalst et'3l.

The treatment of an OR-join as an XOR-join is aptimisticapproach. It is consid-
eredoptimisticas the analysis waits for synchronisation if the resulting XOR-join can be
enabled. The term “optimistic” refers to the expectation that the preceding OR-join can be
enabled when treated as an XOR-join. Consider a marking c1 + ¢3 in Figure 7 where
an OR-join analysis for task F would be performed. Instead of ignoring the OR-join task
E during the analysis, it will be treated as an XOR-join task. It means that the occurrence
sequencel + ¢3 5 ¢3 + ¢4 5 ¢3 + ¢7 would be considered. As a result, F is not enabled
at M. This interpretation of OR-join task E as an XOR-join, prevents F from being enabled
prematurely and it matches closely with the informal semantics of an OR-join.

The treatment of an OR-join as an AND-join ipassimisti@pproach, as this approach
now requires tokens in all input conditions of the AND-join and if it is not possible, the OR-
join will be enabled. Consider agaif = c1 + ¢3 in Figure 7 where an OR-join analysis
for task F would be performed. This time, instead of ignoring task E, it will be treated as an
AND-join task. Due to the OR-split behaviour of task C, tokens can be prese#toincs
or both after firing C. The occurrence sequeate- c3 = ¢3+cd+c5 = e3+cd+c6 =
¢3 + c7 is possible. As a token can be putdnwhile ¢3 remains marked, F is not enabled
at M. This preserves the same informal semantics as an optimistic approach, and both
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approaches result in delaying the enablement of the OR-join task F.

In Figure 8, we have an unusual situation described as a vicious circle by Kifdler
where the two OR-join tasks B and C could be waiting for each other to be fired first and
itis unclear what the informal semantics of the model should be. Conditicsian output
condition of C and an input condition of B ard is an output condition of B and an input
condition of C. Consider a marking + ¢2 where an OR-join analysis is to be carried out
for tasks B and C. Using theptimisticapproach, task C is treated as an XOR-join task
during the analysis for B. As a result, a reachable markihg- ¢3 + ¢6, which marks
both input conditions of B can be found. Therefore, B should not be enabladHat2.
Similarly, we treat B as an XOR-join task for the analysis of task C and there is a reachable
marking c2 + c4 + ¢5. Therefore, task C is not enabled@t+ 2. As a result of this
optimisticapproach, the net is ieadlock Using thepessimisti@approach, we treat task C
as an AND-join task during the analysis for B. At the markiig+ ¢2, it is not possible
to enable C due to the AND-join semantics, and therefore, task B will be enabled and can
be fired, which yields the marking + ¢4 + ¢5 . This will enable task C and after firing
C, the marking=3 + ¢b + ¢6 results. Therefore, tasks B and C could potentially keep firing
alternatingly thus resulting in a potentially infinite number of firings of task D. The same
is true for the analysis of task C. It can be seen thaptssimisti@approach would result
in multiple tokens in the end condition. The original semantics that ignores other OR-joins
would also result in a similar behaviour to thessimisti@pproach. It is clear that in this
particular case, there is no formal semantics that can exactly match the informal semantics.

Fig. 8. OR-join tasks B and C in a vicious circle

From the above discussions, it is evident that there is no ideal treatment for multiple
OR-joins to support the non-local semantics. Any formal semantics imposes some restric-
tions or it deviates from the informal semantics to some extent. We have shown that both
approaches are valid and can be used during the analysis. The motivation behind our se-
mantics and the use of the optimistic approach is to postpone execution of an OR-join
for as long as possible. For this reason, the optimistic approach (XOR-join treatment) is
chosen during the analysis. The resulting OR-join semantics is well-defined in every cir-
cumstance. However, the interpretation of this semantics can sometime lead to a deadlock
in the presence of vicious circles as both OR-joins will wait for each other to fire first.
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3. Proposed OR-join semantics

This section proposes new OR-join semantics for YAWL that exploits mappings from
YAWL to reset nets. First, for convenience, some background definitions for reset nets
and YAWL are presented. Next, a function to transform a YAWL net with OR-joins into a
reset net is given. Finally, a new OR-join semantics for YAWL is defined formally.

3.1. Background definitions
3.1.1. Reset nets

This subsection presents a number of definitions and notations for reset nets, Petri nets
with reset arc$(®%:11:13). The concepts are similar to those defined for Petri nets except
that they have been defined for reset nets. A reset net is a Petri net with spsetalrcs

that can clear the tokens in selected places when its transition firesefarcconnects a

place and a transition and graphically, a reset arc is modelled as a doubled-headed arrow
(see Figure 9). The nature of reset arcs matches closely with the concept of cancellation in
workflow modelling and reset nets are used as a formalism for modelling workflows with
cancellation. This approach allows us to leverage existing literature and techniques in the
area of Petri nets and reset nets in partictf&g2>11:12:13,

Definition 3.1. (Resetnef) AresetnetisatupléP, T, F, R) where(P, T, F) is a Petri
netandR : T — P(P) assigning a set of (possibly empty) places to every transition.

The complexity introduced by a reset arc (when compared with Petri nets in general)
is threefold: 1) as the transition remova tokens and not just one when it fires, place
invariants do not hold for such nets, 2) the reset action caindféectiveif a place does
not contain any tokens at the exact time when the transition fires and the reset action is
carried out, and 3) a reset arc can affect any place in the entire net (i.e., its effect is global),
unlike normal arcs of a transition which can only influence their input and output places
(i.e., their effect is local). As a result, the notion of reachability is undecidable for reset nets
with more than two reset arés

We now fix some additional notations that will be used throughout the papeN bet
aresetnetand € P UT, ex andxe denote the set of inputs to(preset) and the set of
outputs ofz (postset). If the netV involved cannot be understood from the context, it is
explicitly included, and written asz andz . We write F'* for the transitive closure of the
flow relation F* and F'* for the reflexive transitive closure df. When we writeF'(x, y),
this evaluates to 1 ifz,y) € Fandto O if(z,y) ¢ F.

We will use Figure 9 to explain the concepts and notations for reset nets. In Figure 9,
we haveet = {pl,p2}, te = {p3,p4, p5,p6}, andR(t) = {p3}.

Places can contain one or mdokensrepresented by black dots. Thateof a reset
net is represented bymarking that describes the number of tokens in each place of a net.

Definition 3.2. (Marking) Let P be a set of places. A markind/ is defined asV/ :
P — N.

A marking can be interpreted as a vector, a function, and a multiset just as with ordinary
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@ ) p1 00)p2 p1 ®)p2

t«:@ t“:.@

p3 p3

p4 p5 (@ )p6 ® )p4 p5 % p6

Fig. 9. An example reset net before and after firing a transition

Petri nets. If X is a set over Y, it could also be interpreted as a bag where each input
place occurs once (E.gef can be interpreted both as a set of pla¢e$, p2}and as a
bag where each place has one token eadh+ 1p2). In the latter case, this bag can be
straightforwardly interpreted as a marking with one token for each plecg) returns the
number of tokens in a plagsif p in the domain oM/ (p € dom(M)) and we define M(p)=0
if p & dom(M). Forareset ne¥V, M(N) is used to represent a set of all possible markings
of N. In Figure 9, the left net shows a markiflg where there is a token ipil, two tokens
in p2, two tokens irp3, and one token ip6 (denoted as a multisetl + 2p2 + 2p3 + p6).
M (pl) returns 1 where a8/ (p4) returns 0.

The functionmarkedreturns the set of marked places in a reset net for a given marking.

Definition 3.3. (Marked) Let N = (P,T,F,R) be a reset net and/ € M(N):
marked M) = {p € dom(M) | M(p) > 0}.

We use notations such ad < M', M > M', M + M’', and M =M’ for com-
parison and operations on markinge. < M’ iff V,epM(p) < M'(p). M > M’
iff VpepM(p) > M'(p) A JpepM(p) > M'(p). M + M’ are multisets such that
Vpep @ (M + M')(p) = M(p) + M'(p). Similarly, M =M’ are multisets such that
Vpep : (M—=+~M")(p) = M(p)~M'(p) where for any natural numbetsb: a=b is de-
fined as mafa — b,0). The use of~ instead of— ensures that the number of tokens can
never be a negative number.

TheC relation indicates that/ marks fewer or the same places/ds.

Definition 3.4. (C) Let M, M’ be two markings of a reset nétf C M’ iff marked M)
C markedM’), M — M’ iff M C M’ and notM’ C M.

This is a looser notion of smaller markings thanbecause only the marking of places
is considered and the number of tokens in a place is ignored. The notatisrused to
indicate that\/ marks strictly fewer places tha’.

A transition isenabledwhen there are enough tokens in its input places. Note that reset
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arcs do not change the requirements of enabling a transition.

Definition 3.5. (Enablingrule) LetN be aresetnet,c T, andM € M(N). Transition
t is enabledat M, denoted ad/[t), if and only if Vp € ot : M (p) > 1.

The concept of firing a transitionin a netNV is formally defined below and denoted as
M 3 M. If there can be no confusion regarding the net, the expression is abbreviated as
M 5 M’ and if the transition is not relevant, it is written &6 — M.

Definition 3.6. (Forward firing) Let N = (P,T,F,R) be a reset nett ¢ T and
M, M' € M(N).

M ™ M’ < M[t)A
iy JM(p) = F(p,t)+ F(t,p) if peP\R(t)
M()_{F(t,p) if pe R(t).

In Figure 9, transitiort is enabled at markingl + 2p2 + 2p3 + p6 aset = pl + p2
andt may fire. When transitionfires, it removes a token each from its input plagésnd
p2, removes all tokens from its reset plae® and puts one token each in its output places
p3, p4, p5, p6, resulting in the marking2 + p3 + p4 + p5 + 2p6.

