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Workflow languages offer constructs for coordinating tasks. Among these constructs are various types
of splits and joins. One type of join, which shows up in various incarnations, is the OR-join. Different
approaches assign a different (often only intuitive) semantics to this type of join, though they do
share the common theme that branches that cannot complete will not be waited for. Many systems
and languages struggle with the semantics and implementation of the OR-join because its non-local
semantics require a synchronisation depending on an analysis of future execution paths. The presence
of cancellation features and other OR-joins in a workflow further complicates the formal semantics of
the OR-join.

In this paper the concept of the OR-join is examined in detail in the context of the workflow
language YAWL, a powerful workflow language designed to support a collection of workflow patterns
and inspired by Petri nets. The paper provides a suitable (non-local) semantics for an OR-join and gives
a concrete algorithm with two optimisation techniques to support the implementation. This approach
exploits a link that is proposed between YAWL and reset nets, a variant of Petri nets with a special
type of arc that can remove all tokens from a place when its transition fires. Through the behaviour of
reset arcs, the behaviour of cancellation regions can be captured in a natural manner.
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1. Introduction

Workflow systems aim to provide automated support for the conduct of certain business
processes. Workflow systems are driven by specifications which among others, capture the
execution interdependencies between various activities. These interdependencies are mod-
elled by means of different control flow constructors, e.g., sequence, choice, parallelism
and synchronisation. It is shown in the workflow patterns research that the support for and
the interpretation of various control flow constructs varies substantially across workflow
systems14. Two of the most problematic patterns relate to theOR-joinand tocancellation.

Typically, synchronisation of parallel activities in workflows can be achieved using
one of three join constructs: AND-join, XOR-join and OR-join. The AND-join construct
requires strict synchronisation. All paths must be completed before the task following the
AND-join can be started. As a result, the entire workflow can deadlock if not every path can
be completed. On the other hand, the XOR-join can be started when one path is completed
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and hence, the task following the XOR-join may be completed multiple times. In some
cases, this may be undesirable or expensive. An OR-join provides a middle ground between
these two join structures by allowing a workflow to continue when only certain paths are
completed and it is certain that other paths can never complete.

The presence of cancellation feature further complicates the formal semantics of the
OR-join. The cancellation feature is commonly used to model external events that can
change the behaviour of a running workflow. It can be used to either disable activities in
certain parts of a workflow or to stop currently running activities. Even though it is possible
to cancel activities in workflow systems using some sort of abort function, many workflow
systems do not provide direct support for this feature in the workflow language. Sometimes,
cancellation affects only a selected part of a workflow and other activities can continue af-
ter performing a cancellation action. In those cases, an OR-join is the only synchronisation
construct flexible enough to ensure that the process is completed correctly. As cancella-
tion occurs naturally in business scenarios, comprehensive support and a corresponding
implementation in workflow systems is required.

In practice, there is a need for a construct like the OR-join as is evident from e.g.
the fact that many commercial workflow systems (e.g., IBM MQSeries, InConcert, ePro-
cess, WebSphere MQ Workflow, Eastman, Domino) and business process modelling tools
support OR-join-like constructs (e.g., Event Process Chains (EPCs) and Business Process
Modelling Notation (BPMN)). Support for cancellation features are also provided in the
Business Process Modelling Notation (BPMN), the Business Process Execution Langauge
(BPEL) and the Unified Modelling Language (UML).

Even though the OR-join construct is useful in process modelling, its formal seman-
tics is difficult to capture and to implement. Different approaches assign a different (often
only intuitive) semantics to this type of join, though they do share the common theme that
synchronisation is only to be performed for the active paths that are being executed in a
given workflow instance. The difficult question arises as to when an OR-join should wait
and when it should go ahead. This decisioncannot be made locally, that is, just by evalu-
ating the current state of the workflow. The decision requires the awareness of the current
state as well as possible future states of the workflow. State space analysis could be used
to determine all future states of the workflow. However, this analysis becomes much more
complicated when there are multiple OR-joins in the workflow or when other complex con-
structs such as cancellation and loops are present in the workflow. Defining the non-local
semantics of an OR-join is not trivial even when a workflow language does not support
complex constructs (e.g., cancellation) and/or puts certain restrictions on the models (e.g.,
no loops or only allow structures where an OR-join is preceded by an OR-split).

In a workflow language that supports all these constructs without restrictions, there are
a number of complicating factors when it comes to defining ageneral approachto OR-join
semantics. Firstly, for workflows with multiple OR-joins, it is an open issue how a state
space analysis for a certain OR-join should treat other OR-joins. Secondly, for workflows
with infinite loops (e.g., a continuous monitoring activity), the state space could be infinite.
Thirdly, cancellation regions complicate the computation of future states. A task that an
OR-join is waiting for that is in the cancellation region of some other task may or may not
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be disabled. Such considerations make state space analysis computationally expensive. In
this paper, we take on this challenge and propose a general approach to OR-join semantics
in the presence of cancellation features and without imposing extra structural restrictions
for OR-joins. The OR-join semantics is defined and presented in terms of the workflow
language YAWL that provides support for cancellation regions2.

The contributions of this paper are threefold. Firstly, the OR-join semantics as pro-
posed by van der Aalst and ter Hofstede2 is re-examined. We will argue that its behaviour
does not match the informal semantics in the context of other OR-joins. Secondly, the map-
ping of YAWL nets to reset nets is exploited to find an algorithmic solution to the non-trivial
problem of OR-join enablement. Thirdly, two restriction techniques are proposed to make
the OR-join algorithm more efficient.

The rest of the paper is organised as follows. In Section 2, various attempts at defining
and supporting OR-join semantics from the literature are presented, including the problems
associated with the original OR-join semantics in YAWL2 as well as possible improve-
ments. Section 3 formally defines a new semantics for the OR-join in YAWL. Section 4
demonstrates an algorithm to determine when an OR-join is enabled. This algorithm is
based on backwards search techniques drawn from the area of Well-Structured Transition
systems8,13. Section 5 presents two restriction techniques to improve the efficiency of the
analysis. Section 6 describes the implementation in the context of the open source system
YAWL and provides a detailed analysis of its performance. Section 7 describes a realistic
YAWL model for the general skill migration visa application to Australia, which contains
multiple cancellation regions and multiple OR-joins. Execution times for analysing OR-
joins in this visa application model are also presented. Section 8 discusses related work
and Section 9 concludes the paper. Appendix A contains background definitions for Well-
Structured Transition Systems and Appendix B contains proofs for restriction techniques.

This paper extends work by the authors previously reported in23 in the following ways.
More examples have been added to illustrate the OR-join semantics in Section 2. Structural
restriction and active projection techniques have been proposed to improve the performance
in Section 5. A number of experiments have been carried out to determine the correctness of
the OR-join enablement algorithm in various settings. The results from these experiments
have been reported in Section 6. Section 7 shows how the OR-join analysis is carried out
for the visa application example.

2. OR-join semantics

In this section, we first present the different variants of an OR-join semantics from the
literature. The informal semantics of an OR-join in the YAWL language is then explained
using a number of examples. Problems associated with the original OR-join semantics in
YAWL for multiple OR-joins are then discussed. Two alternative treatments for dealing
with multiple OR-joins are then proposed.
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2.1. Different interpretations and implementations of an OR-join

Several variants and interpretations of the OR-join have been proposed in the literature.
In Rittgen’s report19, several possible interpretations of OR-join semantics in the con-
text of Event-driven Process Chains (EPCs) are discussed. If the OR-join is preceded by
a matching OR-split, the OR-join semantics is taken to be “wait for the completion of all
paths activated by the matching split”. The presence of a matching split makes the process
”structured”. If there is no matching split, there could be at least three interpretations of
an OR join: “wait-for-all”, “first-come” and “every-time”19. The Business Process Mod-
elling Notation (BPMN) also contains an OR-join like construct called inclusive OR-join
gateway20. The semantics of an OR-gateway in BPMN 1.0 is given Sepcification as “it
will wait for (synchronize) all Tokens that have been produced upstream. If an upstream
Inclusive OR produces two out of a possible three Tokens, then a downstream Inclusive
OR will synchronize those two Tokens and not wait for another Token, even though there
are three incoming Sequence Flow”. However, the OR-join gateway does not capture the
correct behaviour for unstructured BPMN models21. It seems to be challenging to select a
suitable OR-join semantics and to implement it efficiently. Van der Aalst et al1 highlight
the technical, conceptual and practical problems with the formal semantics of the OR-join
in EPCs. The authors demonstrate the problems using “vicious circles”, which are formed
when two or more OR-joins are in a feedback loop and each OR-join waits for the other
OR-join to complete first. It was suggested that there is no sound formal semantics for
EPCs that seems to satisfy the intuitive semantics and that any formal semantics for EPCs
will impose some restrictions or will deviate from the informal semantics to some extent.

Many workflow systems and languages also struggle with the semantics and imple-
mentation of the OR-join. This is because its non-local semantics requires a synchronisa-
tion depending on an analysis of future execution paths, which requires some non-trivial
reasoning. Workflow management systems like InConcert, eProcess, and WebSphere MQ
Workflow have solved problems related to the OR-join using syntactical restrictions. IBM
WebSphere MQ Workflow18 (used as a basis for the BPEL standard) appears to offer full
support for the OR-join for acyclic workflows1. As a consequence of the requirement for
workflows to be acyclic, loops are disallowed and the only way to introduce loops is by
specifying a postcondition for a subprocess; the subprocess is then repeated until the post-
condition evaluates to true. Other systems like Eastman and Domino Workflow also support
an OR-join concept with non-local semantics. The use of the non-local semantics may re-
sult in poor performance as is stated in the manual of Eastman and the recommendation to
avoid this type of routing10. Even the OR-join definition from the Workflow Management
Coalition does not support non-local semantics. An OR-join is defined as “a point within
the workflow where two or more alternative activity(s) workflow branches re-converge to a
single common activity as the next step within the workflow. (As no parallel activity execu-
tion has occurred at the join point, no synchronisation is required.)”. For a more complete
discussion on OR-join semantics, we refer the reader elsewhere1,3,14,15,16.

In the collection of workflow patterns, the synchronising merge pattern captures the
essence of an OR-join14. The OR-join construct in YAWL, is intended to provide direct
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support for OR-join semantics while imposingno syntactical restrictions. However, the
original OR-join semantics as defined in2 could yield counter-intuitive results such as
e.g., an OR-join firing prematurely for workflows with multiple OR-joins and OR-joins in
sub-processes. Hence, we believe that there is scope for further improving the semantics of
an OR-join concept in YAWL.

2.2. OR-join semantics in YAWL

A YAWL model is made up of tasks, conditions (in a Petri net, these would be referred to
as places) and a flow relation between tasks and conditions. Tasks are active components in
a YAWL model and when a task fires, tokens are consumed from its input conditions and
tokens are generated for its output conditions depending on its split and join behaviours.
There are three kinds of split and three corresponding kinds of join; they are AND, XOR
and OR. The splits, joins, conditions and cancellation symbols for YAWL are shown in
Figure 1. Each YAWL model has one start condition and one end condition. A task is en-
abled when there are enough tokens in its input conditions according to the join behaviour.
Informally, an AND-join task is enabled if there are tokens in all its input conditions. An
XOR-join task is enabled if there is at least one token in one of the input conditions. The
decision for enabling tasks with AND-joins or with XOR-joins can be made locally as it
onlydepends on the existence of tokens in the input conditions. In YAWL, the semantics of
an XOR-join is considered to be local. In15,5, the XOR-join is also assumed to have non-
local semantics. When a task is executed, it takes tokens out of its input conditions and puts
tokens in its output conditions according to the join and split behaviour respectively. A task
can have a cancellation set associated with it. If there is a cancellation set associated with
a task, the execution of the task removes all the tokens from the conditions and tasks in the
cancellation set. Cancelling a task is achieved by removing tokens from internal conditions
of the task.

In general, an OR-join task is enabled if there is at least one token in one of its input
conditions and it is not possible for more tokens to arrive in other (currently empty) input
conditions in the future states (i.e, there is no need to wait for synchronisation). If it is
possible for tokens to arrive in currently empty input conditions in the future states, then
the OR-join task should wait before proceeding. This is the desired behaviour of an OR-join
and we will refer to this as theinformal semanticsof an OR-join.

A more technical explanation of the OR-join semantics is as follows: an OR-join is

start
condition

end
conditioncondition remove

 tokens

AND-split
 task

XOR-split
 task

OR-split
task

AND-join
 task

XOR-join
 task

OR-join
 task

Fig. 1. Splits, joins, conditions and cancellation in YAWL
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enabled at a marking if and only if at least one of its input conditions is marked and it is not
possible to reach a marking that still marks all currently marked input conditions (possibly
with fewer tokens) and at least one that is currently unmarked.

