
Workflow Simulation for
Operational Decision Support

A. Rozinat1, M. T. Wynn2, W. M. P. van der Aalst1,2, A. H. M. ter Hofstede2,
and C. J. Fidge2

1 Information Systems Group, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{a.rozinat,w.m.p.v.d.aalst}@tue.nl
2 Business Process Management Group, Queensland University of Technology,

GPO Box 2434, Brisbane QLD 4001, Australia.
{m.wynn,a.terhofstede,c.fidge}@qut.edu.au

Abstract. Simulation is widely used as a tool for analyzing business
processes but is mostly focused on examining abstract steady-state sit-
uations. Such analyses are helpful for the initial design of a business
process but are less suitable for operational decision making and contin-
uous improvement. Here we describe a simulation system for operational
decision support in the context of workflow management. To do this we
exploit not only the workflow’s design, but also use logged data describ-
ing the system’s observed historic behavior, and incorporate information
extracted about the current state of the workflow. Making use of actual
data capturing the current state and historic information allows our sim-
ulations to accurately predict potential near-future behaviors for differ-
ent scenarios. The approach is supported by a practical toolset which
combines and extends the workflow management system YAWL and the
process mining framework ProM.

1 Introduction

Business process simulation is a powerful tool for process analysis and improve-
ment. One of the main challenges is to create simulation models that accurately
reflect the real-world process of interest. Moreover, we do not want to use simu-
lation just for answering strategic questions but also for tactical and even oper-
ational decision making. To achieve this, different sources of simulation-relevant
information need to be leveraged. In this paper, we present a new way of creating
a simulation model for a business process supported by a workflow management
system, in which we integrate design, historic, and state information.

Figure 1 illustrates our approach. We consider the setting of a workflow
system that supports some real-world process based on a workflow and orga-
nizational model. Note that the workflow and organizational models have been
designed before enactment and are used for the configuration of the workflow sys-
tem. During the enactment of the process, the performed activities are recorded
in event logs. An event log records events related to the offering, start, and

Workflow &
organizational

model
Event
logs

Workflow
system

records

supports /
controls

Current state information

models

Simulation
model

specifies
configures

Simulation
logs

Simulation
engine

records

simulates

models

Historic information

Design information

analyze

Simulated process Real-world process

specifies
configures

Fig. 1. Overview of our integrated workflow management (right) and simulation (left)
system

completion of work items, e.g., an event may be ‘Mary completes the approval
activity for insurance claim XY160598 at 16.05 on Monday 21-1-2008’.

The right-hand side of Figure 1 is concerned with enactment using a workflow
system while the left-hand side focuses on analysis using simulation. In order to
link enactment and simulation we use three types of information readily available
in workflow systems to create and initialize the simulation model.

– Design information. The workflow system has been configured based on an
explicit process model describing control and data flows. Moreover, the work-
flow system uses organizational data, e.g., information about users, roles,
groups, etc.

– Historic information. The workflow system records all events that take place
in ‘event logs’ from which the complete history of the process can be recon-
structed. By analyzing historic data, probability distributions for workflow
events and their timing can be extracted.

– State information. At any point in time, the workflow process is in a partic-
ular state. The current state of each process instance is known and can be
used to initialize the simulation model. Note that this current state informa-
tion includes the control-flow state (i.e., ‘tokens’ in the process model), case
data, and resource data (e.g., resource availability).

By merging the above information into a simulation model, it is possible to
construct an accurate model based on observed behavior rather than a manually-
constructed model which approximates the workflow’s anticipated behavior.
Moreover, the state information supports a ‘fast forward’ capability, in which
simulation can be used to explore different scenarios with respect to their effect

2

in the near future. In this way, simulation can be used for operational decision
making.

Based on this approach, the system design in Figure 1 allows different simu-
lation experiments to be conducted. For the ‘as-is’ situation, the simulated and
real-world processes should overlap as much as possible, i.e., the two process
‘clouds’ in Figure 1 need to coincide. For the ‘to-be’ situation, the observed dif-
ferences between the simulated and real-world processes can be explored and
quantified. In our implementation we ensure that the simulation logs have the
same format as the event logs recorded by the workflow system. In this way we
can use the same tools to analyze both simulated and real-world processes.