We now define the concepts of reachability and coverability of markings from a given
marking in a reset net. It is possible to fire a sequence of transitions from a given mark-
ing in a reset net resulting in a new marking using the forward firing rule defined above.
This sequence of transitions is represented as an occurrence sequérmoarking M’ is
reachable from another markig in a reset net, if there is an occurrence sequence leading
from M to M.

Definition 3.7. (Reachability) Let N = (P,T,F,R) be a reset net and/, M’ €
M(N). M’ is reachable in N from\/, denotedM 5 M, if there exists an occurrence
sequence € T such thatM = M.

The reachability setis the set of markings that can be reached from a given marking
M in a reset net after firing all possible occurrence sequences and dend{gdi/asif all
places in a reset net are bounded, the reset net is also bounded and hence, it is possible to
generate a finite reachability set. If a place is unbounded, the reachability set contains an
infinite number of statesaf infinite state spageln such cases, reachability of a marking
cannot be determined but coverability can be determined.

For reset nets, reachability is undecidable for nets with more than two reset arcs but
coverability is decidable using a backward firing algorithn& marking M is said to be
coverablefrom another markind/; in a reset net if there is a reachable markidg from
M such thatM’ is bigger than or equal td/;.

Definition 3.8. (Coverability) Let N = (P,T,F,R) be a reset net and/;, M €
M(N). M, is coverable from\{; in N, if there exists a marking/’ such thatV/’ € N[M;)
andM’ > M,.

Next, two notationsprojectionandfiltering are presented to allow operations on se-
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lected places of a marking in a reset net. The notatij®’] restrictsM to a set of places
P’,i.e., a projection. For places not iff, the number of tokens is zero.

Definition 3.9. (Projection) Let N = (P,T,F,R) be a reset net) € M(N) and
P’ C P. M[P'] returns a projection such that doi [P']) = dom(M) and

RS A

Let M; = pl + p2 4+ p3 and P = {pl,p2}. My[P'] = pl + p2 + 0p3 and
dom(M;[P']) = {pl,p2,p3}. Let My = pl + 2p2, Ms[P'] > M;[P’] is true as the
comparison betweeh/ and M’ is restricted to the set of places if and M, has more
tokens inp2.

The notationM | P’ is used to alter a marking based on a set of pldees.e., unlike
MT[P’] the domain may be modified (extend or reduce the set of places).

Definition 3.10. (Filtering [) Let N = (P,T,F,R) be a reset net)/ € M(N) and
P C P’. M|P’ returns a function such that d¢t | P’) = P’ and

;v [ M(p) if pe P ndom(M)
Mrp(p)_{o it pe P\ domM).

Let M = pl +p2+p3andP’ = {pl,p2}. M| P’ = pl + p2 and doniM [ P’)
{p1l,p2}. If P" = {pl,p2,p3,p4}, M P = pl + p2 + p3 + Op4 and doniM | P’)
{p1,p2,p3,p4}.

Next, we define the notion dackward firingthat is used to generate coverable mark-
ings for a reset net by firing transitions backwards. We dendte -»* M if it is possible
to fire a transitiort backwards starting from a markidg and resulting in another marking
M.

Definition 3.11. (Backward firing) Let N = (P, T, F, R) be a reset net andl/, M’ <
M(N).

M’ =" M < M[R(1)] < t » [R(£)]A
oy [ (M(p)=F(t,p)) + F(p,t) i peP\R(@)
Mip) = {F(p,t) if peR()

For places that are not reset places, the number of tokeh£ iis determined by the
number of tokens i/ for p and the production and consumption of tokens. If a place is
an output place of and not a reset place, one token is removed fidifp) if M (p) > 0.

If a place is an input place @fand not a reset place, one token is addedl/tgp). For any
reset place, M (p) < F(t, p) because it is emptied when firing and theft, p) tokens are
added. We do not requite (p) = F(t, p) for areset place because the aim is coverability
and not reachabilityd/’, i.e., the marking before (forward) firing shouldat leastcontain
theminimalnumber of tokens required for enablihgnd resulting in a marking aft least
M. Therefore, onlyF'(p, t) tokens are assumed to be present in a reset place
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In Figure 9, it is possible to fire transitionbackwards in the right net at marking
M = p2 + p3 + p4d + p5 + 2p6 as there is exactly one token in plag# that is a reset
place oft as well as one of its output places (i.2{[R(t)] = p3 = t @ [R(¢)]). This results
in a markingM’ where one extra token is put into all input places @nd one token is
removed from all output places othat are not reset places ofFinally, one token is put
into all reset places af This results in a marking/’ = p1 + 2p2 + p3 + p6. Note that this
marking M’ has only one token ip3 whereas the marking shown in the left net has two
tokens inp3. This is because when firing backwards, it is impossible to know how many
tokens were originally present in a reset place. Hence, the backwards firing rule returns a
coverablemarking and not necessarily a reachable marking.

The predicatsuperMindicates whether it is possible to reach a marking fidmvhich
marks more places in a set of plades

Definition 3.12. (superM) Let N = (P,T, F,R) be a reset net antlf € M(N) and
P’ C P be aset of places for consideration, supeWi/, P’) holds iff there is a marking
M’ such thatM = M’ andM[P'] © M'[P'].

ThissuperMpredicate is used to decide whether an OR-join should be enabled. For the
set of input places of an OR-joiR’ and the current state of the workflow represented as
marking M, thesuperMpredicate holds if it is possible to mark more input places of the
OR-join and hence, the OR-join should wait for synchronisation.

All the definitions for reset nets presented in this subsection will be used to formally
define the YAWL OR-joins semantics in subsection 3.3. First, we present how a YAWL net
can be formally defined and then show how a YAWL net can be mapped to a reset net.

3.1.2. Formalisation of YAWL models

A YAWL specification is formally defined as a nested collection of Extended Workflow
Nets (EWF-nets) by van der Aalst and ter Hofstéded YAWL specification supports
hierarchy and a composite task unfolds into another EWF-net. For our purposes, it suffices
to consider only one netin isolation. A YAWL net formally corresponds to what was termed
an “EWF-net” and we present here the definition of a YAWL net and refer the reader
elsewheré for a formal definition of a YAWL specification.

Definition 3.13. (YAWL net 2) An YAWL net N is a tuple (C,i, o, T, F, split,
join, rem, noft) such that

C'is a set of conditions anf is a set of tasks,

i € Cis the unique input condition ansle C is the unique output condition,
FC(C\{o} xT)U(T x C\{i}) U (T x T) is the flow relation,

every node in the grapl{(U T, F') is on a directed path fromi to o,

2Note that we are using basic mathematical notations sueh &sr a partial functionN for natural numbers,
andN/ for N U {inf}.
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e split: T — {AND, XOR, OR} specifies the split behaviour of each task and
join: T — {AND, XOR, OR} specifies the join behaviour of each task,

o rem:7T »P(TUC \ {1, 0}2 specifies the cancellation region for a task,

o nofi: T - N x NN NINfx fdynamic, stati} specifies the multiplicity of each
task (minimum, maximum, threshold for continuation, and dynamic/static cre-
ation of instances).

While firing rules exist for YAWL netg, in this paper these are not needed as state
analysis is relegated to the reset net level. In a YAWL net, tasks can be connected directly
to other tasks but conditions cannot be connected directly to other conditions. To enable
a mapping to reset net, an implicit condition is introduced between two tasks if there is a
direct connection between them. We call these nets where all implicit conditions are made
explicit, explicit YAWL nets or (eYAWL-netsf2. All YAWL nets are assumed to be first
transformed into eYAWL-nets for OR-join analysis.

Definition 3.14. (eYAWL-net) Let N = (C,i,0,T,F, split,join, rem, nofi) be a
YAWL net, the corresponding eYAWL-net is defined as
(Ce*t i 0, T, Fe*t split, join, rem, nofi) where

Ct = CU{c, 1) | (t1,t2) € FN (T x T)} and
Fert =(F\ (T xT))
U{(t1, cayi) | (t1,t2) € FOV(T x T))
U{(c(ty.1a), t2) | (t1,12) € F O (T x T)}.

Let N be an eYAWL-net and € C°**UT, we usesz andze to denote the set of inputs
and outputs of a node i.ez = {y|(y, z) € F**'} andze = {y|(z,y) € F***} as before.

3.2. Mapping from YAWL with OR-joins to reset nets

This subsection describes how a YAWL net with OR-joins can be transformed into a reset
net. But first, a number of abstractions from YAWL nets are proposed thus enabling a
mapping to reset nets.

Even though YAWL is based on Petri nets, the YAWL language supports complex con-
structs such as multiple instances, hierarchy, cancellation, OR-joins that are not easy to
model in Petri nets. For OR-join analysis, cancellation plays a very important role and it is
not possible to abstract from cancellation regions. However, other constructs such as mul-
tiple instances and hierarchy do not affect the OR-join analysis and hence, it is possible to
abstract from them.

e composite tasks and hierarchj. YAWL specification could contain multiple
YAWL nets with hierarchical structure and a composite task is used to unfold
these nets. We propose to treat a net figtaet, and ignore the hierarchical struc-
ture. Thatis, composite tasks will be treated as black boxes. The assumption is that
if a composite task can be enabled and executed, it will terminate at some time,
and tokens will be placed in the appropriate output condition(s) of the composite
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task. As a result, even if there is an OR-join in the composite task, it will not influ-
ence the decision to enable another OR-join at a higher level. Hence, composite
tasks can be abstracted and the hierarchical structure of a YAWL specification is
ignored.

e multiple instancesA multiple instances task can be used to execute a particular
task a number of times in parallel. For this abstraction, it is assumed that the engine
is capable of keeping the multiple instances apart, and that it will synchronise
them at the end. Therefore, for the purposes of OR-join analysis the execution of
a multiple instances task is the same as the execution of an atomic task.

e internal conditions of a taskThe YAWL semantics’ defines a task as having
internal conditions and state transitions. As they represent intermediate states, it
is possible to consider only one internal state together with the input and output
conditions of a task during OR-join analysis.

e other perspectivedNe focus our attention on the control flow perspective only.
We propose to abstract from the data perspective. In particular, branching condi-
tions of XOR-split and OR-split tasks are not taken into account when considering
the execution flow. We also abstract from the resource perspective, the operational
perspective and exception handling considerations.