Next, a series of YAWL nets are presented to establish the need for complex analysis to
determine whether an OR-join is enabled. For simplicity, the YAWL nets use short labels
(e.g., A, c1, etc.) to identify tasks and conditions. This allows us to focus on the control
flow requirements for a particular net. We also give here an informal explanation of some
Petri net terminology, such as marking and reachability, which is also used in YAWL. As
with Petri nets, the termmarking, is used to describe the state of a YAWL model and is
represented as the number of tokens in certain conditions of a net (e.g.,M = c1 + c5
represents a state of the workflow where there is one token each in conditionsc1 andc5).
A marking isreachablefrom another marking, if there is a sequence of tasks that can fired
from the first marking to arrive at the second marking.

c2A

c3

c1

C

c4

E

c6

B

D

c5

Fig. 2. A structured YAWL net with an OR-split task A and an OR-join task E

Figure 2 is a net where A is an OR-split task and E is an OR-join task. The initial
marking for the net has exactly one token in the start condition. At the initial marking, task
A is enabled and can be fired. AfterA is executed, tokens are put into conditionsc1, c2, and
c3 according to OR-split behaviour. Note that the OR-split allows one or more paths to be
selected after executing the task. Consider a markingM = c1 + c5, which results from the
scenario where two outgoing paths leading to B and to C, were selected after completing
task A, and where task C has been executed. AtM , there is a token in the input condition
c5 of OR-join task E. To determine whether task E should be enabled atM , we need to
find out whether tokens could be put intoc4 or c6 in the reachable markings ofM . It is
possible to reach a new markingM ′ = c4 + c5 from M by firing task B and therefore, E
should not be enabled atM . Now consider whether task E would be enabled at marking
M ′ = c4 + c5. At M ′, c4 andc5 have one token each and there are no other tokens in the
net. Hence, it is not possible forc6 to be marked in the reachable markings ofM ′. Task E
is enabled atM ′. As this is a “structured” net, task E is not enabled until the tokens from
all the active threads from task A reach the input conditions of E.

From the above example, it could be thought that an OR-join evaluation only depends
on the number of active paths out of an OR-split. If that is true, it is possible to know in
advance the number of active paths to wait for synchronisation. Figure 3 represents a slight
modification to the YAWL net of Figure 2 and it shows that this notion is false. In Figure 3,
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c4 is an input condition of task F andc5 andc6 are input conditions of task E. Consider
a markingM=c1 + c5. In this case, there is no reachable marking fromM that has any
tokens inc6 and therefore, E is enabled atM . So, even though two active paths are chosen
after OR-split task A, the OR-join evaluation should not wait for tokens from both paths,
as it is possible that not all the tokens are on the path to an OR-join task.

c2A

c3

c1

C

c4

E

c6

B

D

c5 F

Fig. 3. A YAWL net modified from Figure 2
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Fig. 4. A YAWL net with two OR-join tasks C and D
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Fig. 5. The reachability graph of the YAWL net in Figure 4

Next, the behaviour of OR-join is described using an example with one OR-split and
two OR-joins. The example in Figure 4 demonstrates a net with AND-split task A, AND-
join task E, OR-split task B and OR-join tasks C and D. The graph of Figure 5 shows
the reachable markings from the initial markingi to the end markingo. A node in the
reachability graph represents a reachable marking and an edge represents a task that is
executed to reach that particular marking. First consider a markingM = c1 + c2 + c3
where there is a token in input conditionc1 of OR-join task C and in input conditionc3 of
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OR-join task D in addition to the token in input condition of task B. To determine whether
tasks C and D should be enabled atM , we need to find out whether either conditionc4 or
c5 is marked in the reachable markings fromM . We can see that by executing task B, it
is possible to reach markingsc1 + c3 + c5 or c1 + c3 + c4 + c5 that markc5, an input
condition of task D not marked inM . Alternatively, markingsc1+c3+c4, c1+c3+c4+c5
could be reached by executing task B and they markc4, an input condition of task C not
marked inM . As it is possible to reach a new marking fromM which can put a token in
an unmarked input condition of the OR-join tasks C and D, neither task C nor D is enabled
at M . If a markingM ′ = c1 + c3 + c4 is considered, where all the input conditions of C
(i.e.,c1 andc4) are marked, then C is enabled atM ′. Task D will also be enabled atM ′ as
it is not possible for another token to arrive at input conditionc5. Note that in the scenario
where we move fromM to M ′, task D was not enabled inM and, although no tokens were
added to the input conditions of this task, it became enabled inM ′. In this example, the
two OR-joins do not interfere with one another as they do not share input conditions.

A c1 B c2

E

C c3 D

Fig. 6. A YAWL net with a cancellation task C and an infinite loop

Now, let us consider OR-joins in the context of cancellation. Figure 6 describes a net
with (i) task C removing tokens from the conditionsc1, c2 and from internal conditions
of task B when firing, (ii) an OR-join task E and (iii) two infinite loops betweenc1, c2,
c3, C and D. At a markingM = c2, one of the input conditions of E is marked and an
analysis needs to be performed to decide whether bothc2 andc3 are marked in reachable
markings ofM . The following sequence of reachable markings fromM can be observed:
c2 C→ c3 D→ c1 + c2 B→ 2c2 C→ c3. Similarly, there is another sequence:c2 C→ c3 D→
c1 + c2 C→ c3, note that this is due to the cancellation feature of C removing tokens from
c2 when firing. Regardless of which path is taken from the markingc2, a markingc3 is
reached and not a markingc2 + c3 (i.e., at the expense ofc2). The conclusion is that it is
not possible to reach a markingc2 + c3 or bigger fromM and therefore, E is enabled at
M . Suppose now that task C no longer has a cancellation set associated with it in Figure 6.
From the markingM = c2, the following sequence of reachable markings can be observed:
c2 C→ c3 D→ c1 + c2 B→ 2c2 C→ c2 + c3. As it is possible to reachc2 + c3 which marks
more input conditions of E, E should not be enabled atM . This example demonstrates the
possible effect that the cancellation feature of a task has on the OR-join analysis.

From the above examples, it is clear that the OR-join semantics requires careful analysis
and the decision to enable an OR-join cannot be made locally. One possible technique is to
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perform the state space analysis of the entire workflow model. An OR-join algorithm can
evaluate possible reachable markings from a given marking to determine whether there is a
possibility of a token arriving at a currently unmarked input condition of an OR-join (while
all input conditions which were already marked remain marked though possibly with fewer
tokens). This algorithm potentially needs to be applied every time a marking changes and
the OR-join analysis could place a significant load on any workflow engine required to
execute it.

2.3. Problems with the original semantics

Two problems may be identified with the original OR-join semantics of YAWL2. The
first problem is related to the treatment of other OR-joins preceding an OR-join under
consideration. The OR-join semantics ignores other OR-joins when analysing whether a
particular OR-join should be enabled at a given marking. In Figure 7, there are two OR-
join tasks, E and F in the net. Consider a markingM = c1+c3 where the OR-join analysis
for F is performed. After executing task C, it is possible to reach eitherc3 + c4, c3 + c5 or
c3+c4+c5. One possible occurrence sequence isc1+c3 C→ c3+c4+c5 D→ c3+c4+c6 E→
c3 + c7. Hence,M ′ = c3 + c7 is a reachable marking fromM . However, the original
OR-join semantics ignores other OR-joins on the path to F, so task E and the associated
conditions will not be taken into account, andM ′ is therefore not considered as a reachable
marking during the OR-join analysis of F. As a result, the analysis will conclude incorrectly
that there is no possibility of another token arriving inc7, F would be enabled atM and no
synchronisation takes place. This behaviour is probably not what one would expect from
this model. It would also result in multiple executions of F and then more than one token
would be produced foro. A net which can produce a token for the output conditiono while
still having tokens in the other conditions is considered as not having proper completion
and is therefore not sound. We have seen that as the analysis of a given OR-join does not
consider the possibility of a token arriving from a path which has an OR-join, this could
result in premature enabling and multiple execution of OR-join tasks.

c1

c5

c2

C

c4

c3

c7

F

B

D c6

A

E

Fig. 7. A YAWL net with an OR-join task E preceding another OR-join task F

The second (related) problem is due to unfolding of composite tasks during an OR-join
analysis. This implies that a net at a lower level cannot be considered as a black box. If the
lower level net contains OR-joins, it will impact on the OR-join analysis at a higher level
net. Consider a specification where task B in Figure 7 is a composite task that is unfolded
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into a net with an OR-split and an OR-join task as shown in Figure 2. The composite task
B will be unfolded to the net in Figure 2 (including the OR-join taskE at lower level).
The composite task can be started with a token inc2 and after completion, will put a token
in c3. However, during OR-join analysis for F at a markingM = c2 + c7, the net will be
unfolded and OR-join taskE at the lower level is ignored. The OR-join semantics will then
conclude incorrectly thatF should be enabled atM because conditionc3. The analysis in
the original semantics takes into account the net at the lower level and composite tasks have
not been treated as black boxes. We propose that it is possible to abstract from constructs
that exist in a lower level net (including OR-joins).

2.4. Optimistic and pessimistic approaches

The informal semantics of an OR-join can be supported quite well when there is only one
OR-join in a given net. However, when dealing with multiple OR-joins where one precedes
the other, the semantics is not well-defined. The question arises as to “how to treat other
OR-joins in the workflow while we try to decide whether one OR-join should be enabled?”.
Next, we propose to solve this issue by considering one OR-join at a time during the anal-
ysis. Instead of ignoring other OR-join tasks during the analysis, two alternative treatments
have been proposed for those OR-joins: either as XOR-joins (optimistic) or as AND-joins
(pessimistic). We believe this strategy to be better than ignoring these OR-joins completely
during the analysis (as used in the original semantics proposed for YAWL). Both optimistic
and pessimistic approaches support the informal semantics by delaying enablement when
there is a possibility of more tokens arriving to unmarked input conditions of an OR-join.
These two alternatives result in formal semantics which is more closely related to the in-
formal semantics of OR-joins and still allow for sound semantics (i.e., avoids the fixpoint
problems discussed in van der Aalst et al.1).

The treatment of an OR-join as an XOR-join is anoptimisticapproach. It is consid-
eredoptimisticas the analysis waits for synchronisation if the resulting XOR-join can be
enabled. The term “optimistic” refers to the expectation that the preceding OR-join can be
enabled when treated as an XOR-join. Consider a markingM = c1+ c3 in Figure 7 where
an OR-join analysis for task F would be performed. Instead of ignoring the OR-join task
E during the analysis, it will be treated as an XOR-join task. It means that the occurrence
sequencec1 + c3 C→ c3 + c4 E→ c3 + c7 would be considered. As a result, F is not enabled
atM . This interpretation of OR-join task E as an XOR-join, prevents F from being enabled
prematurely and it matches closely with the informal semantics of an OR-join.

The treatment of an OR-join as an AND-join is apessimisticapproach, as this approach
now requires tokens in all input conditions of the AND-join and if it is not possible, the OR-
join will be enabled. Consider againM = c1 + c3 in Figure 7 where an OR-join analysis
for task F would be performed. This time, instead of ignoring task E, it will be treated as an
AND-join task. Due to the OR-split behaviour of task C, tokens can be present inc4 or c5
or both after firing C. The occurrence sequencec1+ c3 C→ c3+ c4+ c5 D→ c3+ c4+ c6 E→
c3 + c7 is possible. As a token can be put inc7 while c3 remains marked, F is not enabled
at M . This preserves the same informal semantics as an optimistic approach, and both
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approaches result in delaying the enablement of the OR-join task F.
In Figure 8, we have an unusual situation described as a vicious circle by Kindler15

where the two OR-join tasks B and C could be waiting for each other to be fired first and
it is unclear what the informal semantics of the model should be. Conditionc3 is an output
condition of C and an input condition of B andc4 is an output condition of B and an input
condition of C. Consider a markingc1 + c2 where an OR-join analysis is to be carried out
for tasks B and C. Using theoptimisticapproach, task C is treated as an XOR-join task
during the analysis for B. As a result, a reachable markingc1 + c3 + c6, which marks
both input conditions of B can be found. Therefore, B should not be enabled atc1 + c2.
Similarly, we treat B as an XOR-join task for the analysis of task C and there is a reachable
marking c2 + c4 + c5. Therefore, task C is not enabled atc1 + c2. As a result of this
optimisticapproach, the net is indeadlock. Using thepessimisticapproach, we treat task C
as an AND-join task during the analysis for B. At the markingc1 + c2, it is not possible
to enable C due to the AND-join semantics, and therefore, task B will be enabled and can
be fired, which yields the markingc2 + c4 + c5 . This will enable task C and after firing
C, the markingc3 + c5 + c6 results. Therefore, tasks B and C could potentially keep firing
alternatingly thus resulting in a potentially infinite number of firings of task D. The same
is true for the analysis of task C. It can be seen that thepessimisticapproach would result
in multiple tokens in the end condition. The original semantics that ignores other OR-joins
would also result in a similar behaviour to thepessimisticapproach. It is clear that in this
particular case, there is no formal semantics that can exactly match the informal semantics.

c1

c2 c6

c5

c4c3A D

B

C

Fig. 8. OR-join tasks B and C in a vicious circle

From the above discussions, it is evident that there is no ideal treatment for multiple
OR-joins to support the non-local semantics. Any formal semantics imposes some restric-
tions or it deviates from the informal semantics to some extent. We have shown that both
approaches are valid and can be used during the analysis. The motivation behind our se-
mantics and the use of the optimistic approach is to postpone execution of an OR-join
for as long as possible. For this reason, the optimistic approach (XOR-join treatment) is
chosen during the analysis. The resulting OR-join semantics is well-defined in every cir-
cumstance. However, the interpretation of this semantics can sometime lead to a deadlock
in the presence of vicious circles as both OR-joins will wait for each other to fire first.
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3. Proposed OR-join semantics

This section proposes new OR-join semantics for YAWL that exploits mappings from
YAWL to reset nets. First, for convenience, some background definitions for reset nets
and YAWL are presented. Next, a function to transform a YAWL net with OR-joins into a
reset net is given. Finally, a new OR-join semantics for YAWL is defined formally.