To do this, we need state-of-the art process mining techniques to analyze the
simulation and event logs and to generate the simulation model. To demonstrate
the applicability of our approach, we have implemented the system shown in
Figure 1 using ProM [1] and YAWL [2]. YAWL is a workflow management system
that, as reported in this paper, has been extended to provide high-quality design,
historic, and state information. The process mining framework ProM has been
extended to merge the three types of information into a single simulation model.
Moreover, ProM is also used to analyze and compare the logs in various ways.

In [3] three common pitfalls in current simulation approaches were presented.

1. modeling from scratch rather than using existing artifacts, which leads to
mistakes and unnecessary work,

2. focus on design rather than operational decision making, which is helpful
for the initial design of a business process but less suitable for operational
decision making and continuous improvement,

3. insufficient modeling of resources, i.e., the behavior or resources is typically
modeled in a rather näıve manner.

This paper addresses the first two pitfalls. While addressing the third problem
is a challenging research topic in itself [3], we concentrate here on the first two
problems. That is, we integrate existing artifacts that can be extracted from a
workflow system into a ready-to-use simulation model, and we incorporate the
current state of the workflow system in our simulation model to enable short-
term simulation.

This paper extends our previous work [20], in that we go into more detail
about the architecture of the realized system, describe the generated simulation
models and how they can load a specified initial state more closely, and present
a new XML file format for workflow states that enables other workflow systems
to interface with our tools in a standardized way.

The paper is organized as follows. Related work is reviewed in Section 2.
Section 3 describes the approach proposed. Section 4 presents a running ex-
ample, which is then used in Section 5 to explain the implementation realized
using YAWL and ProM. Section 6 describes our approach to incorporate state
information in more detail and presents the new XML file format for workflow
states. Section 7 concludes the paper by discussing the three main innovations
presented in this paper.

3

2 Related Work

Our work combines aspects of workflow management, simulation, and process
mining. Some of the most relevant contributions from these broad areas are
reviewed below.

Prominent literature on workflow management [7, 14, 22] focuses on enact-
ment, and research on workflow analysis usually focuses on verification, rather
than simulation. Conversely, publications on simulation typically concentrate on
statistical aspects [12, 17, 13] or on a specific simulation language [11]. Several
authors have used simulation or queuing techniques to address business process
redesign questions [5, 6, 15], and most mature workflow management systems
provide a simulation component [8, 9]. However, none of these systems uses his-
toric and state information to learn from the past and to enable operational
decision making. We are not aware of any toolset that is able to extract the
current state from an operational workflow management system and use this as
the starting point for transient analysis.

In earlier work we first introduced the notion of using historic and state in-
formation to construct and calibrate simulation models [16, 23], and used Protos,
ExSpect, and COSA to realize the concept of short-term simulation [16]. How-
ever, this research did not produce a practical publicly available implementation
and did not use process mining techniques.

Process mining aims at the analysis of event logs [4]. It is typically used to
construct a static model that is presented to the user to reflect on the process.
Previously we showed that process mining can be used to generate simulation
models [19, 18], but design and state information were not used in that work.

3 Approach

A crucial element of the approach in Figure 1 is that the design, historic and
state information provided by the workflow system are used as the basis for
simulation. Table 1 describes this information in more detail.

The design information is static, i.e., this is the specification of the process
and supporting organization that is provided at design time. This information
is used to create the structure of the simulation model. The historic and state
information are dynamic, i.e., each event adds to the history of the process
and changes the current state. Historic information is aggregated and is used
to set parameters in the simulation model. For instance, the arrival rate and
processing times are derived by aggregating historic data, e.g., the (weighted)
average over the last 100 cases is used to fit a probability distribution. Typically,
these simulation parameters are not very sensitive to individual changes. For
example, the average processing time typically changes only gradually over a
long period. The current state, however, is highly sensitive to change. Individual
events directly influence the current state and must be directly incorporated into
the initial state of the simulation. Therefore, design information can be treated
as static, while historic information evolves gradually, and state information is
highly dynamic.