After abstractions from the features mentioned above, a net is considered as having
tasks with various split and join behaviours, possible cancellation sets and explicit and im-
plicit conditions. For a net without OR-joins, there is then a straight-forward mapping into
a reset net. Figure 10 illustrates the approach taken in the transformation fowahweit
OR-joins. This is made possible by the fact that some concepts of YAWL such as multiple
instances, composite tasks and internal state transitions of a task can be abstracted. In gen-
eral, a condition is mapped onto a place, and a task onto two sets of transitions and an inter-
mediate place. The transitions in the first set start the task (modelling the join behaviour),
whereas the transitions in the second set complete it (modelling the split behaviour). In
Figure 10, label$ andE are used to denote start transitions and end transitions. Condition
names are also used to differentiate transitions within a particular set (e.g., trafigition
represents the start transition for tagkat hag, as its input).

For a YAWL net with OR-joins to be converted into a reset net, it is necessary to remove
the OR-joins first as they have non-local semantics. As mentioned in subsection 2.4, we
propose to define the formal semantics of a general OR-join in YAWL by treating other
OR-joins in the net as XOR-joins. A netith OR-joins can be transformed into a reset
net by first singling out one OR-join (the one that we would like to decide whether it
can be enabled), removing it from the net, and then changing other OR-joins in the net to
XOR-joins. A transformation functiotransE2WF converts a net without OR-joins into
the corresponding reset net. Functi®istores all transitions and its associated reset places.
As a task in a YAWL net is now split into a humber ©f andt¢g transitions depending
on the split and join behaviour, a plage is introduced for each taskto represent an
internal place betweety andtg. The flow relationF” is also modified so that the newly
introduced places i’ and transitionsl” are properly connected. As we abstract from
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Fig. 10. Reset net transformations for YAWL split and join behaviours

multiple instances tasks and the functiowyi is not considered during the transformation.

Definition 3.15. (transE2WF) Let N = (C,i,0,T,F, split, join, rem, nofi) be an
eYAWL-net without OR-joins. The function transE2WF) returnsN’

such that

P =CU{pt € T} is a set of places,
T = Tsart U Teng Such that
Tstart = {ts|t € T A join(t) = AND}
U{ti|t € T A join(t) = XOR A p € et},
Tena ={tplt € T A split(t) = AND}
U{th|t € T A split(t) = XOR A p € te}

= (PT,F',R)

U{thlt € T A split(t) = OR N x Cte Nz # &},

F' ={(p,ts)lt €T A join(t) = AND A p € ot}
U{(ts,p)lt € T A join(t) = AND}
W{(pe,te)lt € T A split(t) = AND}
U{(tg,p)|lt €T A split(t) = AND A p € te}
U{(p,te)[t € T A join(t) = XOR N p € ot}

{(t,p)|t € T A join(t) = XOR N p € ot}
U{(pe, thy)It € T A split(t) = XOR A p € te}

{(
{(

th,p)[t € T A split(t) = XOR A p € te}

p,tE)t €T A split(t)= OR Nz Cte ANx # &}
U{(t%,p)lt € T A split(t)= OR Nz Cte Az # SN pé€xal,
R={(tg, {pv|t' e rem(t)NT}U (rem(t) NC))|t € T A split(t) =
U{(th, {pp|t' € rem(t)NT} U (rem(t) N C))|t € T A split(t) =

ApE te}

U{(t%, {pe|t’ € rem(t) NT} U (rem(t) N C))|t € T A split(t) =

ANz Cte Nx # T}
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U{(tg, @)t € T\ domrem A split(t) = AND}

U{(th, @)|t € T \ dom rem A split(t) = XOR A p € te}
U{(t%,2)|t € T\ domrem A split(t) = ORN z Cte Nx # &}
U{(t, @)|t € Tsrart}-

The transformation rule defined for a YAWL net without OR-joins can be used for all
tasks that are not OR-joins. For OR-join tasks, all except the one under consideration are
transformed as if they are XOR-joins and the OR-join under consideration is removed. The
reason that this OR-join can be removed is because only reachable markings that mark
the input places of the OR-join are relevant when deciding whether the OR-join should be
enabled.

Definition 3.16. (transE2WFOQJ) Let N be a YAWL net with OR-joins andV ¢
be the eYAWL-net of N and-j be an OR-join task under consideration. The function
transE2WFOQV, o-j) returnsN’ = (P, 7", F", R) such thatP, T", Tstart, Tena, F’, and
R are as defined in Definition 3.15 affd andF"”’ are defined as follows:
TI/ = Ts/tart U T€7ld’

et = Tstart U {t2ait € T A join(o-) = ORAt#0-j A pEet}, and
F" = F'U{(p,t%01)lp Eot A t €T A join(t) = OR At # 0-j}

U{(t2,ris Pt)|p €9t A t €T Ajoin(t) = OR At # 0-}.

Naturally, a given marking/ in an eYAWL-net can be linked to a marking/r in
the corresponding reset net for a particular OR-join in consideration. For all the conditions
that exist in an eYAWL-net, they will be marked exactly the same as in the corresponding
marking and the newly introduced places in the reset net have zero tokens. The marking
marks all the places in the reset net which correspond to conditioNswith the same
number of tokens. This marking is referred to as the corresponding marking and is denoted
asMg.

3.3. Definition and illustration of OR-join semantics

You may recall that informally an OR-join task is enabled when there is at least one token
in one of the input conditions and there is no possibility of a token arriving at one of
the yet unmarked input conditions of the OR-join. Otherwise, the OR-join task waits for
synchronisation. The following steps are proposed to decide whether an OR-joim+jtask
should be enabled at a markifg of a given net.

(1) translate the YAWL net into a reset net for a giveei

(2) applysuperMpredicate to determine whether it is possible to mark more input places
of o-j in the reachable markings froi/, and

(3) if at least one of the input places ©fj is marked af\/ andsuperMevaluates t6ALSE
0-j is enabled af\/. Otherwisep-j is not enabled at/.
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Definition 3.17. (OR-join semantics) Let N = (C, T, F, R) be an eYAWL-netM be a
marking of N, o-j be the OR-join task under consideratidvi; = transE2WFOQV, 0-})
be the corresponding reset net ahf; € M(Ng). 0+ is enabled af\/ iff Ip € e0-j :
M(p) > 1 and— superM Ni, Mg, e0-j).

We now describe how the transformations will be performed for a net with two OR-join
tasksC' and D as shown in Figure 11. Note that an explicit conditigyp, has been added
for the implicit condition between tasks B and D. Consider a marlihig= c1 + cgp
where the OR-join analysis for tadk is performed as there is a tokendgp, one of the
input places of D. As the two input places of task D at@endcgp, we need to investigate
whether it is possible to reach a marking that marks kdthndcgp from M. Figure 12
shows an equivalent reset net for the eYAWL-net in Figure 11 for the OR-join analysis
of D. Note that the other OR-join task in the nét, is treated as an XOR-join task and
modelled with two start transitions, one fer and one fore3. Also note thatD has been
removed from the net. There is a corresponding marking for the resétlipets ¢l +cgp.

c
start

The sequencel + cgp c; pc + ¢BD Cend g 4 cpp exists and hence, it is possible
to reachM” = ¢4 + cpp from M. Recall that thesuperM N, M, P’) predicate returns
true if it is possible to reach a marking froid which marks more places in a set of places
P’. Therefore, superM(transE2WF@N, 0-j), Mg, e0-j) returns true ad/r — M’ and
Mgl{c4,cgp}] © M"[{c4,cpp}]. As itis possible to reach a marking that marks more
input places of the OR-join, theB is not enabled at/.

- ¢ 0

c3

CRNEoRk o[ -®

Fig. 11. An eYAWL-net N with OR-join tasks C and D

start end

start
cl
: B @
@%}»’V Bsnd
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BD

B

start

B

end

Fig. 12. A reset net for OR-join analysis of task D in Figure 11

Next, we look at how the new OR-join semantics can be operationalised and an algo-
rithmic approach towards determining OR-join enablement is examined.
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4. Operationalising the OR-join

The main objective of the OR-join algorithm is to determine, for a given OR-join, whether
there is a reachable markidg’ from M such that more input places of that OR-join could

be marked ab/’. This analysis is performed by first transforming an e YAWL-net (with OR-
joins) into a reset net for a given OR-join task using the function transE2WFOJ and then
calling the proposed OR-join algorithm. The algorithm works backwards by computing the
predecessor coverable markings for a given marking, as opposed to the forward approach
used in coverability tree algorithms. The algorithm is based on backward search techniques
for Well-Structured Transition Systems (WSTSsJ11:12:13,

A reset net can be represented as a WSTS and the backwards algorithm has been suc-
cessfully applied to solve the coverability problems for reset féfs The coverability
problem for a reset net is as follows: given two markingandy, can we reacly’ > y
starting fromz 7. In the context of reset nets, the backward firing rule (cf. Definition
3.12) is used to defingb(M) for a given marking. The backwards reachability analysis
can be performed to decide the coverabiffity 17 provided that< is decidable angb(y)
exists and can be effectively computEd In Appendix A, we present some background
definitions on WSTSs and demonstrate thtdty) can be computed.