3.1. Background definitions

3.1.1. Reset nets

This subsection presents a number of definitions and notations for reset nets, Petri nets
with reset arcs(6,8,9,11,13). The concepts are similar to those defined for Petri nets except
that they have been defined for reset nets. A reset net is a Petri net with specialreset arcs,
that can clear the tokens in selected places when its transition fires. Areset arcconnects a
place and a transition and graphically, a reset arc is modelled as a doubled-headed arrow
(see Figure 9). The nature of reset arcs matches closely with the concept of cancellation in
workflow modelling and reset nets are used as a formalism for modelling workflows with
cancellation. This approach allows us to leverage existing literature and techniques in the
area of Petri nets and reset nets in particular4,6,8,9,11,12,13.

Definition 3.1. (Reset net8) A reset net is a tuple(P, T, F, R) where(P, T, F ) is a Petri
net andR : T → P(P ) assigning a set of (possibly empty) places to every transition.

The complexity introduced by a reset arc (when compared with Petri nets in general)
is threefold: 1) as the transition removesall tokens and not just one when it fires, place
invariants do not hold for such nets, 2) the reset action can beineffectiveif a place does
not contain any tokens at the exact time when the transition fires and the reset action is
carried out, and 3) a reset arc can affect any place in the entire net (i.e., its effect is global),
unlike normal arcs of a transition which can only influence their input and output places
(i.e., their effect is local). As a result, the notion of reachability is undecidable for reset nets
with more than two reset arcs9.

We now fix some additional notations that will be used throughout the paper. LetN be
a reset net andx ∈ P ∪ T , •x andx• denote the set of inputs tox (preset) and the set of
outputs ofx (postset). If the netN involved cannot be understood from the context, it is
explicitly included, and written asN• x andx

N• . We writeF+ for the transitive closure of the
flow relationF andF ∗ for the reflexive transitive closure ofF . When we writeF (x, y),
this evaluates to 1 if(x, y) ∈ F and to 0 if(x, y) 6∈ F .

We will use Figure 9 to explain the concepts and notations for reset nets. In Figure 9,
we have•t = {p1, p2}, t• = {p3, p4, p5, p6}, andR(t) = {p3}.

Places can contain one or moretokensrepresented by black dots. Thestateof a reset
net is represented by amarking, that describes the number of tokens in each place of a net.

Definition 3.2. (Marking) Let P be a set of places. A markingM is defined asM :
P → IN.

A marking can be interpreted as a vector, a function, and a multiset just as with ordinary
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Fig. 9. An example reset net before and after firing a transition

Petri nets. If X is a set over Y, it could also be interpreted as a bag where each input
place occurs once (E.g.,•t can be interpreted both as a set of places{p1, p2}and as a
bag where each place has one token each1p1 + 1p2). In the latter case, this bag can be
straightforwardly interpreted as a marking with one token for each place.M(p) returns the
number of tokens in a placep if p in the domain ofM (p ∈ dom(M)) and we define M(p)=0
if p 6∈ dom(M). For a reset netN , IM(N) is used to represent a set of all possible markings
of N . In Figure 9, the left net shows a markingM where there is a token inp1, two tokens
in p2, two tokens inp3, and one token inp6 (denoted as a multisetp1 + 2p2 + 2p3 + p6).
M(p1) returns 1 where asM(p4) returns 0.

The functionmarkedreturns the set of marked places in a reset net for a given marking.

Definition 3.3. (Marked) Let N = (P, T, F,R) be a reset net andM ∈ IM(N):
marked(M) = {p ∈ dom(M) |M(p) > 0}.

We use notations such asM ≤ M ′, M > M ′, M + M ′, andM ¦ M ′ for com-
parison and operations on markings.M ≤ M ′ iff ∀p∈P M(p) ≤ M ′(p). M > M ′

iff ∀p∈P M(p) ≥ M ′(p) ∧ ∃p∈P M(p) > M ′(p). M + M ′ are multisets such that
∀p∈P : (M + M ′)(p) = M(p) + M ′(p). Similarly, M ¦ M ′ are multisets such that
∀p∈P : (M ¦ M ′)(p) = M(p) ¦ M ′(p) where for any natural numbersa, b: a ¦ b is de-
fined as max(a − b, 0). The use of ¦ instead of− ensures that the number of tokens can
never be a negative number.

Thev relation indicates thatM marks fewer or the same places asM ′.

Definition 3.4. (v) Let M, M ′ be two markings of a reset net:M v M ′ iff marked(M)
⊆ marked(M ′), M @ M ′ iff M v M ′ and notM ′ v M .

This is a looser notion of smaller markings than≤, because only the marking of places
is considered and the number of tokens in a place is ignored. The notation@ is used to
indicate thatM marks strictly fewer places thanM ′.

A transition isenabledwhen there are enough tokens in its input places. Note that reset
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arcs do not change the requirements of enabling a transition.

Definition 3.5. (Enabling rule) Let N be a reset net,t ∈ T , andM ∈ IM(N). Transition
t is enabledatM , denoted asM [t〉, if and only if∀p ∈ •t : M(p) ≥ 1.

The concept of firing a transitiont in a netN is formally defined below and denoted as
M

N,t→ M ′. If there can be no confusion regarding the net, the expression is abbreviated as
M

t→ M ′ and if the transition is not relevant, it is written asM → M ′.

Definition 3.6. (Forward firing) Let N = (P, T, F,R) be a reset net,t ∈ T and
M,M ′ ∈ IM(N).

M
N,t→ M ′ ⇔M [t〉∧

M ′(p) =
{

M(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

In Figure 9, transitiont is enabled at markingp1 + 2p2 + 2p3 + p6 as•t = p1 + p2
andt may fire. When transitiont fires, it removes a token each from its input placesp1 and
p2, removes all tokens from its reset placep3, and puts one token each in its output places
p3, p4, p5, p6, resulting in the markingp2 + p3 + p4 + p5 + 2p6.

We now define the concepts of reachability and coverability of markings from a given
marking in a reset net. It is possible to fire a sequence of transitions from a given mark-
ing in a reset net resulting in a new marking using the forward firing rule defined above.
This sequence of transitions is represented as an occurrence sequenceσ. A markingM ′ is
reachable from another markingM in a reset net, if there is an occurrence sequence leading
from M to M ′.

Definition 3.7. (Reachability) Let N = (P, T, F, R) be a reset net andM, M ′ ∈
IM(N). M ′ is reachable in N fromM , denotedM

N,∗→ M ′, if there exists an occurrence
sequenceσ ∈ T such thatM

σ→ M ′.

The reachability setis the set of markings that can be reached from a given marking
M in a reset net after firing all possible occurrence sequences and denoted asN [M〉. If all
places in a reset net are bounded, the reset net is also bounded and hence, it is possible to
generate a finite reachability set. If a place is unbounded, the reachability set contains an
infinite number of states (an infinite state space). In such cases, reachability of a marking
cannot be determined but coverability can be determined.

For reset nets, reachability is undecidable for nets with more than two reset arcs but
coverability is decidable using a backward firing algorithm9. A markingM2 is said to be
coverablefrom another markingM1 in a reset net if there is a reachable markingM ′ from
M1 such thatM ′ is bigger than or equal toM2.

Definition 3.8. (Coverability) Let N = (P, T, F, R) be a reset net andM1,M2 ∈
IM(N). M2 is coverable fromM1 in N, if there exists a markingM ′ such thatM ′ ∈ N [M1〉
andM ′ ≥ M2.

Next, two notations:projectionandfiltering are presented to allow operations on se-
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lected places of a marking in a reset net. The notationM [P ′] restrictsM to a set of places
P ′, i.e., a projection. For places not inP ′, the number of tokens is zero.

Definition 3.9. (Projection) Let N = (P, T, F, R) be a reset net,M ∈ IM(N) and
P ′ ⊆ P . M [P ′] returns a projection such that dom(M [P ′]) = dom(M) and

M [P ′](p) =
{

M(p) if p ∈ P ′

0 if p 6∈ P ′.

Let M1 = p1 + p2 + p3 and P ′ = {p1, p2}. M1[P ′] = p1 + p2 + 0p3 and
dom(M1[P ′]) = {p1, p2, p3}. Let M2 = p1 + 2p2, M2[P ′] > M1[P ′] is true as the
comparison betweenM andM ′ is restricted to the set of places inP ′ andM2 has more
tokens inp2.

The notationM ¹P ′ is used to alter a marking based on a set of placesP ′, i.e., unlike
M [P ′] the domain may be modified (extend or reduce the set of places).

Definition 3.10. (Filtering ¹) Let N = (P, T, F,R) be a reset net,M ∈ IM(N) and
P ⊆ P ′. M¹P ′ returns a function such that dom(M¹P ′) = P ′ and

M¹P ′(p) =
{

M(p) if p ∈ P ′ ∩ dom(M)
0 if p ∈ P ′ \ dom(M).

Let M = p1 + p2 + p3 andP ′ = {p1, p2}. M ¹P ′ = p1 + p2 and dom(M ¹P ′) =
{p1, p2}. If P ′ = {p1, p2, p3, p4}, M ¹P ′ = p1 + p2 + p3 + 0p4 and dom(M ¹P ′) =
{p1, p2, p3, p4}.

Next, we define the notion ofBackward firingthat is used to generate coverable mark-
ings for a reset net by firing transitions backwards. We denoteM ′ 99Kt M if it is possible
to fire a transitiont backwards starting from a markingM and resulting in another marking
M ′.

Definition 3.11. (Backward firing) Let N = (P, T, F, R) be a reset net andM, M ′ ∈
IM(N).

M ′ 99Kt M ⇔M [R(t)] ≤ t • [R(t)]∧
M ′(p) =

{
(M(p) ¦ F (t, p)) + F (p, t) if p ∈ P \R(t)
F (p, t) if p ∈ R(t).

For places that are not reset places, the number of tokens inM ′ is determined by the
number of tokens inM for p and the production and consumption of tokens. If a place is
an output place oft and not a reset place, one token is removed fromM(p) if M(p) > 0.
If a place is an input place oft and not a reset place, one token is added toM(p). For any
reset placep, M(p) ≤ F (t, p) because it is emptied when firing and thenF (t, p) tokens are
added. We do not requireM(p) = F (t, p) for a reset placep because the aim is coverability
and not reachability.M ′, i.e., the marking before (forward) firingt, shouldat leastcontain
theminimalnumber of tokens required for enablingt and resulting in a marking ofat least
M . Therefore, onlyF (p, t) tokens are assumed to be present in a reset placep.
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In Figure 9, it is possible to fire transitiont backwards in the right net at marking
M = p2 + p3 + p4 + p5 + 2p6 as there is exactly one token in placep3 that is a reset
place oft as well as one of its output places (i.e.,M [R(t)] = p3 = t • [R(t)]). This results
in a markingM ′ where one extra token is put into all input places oft and one token is
removed from all output places oft that are not reset places oft. Finally, one token is put
into all reset places oft. This results in a markingM ′ = p1+2p2+p3+p6. Note that this
markingM ′ has only one token inp3 whereas the marking shown in the left net has two
tokens inp3. This is because when firing backwards, it is impossible to know how many
tokens were originally present in a reset place. Hence, the backwards firing rule returns a
coverablemarking and not necessarily a reachable marking.

The predicatesuperMindicates whether it is possible to reach a marking fromM which
marks more places in a set of placesP ′.

Definition 3.12. (superM) Let N = (P, T, F,R) be a reset net andM ∈ IM(N) and
P ′ ⊆ P be a set of places for consideration, superM(N, M, P ′) holds iff there is a marking
M ′ such thatM

∗→ M ′ andM [P ′] @ M ′[P ′].

ThissuperMpredicate is used to decide whether an OR-join should be enabled. For the
set of input places of an OR-joinP ′ and the current state of the workflow represented as
markingM , thesuperMpredicate holds if it is possible to mark more input places of the
OR-join and hence, the OR-join should wait for synchronisation.

All the definitions for reset nets presented in this subsection will be used to formally
define the YAWL OR-joins semantics in subsection 3.3. First, we present how a YAWL net
can be formally defined and then show how a YAWL net can be mapped to a reset net.