4

Table 1. Process characteristics and the data sources from which they are obtained

Design information Historic information State information
(obtained from the workflow
and organization model
used to configure the
workflow system)

(extracted from event logs
containing information on
the actual execution of
cases)

(based on information
about cases currently being
enacted using the workflow
system)

• control and data flow
(activities and causalities)

• data value range
distributions

• progress state of cases
(state markers)

• organizational model
(roles, resources, etc.)

• execution time
distributions

• data values for running
cases

• initial data values • case arrival rate • busy resources
• roles per task • availability patterns of

resources
• run times for cases

To realize the approach illustrated in Figure 1 we need to merge design,
historic and state information into a single simulation model. The design infor-
mation is used to construct the structure of the simulation model. The historic
information is used to set parameters of the model (e.g., fit distributions). The
state information is used to initialize the simulation model. Following this, tra-
ditional simulation techniques can be used. For example, using a random value
generator and replication, an arbitrary number of independent simulation exper-
iments can be conducted. Then statistical methods can be employed to estimate
different performance indicators and compute confidence intervals for these es-
timates.

By modifying the simulation model, various ‘what-if’ scenarios can be investi-
gated. For example, one can add or remove resources, skip activities, etc. and see
what the effect is. Because the simulation experiments for these scenarios start
from the current state of the actual system, they provide a kind of ‘fast-forward
button’ showing what will happen in the near future, to support operational de-
cision making. For instance, based on the predicted system behavior, a manager
may decide to hire more personnel or stop accepting new cases.

Importantly, the simulations yield simulation logs in the same format as the
event logs. This allows process mining techniques to be used to view the real-
world processes and the simulated processes in a unified way. Moreover, both can
be compared to highlight deviations, etc.

4 Running Example

To illustrate the approach let us consider a credit card application process. The
corresponding YAWL workflow model is shown in Figure 2. The process starts
when an applicant submits an application. Upon receiving an application, a
credit clerk checks whether it is complete. If not, the clerk requests additional
information and waits until this information is received before proceeding. For
a complete application, the clerk performs further checks to validate the appli-
cant’s income and credit history. Different checks are performed depending on

5

whether the requested loan is large (e.g., greater than $500) or small. The val-
idated application is then passed on to a manager to decide whether to accept
or reject the application. In the case of acceptance, the applicant is notified of
the decision and a credit card is produced and delivered to the applicant. For
a rejected application, the applicant is notified of the decision and the process
ends.

Fig. 2. A credit application process modeled in YAWL

Here we assume that this example workflow has been running for a while. In
YAWL but also any other workflow system the following runtime statistics can
be gathered about the long-term behavior of this process.

– Case arrival rate: 100 applications per week
– Throughput time: 4 working days on average

With respect to resources, there are eight members of staff available, which
include three capable of acting as ‘managers’ and seven capable of acting as
‘clerks’. (One person can have more than one role.)

Further assume that due to a successful Christmas promotion advertised in
November, the number of credit card applications per week has temporarily
doubled to 200. The promotion period is now over and we expect the rate to
decrease to 100 applications per week again. However, as a result of the increased
interest, the system now has a backlog of 150 applications in various stages of
processing, some of which have been in the system for more than a week. Since
it is essential that most applications are processed before the holiday season,
which begins in a fortnight from now (the ‘time horizon’ of interest), manage-
ment would like to perform simulation experiments from the current state (‘fast
forward’) to determine whether or not the backlog can be cleared in time.

5 Realization through YAWL and ProM

We now use the example introduced in Section 4 to describe our proof-of-concept
implementation supporting the approach depicted in Figure 1. The realization is
based on the YAWL workflow environment [2] and the process mining framework
ProM [1]. For the actual simulation we use CPN Tools [10].

6

In this section, we first provide an overview about how YAWL, ProM and
CPN Tools have been integrated to realize our approach (Section 5.1). Then we
focus on the new capabilities that have been added to these systems, and briefly
explain the main steps that need to be performed to extract simulation-relevant
information from YAWL (Section 5.2), create a simulation model based on this
data in ProM (Section 5.3), load an initial state into this simulation model
(Section 5.4), and to analyze the simulation runs (Section 5.5). The concrete
structure of the simulation models and how they incorporate the current state
are described in more detail in Section 6.