We now present the various procedures that operationalise the coverability question for
reset nets using the backwards algorithm for WSTSs. We then demonstrate how to perform
OR-join enablement analysis using the coverability results.

4.1. Procedures

The procedurédCoverable returns a Boolean value to indicate whether a marljrig
coverable from a marking of a reset net.

PROCEDURE Coverable (Marking x, y): Boolean
Marking z’;
BEGIN

for 2’ € FiniteBasisPred* ({y}) do

if ' < z then return TRUE; end if;

end for;

return FALSE;
END

The proceduréFiniteBasisPred™ returns a set of markings which represents a fi-
nite basis of all predecessors and is based on the method described by Leuschel and
Lehmann'”.

PROCEDURE FiniteBasisPred® (SET Marking/): SET Marking
SET MarkingK, K, cut;
BEGIN

K :=1; Kpeyt := K Upb(K);

while not IsUpwardEqual(K, K,,¢,) do



August 31, 2007 19:30 orjoin-ijcis

Synchronisation and Cancellation in Workflows based on Reset 2&s

K = Knezt; Kpert = KU Pb(K),
end while;
return K;
END

The procedure calsUpwardEqual( K, K,..,;) is used to detect whether the stabilisa-
tion point has been reached i..K ... =T K, cf. 12.

PROCEDURE IsUpwardEqual (SET Marking K ,SET MarkingK,,..;): Boolean
BEGIN

return K = K, ept,
END

The procedureb(I) returnspb (1) such thapb(I) = (U, ., pb(z) '7.

PROCEDURE pb (SET Marking/): SET Marking
SET MarkingZ = @; Marking M;
BEGIN
for M € Ido Z := Z Upb(M); end for;
return Z;
END

pb(M) is effectively computed for reset nets by “executing the transitions backwards and
setting a place to the minimum number of tokens required to fire the transition if it caused
a reset on this place!”.” Note that, in our case, this minimum is one as there are no
weighted arcs. We will make use of backward firing rule. For each transitienT’, it

is possible to determine whether aff exists such thad/’ --» M . Hence,pb(M) =
{M'|3yer M’ --5* M}.

PROCEDURE pb (Marking M): SET Marking
SET MarkingZ = &;
BEGIN
for t € T'do
if M[R(t)] <te[R(t)]then
Z = ZU{((M~=te) + ot)[P\ R(t)] + (M + ot)[R(1)]};
end if;
end for;
return Z;
END

The coverability findings of a reset net are then applied to the OR-join analysis. At the
current markingM/, we know that one or more of its input places are marked. For each

PNote that the algorithm described by Leuschel and Lehmdris incorrect.pb(M) is defined in a rather naive
way by Leuschel and Lehmarifi . Applying pb(M) to the empty marking yields a counter example, since it is
not a finite basis fof Pred* (1 {M}).
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of the unmarked input places, we need to test whether there is a coverable marking from
M that marks that place. The test marking is constructed by marking each input places of
the OR-join that is marked in the current state with one token each and adding one token
also for an unmarked input place. A test marking is created for each of the unmarked input
places. If none of these markings are coverable fidpthen the OR-join is enabled &1 .

Let (N, M) be a marked eYAWL-net-j be the OR-join task under consideratidhpe
«0-j, N’ be the corresponding reset net andbe a set of markings such that each marking
in Y has only one token in each of the marked input places-jah M and one token in
exactly one of the unmarked input places of thgin M. To determine whethey-j should
be enabled at/, we need to determine whether there exisld’ac Pred* (M,,) such that
M’ < M for each of the markings/,, € Y (coverability question). Each marking,, in
Y satisfies the conditiod [X]| C M,,[X], i.e., M,, has tokens in more input places of the
OR-join o-j and if M,, can be reached from/, the OR-join is not enabled. The procedure
OrJoinEnabled is called with parameterd/ and X and it returns a Boolean value to
indicate whetheo-j should be enabled at/.

PROCEDURE OrJoinEnabled (Marking M, SET PlaceX): Boolean
SET MarkingY’; Marking M,,;
BEGIN

Y= {Q+ ZpEX:M(p)>Op ‘ q¢e X A ZV[(Q) = O};

for M, € Y do

if Coverable(M, M,,) then return FALSE; end if;

end for;

return TRUE;
END

4.2. Worked example

Throughout this paper, several examples have been presented which indicate that it is a
non-trivial task to decide if an OR-join is enabled or not. Clearly, the algorithm can be
applied successfully to these situations. To illustrate its inner working in some detail we
use one last example.

Fig. 13. A YAWL net with an OR-join task G and cancellation
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Fig. 14. A corresponding reset net for Figure 13 (note the double-headed arrow denoting the reset@ig from
to Dend)

cl+Cc7 —»C7+pg—» Cgp+C3+C7 —» Cpp+C7+Pe—mCpp+C5+C7 —w-C5+CT7+Pp—w Cp+C3+C5+CT

clfgc CggtC3+pc c3+c7+p <:,3B+<:*5+<:7+pD
Cpp+2C3+pc —® CAg+2C3+C7 —w Cgp+C3+CT+P
| —pa—wcl+c2 C24C3 4Dy — C2+Cont2C3 CA+C5+CT—wCT+Pe
c2+ps c2+c3+pp c2+c3+04:c3+04+p(,—>c3+ 4+CT— CA+CT+PE $6+c7

C2+Cgp+c3€mC2+CaptPe — c2+cEE+c5§> Cpp+C5+pc  C2+CA+Pe—w-C2+CA+E5—w C2+p—w C2+C6—CH+Pc

C2+C5+pg > C2+Cpp+C3+C5_ g Cpp+C3+C5+PC

C2+Cgg+pp—m C2+C4 —m C4+pc —» C4+C7

Fig. 15. lllustration of backwards reachability analysis

Consider a markind/ = c1 + ¢7 in Figure 13 where the OR-join analysis for task G
is carried out. It is possible to have an occurrence sequeheec? = cgp + ¢3 + ¢7 —
cBE+ S +cT S cgp+e3+ch+ceT 2 ced+ 5+ TS 6+ 7. As aresulte6 + ¢7
is a reachable marking froni + ¢7 and the OR-join should not be enabled at markirg
The evaluation starts with a procedure call like tids:JoinEnabled(cl + ¢7, {c6, cT}).

Y := {c6 + 7} and forM,, = ¢6 + ¢7, afinite basis of all the predecessors:6f+ ¢7 is
obtained. Figure 15 illustrates the backwards reachability andRsigith the basis of the
predecessor markings foé + c7. It can be seen thafl + ¢7 is a predecessor @b + ¢7
and hence the OR-join procedure will return FALSE.

In the previous example, we have seen that even for an OR-join with two input con-
ditions, a number of iterations are needed to generate the finite set of coverable markings.
When there are many input conditions to an OR-join, the process needs to be repeated for
each unmarked input condition. Furthermore, the analysis needs to be carried out every
time the workflow changes its state. Hence, it is easy to see that the algorithm can become
quite expensive when we have a large net with many tasks and conditions. Therefore, one
potential drawback of such a generic approach to an OR-join semantics without structural
restrictions is an efficient implementation. To achieve our combined objective of a generic
formal OR-join definition with an efficient implementation, we propose two restriction
techniques in the next section.

5. Restriction techniques

For an OR-join analysis, it is possible to consider only a portion of the net that is rele-
vant to the analysis and refrain from exploring those paths that do not affect the OR-join
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enabling behaviour. This would correspond to the notion of slicing in program analysis

To improve the performance of the OR-join evaluation algorithm, two forms of restriction
are proposedstructural restrictionand active projection Structural restrictioninvolves
removing from a net tasks and conditions that are not on the path to the OR-join task un-
der consideratiorActive projectiorinvolves removing tasks and associated conditions that
could not be enabled from a given marking. Active projection enables us to stop exploring
those parts of the net that can never be reached from a given marking. As a YAWL net with
OR-join tasks is translated into a reset net for OR-join analysis, the restriction operations
will also be performed on the reset net. We make use of the reset net mappings and define
how restriction operations are applied to a reset net.

5.1. Structural restriction

The application of structural restriction involves removing tasks and conditions from a
YAWL net that are not on the path to a given OR-join task. As we are interested in whether
more tokens could arrive in the input places of an OR-join task, the restriction will be
based on those input places of an OR-join task. We will call tgeali placesFunctionres
describes how a reset net could be constructed so that only the transitions and places that
are on the path to goal places are included in the restricted net.

Definition 5.1. (reYN,G)) LetN = (P, T, F, R) be aresetnetan@ C P aset of goal
placesN’' = (P',T', F', R') is the restriction on GN’ = re{ N, G)) where:

P'={p € P3pealp,p) € F*},
T"={t €T F3pec(t,p) € F*},

F' =Fn((P' xT")U(T x P')), and
R = {(t, Rt)N Pt € T'}.

Note thatV' is again a reset neE’ is a siphon, and¥ C P’. Hence, we can use firing
rules and other functions defined for reset nets.

Figure 16 describes how functices of N works with a set of goal place§ =
{pas s, pc}- In the restricted region, all places and transitions which are on the path to
G are included (e.gp1, p2, t1, t2,...). On the other hand, places and transitions that are not
on the path ta= such as, pg, t5, andig are not included in the restricted net. Also note
that if a transition is in the restricted net, all its input places are also in the restricted net
(e.g.p1, p2,t1). Itis possible for places in the restricted net to be input places of transitions
that are not in the restricted net (ezg.as input place of,). A transition that is not in the
restricted net cannot put tokens back into the restricted netigamdt,). In terms of reset
arcs,R’ will keep track of the reset places iff for transitions that are iff’. However, we
do not keep track of reset arcs for places that are in the restricted region but the transition
is notin7” (e.g. the reset arcs connectipgandiy).
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Fig. 16. Restriction diagram

5.2. Active projection

In addition to applying structural restriction to a net, it is also possible to further restrict the
net using the current marking. As a transition that cannot be enabled in the reachable mark-
ings from the current marking cannot be fired and its output places can never be reached,
this transition can be safely excluded from the restricted net. Applying active projection
involves removing tasks and conditions from a YAWL net that cannot be reached from a
given marking. This enables us to only consider the selected paths of a net that can be
reached from the current marking. As a YAWL net is translated into a reset net, the active
projection restriction will also be performed on the reset net.