3.1.2. Formalisation of YAWL models

A YAWL specification is formally defined as a nested collection of Extended Workflow
Nets (EWF-nets) by van der Aalst and ter Hofstede2. A YAWL specification supports
hierarchy and a composite task unfolds into another EWF-net. For our purposes, it suffices
to consider only one net in isolation. A YAWL net formally corresponds to what was termed
an “EWF-net” and we present here the definition of a YAWL net and refer the reader
elsewhere2 for a formal definition of a YAWL specification.

Definition 3.13. (YAWL net 2) An YAWL net N is a tuple (C, i,o, T, F, split ,
join, rem,nofi) such thata

• C is a set of conditions andT is a set of tasks,
• i ∈ C is the unique input condition ando ∈ C is the unique output condition,
• F ⊆ (C \ {o} × T ) ∪ (T × C \ {i}) ∪ (T × T ) is the flow relation,
• every node in the graph (C ∪ T, F ) is on a directed path from i to o,

aNote that we are using basic mathematical notations such as9 for a partial function,N for natural numbers,
andNinf for N ∪ {inf }.
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• split: T → {AND, XOR, OR} specifies the split behaviour of each task and
join: T → {AND, XOR,OR} specifies the join behaviour of each task,

• rem:T 9 P(T ∪ C \ {i, o}) specifies the cancellation region for a task,
• nofi: T 9 N× Ninf × Ninf×{dynamic, static} specifies the multiplicity of each

task (minimum, maximum, threshold for continuation, and dynamic/static cre-
ation of instances).

While firing rules exist for YAWL nets2, in this paper these are not needed as state
analysis is relegated to the reset net level. In a YAWL net, tasks can be connected directly
to other tasks but conditions cannot be connected directly to other conditions. To enable
a mapping to reset net, an implicit condition is introduced between two tasks if there is a
direct connection between them. We call these nets where all implicit conditions are made
explicit, explicit YAWL nets or (eYAWL-nets)22. All YAWL nets are assumed to be first
transformed into eYAWL-nets for OR-join analysis.

Definition 3.14. (eYAWL-net) Let N = (C, i,o, T, F, split , join, rem,nofi) be a
YAWL net, the corresponding eYAWL-net is defined as
(Cext, i,o, T, F ext, split , join, rem,nofi) where

Cext = C ∪ {c(t1,t2) | (t1, t2) ∈ F ∩ (T × T )} and
F ext =(F \ (T × T ))

∪{(t1, c(t1,t2)) | (t1, t2) ∈ F ∩ (T × T )}
∪{(c(t1,t2), t2) | (t1, t2) ∈ F ∩ (T × T )}.

Let N be an eYAWL-net andx ∈ Cext∪T , we use•x andx• to denote the set of inputs
and outputs of a node i.e.•x = {y|(y, x) ∈ F ext} andx• = {y|(x, y) ∈ F ext} as before.

3.2. Mapping from YAWL with OR-joins to reset nets

This subsection describes how a YAWL net with OR-joins can be transformed into a reset
net. But first, a number of abstractions from YAWL nets are proposed thus enabling a
mapping to reset nets.

Even though YAWL is based on Petri nets, the YAWL language supports complex con-
structs such as multiple instances, hierarchy, cancellation, OR-joins that are not easy to
model in Petri nets. For OR-join analysis, cancellation plays a very important role and it is
not possible to abstract from cancellation regions. However, other constructs such as mul-
tiple instances and hierarchy do not affect the OR-join analysis and hence, it is possible to
abstract from them.

• composite tasks and hierarchy: A YAWL specification could contain multiple
YAWL nets with hierarchical structure and a composite task is used to unfold
these nets. We propose to treat a net as aflat net, and ignore the hierarchical struc-
ture. That is, composite tasks will be treated as black boxes. The assumption is that
if a composite task can be enabled and executed, it will terminate at some time,
and tokens will be placed in the appropriate output condition(s) of the composite
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task. As a result, even if there is an OR-join in the composite task, it will not influ-
ence the decision to enable another OR-join at a higher level. Hence, composite
tasks can be abstracted and the hierarchical structure of a YAWL specification is
ignored.

• multiple instances: A multiple instances task can be used to execute a particular
task a number of times in parallel. For this abstraction, it is assumed that the engine
is capable of keeping the multiple instances apart, and that it will synchronise
them at the end. Therefore, for the purposes of OR-join analysis the execution of
a multiple instances task is the same as the execution of an atomic task.

• internal conditions of a task: The YAWL semantics2 defines a task as having
internal conditions and state transitions. As they represent intermediate states, it
is possible to consider only one internal state together with the input and output
conditions of a task during OR-join analysis.

• other perspectives: We focus our attention on the control flow perspective only.
We propose to abstract from the data perspective. In particular, branching condi-
tions of XOR-split and OR-split tasks are not taken into account when considering
the execution flow. We also abstract from the resource perspective, the operational
perspective and exception handling considerations.

After abstractions from the features mentioned above, a net is considered as having
tasks with various split and join behaviours, possible cancellation sets and explicit and im-
plicit conditions. For a net without OR-joins, there is then a straight-forward mapping into
a reset net. Figure 10 illustrates the approach taken in the transformation for a netwithout
OR-joins. This is made possible by the fact that some concepts of YAWL such as multiple
instances, composite tasks and internal state transitions of a task can be abstracted. In gen-
eral, a condition is mapped onto a place, and a task onto two sets of transitions and an inter-
mediate place. The transitions in the first set start the task (modelling the join behaviour),
whereas the transitions in the second set complete it (modelling the split behaviour). In
Figure 10, labelsS andE are used to denote start transitions and end transitions. Condition
names are also used to differentiate transitions within a particular set (e.g., transitiontp1

S

represents the start transition for taskt that hasp1 as its input).
For a YAWL net with OR-joins to be converted into a reset net, it is necessary to remove

the OR-joins first as they have non-local semantics. As mentioned in subsection 2.4, we
propose to define the formal semantics of a general OR-join in YAWL by treating other
OR-joins in the net as XOR-joins. A netwith OR-joins can be transformed into a reset
net by first singling out one OR-join (the one that we would like to decide whether it
can be enabled), removing it from the net, and then changing other OR-joins in the net to
XOR-joins. A transformation functiontransE2WF converts a net without OR-joins into
the corresponding reset net. FunctionR stores all transitions and its associated reset places.
As a task in a YAWL net is now split into a number oftS andtE transitions depending
on the split and join behaviour, a placept is introduced for each taskt to represent an
internal place betweentS andtE . The flow relationF ′ is also modified so that the newly
introduced places inP ′ and transitionsT ′ are properly connected. As we abstract from
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Fig. 10. Reset net transformations for YAWL split and join behaviours

multiple instances tasks and the functionnofi is not considered during the transformation.

Definition 3.15. (transE2WF) Let N = (C, i,o, T, F, split , join, rem,nofi) be an
eYAWL-net without OR-joins. The function transE2WF(N) returnsN ′ = (P, T ′, F ′, R)
such that

P = C ∪ {pt|t ∈ T} is a set of places,
T ′ = Tstart ∪ Tend such that
Tstart = {tS |t ∈ T ∧ join(t) = AND}

∪{tpS |t ∈ T ∧ join(t) = XOR ∧ p ∈ •t},
Tend ={tE |t ∈ T ∧ split(t) = AND}

∪{tpE |t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{txE |t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅},

F ′ ={(p, tS)|t ∈ T ∧ join(t) = AND ∧ p ∈ •t}
∪{(tS , pt)|t ∈ T ∧ join(t) = AND}
∪{(pt, tE)|t ∈ T ∧ split(t) = AND}
∪{(tE , p)|t ∈ T ∧ split(t) = AND ∧ p ∈ t•}
∪{(p, tpS)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(tpS , pt)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(pt, t

p
E)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}

∪{(tpE , p)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{(pt, t

x
E)|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅}

∪{(txE , p)|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅ ∧ p ∈ x},
R ={(tE , {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ C))|t ∈ T ∧ split(t) = AND}

∪{(tpE , {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ C))|t ∈ T ∧ split(t) = XOR
∧ p ∈ t•}
∪{(txE , {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ C))|t ∈ T ∧ split(t) = OR
∧ x ⊆ t • ∧ x 6= ∅}
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∪{(tE ,∅)|t ∈ T \ dom rem ∧ split(t) = AND}
∪{(tpE ,∅)|t ∈ T \ dom rem ∧ split(t) = XOR ∧ p ∈ t•}
∪{(txE ,∅)|t ∈ T \ dom rem ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅}
∪{(t,∅)|t ∈ Tstart}.

The transformation rule defined for a YAWL net without OR-joins can be used for all
tasks that are not OR-joins. For OR-join tasks, all except the one under consideration are
transformed as if they are XOR-joins and the OR-join under consideration is removed. The
reason that this OR-join can be removed is because only reachable markings that mark
the input places of the OR-join are relevant when deciding whether the OR-join should be
enabled.

Definition 3.16. (transE2WFOJ) Let N be a YAWL net with OR-joins andN ext

be the eYAWL-net of N ando-j be an OR-join task under consideration. The function
transE2WFOJ(N, o-j) returnsN ′ = (P, T ′′, F ′′, R) such thatP , T ′, Tstart, Tend, F ′, and
R are as defined in Definition 3.15 andT ′′ andF ′′ are defined as follows:

T ′′ = T ′start ∪ Tend,
T ′start = Tstart ∪ {tpstart|t ∈ T ∧ join(o-j) = OR ∧ t 6= o-j ∧ p ∈N• t}, and
F ′′ = F ′∪ {(p, tpstart)|p ∈N• t ∧ t ∈ T ∧ join(t) = OR ∧ t 6= o-j}

∪{(tpstart, pt)|p ∈N• t ∧ t ∈ T ∧ join(t) = OR ∧ t 6= o-j}.

Naturally, a given markingM in an eYAWL-net can be linked to a markingMR in
the corresponding reset net for a particular OR-join in consideration. For all the conditions
that exist in an eYAWL-net, they will be marked exactly the same as in the corresponding
marking and the newly introduced places in the reset net have zero tokens. The marking
marks all the places in the reset net which correspond to conditions inN with the same
number of tokens. This marking is referred to as the corresponding marking and is denoted
asMR.

3.3. Definition and illustration of OR-join semantics

You may recall that informally an OR-join task is enabled when there is at least one token
in one of the input conditions and there is no possibility of a token arriving at one of
the yet unmarked input conditions of the OR-join. Otherwise, the OR-join task waits for
synchronisation. The following steps are proposed to decide whether an OR-join tasko-j
should be enabled at a markingM of a given net.

(1) translate the YAWL net into a reset net for a giveno-j,
(2) applysuperMpredicate to determine whether it is possible to mark more input places

of o-j in the reachable markings fromM , and
(3) if at least one of the input places ofo-j is marked atM andsuperMevaluates toFALSE,

o-j is enabled atM . Otherwise,o-j is not enabled atM .
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Definition 3.17. (OR-join semantics) Let N = (C, T, F, R) be an eYAWL-net,M be a
marking ofN , o-j be the OR-join task under consideration,NR = transE2WFOJ(N, o-j)
be the corresponding reset net andMR ∈ IM(NR). o-j is enabled atM iff ∃p ∈ •o-j :
M(p) ≥ 1 and¬ superM(NR, MR, •o-j).

We now describe how the transformations will be performed for a net with two OR-join
tasksC andD as shown in Figure 11. Note that an explicit conditioncBD has been added
for the implicit condition between tasks B and D. Consider a markingM = c1 + cBD

where the OR-join analysis for taskD is performed as there is a token incBD, one of the
input places of D. As the two input places of task D arec4 andcBD, we need to investigate
whether it is possible to reach a marking that marks bothc4 andcBD from M . Figure 12
shows an equivalent reset net for the eYAWL-net in Figure 11 for the OR-join analysis
of D. Note that the other OR-join task in the net,C, is treated as an XOR-join task and
modelled with two start transitions, one forc1 and one forc3. Also note thatD has been
removed from the net. There is a corresponding marking for the reset net,MR = c1+cBD.

The sequencec1 + cBD
Cc1

start→ pC + cBD
Cend→ c4 + cBD exists and hence, it is possible

to reachM ′′ = c4 + cBD from M . Recall that thesuperM(N, M,P ′) predicate returns
true if it is possible to reach a marking fromM which marks more places in a set of places
P ′. Therefore, superM(transE2WFOJ(N, o-j),MR, •o-j) returns true asMR

∗→ M ′′ and
MR[{c4, cBD}] @ M ′′[{c4, cBD}]. As it is possible to reach a marking that marks more
input places of the OR-join, thenD is not enabled atM .

c2

C

c3

c4

Dc
BDA

c1

B

Fig. 11. An eYAWL-net N with OR-join tasks C and D

c2

c1

A
end

p

A
start

C

p

c3

B
end

p

B
start

Cend

c4c3

A

B

C

start

C
start

c1

B
end

C
BD

cBD

c3

o

i

Fig. 12. A reset net for OR-join analysis of task D in Figure 11

Next, we look at how the new OR-join semantics can be operationalised and an algo-
rithmic approach towards determining OR-join enablement is examined.
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4. Operationalising the OR-join

The main objective of the OR-join algorithm is to determine, for a given OR-join, whether
there is a reachable markingM ′ from M such that more input places of that OR-join could
be marked atM ′. This analysis is performed by first transforming an eYAWL-net (with OR-
joins) into a reset net for a given OR-join task using the function transE2WFOJ and then
calling the proposed OR-join algorithm. The algorithm works backwards by computing the
predecessor coverable markings for a given marking, as opposed to the forward approach
used in coverability tree algorithms. The algorithm is based on backward search techniques
for Well-Structured Transition Systems (WSTSs)4,8,11,12,13.