The functionap describes how a reset net could be constructed so that only the transi-
tions and places that can be reached from a given marking are included in the restricted net.
Figure 17 shows the effect of the active projection funcapron a reset net with a mark-
ing M where marketM ) = {p., s, pc }- The restricted region contains all the places that
could potentially be marked in the reachable markingd®fe.g.,p1, p2, p4, ps, D6, Ps)-

A transitiont is in the restricted net if and only if all its input places are in the restricted
region(et C P’). Seets with its only input placeps in the restricted net. For transitian,

not all input places of, are in the restricted region and therefareg 7”. RelationR’ will
keep track of the reset placesiiti for any transition: € T” with reset arcs. For example,
both transitionsy andt;o could resetP; but, R’ will only contain (9, p2) astio is notin

T,
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Restricted
region

p_3

Fig. 17. Active projection diagram

Definition 5.2. (ap(N, M)) Let (N,M) = ((P,T,F,R), M) be a marked reset net.
N' =ap(N,M) = (P',T', F', R') is theactive projectiorof (N, M) where

P'={pe PEp/emarkedM)(p/ap) € Iy,
T ={tecT|etC P},

F=FnNn({(P xTHU(T' x P")),and
R ={(t,Rt)nPHlt e T'}.

An OR-join tasko-j is enabled at a markindy/ of an eYAWL-netN, if it is not possible
to reach a marking\/,, such thatM = M, and M[e0-j] C M, [e0-j]. TO determine
whethero-j should be enabled at/, the following analysis is carried out. Léfp =
transE2WFOQV, 0-j) be the reset ne; = e0-j and M be the corresponding marking of
M in the reset net. Instead of usidgr to perform the analysis, the search space can be
reduced by first applying the structural restriction and active projection techniques so that
Ny = refap(Ng, Mg),G) = (P',T', F', R'). It is then possible to determine whether
there is a marking/, € M(Ng) such thatMy "% and Mp[G] C Mp[G). If it does,
this implies that more tokens can be placed into the input placesjaf the reachable
markings fromMg. Hence, the OR-join analysis can take place in the restrictedvipet
ando-j should not be enabled af .

Complete proofs for these two restriction techniques are provided in Appendix B.

6. Implementation

The OR-join analysis algorithm as described in Section 4 together with the structural re-
striction and active-projection techniques from Section 5 have been implemented in the
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YAWL engin€’. A number of YAWL nets have been tested and OR-join enabling results
are as expected. The observations also indicate that the two restriction techniques signifi-
cantly reduce the execution times for OR-join analysis.

The execution times of the OR-join enabling algorithm for a number of YAWL nets are
presented. Five different execution times for each OR-join evaluation call will be presented
for comparisonSRestrict+AProjectindicates that structural restriction is applied first and
then, active projection is applied before the OR-Join dslifroject+SRestrict indicates
that active projection is applied first and then, structural restriction is applied before the
OR-Join call.SRestrict indicates that only structural restriction has been apphdéto-
ject indicates that only active projection has been appldoRestrict indicates that no
restriction technique has been applied. To minimise the effects of variations, each method
is called 100 times consecutively. Furthermore, this process has been repeated ten times for
sampling. Average execution times with confidence intervals (95%) are provided. All the
figures are imillisecondsand are rounded to one decimal place.

6.1. Matching OR-split and an OR-join

The netin Figure 7 represents a small structured net with an OR-split task A and an OR-join
task E. At a marking// = ¢l + ¢2 + ¢6, OR-join evaluation for E returns FALSE. A new
markingM; = c1+c¢b+c6 is reached after executing task Cldt The execution times for

the analysis are shown in Table 1. We can see that by utilising the restriction techniques, itis
possible to reduce the execution times. In this case, structural restriction does not influence
the execution time as we are dealing with a small net. The active projection technique, on
the other hand, has significant effects on the execution time as all possible combinations of
an OR-split do not need to be considered. Even for a small net, it can be seen that restriction
techniques can reduce the time it takes to perform the OR-join evaluation.

6.2. Loop and cancellation

Figure 6 represents a YAWL net with a loop and cancellation on the path to OR-join task
E. At a markingM = ¢2, OR-join evaluation for task E returns TRUE as it is not possible

to reach a bigger marking frod/. The execution times are shown in Table 2. Again, it is
clear that the combined restriction techniques significantly reduce the evaluation time. The
difference between the execution times for OR-join analysis with structural restriction and
without any restrictions is minimal as most tasks and conditions in this YAWL net will be
in the restricted net as well.

6.3. Larger loop and cancellation

Table 3 presents the execution times for an OR-join evaluation call for OR-join task G with
two markingscl+¢7 andeg g +¢3+-¢7 in Figure 13. OR-join evaluation for both markings
returns FALSE. This YAWL net also contains a loop and cancellation on the path to G. In

chttp://sourceforge.net/projects/yawl/
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OR-join: E Marking: c1 + ¢2 + ¢6 returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 335.9+ 10.0
AProject+SRestrict 328.0+ 11.3
AProject 306.4+ 22.9
SRestrict 790.4+21.1
NoRestrict 790.5+ 24.8
OR-join: E Marking: c1 + ¢b + ¢6 returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 130.2+ 2.3
AProject+SRestrict 126.6+ 3.1
AProject 107.6+ 4.6
SRestrict 3126.6+ 114.8
NoRestrict 3172.0+ 84.8

Table 1. Execution times for the OR-join analysis of the net in Figure 7

OR-join: E Marking: c2 returns TRUE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 685.9+ 16.9
AProject+SRestrict 676.8+ 6.9
AProject 654.7+ 16.9
SRestrict 2365.5+ 81.9
NoRestrict 2348.4+ 175

Table 2. Execution times for the OR-join analysis of the net in Figure 6

this case, the restriction techniques reduce the execution time by a significant amount. The
difference between structural restriction and no restriction calls is minimal in this example
as most tasks and conditions in the YAWL net are also in the structurally restricted net.

6.4. Multiple OR-joins

To demonstrate the impact of structural restriction on OR-join analysis, the YAWL net
in Figure 18 that contains a number of tasks which have no impact on the OR-join task
F will be used. For instance, all tasks and conditions on the path between tasks G to S
could not influence the OR-join analysis for task F. Average execution times for a marking
M = caq + cp + co are given in Table 5. Average execution times for OR-join analysis
of F with a markingM = ¢gp + ¢2 + c¢19 are also given. The figures show considerable
differences in execution times between different restriction techniques.

Average execution times for OR-join analysis of U with a markidg= c1¢ +cry are
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OR-join: G Marking: c1 + ¢7 returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 1032.8+ 12.4
AProject+SRestrict 1032.8+ 10.5
AProject 1003.1+ 5.8
SRestrict 11664.0+ 16.5
NoRestrict 11654.94 33.9
OR-join: G Marking: cgp + ¢3 + 7 returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 587.4+ 7.2
AProject+SRestrict 585.94+ 9.9
AProject 568.7+ 9.8
SRestrict 11195.3+ 12.1
NoRestrict 11198.0+ 21.9

Table 3. Execution times for the OR-join analysis of the YAWL net in Figure 13

N

g. 18. A YAWL net with OR-join tasks F and U

Fi

given in Table 4. In this case, structural restriction alone does not reduce the execution time
as most tasks in the YAWL net are also part of the structurally restricted net. However, the
combination of structural restriction and active projection techniques reduces the execution
time significantly (2148.5 milliseconds cf. 84863.9 milliseconds). From these tests, it is
evident that performing structural restriction and active projection on a YAWL net before
an OR-join analysis could significantly reduce the execution time of an OR-join evaluation.
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OR-join: F Marking: cag + cpp + c2 returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 465.8+ 24.5
AProject+SRestrict 529.7+ 10.3
AProject 796.7+ 6.7
SRestrict 1479.8+ 14.7
NoRestrict 3681.3+ 9.5
OR-join: F Marking: cgp + co + ¢19 returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 275.0+ 7.1
AProject+SRestrict 304.7+ 86.5
AProject 276.5+ 9.3
SRestrict 1198.4+ 9.4
NoRestrict 3492.2+ 23.8

Table 4. Execution times for Task U from the net in Figure 18

OR-join: U

Marking: cag + cry returns FALSE

Restriction techniques

Duration in millisecs (100 calls

SRestrict+AProject
AProject+SRestrict
AProject

SRestrict
NoRestrict

2148.5+ 60.6
2123.5+20.4
2014.0+ 20.3
85404.8+ 208.6
84863.9+ 144.6

Table 5. Execution times for Task F from the YAWL net in Figure 18

7. Visa application example - A YAWL workflow with cancellation regions and

OR-joins

In the previous section, a number of small YAWL nets are presented to illustrate the various
features of the OR-join algorithm. We now demonstrate the effectiveness of the proposed
s modeisa application for general skilled migration

to Australia. This process is modelled “as is” using publicly available information from
Multicultural Affairs websitéThe process starts when

the immigration department and ends when a decision is
The model represents the process from the viewpoint of a
case officer who handles the visa application. The resulting YAWL workflow contains four
netsOverview Perform main assessmeftheck basic requirementandAllocate marks

algorithm using a real-life proces

Department of Immigration and
a visa application is received by

made to grant or to deny the visa.

dhttp://www.immi.gov.au accessed on 20

April 2006
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Figure 19 shows th®verviewnet and the typical process flow is explained first. When
an application is received, the case officer opens a file for the applicant, processes visa ap-
plication fees and performs an initial assessment. If the application is founcttniydete
the officer continues with the main assessment. If the applicatiamc@nplete he/she
sends an acknowledgement letter to the applicant requesting further documentation. This is
modelled as an XOR-split task after the td&&kform initial assessmenthePerform main
assessmerask is modelled as a composite task and the internal working of this task is cap-
tured in another net. After completing the main assessment, the case officer might request
more information, or he/she is ready to make a decision. This is modelled as an XOR-split
task. Condition:9 represents a state where the officer is waiting for further documentation
from the applicant. If he/she receives the requested information, the main assessment task
is performed again. On the other hand, the designated time period could have expired, and
the officer decides to perform the main assessment again if possible to stop processing the
application if it cannot be processed further with existing documentation. Before the officer
makes a decision, he/she checks to see if there is any change in circumstances that need to
be considered. Th€heck circumstances changeask has a cancellation region containing
conditionc2. Removing a token from2 indicates that there is no need to wait for further
circumstances changes. The officer then makes a decision to either grant or deny the visa
after taking into account any changed circumstancesMdie decisiornask is an OR-join
task with two inputg:5 andc7. A token inc5 indicates that there are changes that need to be
considered. If a decision is made to deny the visa, the applicant is then notified. Otherwise,
the visa is granted. The process ends wherkthalise applicationtask is executed.

While an application is being processed, it is possible for two events to occur. First,
an applicant can decide to withdraw his/her application and secondly, an applicant can no-
tify the immigration department of changes in his/her circumstances - such as change of
address, correction of errors, etc. Hence, the apkn applicant fileés modelled as an
AND-split to indicate that two taskdNait for possible withdrawal requesind Monitor
circumstances changesould occur in addition to the main flow starting witiocess ap-
plication feegask. These two tasks represemternal triggerghat can be enabled when a
notification is received from the applicant. These triggers affect the main flow of the pro-
cess and are also captured in the model. Note that there is no YAWL notation to represent
external triggers. As a result, these two tasks are represented as normal tasks. At6ken in
indicates that there is some circumstances change that needs to be taken into account. Sim-
ilarly, a token inc4 indicates that a request has been received for withdrawalCEineel
applicationtask is modelled as an OR-join and when it fires, it removes tokens from condi-
tions and tasks in the net before thiake decisiortask. The application can be withdrawn
until a decision is made. THdake decisioriask removes tokens from conditions and tasks
associated with the trigger for application withdrawal.

In the Overviewnet, thePerform main assessmeistrepresented as a composite task
and it is unfolded into the YAWL net with the same name. Similarly, there are two compos-
ite tasksCheck basic requiremengmdAllocate marksn the Perform main assessmemdt
and they are also unfolded into two YAWL nets with the corresponding names. Figure 20
shows the three subnets in the process. More details about this process model can be found
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Fig. 19.0verview the main YAWL net in the visa application process

in 22, As thePerform main assessmengt and theCheck basic requirementset do not
contain OR-join, we focus our attention on thkocate markset.

The Allocate markset represents the process for calculating the marks received by
each applicant. This visa class uses a points system where marks are given based on the
applicant’s circumstances assessed on several criteria. The total mark is then compared
against the current pass mark for the visa class (110 points) to decide whether the visa will
be granted. The net models how these points are allocated for 11 criteria to calculate the
total points. Some criteria such as points for age, skills and English ability are relevant to
all applicants, while others such as points for Australian qualifications and spouse skills are
relevant to some applicants only. TBecidable applicable categorig¢ask is modelled as
an OR-split where a decision is made regarding the relevance of a particular criterion. The
net completes with an OR-join task that waits for synchronisation of all active paths before
calculating the total points allocated to the applicant.

7.1. Enabling the cancel application task

The Cancel applicatiortask is within the main neDverview(Figure 19). It is modelled

as an OR-join with two inputs4 andc6. A token inc4 indicates that the case officer has
received a request for withdrawal. A tokend6 indicates that the application fees have
been processed. THeancel applicationtask is enabled when there are tokens in both
inputs ¢4 andc6) or a token in eithee4 or ¢6 and it is not possible for a token to arrive at
the other empty input place. Consider a markiBg-c6 where payment has been processed
but there is no request for withdrawal. At markie+ c6, the OR-join behaves as expected
(returns FALSE) and th€ancel applicatiortask is not enabled. Now, consider a marking
cl + ¢4 where the request for withdrawal has been received but payment has not been
processed. In this case, tBancel applicatiortask is not enabled until payment has been
processed. That is, a marking+ c6 enables the task. This is used to model business logic
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Fig. 20. YAWL nets:Perform main assessmeBheck basic requiremen#gdlocate marks

stated as “You can withdraw your application by advising the Adelaide Skilled Processing
Centre in writing at any time before a decision is made. Any charges that you paid at the
time of application are usually not refundefl.’Perhaps, a more common scenario is where

an applicant decides to withdraw the application while it is being processed. For instance,
markingc4 + ¢7 represents a state where the request for withdrawal has been received and
the application is awaiting a decision. In this case,Glamcel applicatiorshould go ahead

and it is enabled at markingt + ¢7. The analysis returns TRUE as it is not possible to
receive a token ir6 from reachable markings aft + ¢7. Table 6 shows the execution
times forCancel applicatiortask in Figure 19 for these markings. In general, we can see
that execution times with optimisation techniques are much faster than the ones without
optimisation. For marking3 + ¢6, the execution times for OR-join algorithm with both
types of restrictions are at least four times faster when compared to the execution times
without any restrictions. Similarly, for markingl + c4, the execution times are at least

six times faster when compared to the ones without any restrictions. Also, for marking
¢4+ ¢7, the execution times are at least ten times faster when compared to the ones without
any restrictions.

7.2. Enabling the make decision task

The Make decisiortask is within the main neDverview(see Figure 19). It is modelled
as an OR-join with two inputg5 and ¢7. A token inc¢5 indicates that there are some
circumstances changes that must be taken into account. A tokénimndicates that the
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OR-join: Cancel application Marking: ¢3 + ¢6 returns FALSE

Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 401.3+ 45.6
AProject+SRestrict 489.7+ 50.3
AProject 614.7+ 8.9
SRestrict 609.7+ 0.6
NoRestrict 2114.3+ 9.2

OR-join: Cancel application Marking: c1 + ¢4 returns FALSE

Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 213.3+ 8.9
AProject+SRestrict 296.7+ 0.6
AProject 437.3+ 155
SRestrict 437.3+ 0.6
NoRestrict 1833.3+ 234

OR-join: Cancel application Marking: ¢4 + ¢7 returns FALSE

Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 177.3+9.2
AProject+SRestrict 208.3+ 9.2
AProject 443.0+ 8.7
SRestrict 182.3+ 8.9
NoRestrict 1937.7+ 27.1

Table 6. Execution times for enabling analysis of @ancel applicatiortask in Figure 19

case officer is ready to make a decision. Meke decisioriask is enabled when there are
tokens in both inputsf andc7) or a token in eithet5 or ¢7 and it is not possible for a token

to arrive at the other empty input place. Consider a marking ¢6 where the applicant

has reported a change in circumstances such as a change of residential address and the
case officer has not finished processing the application. The OR-join behaves as expected
and theMake decisiorntask is not enabled (returns FALSE). Consider another marking

c7 where the case officer is ready to make the decision and there are no circumstance
changes to consider. In this case, Make decisiortask should go ahead (returns TRUE)

and it is enabled at markingr. Table 7 shows the execution times for enabling analysis

of the Make decisiortask in Figure 19 for these markings. For markidg+ ¢6, we can

see that the execution times for the algorithm with both types of restrictions are nearly
nine times faster when compared to the execution times without any restrictions. This is
because th&lake decisiortask is located in the middle of the net and a number of tasks
and conditions that follow the OR-join can be removed before the OR-join call. Similarly,
for marking c7, the execution times are over 40 times faster when compared to the ones
without any restrictions. This is because in addition to the abstractions using structural
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restriction, active projection removes most tasks and conditions as they cannot be enabled
from current marking:7.

OR-join: Make decision Marking: ¢5 + ¢6 returns FALSE
Restriction techniques | Duration in millisecs (100 calls
SRestrict+AProject 942.7+ 17.9
AProject+SRestrict 989.7+ 35.8
AProject 5442.7+ 38.8
SRestrict 1255.3+ 9.2
NoRestrict 8422.0+ 87.1
OR-join: Make decision Marking: ¢7 returns TRUE
Restriction techniques | Duration in millisecs (100 calls
SRestrict+AProject 198.0+ 8.6
AProject+SRestrict 161.3+ 8.4
AProject 5192.7+ 24.0
SRestrict 233.0+£ 5.2
NoRestrict 8244.7+ 32.4

Table 7. Execution times for enabling analysis of kiigke decisioriask in Figure 19

7.3. Enabling the calculate total points task

The Calculate total pointgask is within theAllocate markaet (see Figure 20). The net is
modelled as a structured net with an OR-splie¢ide applicable categorigand an OR-

join (Calculate total points The Calculate total pointgask waits to synchronise until all
active paths leading out of tH2ecide applicable categoridask are completed. Consider

a scenario where marks are to be allocated for four criteria: skills, age, English ability and
work experience. Consider a markinge + cac + cec + cpw where marks for skills,

age and English ability have been allocated but marks for work experience have not been
processed. Th€alculate total pointgask is not enabled (returns FALSE) at that marking
as it needs to wait. It is only enabled when marks have been allocated for all four criteria
(i.e., at the markingsc + cac + cec + cwc). Table 8 shows the execution times for the
OR-join enabling analysis of th@alculate total pointsask for these markings.