A reset net can be represented as a WSTS and the backwards algorithm has been suc-
cessfully applied to solve the coverability problems for reset nets8,17. The coverability
problem for a reset net is as follows: given two markingsx andy, can we reachy′ ≥ y

starting fromx 17. In the context of reset nets, the backward firing rule (cf. Definition
3.12) is used to definepb(M) for a given marking. The backwards reachability analysis
can be performed to decide the coverability8,11,17 provided that≤ is decidable andpb(y)
exists and can be effectively computed13. In Appendix A, we present some background
definitions on WSTSs and demonstrate thatpb(y) can be computed.

We now present the various procedures that operationalise the coverability question for
reset nets using the backwards algorithm for WSTSs. We then demonstrate how to perform
OR-join enablement analysis using the coverability results.

4.1. Procedures

The procedureCoverable returns a Boolean value to indicate whether a markingy is
coverable from a markingx of a reset net.

PROCEDURE Coverable (Markingx, y): Boolean
Markingx′;
BEGIN

for x′ ∈ FiniteBasisPred∗({y}) do
if x′ ≤ x then return TRUE; end if;

end for;
return FALSE;

END

The procedureFiniteBasisPred∗ returns a set of markings which represents a fi-
nite basis of all predecessors and is based on the method described by Leuschel and
Lehmann17.

PROCEDURE FiniteBasisPred∗ (SET MarkingI): SET Marking
SET MarkingK, Knext;
BEGIN

K := I; Knext := K ∪ pb(K);
while not IsUpwardEqual(K,Knext) do
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K := Knext; Knext := K ∪ pb(K);
end while;
return K;

END

The procedure callIsUpwardEqual(K, Knext) is used to detect whether the stabilisa-
tion point has been reached i.e.,↑ Knext =↑ K, cf. 12.

PROCEDURE IsUpwardEqual (SET MarkingK,SET MarkingKnext): Boolean
BEGIN

returnK = Knext;
END

The procedurepb(I) returnspb(I) such thatpb(I) =
⋃

x∈I pb(x) 17.

PROCEDURE pb (SET MarkingI): SET Marking
SET MarkingZ = ∅; MarkingM ;
BEGIN

for M ∈ I do Z := Z ∪ pb(M); end for;
return Z;

END

pb(M) is effectively computed for reset nets by “executing the transitions backwards and
setting a place to the minimum number of tokens required to fire the transition if it caused
a reset on this place”17.b Note that, in our case, this minimum is one as there are no
weighted arcs. We will make use of backward firing rule. For each transitiont ∈ T , it
is possible to determine whether anM ′ exists such thatM ′ 99Kt M . Hence,pb(M) =
{M ′|∃t∈T M ′ 99Kt M}.
PROCEDURE pb (MarkingM ): SET Marking
SET MarkingZ = ∅;
BEGIN

for t ∈ T do
if M [R(t)] ≤ t • [R(t)] then

Z := Z ∪ {((M ¦ t•) + •t)[P \R(t)] + (M + •t)[R(t)]};
end if;

end for;
return Z;

END

The coverability findings of a reset net are then applied to the OR-join analysis. At the
current markingM , we know that one or more of its input places are marked. For each

bNote that the algorithm described by Leuschel and Lehmann17 is incorrect.pb(M) is defined in a rather naive
way by Leuschel and Lehmann17 . Applying pb(M) to the empty marking yields a counter example, since it is
not a finite basis for↑ Pred∗(↑ {M}).
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of the unmarked input places, we need to test whether there is a coverable marking from
M that marks that place. The test marking is constructed by marking each input places of
the OR-join that is marked in the current state with one token each and adding one token
also for an unmarked input place. A test marking is created for each of the unmarked input
places. If none of these markings are coverable fromM , then the OR-join is enabled atM .

Let (N, M) be a marked eYAWL-net,o-j be the OR-join task under consideration,X be
•o-j, N ′ be the corresponding reset net andY be a set of markings such that each marking
in Y has only one token in each of the marked input places ofo-j in M and one token in
exactly one of the unmarked input places of theo-j in M . To determine whethero-j should
be enabled atM , we need to determine whether there exists aM ′ ∈ Pred∗(Mw) such that
M ′ ≤ M for each of the markingsMw ∈ Y (coverability question). Each markingMw in
Y satisfies the conditionM [X] @ Mw[X], i.e.,Mw has tokens in more input places of the
OR-joino-j and ifMw can be reached fromM , the OR-join is not enabled. The procedure
OrJoinEnabled is called with parametersM andX and it returns a Boolean value to
indicate whethero-j should be enabled atM .

PROCEDURE OrJoinEnabled (MarkingM , SET PlaceX): Boolean
SET MarkingY ; MarkingMw;
BEGIN

Y := {q +
∑

p∈X:M(p)>0 p | q ∈ X ∧ M(q) = 0};
for Mw ∈ Y do

if Coverable(M,Mw) then return FALSE;end if;
end for;
return TRUE;

END

4.2. Worked example

Throughout this paper, several examples have been presented which indicate that it is a
non-trivial task to decide if an OR-join is enabled or not. Clearly, the algorithm can be
applied successfully to these situations. To illustrate its inner working in some detail we
use one last example.

A

c2
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C

c4

c6

G

c3

c7

c5E

D

B

c
BB

c1

Fig. 13. A YAWL net with an OR-join task G and cancellation
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Fig. 14. A corresponding reset net for Figure 13 (note the double-headed arrow denoting the reset arc fromCBB

to Dend)
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Fig. 15. Illustration of backwards reachability analysis

Consider a markingM = c1 + c7 in Figure 13 where the OR-join analysis for task G
is carried out. It is possible to have an occurrence sequence,c1 + c7 B→ cBB + c3 + c7 E→
cBB + c5 + c7 B→ cBB + c3 + c5 + c7 D→ c4 + c5 + c7 F→ c6 + c7. As a result,c6 + c7
is a reachable marking fromc1 + c7 and the OR-join should not be enabled at markingM .
The evaluation starts with a procedure call like this:OrJoinEnabled(c1 + c7, {c6, c7}).
Y := {c6 + c7} and forMw = c6 + c7, a finite basis of all the predecessors ofc6 + c7 is
obtained. Figure 15 illustrates the backwards reachability analysis12, with the basis of the
predecessor markings forc6 + c7. It can be seen thatc1 + c7 is a predecessor ofc6 + c7
and hence the OR-join procedure will return FALSE.

In the previous example, we have seen that even for an OR-join with two input con-
ditions, a number of iterations are needed to generate the finite set of coverable markings.
When there are many input conditions to an OR-join, the process needs to be repeated for
each unmarked input condition. Furthermore, the analysis needs to be carried out every
time the workflow changes its state. Hence, it is easy to see that the algorithm can become
quite expensive when we have a large net with many tasks and conditions. Therefore, one
potential drawback of such a generic approach to an OR-join semantics without structural
restrictions is an efficient implementation. To achieve our combined objective of a generic
formal OR-join definition with an efficient implementation, we propose two restriction
techniques in the next section.

5. Restriction techniques

For an OR-join analysis, it is possible to consider only a portion of the net that is rele-
vant to the analysis and refrain from exploring those paths that do not affect the OR-join
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enabling behaviour. This would correspond to the notion of slicing in program analysis?.
To improve the performance of the OR-join evaluation algorithm, two forms of restriction
are proposed:structural restrictionandactive projection. Structural restrictioninvolves
removing from a net tasks and conditions that are not on the path to the OR-join task un-
der consideration.Active projectioninvolves removing tasks and associated conditions that
could not be enabled from a given marking. Active projection enables us to stop exploring
those parts of the net that can never be reached from a given marking. As a YAWL net with
OR-join tasks is translated into a reset net for OR-join analysis, the restriction operations
will also be performed on the reset net. We make use of the reset net mappings and define
how restriction operations are applied to a reset net.

5.1. Structural restriction

The application of structural restriction involves removing tasks and conditions from a
YAWL net that are not on the path to a given OR-join task. As we are interested in whether
more tokens could arrive in the input places of an OR-join task, the restriction will be
based on those input places of an OR-join task. We will call themgoal places. Functionres
describes how a reset net could be constructed so that only the transitions and places that
are on the path to goal places are included in the restricted net.

Definition 5.1. (res(N, G)) Let N = (P, T, F, R) be a reset net andG ⊆ P a set of goal
places.N ′ = (P ′, T ′, F ′, R′) is the restriction on G(N ′ = res(N, G)) where:

P ′ = {p ∈ P |∃p′∈G(p, p′) ∈ F ∗},
T ′ = {t ∈ T |∃p′∈G(t, p′) ∈ F ∗},
F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and
R′ = {(t, R(t) ∩ P ′)|t ∈ T ′}.

Note thatN ′ is again a reset net,P ′ is a siphon, andG ⊆ P ′. Hence, we can use firing
rules and other functions defined for reset nets.

Figure 16 describes how functionres of N works with a set of goal placesG =
{pa, pb, pc}. In the restricted region, all places and transitions which are on the path to
G are included (e.g.,p1, p2, t1, t2,...). On the other hand, places and transitions that are not
on the path toG such asp5, p6, t5, andt6 are not included in the restricted net. Also note
that if a transition is in the restricted net, all its input places are also in the restricted net
(e.g.p1, p2, t1). It is possible for places in the restricted net to be input places of transitions
that are not in the restricted net (e.g.p4 as input place oft4). A transition that is not in the
restricted net cannot put tokens back into the restricted net (e.g.p8 andt4). In terms of reset
arcs,R′ will keep track of the reset places inP ′ for transitions that are inT ′. However, we
do not keep track of reset arcs for places that are in the restricted region but the transition
is not inT ′ (e.g. the reset arcs connectingp4 andt7).
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Fig. 16. Restriction diagram

5.2. Active projection

In addition to applying structural restriction to a net, it is also possible to further restrict the
net using the current marking. As a transition that cannot be enabled in the reachable mark-
ings from the current marking cannot be fired and its output places can never be reached,
this transition can be safely excluded from the restricted net. Applying active projection
involves removing tasks and conditions from a YAWL net that cannot be reached from a
given marking. This enables us to only consider the selected paths of a net that can be
reached from the current marking. As a YAWL net is translated into a reset net, the active
projection restriction will also be performed on the reset net.

The functionap describes how a reset net could be constructed so that only the transi-
tions and places that can be reached from a given marking are included in the restricted net.
Figure 17 shows the effect of the active projection functionap on a reset net with a mark-
ing M where marked(M) = {pa, pb, pc}. The restricted region contains all the places that
could potentially be marked in the reachable markings ofM (e.g.,p1, p2, p4, p5, p6, p8).
A transitiont is in the restricted net if and only if all its input places are in the restricted
region(•t ⊆ P ′). Seet5 with its only input placep5 in the restricted net. For transitiont4,
not all input places oft4 are in the restricted region and therefore,t4 6∈ T ′. RelationR′ will
keep track of the reset places inP ′ for any transitiont ∈ T ′ with reset arcs. For example,
both transitionst9 andt10 could resetP2 but,R′ will only contain(t9, p2) ast10 is not in
T ′.
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Fig. 17. Active projection diagram

Definition 5.2. (ap(N,M)) Let (N, M) = ((P, T, F,R), M) be a marked reset net.
N ′ = ap(N, M) = (P ′, T ′, F ′, R′) is theactive projectionof (N, M) where

P ′ = {p ∈ P |∃p′∈marked(M)(p
′, p) ∈ F ∗},

T ′ = {t ∈ T | • t ⊆ P ′},
F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and
R′ = {(t, R(t) ∩ P ′)|t ∈ T ′}.

An OR-join tasko-j is enabled at a markingM of an eYAWL-netN , if it is not possible
to reach a markingMn such thatM

∗→ Mn and M [•o-j] @ Mn[•o-j]. To determine
whethero-j should be enabled atM , the following analysis is carried out. LetNR =
transE2WFOJ(N, o-j) be the reset net,G = •o-j andMR be the corresponding marking of
M in the reset net. Instead of usingNR to perform the analysis, the search space can be
reduced by first applying the structural restriction and active projection techniques so that
N
′
R = res(ap(NR,MR), G) = (P ′, T ′, F ′, R′). It is then possible to determine whether

there is a markingM
′
R ∈ IM(NR) such thatMR

NR,∗→ andMR[G] @ M
′
R[G]. If it does,

this implies that more tokens can be placed into the input places ofo-j in the reachable
markings fromMR. Hence, the OR-join analysis can take place in the restricted netNR

ando-j should not be enabled atM .
Complete proofs for these two restriction techniques are provided in Appendix B.