This example highlights the need for the optimisation techniques. The net contains an
OR-split with 11 possible paths resulting2h! — 1 = 2047 possible combinations and
hence, resulting in a large state space. As a result, OR-join analysis (without optimisation)
does not complete after letting it process for several hours. We can observe that active
projection makes a huge difference as it is only necessary to consider active paths and not
all possible combinations from the OR-split, thus significantly reducing the state space.
Structural restriction does not have an effect here as the OR-join is the last task in the net.
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Calculate total points | Marking: csc + cac + cgc + cpw returns FALSE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 30088.3+ 76.9
AProject+SRestrict 28255.0+ 609.3
AProject 21463.0+ 86.1
SRestrict N/A
NoRestrict N/A
Calculate total points | Marking: cs¢ + cac + cec + cwe returns TRUE
Restriction techniques Duration in millisecs (100 calls
SRestrict+AProject 29864.74+ 140.2
AProject+SRestrict 22552.04+ 474.6
AProject 21036.7+ 726.4
SRestrict N/A
NoRestrict N/A

Table 8. Execution times for the OR-join analysis of @adculate total pointgask

8. Related work

In van der Aalst et al', the authors summarise the problems associated with capturing the
non-local semantics of an OR-join connector in EPCs. Kindler proposes a semantic frame-
work for formally defining the non-local semantics of EPCs including the ORZjaiithe

author states that “a single transition relation cannot precisely capture the informal se-
mantics of EPCs”. It is proposed to define the non-local semantics in terms of a pair of
transition relations and a semantic definition using techniques from fixed point theory is
presented®'6. The paper by Cuntz et al. describes how to “calculate this semantics of
an EPC in an efficient way by employing Kleene’s fixed-point theorem and different tech-
nigues from symbolic model checking’ Kindler shows how a pair of transition relations

can be calculated to determine the non-local semantics and proposes the use of reduced
ordered binary decision diagrams (ROBDDs) to represent huge sets of states and huge
transition relations for optimisatiolf. Their motivation is similar to ours in the sense that

the author also attempts to “define a mathematically sound semantics that comes as close
as possible to the informal semantics”. This approach represents an alternative approach to
defining non-local semantics of the OR-join in the absence of cancellétion

9. Conclusion

Many workflow management systems and other process-aware information systems (e.g.,
ERP, CRM, and PDM systems), have problems supporting the OR-join semantics without
restrictions. In this paper, we formally defined the semantics of an OR-join in the presence
of cancellation regions, other OR-joins and (infinite) loops without adding structural re-
strictions. In addition, we operationalised this formal semantics and presented an efficient
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algorithm and implementation in the workflow language YAWL. To the best of our knowl-
edge, no other semantics or workflow system implementation come close to supporting
such a general OR-join, especially in the presence of arbitrary cancellation regions.

In our approach, reset nets are used as a formal basis for OR-join analysis to support
workflows with cancellation. A transformation function to map a YAWL net with OR-
joins into a reset net is provided. An OR-join evaluation algorithm which is based on the
backward search techniques for Well-Structured Transition Systems is then proposed. The
proposed semantics upholds the notion that an OR-join waits for synchronisation when
necessary and continue when appropriate. Two optimisation techniques, structural restric-
tion and active projection, are presented together with the findings from the implementation
in the YAWL engine. A realistic process model with multiple cancellation regions and mul-
tiple OR-joins in a non-structured setting is presented to highlight the need for a general
approach to OR-join semantics. To conclude the paper, we would like to emphasise that
the results reported in this paper are not limited to YAWL. These results are equally appli-
cable to any process modelling language that wishes to support advanced synchronisation
constructs such as the OR-join and cancellation.
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Appendix A. Well-structured transition systems and Reset nets
A.1l. Well structured transition systems (WSTS)

WSTSs are “a general class of infinite state systems for which decidability results rely on
the existence of a well-quasi-ordering between states that is compatible with the transi-
tions” 13. The existence of a well-quasi-ordering over an infinite set of states ensures the
decidability of termination and coverability properties’.

Definition Appendix A.1. (Well-Structured Transition System &) A well structured
transition system (WSTS) is a structufe= (Q, —, <) such thaty is a set of states>C

Q x @ is a set of transitionsgC @ x Q@ is a well-quasi-ordering (wqo) on the set of
states, satisfying the simple monotonicity propenty,— m’ for markingsm, m’ € @ and
my > m imply m; — m) for somem/} > m’.

Reset nets can be seen as a W30S—, <) with  the set of markingsy/ — M’ if
for somet, we haveM - M’ and< the correspondingt order on markings (which is a
wqo) 7.

Definition Appendix A.2. (Upward-closed set'®) Given a quasi-orderingt on X, an
upward-closed set is any sEtC X such thaty > x andx € I entaily € . Toanyz € X
we associatd = =%/ {y|y > x}. A basis of an upward-closeHis a setl’ such that

I= UxEIb T

Given a WSTS(Q, —, <) and a set of state C Q, Pred(I), pb(I) and Pred*(I)
can be defined”. The immediate predecessorsiofPred(I) = {x|xr — y A y € I},
all predecessor states of Rred™ (1) = {zlz =y A y € I} andpb(I) = U,c; pb(y)
wherepb(y) yields a finite basis of Pred(] {y}) (i.e., pb(y) yields a finite set such that
1 pb(y) =1 Pred(1 {y})) 7.

A finite basis ofPred” (T {y}) is computed as the limit of the sequengeC I; C ...
wherel, =9€f {4} and 1., =987 1, U pb(1,) 7. The sequence eventually stabilises
at somel,, when? I,,; =7 I,, and a stabilisation point is reached that has the property
T I, = Pred* (1 {y}) '". As T {y} is upward-closedPred* (T {y}) is upward-closed?.

A.2. Linking WSTSs and reset nets

The coverability question now becomes: is therecare| I,, such thatt’ < z. {y} is a
basis of upward closed sét{y} and we can determine thatis coverable fromx if there
exists ar’ € Pred* (1 {y}) such that’ < z (because< is a wgo). We now show that
pb(M) can be effectively computed and that the propértyb(M) = 1 Pred(T {M})
holds.

Lemma  Appendix Al Let (N,M) be a marked reset net.
pb(M) = {M'|Fter M' --»* M} wherel pb(M) =1 Pred(] {M}).

Proof. First, we will prove that] pb(AM) C1 Pred(T {M}).
Let My €7 pb(M), we need to show that/; €1 Pred(T {M}). There is anMsy < M,
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Fig. 21. Sketch of the first part of the proof

such thatM, € pb(M). Therefore, there existstac T such thatM, --+! M. We will

show that this implies that there is ar; such thatM; > M andM, — Ms. The mark-

ings M, M;, M, and M3 with the associated firing rules are shown in Figure PN is
described as the relationship between input, output and reset arcs of trahsKiong
transitiont backwards afi/ results inMs. A token will be placed into each input place of

t. For instance, an input place othat hast number of tokens will now has + 1. The

same is true of any output placetofvith y number of tokens. Ab/,, the number of tokens

is reduced by 1 (if possible), i.e., max— 1,0). We use the max function to ensure that
negative numbers are avoided. The same is true if the input place is also an output place.
If it has z tokens before, now it will have méx, 1). A reset place will have zero token. If

a reset place is also an input placetpit will have one token. If a reset place is also an
output place, it will have zero tokens. If a reset place is also an input place as well as the
output place, that place will have one token. By firing a transitiahM,, we can reach a

new markingMs. One token is removed from each input place iof M5, one token is put

into each output place afand the tokens are removed from the reset places. Hence, we
can conclude thatfs €1 {M}, My € Pred(T {M}), andM; € T Pred(1 {M}).
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Fig. 22. Sketch of the second part of the proof

Second, we will prove that Pred(1 {M}) C1 pb(M).

Let M; € 1 Pred(T {M}), we need to show that/; € 1 pb(M). This is shown

in Figure 22. There is &1, < M, such thatM, € Pred(T {M}). Hence, there is an
Ms > M such thatM, - M. We will show that this implies that there isMd, such that
My > M, andM, --»* M. Such a marking/, can be constructed as shown in Figure 22.
We can see thatl < Mz asz’ < x—1,2 < zandy’ < y-+1. Note thatindeed/, < M.
Clearly:2’ +1 < z (because’ <z — 1), maxz’,1) < z (because’ < z andz > 1) and
maxy’ — 1,0) < y (because’ < y + 1 andy > 0). Since,My € pb(M) andM; > My,

we concludeM; €7 pb(M). a
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Appendix B. Proofs for the restriction techniques
B.1. Structural restriction

Let N, N’ be two reset nets such th&t = reqV, G), the structurally restricted net w.r.t.
G. The following lemma will show that for any markinf, of N such that\V; =5 Mo,
there is a corresponding markind, of N’ such that\/; | P/ piy M} andM, > M,|P'.
That is, M, is larger than or equal td/, w.r.t. P'.

Lemma Appendix B.1. Let N = (P,T,F,R) be a reset netG C P and N' =
re N,G) = (P, 7', F', R') is the restriction on G.
Vs, ameM vy (M Y My = 3areM vy Ma P! My A My > M| P')

Proof. Consider an occurrence sequencelM; —5 M,. Leto be the projection ofi”.

First, we will prove tha is enabled i N, M;) and in(N’, M; | P'). From Defini-
tion B.1,¢ ¢ T’ implies thatt e NP’ = &. Transitions that are not in the restricted net
but in the occurrence sequeneegi.e.,t € o andt ¢ o, can only remove tokens frot’
and cannot put tokens intB’. Therefore, these transitions have no effect on the enabling
behaviour of transitions in”. AsV,__/ et C P’ andV,,t e NP' = &, if o is enabled in
(N, M), o is also enabled ifiN, M, ). Similarly, ast € (7' \ 7") cannot put tokens into
places inP’ in the restricted net; is enabled inN', My P").

N, t
M1 ----------- Mt_pre_ > Mt_post ----------- MZ
4 ) ) 4
URAC 3 | LW > M, [P
v oy ! ¥
M,1 ----------- M,t_pre_,>M,t_post ----------- M,z
tino’

M,t_post > Mt_post r P’

Fig. 23. Transition firings in both the original net and the restricted net

’

Next, we will prove that there existel, € M(N)andM, € M(N’) such that\/; 3
My (M [P ™25 M) A (Mg [P’ = M,). As shown beforeg is enabled if N, M; |
P.
Figure 23 gives the states in both models for transitions that can be fired in botN nets
andN’. Assume that\l; .. [P’ > Mt’_me andt € T'. As % t =5t t% = t5 NP’ and
R'(t) = R(t) N P', we deduceM;_ o5 [ P' = M,_,,,;. The effect of firingt is identical
on the places ifP’. Hence, the marking resulting from is at least as large agl, w.r.t.
P’. Figure 24 gives the states in both models for transitions that can only be fired in the net
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M1 ----------- Mt pre > Mt_post ----------- MZ
b 4
M, =M, [P’ 4 4 TR TN
-7 |
] v . \j
M,1 """""" M,t_pre M,t post =~ TTTTTTTTT M’z
W IVI,t_pre = M’t_post
tino\o’

M,t_pre > Mt_prerP’

3
M t_pre > Mt_postrP’

Fig. 24. Transition firings in the original net only

N. Assume that\f;_,,. | P" > Mt',pre andt € T’. Since the effect of firing can only
remove tokens from places B and we do not have a corresponding markidg_ 5. in
N', we deduceV, . > M;_,,.,[P". O

—post

Now we will show that for any markingZ, € M(N’) reachable from\f, [P, there is
a corresponding markingifo € M(N) reachable from\/; such thatMé = M5 |P’. That
is, the two markings are the same wi't

Lemma Appendix B.2. Let N = (P,T,F,R) be a reset net and’ = re{N,G) =
(P',T', F', R") is the restriction on G.

YaneMv),mieM v (Mi [P’ =M, = InneMv) M T My A My P = M)

Proof. Consider an occurrence sequefnce M | P’ Ry M,,. We first show that is
enabled in(N, M;) and then that there is markings : M, My A M| P = Mé .
As ¢ is enabled in N/, M, | P’) andV,c, e t C P’, this implies that is also enabled in
(N, My).

Figure 25 gives the states in both models for transitions that can be fired in both nets
andN’. Assume thail,_,,.|P' = M, . andt € T'. As’V t = Nt,t¥' =3 NP’ and
R'(t) = R(t) N P, we deduceM;_ o5 [ P' = M,_,,.;. The effect of firingt is identical
on the places i?’. Hence, the marking resulting fromis the same a3/, w.r.t. P’. This
can be repeated for all transitiohg o, hence:Mj = M,[P’. a

Corollary Appendix B.1. Let(N,M;) = ((P,T, F, R), M;) be a marked reset net and
N’ =reqN,G) = (P, T',F', R') its restriction on G.

TieMy (M =5 My A My[G] = M,[G)) if and only if IarieM vy (M [P/ R
M, A MG T My[G))

Proof. (=) First, we will prove thatl,; - (M1 % My A My[G] © M,[G]) implies
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M1 ----------- Mt_pre —_— Mt_post ----------- M2
) ) )
My =Milp | 3 | M =Ml P
y ¥ ' v
3 N” t ’ ’
M 177 M t pre »M t post™" " "TTTTTTT M 2
tino

3 p—
M t_pre — Mt_prerp’

’ —
M t_post — Mt_postrP’

Fig. 25. Transition firings in both the original net and the restricted net

N’ =

that 3, M v (M1 [P =7 My A Mi[G) © M,[G]). AssumeM; € M(N) such that
M; %5 M, and M, [G] © M,[G]. Using Lemma B.1, we can show that there isldh

such thath, [ P/ 57 M, A M, > M, | P'. RestrictingM, to G gives My[G] > M,[G]
asG C P’. We now haveM/; [G] C M,[G] andM,|G] > M,|G] and therefore); [G] =
M,[G]. /

(«<) Second, we will prove thaﬁM;eM(N,)(Ml [P My A M[G] © M,y[G))
implies thatd, ;. .\ () (M1 5 My A My [G] © My |G)). AssumeM,, € M(N') such that

N %

M, [P’ 5" M, and M, [G] C M,|G]. Using Lemma B.2, we can show that there is\dp
such thathM; ~3 M, A M, = M, [ P’. RestrictingM, to G showsM, | P'[G] = M,|G].
Hence M, |G = M,|G. Combined with\; |G T M, |G, this yieldsM; [G] C M;[G)]. O

An OR-join tasko-j is enabled at a markingy/ of an eYAWL-netN, if it is not possible
to reach a marking\/,, such thatA\/ — M, and M[eo-]] T M,[e0-]]. To determine
whethero-j should be enabled &/, we propose to perform the following analysis. Let
Npr = transE2WFOQV, o-j) be the reset net; = e0-j and My be the corresponding
marking of M in the reset net. Instead of usiigg to perform the analysis, the search
space can be reduced by applying the structural restriction swﬁlgai re{ N, G). Using
Corollary B.1, it is possible to determine whether there is a maerge M(Ng) such
that My " M, and Mg[G] © M[G]. If it does, this implies that more tokens can be
placed into the input places ofj in the reachable markings froM z. Hence, the OR-join
analysis can take place in the restricted Ngtando-j should not be enabled af.

B.2. Active projection

Let N, N’ be two reset nets such that = ap(V, M), after applying active projection,
for a given markingl/;. Lemma B.3 will demonstrate that for any marking, € M(NV)
reachable from/;, there is a corresponding marking, € M(N’) reachable from/; | P’
such thatMé = M, |P’. That is, both markings are the same wit't
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Lemma Appendix B.3. Let (N, M;) = ((P,T,F, R), M;) be a marked reset net and
N’ =ap(N,M;) = (P',T', F', R) its active projection.
VaneM (M1 =5 My = My [P =" M| P')

Proof. Consider an occurrence sequemce M; % M,. First, we will prove that is
enabled in(N’, M; [P’). From Definition B.2¢ € T'\ T" implies thatt cannot be enabled
in any reachable marking from/; and thereforet ¢ o. Soo only contains transitions
¢t € T'. The enabling ot € 7" only depends on places iR’ (i.e., s t = ¢t C P).
Figure 26 gives the states in both models. AssumeMat,, . [P’ = Mt/,pm andt € T".
Firing ¢ only affect the output places and they are allh (i.e.,t s= ¢t v C P'). As
NVt =Vt,tV=1tV NP andR/(t) = R(t) N P’, we deduceM;, s [P’ = M,_,,.,. This
can be repeated for dlle o, hence:M) = M| P'. O

Lemma B.4 will demonstrate that for any marking, € M(N’) reachable from/; |
P’, there is a corresponding markidd, € M(NV) reachable from\/; such thatM; =
M, |P'.

Lemma Appendix B.4. Let (N, M) = ((P,T,F,R), M;) be a marked reset net and
N’ =ap(N,M;) = (P',T', F', R) its active projection.
VareMvny(MiTP 5 My = 3, oMoy My ™5 My A My = M| P)

Proof. Consider an occurrence sequemce M | P’ N Mé. We will prove thato is
enabled inV, M, ). As o is enabled i N/, M, [ P') andV,c, st =" t C P, this implies
thato is also enabled iV, A;). From Definition B.2¢ € T'\ T” implies thatt cannot
be enabled in any reachable marking frdmfy and thereforet ¢ o. Soo only contains
transitionst € T". The enabling of € T’ only depends on places # (i.e., st =4 t C

/

P"). Figure 26 gives the states in both models. Assume Mat,,.. [ P' = M, .. and
¢ € T'. Firing t only affect the output places and they are alPih(i.e.,t 5= t"s C P’). As
NVt =Vt,tV=1tV NP andR/(t) = R(t) N P’, we deduceM,_,,q [P’ = M,_,,,,. This
can be repeated for &lle o, hence:M) = M| P'. O

Corollary Appendix B.2. Let (N,M;) = ((P,T,F,R),M;) be a marked reset net,
G C P,andN’ =reqap(N, M,),G) = (P, T',F', R').

JneMy (M1 =5 My A M, [G] © M, [G)) if and only if TaieM vy (Mo [P pity
M, A MG © My[G))

Proof. First, we will prove thafl,; v ) (M1 % My A My[G] © Ms[G]) implies that
3A4;eM(N/)(M1 P My A M,[G] © M,[G]). Using Lemma B.3, we can show that

N’ =

M, %5 M, implies M, [ P’ "5 M, | P'. Hence, there exists al, = M, | P’ such that
M [G] C M,|G].
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M1 ----------- Mt_pre_ > Mt_post ----------- MZ
) ) )
My =M, | | 3 M= P
M’1 ----------- M,t pre_.’ IVl,t_post ----------- M,Z
tino

’ —_
M t_pre — Mt_prerp’

’ —
M t_post — Mt_postrP,

Fig. 26. Transition firing in a restricted net (active projection)

Second, we will prove thai, .y Mi [ P/ My A My [G) © My[G) implies
that3,, .M M % My A M[G] © M,[G). Using Lemma B.4 and assumirgd, |
P' 5 M, there exists a/, such thathM; *5 M, and M, | P’ = M,. SinceG C P,
M [G] C M4|G] implies M;[G] = Ms[G]. O