6. Implementation

The OR-join analysis algorithm as described in Section 4 together with the structural re-
striction and active-projection techniques from Section 5 have been implemented in the
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YAWL enginec. A number of YAWL nets have been tested and OR-join enabling results
are as expected. The observations also indicate that the two restriction techniques signifi-
cantly reduce the execution times for OR-join analysis.

The execution times of the OR-join enabling algorithm for a number of YAWL nets are
presented. Five different execution times for each OR-join evaluation call will be presented
for comparison.SRestrict+AProject indicates that structural restriction is applied first and
then, active projection is applied before the OR-Join call.AProject+SRestrict indicates
that active projection is applied first and then, structural restriction is applied before the
OR-Join call.SRestrict indicates that only structural restriction has been applied.APro-
ject indicates that only active projection has been applied.NoRestrict indicates that no
restriction technique has been applied. To minimise the effects of variations, each method
is called 100 times consecutively. Furthermore, this process has been repeated ten times for
sampling. Average execution times with confidence intervals (95%) are provided. All the
figures are inmillisecondsand are rounded to one decimal place.

6.1. Matching OR-split and an OR-join

The net in Figure 7 represents a small structured net with an OR-split task A and an OR-join
task E. At a markingM = c1 + c2 + c6, OR-join evaluation for E returns FALSE. A new
markingM1 = c1+c5+c6 is reached after executing task C atM . The execution times for
the analysis are shown in Table 1. We can see that by utilising the restriction techniques, it is
possible to reduce the execution times. In this case, structural restriction does not influence
the execution time as we are dealing with a small net. The active projection technique, on
the other hand, has significant effects on the execution time as all possible combinations of
an OR-split do not need to be considered. Even for a small net, it can be seen that restriction
techniques can reduce the time it takes to perform the OR-join evaluation.

6.2. Loop and cancellation

Figure 6 represents a YAWL net with a loop and cancellation on the path to OR-join task
E. At a markingM = c2, OR-join evaluation for task E returns TRUE as it is not possible
to reach a bigger marking fromM . The execution times are shown in Table 2. Again, it is
clear that the combined restriction techniques significantly reduce the evaluation time. The
difference between the execution times for OR-join analysis with structural restriction and
without any restrictions is minimal as most tasks and conditions in this YAWL net will be
in the restricted net as well.

6.3. Larger loop and cancellation

Table 3 presents the execution times for an OR-join evaluation call for OR-join task G with
two markingsc1+c7 andcBB +c3+c7 in Figure 13. OR-join evaluation for both markings
returns FALSE. This YAWL net also contains a loop and cancellation on the path to G. In

chttp://sourceforge.net/projects/yawl/
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OR-join: E Marking: c1 + c2 + c6 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 335.9± 10.0
AProject+SRestrict 328.0± 11.3
AProject 306.4± 22.9
SRestrict 790.4± 21.1
NoRestrict 790.5± 24.8

OR-join: E Marking: c1 + c5 + c6 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 130.2± 2.3
AProject+SRestrict 126.6± 3.1
AProject 107.6± 4.6
SRestrict 3126.6± 114.8
NoRestrict 3172.0± 84.8

Table 1. Execution times for the OR-join analysis of the net in Figure 7

OR-join: E Marking: c2 returns TRUE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 685.9± 16.9
AProject+SRestrict 676.8± 6.9
AProject 654.7± 16.9
SRestrict 2365.5± 81.9
NoRestrict 2348.4± 17.5

Table 2. Execution times for the OR-join analysis of the net in Figure 6

this case, the restriction techniques reduce the execution time by a significant amount. The
difference between structural restriction and no restriction calls is minimal in this example
as most tasks and conditions in the YAWL net are also in the structurally restricted net.

6.4. Multiple OR-joins

To demonstrate the impact of structural restriction on OR-join analysis, the YAWL net
in Figure 18 that contains a number of tasks which have no impact on the OR-join task
F will be used. For instance, all tasks and conditions on the path between tasks G to S
could not influence the OR-join analysis for task F. Average execution times for a marking
M = cAG + cBD + c2 are given in Table 5. Average execution times for OR-join analysis
of F with a markingM = cBD + c2 + c10 are also given. The figures show considerable
differences in execution times between different restriction techniques.

Average execution times for OR-join analysis of U with a markingM = cAG+cTU are
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OR-join: G Marking: c1 + c7 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 1032.8± 12.4
AProject+SRestrict 1032.8± 10.5
AProject 1003.1± 5.8
SRestrict 11664.0± 16.5
NoRestrict 11654.9± 33.9

OR-join: G Marking: cBB + c3 + c7 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 587.4± 7.2
AProject+SRestrict 585.9± 9.9
AProject 568.7± 9.8
SRestrict 11195.3± 12.1
NoRestrict 11198.0± 21.9

Table 3. Execution times for the OR-join analysis of the YAWL net in Figure 13
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Fig. 18. A YAWL net with OR-join tasks F and U

given in Table 4. In this case, structural restriction alone does not reduce the execution time
as most tasks in the YAWL net are also part of the structurally restricted net. However, the
combination of structural restriction and active projection techniques reduces the execution
time significantly (2148.5 milliseconds cf. 84863.9 milliseconds). From these tests, it is
evident that performing structural restriction and active projection on a YAWL net before
an OR-join analysis could significantly reduce the execution time of an OR-join evaluation.
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OR-join: F Marking: cAG + cBD + c2 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 465.8± 24.5
AProject+SRestrict 529.7± 10.3
AProject 796.7± 6.7
SRestrict 1479.8± 14.7
NoRestrict 3681.3± 9.5

OR-join: F Marking: cBD + c2 + c10 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 275.0± 7.1
AProject+SRestrict 304.7± 86.5
AProject 276.5± 9.3
SRestrict 1198.4± 9.4
NoRestrict 3492.2± 23.8

Table 4. Execution times for Task U from the net in Figure 18

OR-join: U Marking: cAG + cTU returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 2148.5± 60.6
AProject+SRestrict 2123.5± 20.4
AProject 2014.0± 20.3
SRestrict 85404.8± 208.6
NoRestrict 84863.9± 144.6

Table 5. Execution times for Task F from the YAWL net in Figure 18

7. Visa application example - A YAWL workflow with cancellation regions and
OR-joins

In the previous section, a number of small YAWL nets are presented to illustrate the various
features of the OR-join algorithm. We now demonstrate the effectiveness of the proposed
algorithm using a real-life process model:visa application for general skilled migration
to Australia . This process is modelled “as is” using publicly available information from
Department of Immigration and Multicultural Affairs websited. The process starts when
a visa application is received by the immigration department and ends when a decision is
made to grant or to deny the visa. The model represents the process from the viewpoint of a
case officer who handles the visa application. The resulting YAWL workflow contains four
netsOverview, Perform main assessment, Check basic requirements, andAllocate marks.

dhttp://www.immi.gov.au accessed on 20 April 2006
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Figure 19 shows theOverviewnet and the typical process flow is explained first. When
an application is received, the case officer opens a file for the applicant, processes visa ap-
plication fees and performs an initial assessment. If the application is found to becomplete,
the officer continues with the main assessment. If the application isincomplete, he/she
sends an acknowledgement letter to the applicant requesting further documentation. This is
modelled as an XOR-split task after the taskPerform initial assessment. ThePerform main
assessmenttask is modelled as a composite task and the internal working of this task is cap-
tured in another net. After completing the main assessment, the case officer might request
more information, or he/she is ready to make a decision. This is modelled as an XOR-split
task. Conditionc9 represents a state where the officer is waiting for further documentation
from the applicant. If he/she receives the requested information, the main assessment task
is performed again. On the other hand, the designated time period could have expired, and
the officer decides to perform the main assessment again if possible to stop processing the
application if it cannot be processed further with existing documentation. Before the officer
makes a decision, he/she checks to see if there is any change in circumstances that need to
be considered. TheCheck circumstances changestask has a cancellation region containing
conditionc2. Removing a token fromc2 indicates that there is no need to wait for further
circumstances changes. The officer then makes a decision to either grant or deny the visa
after taking into account any changed circumstances. TheMake decisiontask is an OR-join
task with two inputsc5 andc7. A token inc5 indicates that there are changes that need to be
considered. If a decision is made to deny the visa, the applicant is then notified. Otherwise,
the visa is granted. The process ends when theFinalise applicationtask is executed.

While an application is being processed, it is possible for two events to occur. First,
an applicant can decide to withdraw his/her application and secondly, an applicant can no-
tify the immigration department of changes in his/her circumstances - such as change of
address, correction of errors, etc. Hence, the taskOpen applicant fileis modelled as an
AND-split to indicate that two tasks (Wait for possible withdrawal requestandMonitor
circumstances changes) could occur in addition to the main flow starting withProcess ap-
plication feestask. These two tasks representexternal triggersthat can be enabled when a
notification is received from the applicant. These triggers affect the main flow of the pro-
cess and are also captured in the model. Note that there is no YAWL notation to represent
external triggers. As a result, these two tasks are represented as normal tasks. A token inc6
indicates that there is some circumstances change that needs to be taken into account. Sim-
ilarly, a token inc4 indicates that a request has been received for withdrawal. TheCancel
applicationtask is modelled as an OR-join and when it fires, it removes tokens from condi-
tions and tasks in the net before theMake decisiontask. The application can be withdrawn
until a decision is made. TheMake decisiontask removes tokens from conditions and tasks
associated with the trigger for application withdrawal.

In the Overviewnet, thePerform main assessmentis represented as a composite task
and it is unfolded into the YAWL net with the same name. Similarly, there are two compos-
ite tasks:Check basic requirementsandAllocate marksin thePerform main assessmentnet
and they are also unfolded into two YAWL nets with the corresponding names. Figure 20
shows the three subnets in the process. More details about this process model can be found
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Fig. 19.Overview: the main YAWL net in the visa application process

in 22. As thePerform main assessmentnet and theCheck basic requirementsnet do not
contain OR-join, we focus our attention on theAllocate marksnet.

The Allocate marksnet represents the process for calculating the marks received by
each applicant. This visa class uses a points system where marks are given based on the
applicant’s circumstances assessed on several criteria. The total mark is then compared
against the current pass mark for the visa class (110 points) to decide whether the visa will
be granted. The net models how these points are allocated for 11 criteria to calculate the
total points. Some criteria such as points for age, skills and English ability are relevant to
all applicants, while others such as points for Australian qualifications and spouse skills are
relevant to some applicants only. TheDecidable applicable categoriestask is modelled as
an OR-split where a decision is made regarding the relevance of a particular criterion. The
net completes with an OR-join task that waits for synchronisation of all active paths before
calculating the total points allocated to the applicant.

7.1. Enabling the cancel application task

The Cancel applicationtask is within the main netOverview(Figure 19). It is modelled
as an OR-join with two inputsc4 andc6. A token inc4 indicates that the case officer has
received a request for withdrawal. A token inc6 indicates that the application fees have
been processed. TheCancel applicationtask is enabled when there are tokens in both
inputs (c4 andc6) or a token in eitherc4 or c6 and it is not possible for a token to arrive at
the other empty input place. Consider a markingc3+c6 where payment has been processed
but there is no request for withdrawal. At markingc3+c6, the OR-join behaves as expected
(returns FALSE) and theCancel applicationtask is not enabled. Now, consider a marking
c1 + c4 where the request for withdrawal has been received but payment has not been
processed. In this case, theCancel applicationtask is not enabled until payment has been
processed. That is, a markingc4+ c6 enables the task. This is used to model business logic
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stated as “You can withdraw your application by advising the Adelaide Skilled Processing
Centre in writing at any time before a decision is made. Any charges that you paid at the
time of application are usually not refunded.”7. Perhaps, a more common scenario is where
an applicant decides to withdraw the application while it is being processed. For instance,
markingc4 + c7 represents a state where the request for withdrawal has been received and
the application is awaiting a decision. In this case, theCancel applicationshould go ahead
and it is enabled at markingc4 + c7. The analysis returns TRUE as it is not possible to
receive a token inc6 from reachable markings ofc4 + c7. Table 6 shows the execution
times forCancel applicationtask in Figure 19 for these markings. In general, we can see
that execution times with optimisation techniques are much faster than the ones without
optimisation. For markingc3 + c6, the execution times for OR-join algorithm with both
types of restrictions are at least four times faster when compared to the execution times
without any restrictions. Similarly, for markingc1 + c4, the execution times are at least
six times faster when compared to the ones without any restrictions. Also, for marking
c4+c7, the execution times are at least ten times faster when compared to the ones without
any restrictions.

7.2. Enabling the make decision task

The Make decisiontask is within the main netOverview(see Figure 19). It is modelled
as an OR-join with two inputsc5 and c7. A token in c5 indicates that there are some
circumstances changes that must be taken into account. A token inc7 indicates that the
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OR-join: Cancel application Marking: c3 + c6 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 401.3± 45.6
AProject+SRestrict 489.7± 50.3
AProject 614.7± 8.9
SRestrict 609.7± 0.6
NoRestrict 2114.3± 9.2

OR-join: Cancel application Marking: c1 + c4 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 213.3± 8.9
AProject+SRestrict 296.7± 0.6
AProject 437.3± 15.5
SRestrict 437.3± 0.6
NoRestrict 1833.3± 23.4

OR-join: Cancel application Marking: c4 + c7 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 177.3± 9.2
AProject+SRestrict 208.3± 9.2
AProject 443.0± 8.7
SRestrict 182.3± 8.9
NoRestrict 1937.7± 27.1

Table 6. Execution times for enabling analysis of theCancel applicationtask in Figure 19

case officer is ready to make a decision. TheMake decisiontask is enabled when there are
tokens in both inputs (c5 andc7) or a token in eitherc5 or c7 and it is not possible for a token
to arrive at the other empty input place. Consider a markingc5 + c6 where the applicant
has reported a change in circumstances such as a change of residential address and the
case officer has not finished processing the application. The OR-join behaves as expected
and theMake decisiontask is not enabled (returns FALSE). Consider another marking
c7 where the case officer is ready to make the decision and there are no circumstance
changes to consider. In this case, theMake decisiontask should go ahead (returns TRUE)
and it is enabled at markingc7. Table 7 shows the execution times for enabling analysis
of the Make decisiontask in Figure 19 for these markings. For markingc5 + c6, we can
see that the execution times for the algorithm with both types of restrictions are nearly
nine times faster when compared to the execution times without any restrictions. This is
because theMake decisiontask is located in the middle of the net and a number of tasks
and conditions that follow the OR-join can be removed before the OR-join call. Similarly,
for markingc7, the execution times are over 40 times faster when compared to the ones
without any restrictions. This is because in addition to the abstractions using structural
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restriction, active projection removes most tasks and conditions as they cannot be enabled
from current markingc7.

OR-join: Make decision Marking: c5 + c6 returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 942.7± 17.9
AProject+SRestrict 989.7± 35.8
AProject 5442.7± 38.8
SRestrict 1255.3± 9.2
NoRestrict 8422.0± 87.1

OR-join: Make decision Marking: c7 returns TRUE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 198.0± 8.6
AProject+SRestrict 161.3± 8.4
AProject 5192.7± 24.0
SRestrict 233.0± 5.2
NoRestrict 8244.7± 32.4

Table 7. Execution times for enabling analysis of theMake decisiontask in Figure 19

7.3. Enabling the calculate total points task

TheCalculate total pointstask is within theAllocate marksnet (see Figure 20). The net is
modelled as a structured net with an OR-split (Decide applicable categories) and an OR-
join (Calculate total points). TheCalculate total pointstask waits to synchronise until all
active paths leading out of theDecide applicable categoriestask are completed. Consider
a scenario where marks are to be allocated for four criteria: skills, age, English ability and
work experience. Consider a markingcSC + cAC + cEC + cDW where marks for skills,
age and English ability have been allocated but marks for work experience have not been
processed. TheCalculate total pointstask is not enabled (returns FALSE) at that marking
as it needs to wait. It is only enabled when marks have been allocated for all four criteria
(i.e., at the markingcSC + cAC + cEC + cWC). Table 8 shows the execution times for the
OR-join enabling analysis of theCalculate total pointstask for these markings.

This example highlights the need for the optimisation techniques. The net contains an
OR-split with 11 possible paths resulting in211 − 1 = 2047 possible combinations and
hence, resulting in a large state space. As a result, OR-join analysis (without optimisation)
does not complete after letting it process for several hours. We can observe that active
projection makes a huge difference as it is only necessary to consider active paths and not
all possible combinations from the OR-split, thus significantly reducing the state space.
Structural restriction does not have an effect here as the OR-join is the last task in the net.
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Calculate total points Marking: cSC + cAC + cEC + cDW returns FALSE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 30088.3± 76.9
AProject+SRestrict 28255.0± 609.3
AProject 21463.0± 86.1
SRestrict N/A
NoRestrict N/A

Calculate total points Marking: cSC + cAC + cEC + cWC returns TRUE
Restriction techniques Duration in millisecs (100 calls)
SRestrict+AProject 29864.7± 140.2
AProject+SRestrict 22552.0± 474.6
AProject 21036.7± 726.4
SRestrict N/A
NoRestrict N/A

Table 8. Execution times for the OR-join analysis of theCalculate total pointstask

8. Related work

In van der Aalst et al.1, the authors summarise the problems associated with capturing the
non-local semantics of an OR-join connector in EPCs. Kindler proposes a semantic frame-
work for formally defining the non-local semantics of EPCs including the OR-join15. The
author states that “a single transition relation cannot precisely capture the informal se-
mantics of EPCs”. It is proposed to define the non-local semantics in terms of a pair of
transition relations and a semantic definition using techniques from fixed point theory is
presented15,16. The paper by Cuntz et al. describes how to “calculate this semantics of
an EPC in an efficient way by employing Kleene’s fixed-point theorem and different tech-
niques from symbolic model checking”5. Kindler shows how a pair of transition relations
can be calculated to determine the non-local semantics and proposes the use of reduced
ordered binary decision diagrams (ROBDDs) to represent huge sets of states and huge
transition relations for optimisation16. Their motivation is similar to ours in the sense that
the author also attempts to “define a mathematically sound semantics that comes as close
as possible to the informal semantics”. This approach represents an alternative approach to
defining non-local semantics of the OR-join in the absence of cancellation16.

9. Conclusion

Many workflow management systems and other process-aware information systems (e.g.,
ERP, CRM, and PDM systems), have problems supporting the OR-join semantics without
restrictions. In this paper, we formally defined the semantics of an OR-join in the presence
of cancellation regions, other OR-joins and (infinite) loops without adding structural re-
strictions. In addition, we operationalised this formal semantics and presented an efficient
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algorithm and implementation in the workflow language YAWL. To the best of our knowl-
edge, no other semantics or workflow system implementation come close to supporting
such a general OR-join, especially in the presence of arbitrary cancellation regions.

In our approach, reset nets are used as a formal basis for OR-join analysis to support
workflows with cancellation. A transformation function to map a YAWL net with OR-
joins into a reset net is provided. An OR-join evaluation algorithm which is based on the
backward search techniques for Well-Structured Transition Systems is then proposed. The
proposed semantics upholds the notion that an OR-join waits for synchronisation when
necessary and continue when appropriate. Two optimisation techniques, structural restric-
tion and active projection, are presented together with the findings from the implementation
in the YAWL engine. A realistic process model with multiple cancellation regions and mul-
tiple OR-joins in a non-structured setting is presented to highlight the need for a general
approach to OR-join semantics. To conclude the paper, we would like to emphasise that
the results reported in this paper are not limited to YAWL. These results are equally appli-
cable to any process modelling language that wishes to support advanced synchronisation
constructs such as the OR-join and cancellation.
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Appendix A. Well-structured transition systems and Reset nets

A.1. Well structured transition systems (WSTS)

WSTSs are “a general class of infinite state systems for which decidability results rely on
the existence of a well-quasi-ordering between states that is compatible with the transi-
tions” 13. The existence of a well-quasi-ordering over an infinite set of states ensures the
decidability of termination and coverability properties8,13.

Definition Appendix A.1. (Well-Structured Transition System 8) A well structured
transition system (WSTS) is a structureS = 〈Q,→,≤〉 such thatQ is a set of states,→⊆
Q × Q is a set of transitions,≤⊆ Q × Q is a well-quasi-ordering (wqo) on the set of
states, satisfying the simple monotonicity property,m → m′ for markingsm, m′ ∈ Q and
m1 ≥ m imply m1 → m′

1 for somem′
1 ≥ m′.

Reset nets can be seen as a WSTS〈Q,→,≤〉 with Q the set of markings,M → M ′ if
for somet, we haveM

t→ M ′ and≤ the corresponding≤ order on markings (which is a
wqo) 17.

Definition Appendix A.2. (Upward-closed set13) Given a quasi-ordering≤ on X, an
upward-closed set is any setI ⊆ X such thaty ≥ x andx ∈ I entaily ∈ I. To anyx ∈ X

we associate↑ x =def {y|y ≥ x}. A basis of an upward-closedI is a setIb such that
I =

⋃
x∈Ib ↑ x.

Given a WSTS〈Q,→,≤〉 and a set of statesI ⊆ Q, Pred(I), pb(I) andPred∗(I)
can be defined17. The immediate predecessors ofI: Pred(I) = {x|x → y ∧ y ∈ I},
all predecessor states of I,Pred∗(I) = {x|x ∗→ y ∧ y ∈ I} andpb(I) =

⋃
y∈I pb(y)

wherepb(y) yields a finite basis of↑ Pred(↑ {y}) (i.e.,pb(y) yields a finite set such that
↑ pb(y) = ↑ Pred(↑ {y})) 17.

A finite basis ofPred∗(↑ {y}) is computed as the limit of the sequenceI0 ⊆ I1 ⊆ ...

whereI0 =def {y} andIn+1 =def In ∪ pb(In) 17. The sequence eventually stabilises
at someIn when↑ In+1 =↑ In and a stabilisation point is reached that has the property
↑ In = Pred∗(↑ {y}) 17. As ↑ {y} is upward-closed,Pred∗(↑ {y}) is upward-closed13.

A.2. Linking WSTSs and reset nets

The coverability question now becomes: is there anx′ ∈↑ In such thatx′ ≤ x. {y} is a
basis of upward closed set↑ {y} and we can determine thaty is coverable fromx if there
exists ax′ ∈ Pred∗(↑ {y}) such thatx′ ≤ x (because≤ is a wqo). We now show that
pb(M) can be effectively computed and that the property↑ pb(M) = ↑ Pred(↑ {M})
holds.

Lemma Appendix A.1. Let (N, M) be a marked reset net.
pb(M) = {M ′|∃t∈T M ′ 99Kt M} where↑ pb(M) = ↑ Pred(↑ {M}).

Proof. First, we will prove that↑ pb(M) ⊆↑ Pred(↑ {M}).
Let M1 ∈↑ pb(M), we need to show thatM1 ∈↑ Pred(↑ {M}). There is anM2 ≤ M1
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Fig. 21. Sketch of the first part of the proof

such thatM2 ∈ pb(M). Therefore, there exists at ∈ T such thatM2 99Kt M . We will
show that this implies that there is anM3 such thatM3 ≥ M andM2

t→ M3. The mark-
ings M , M1, M2 andM3 with the associated firing rules are shown in Figure 21.M is
described as the relationship between input, output and reset arcs of transitiont. Firing
transitiont backwards atM results inM2. A token will be placed into each input place of
t. For instance, an input place oft that hasx number of tokens will now hasx + 1. The
same is true of any output place oft with y number of tokens. AtM2, the number of tokens
is reduced by 1 (if possible), i.e., max(y − 1, 0). We use the max function to ensure that
negative numbers are avoided. The same is true if the input place is also an output place.
If it has z tokens before, now it will have max(z, 1). A reset place will have zero token. If
a reset place is also an input place oft, it will have one token. If a reset place is also an
output place, it will have zero tokens. If a reset place is also an input place as well as the
output place, that place will have one token. By firing a transitiont at M2, we can reach a
new markingM3. One token is removed from each input place oft in M2, one token is put
into each output place oft and the tokens are removed from the reset places. Hence, we
can conclude thatM3 ∈↑ {M}, M2 ∈ Pred(↑ {M}), andM1 ∈ ↑ Pred(↑ {M}).
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Fig. 22. Sketch of the second part of the proof

Second, we will prove that↑ Pred(↑ {M}) ⊆↑ pb(M).
Let M1 ∈ ↑ Pred(↑ {M}), we need to show thatM1 ∈ ↑ pb(M). This is shown
in Figure 22. There is aM2 ≤ M1 such thatM2 ∈ Pred(↑ {M}). Hence, there is an
M3 ≥ M such thatM2

t→ M3. We will show that this implies that there is aM4 such that
M2 ≥ M4 andM4 99Kt M . Such a markingM4 can be constructed as shown in Figure 22.
We can see thatM ≤ M3 asx′ ≤ x−1, z′ ≤ z andy′ ≤ y+1. Note that indeedM4 ≤ M2.
Clearly:x′ + 1 ≤ x (becausex′ ≤ x− 1), max(z′, 1) ≤ z (becausez′ ≤ z andz ≥ 1) and
max(y′ − 1, 0) ≤ y (becausey′ ≤ y + 1 andy ≥ 0). Since,M4 ∈ pb(M) andM1 ≥ M4,
we concludeM1 ∈↑ pb(M).
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Appendix B. Proofs for the restriction techniques

B.1. Structural restriction

Let N, N ′ be two reset nets such thatN ′ = res(N, G), the structurally restricted net w.r.t.
G. The following lemma will show that for any markingM2 of N such thatM1

N,∗→ M2,

there is a corresponding markingM
′
2 of N ′ such thatM1¹P ′ N′,∗→ M ′

2 andM
′
2 ≥ M2¹P ′.

That is,M
′
2 is larger than or equal toM2 w.r.t. P ′.

Lemma Appendix B.1. Let N = (P, T, F, R) be a reset net,G ⊆ P and N ′ =
res(N, G) = (P ′, T ′, F ′, R′) is the restriction on G.

∀M1,M2∈IM(N)(M1
N,∗→ M2 ⇒ ∃M

′
2∈IM(N ′)M1¹P ′ N′,∗→ M

′
2 ∧M

′
2 ≥ M2¹P ′)

Proof. Consider an occurrence sequenceσ : M1
N,σ→ M2. Let σ

′
be the projection onT ′.

First, we will prove thatσ
′

is enabled in(N,M1) and in(N ′,M1¹P ′). From Defini-
tion B.1, t 6∈ T ′ implies thatt • ∩P ′ = ∅. Transitions that are not in the restricted net
but in the occurrence sequenceσ, i.e., t ∈ σ andt 6∈ σ

′
, can only remove tokens fromP ′

and cannot put tokens intoP ′. Therefore, these transitions have no effect on the enabling
behaviour of transitions inσ

′
. As∀t∈σ′ • t ⊆ P ′ and∀t 6∈σ′ t • ∩P ′ = ∅, if σ is enabled in

(N, M1), σ
′

is also enabled in(N, M1). Similarly, ast ∈ (T \ T ′) cannot put tokens into
places inP ′ in the restricted net,σ

′
is enabled in(N ′,M1¹P ′).
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t in �
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M�1 M�t_pre
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M�2M�t_post
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P�Mt_preM�t_pre

P�Mt_postM�t_post

Fig. 23. Transition firings in both the original net and the restricted net

Next, we will prove that there existsM
′′
2 ∈ IM(N) andM

′
2 ∈ IM(N ′) such thatM1

N,σ
′

→
M

′′
2 : (M1¹P ′ N′,σ′→ M

′
2) ∧ (M

′′
2 ¹P ′ = M

′
2). As shown before,σ

′
is enabled in(N ′,M1¹

P ′).
Figure 23 gives the states in both models for transitions that can be fired in both netsN

andN ′. Assume thatMt−pre¹P ′ ≥ M
′
t−pre andt ∈ T ′. As N′• t =N• t, t

N′• = t
N• ∩P ′ and

R′(t) = R(t) ∩ P ′, we deduce:Mt−post¹P ′ = M
′
t−post. The effect of firingt is identical

on the places inP ′. Hence, the marking resulting fromσ
′

is at least as large asM2 w.r.t.
P ′. Figure 24 gives the states in both models for transitions that can only be fired in the net
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Fig. 24. Transition firings in the original net only

N . Assume thatMt−pre ¹P ′ ≥ M
′
t−pre andt 6∈ T ′. Since the effect of firingt can only

remove tokens from places inP ′ and we do not have a corresponding markingMt−post in
N ′, we deduceM

′
t−pre ≥ M

′
t−post¹P ′.

Now we will show that for any markingM
′
2 ∈ IM(N ′) reachable fromM1¹P ′, there is

a corresponding markingM2 ∈ IM(N) reachable fromM1 such thatM
′
2 = M2¹P ′. That

is, the two markings are the same w.r.tP ′.

Lemma Appendix B.2. Let N = (P, T, F,R) be a reset net andN ′ = res(N,G) =
(P ′, T ′, F ′, R′) is the restriction on G.

∀M1∈IM(N),M
′
2∈IM(N ′)(M1¹P ′ N′,∗→ M

′
2 ⇒ ∃M2∈IM(N)M1

N,∗→ M2 ∧M2¹P ′ = M
′
2)

Proof. Consider an occurrence sequenceσ : M1 ¹P ′ N′,σ→ M
′
2. We first show thatσ is

enabled in(N,M1) and then that there is markingM2 : M1
N,∗→ M2 ∧ M2 ¹P ′ = M

′
2 .

As σ is enabled in(N ′,M1¹P ′) and∀t∈σ • t ⊆ P ′, this implies thatσ is also enabled in
(N, M1).

Figure 25 gives the states in both models for transitions that can be fired in both netsN

andN ′. Assume thatMt−pre¹P ′ = M
′
t−pre andt ∈ T ′. As N′• t = •N t, t

N′• = t
N• ∩P ′ and

R′(t) = R(t) ∩ P ′, we deduce:Mt−post¹P ′ = M
′
t−post. The effect of firingt is identical

on the places inP ′. Hence, the marking resulting fromσ is the same asM2 w.r.t. P ′. This
can be repeated for all transitionst ∈ σ, hence:M ′

2 = M2¹P ′.

Corollary Appendix B.1. Let (N, M1) = ((P, T, F, R),M1) be a marked reset net and
N ′ = res(N,G) = (P ′, T ′, F ′, R′) its restriction on G.

∃M2∈IM(N)(M1
N,∗→ M2 ∧ M1[G] @ M2[G]) if and only if ∃M

′
2∈IM(N ′)(M1 ¹P ′ N′,∗→

M
′
2 ∧M1[G] @ M

′
2[G])

Proof. (⇒) First, we will prove that∃M2∈IM(N)(M1
N,∗→ M2 ∧M1[G] @ M2[G]) implies
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Fig. 25. Transition firings in both the original net and the restricted net

that∃M
′
2∈IM(N ′)(M1 ¹P ′ N′,∗→ M

′
2 ∧ M1[G] @ M

′
2[G]). AssumeM2 ∈ IM(N) such that

M1
N,∗→ M2 andM1[G] @ M2[G]. Using Lemma B.1, we can show that there is anM

′
2

such thatM1¹P ′ N′,∗→ M
′
2 ∧M

′
2 ≥ M2¹P ′. RestrictingM

′
2 to G givesM

′
2[G] ≥ M2[G]

asG ⊆ P ′. We now haveM1[G] @ M2[G] andM
′
2[G] ≥ M2[G] and therefore,M1[G] @

M
′
2[G].
(⇐) Second, we will prove that∃M

′
2∈IM(N ′)(M1 ¹P ′ N′,∗→ M

′
2 ∧ M1[G] @ M

′
2[G])

implies that∃M2∈IM(N)(M1
N,∗→ M2 ∧M1[G] @ M2[G]). AssumeM

′
2 ∈ IM(N ′) such that

M1¹P ′ N′,∗→ M
′
2 andM1[G] @ M

′
2[G]. Using Lemma B.2, we can show that there is anM2

such thatM1
N,∗→ M2 ∧M

′
2 = M2¹P ′. RestrictingM2 to G showsM

′
2¹P ′[G] = M

′
2[G].

Hence,M
′
2¹G = M2¹G. Combined withM1¹G @ M

′
2¹G, this yieldsM1[G] @ M2[G].

An OR-join tasko-j is enabled at a markingM of an eYAWL-netN , if it is not possible
to reach a markingMn such thatM

∗→ Mn and M [•o-j] @ Mn[•o-j]. To determine
whethero-j should be enabled atM , we propose to perform the following analysis. Let
NR = transE2WFOJ(N, o-j) be the reset net,G = •o-j andMR be the corresponding
marking ofM in the reset net. Instead of usingNR to perform the analysis, the search
space can be reduced by applying the structural restriction so thatN

′
R = res(N,G). Using

Corollary B.1, it is possible to determine whether there is a markingM
′
R ∈ IM(NR) such

thatMR
NR,∗→ M

′
R andMR[G] @ M

′
R[G]. If it does, this implies that more tokens can be

placed into the input places ofo-j in the reachable markings fromMR. Hence, the OR-join
analysis can take place in the restricted netNR ando-j should not be enabled atM .

B.2. Active projection

Let N, N ′ be two reset nets such thatN ′ = ap(N,M1), after applying active projection,
for a given markingM1. Lemma B.3 will demonstrate that for any markingM2 ∈ IM(N)
reachable fromM1, there is a corresponding markingM

′
2 ∈ IM(N ′) reachable fromM1¹P ′

such thatM
′
2 = M2¹P ′. That is, both markings are the same w.r.tP ′.
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Lemma Appendix B.3. Let (N, M1) = ((P, T, F, R),M1) be a marked reset net and
N ′ = ap(N, M1) = (P ′, T ′, F ′, R′) its active projection.

∀M2∈IM(N)(M1
N,∗→ M2 ⇒ M1¹P ′ N′,∗→ M2¹P ′)

Proof. Consider an occurrence sequenceσ : M1
N,σ→ M2. First, we will prove thatσ is

enabled in(N ′,M1¹P ′). From Definition B.2,t ∈ T \ T ′ implies thatt cannot be enabled
in any reachable marking fromM1 and therefore,t 6∈ σ. Soσ only contains transitions

t ∈ T ′. The enabling oft ∈ T ′ only depends on places inP ′ (i.e., N• t =N′• t ⊆ P ′).
Figure 26 gives the states in both models. Assume thatMt−pre¹P ′ = M

′
t−pre andt ∈ T ′.

Firing t only affect the output places and they are all inP ′ (i.e., t
N•= t

N′•⊆ P ′). As
N′• t =N• t, t

N′• = t
N• ∩P ′ andR′(t) = R(t) ∩ P ′, we deduce:Mt−post¹P ′ = M

′
t−post. This

can be repeated for allt ∈ σ, hence:M ′
2 = M2¹P ′.

Lemma B.4 will demonstrate that for any markingM
′
2 ∈ IM(N ′) reachable fromM1¹

P ′, there is a corresponding markingM2 ∈ IM(N) reachable fromM1 such thatM ′
2 =

M2¹P ′.

Lemma Appendix B.4. Let (N, M1) = ((P, T, F, R),M1) be a marked reset net and
N ′ = ap(N, M1) = (P ′, T ′, F ′, R′) its active projection.

∀M
′
2∈IM(N ′)(M1¹P ′ N′,∗→ M

′
2 ⇒ ∃M2∈IM(N)M1

N,∗→ M2 ∧M
′
2 = M2¹P ′)

Proof. Consider an occurrence sequenceσ : M1 ¹P ′ N′,σ→ M
′
2. We will prove thatσ is

enabled in(N, M1). Asσ is enabled in(N ′, M1¹P ′) and∀t∈σ
N• t =N′• t ⊆ P ′, this implies

thatσ is also enabled in(N, M1). From Definition B.2,t ∈ T \ T ′ implies thatt cannot
be enabled in any reachable marking fromM1 and therefore,t 6∈ σ. Soσ only contains

transitionst ∈ T ′. The enabling oft ∈ T ′ only depends on places inP ′ (i.e., N• t =N′• t ⊆
P ′). Figure 26 gives the states in both models. Assume thatMt−pre ¹P ′ = M

′
t−pre and

t ∈ T ′. Firing t only affect the output places and they are all inP ′ (i.e.,tN•= t
N′•⊆ P ′). As

N′• t =N• t, t
N′• = t

N• ∩P ′ andR′(t) = R(t) ∩ P ′, we deduce:Mt−post¹P ′ = M
′
t−post. This

can be repeated for allt ∈ σ, hence:M ′
2 = M2¹P ′.

Corollary Appendix B.2. Let (N, M1) = ((P, T, F, R),M1) be a marked reset net,
G ⊆ P , andN ′ = res(ap(N, M1), G) = (P ′, T ′, F ′, R′).

∃M2∈IM(N)(M1
N,∗→ M2 ∧ M1[G] @ M2[G]) if and only if ∃M

′
2∈IM(N ′)(M1 ¹P ′ N′,∗→

M
′
2 ∧M1[G] @ M

′
2[G])

Proof. First, we will prove that∃M2∈IM(N)(M1
N,∗→ M2 ∧M1[G] @ M2[G]) implies that

∃M
′
2∈IM(N ′)(M1¹P ′ N′,∗→ M

′
2 ∧M1[G] @ M

′
2[G]). Using Lemma B.3, we can show that

M1
N,∗→ M2 impliesM1¹P ′ N′,∗→ M2¹P ′. Hence, there exists anM

′
2 = M2¹P ′ such that

M1[G] @ M
′
2[G].
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Fig. 26. Transition firing in a restricted net (active projection)

Second, we will prove that∃M
′
2∈IM(N ′)M1 ¹P ′ N′,∗→ M

′
2 ∧ M1[G] @ M

′
2[G] implies

that ∃M2∈IM(N)M1
N,∗→ M2 ∧ M1[G] @ M2[G]. Using Lemma B.4 and assumingM1 ¹

P ′ N′,∗→ M
′
2, there exists aM2 such thatM1

N,∗→ M2 andM2 ¹P ′ = M
′
2. SinceG ⊆ P ,

M1[G] @ M ′
2[G] impliesM1[G] @ M2[G].