5.1 Architecture

Consider Figure 3, which provides an overview of the tools and data sources that
are involved in the realization of our approach.

ProM

YAWL

Work
Flow
Spec

Org
Model

Work
Flow
Log

Import
YAWL 2.0

Simu-
lation
Model

CPN
Tools

Initial
State

Import
OrgModel

Analyse
Log

Export
CPN

design
historic
state

Type of
simulation-relevant
information

MXML
files

Simu-
lation
Logs

MXML
filesGnuplot

scripts

MXML
filesOther

logs

Merge

Convert

Import / Export
WFState

Work
Flow
State

MXML

WFState

MXML

OrgModel CPN

SML

YAWL 2.0

Figure 5

Fig. 3. Overall architecture of the realized system (the dotted area is shown in more
detail in Figure 5)

The YAWL system enacts the business process and provides design informa-
tion (YAWL’s workflow specification and organizational model), historic infor-
mation (workflow log file in MXML format), and state information (workflow
state in our newly defined WFState format). The design and historic informa-
tion are used to create and configure the simulation model, which is output as
a Coloured Petri net (CPN) file. The generated CPN file is accompanied by an
SML file (a CPN input file), which represents the (empty) initial state. This ini-
tial state can be repeatedly replaced by the actual current workflow state without

7

changing the simulation model. Finally, CPN tools generates various output files
from a simulation run. Among these simulation logs are MXML files, which can
be loaded in ProM and analyzed in the same way as the actual workflow logs.

A detailed step-by-step description of how to generate a simulation model
including operational decision support is provided in our technical report [21]3.

Note that through the use of standardized interfaces—the OrgModel format
for organizational models, MXML for event logs, and the newly defined WFState
format presented in this paper—it is very easy to extend our toolset for other
environments (e.g., YAWL can be replaced by another workflow management
system). To apply our approach to another type of workflow system, the same
file formats can be used and only an import facility for the new type of workflow
specification (plus potentially a conversion of the new type of process model into
a Petri net) needs to be provided.

5.2 Extracting Simulation-Relevant Information

As illustrated in Figure 3, the information contained in the YAWL workflow
specification is supplemented with historical data obtained from the event logs
and data from the organizational model database. This was achieved by imple-
menting two new functions in the workflow engine to export historical data from
the logs for a particular specification and to export the organizational model
(i.e., information about roles and resources). Furthermore, the current workflow
state can be exported, which is not used to create the simulation model, but
loaded afterwards to initialize the simulation model.

In the YAWL workflow system, event logs are created whenever an activity
is enabled, started, completed or cancelled, together with the time when this
event occurred and with the actor who was involved. Logs are also kept for data
values that have been entered and used throughout the system. Therefore, we
can retrieve historical data about process instances that have finished execution.
In this work we assume that the simulation experiments are being carried out on
‘as-is’ process models for which historical data is available. A function has been
created which extracts the historical data for a specification from the workflow
engine and exports audit trail entries in the M ining XML (MXML) log format.
Some sample data for the credit application example is shown in Figure 4(a).
This historical data is used for mining information about case arrival rates and
distribution functions for the data values used in future simulation experiments.

Similarly, the YAWL workflow system gives access to the organizational
model through a function which extracts all available role and resource data
in an organization and exports this information in the OrgModel XML format
that is used by ProM. Some sample data with the roles of clerk and manager
is shown in Figure 4(b). This information is used to identify available roles and
resources that are relevant for a given specification.

3 The ProM framework (including source code and documentation) can be down-
loaded from prom.sf.net and the example files for our tutorial are available at
prom.win.tue.nl/research/wiki/yawltutorial (via www.processmining.org).

8

<Process>
 <ProcessInstance id="5">
 <AuditTrailEntry>
 <Data>
 <Attribute name="loanAmt">550</Attribute>
 </Data>
 <WorkflowModelElement>

 receive_application_3
 </WorkflowModelElement>
 <EventType>complete</EventType>
 <Timestamp>

 2008-02-29T15:20:01.050+01:00
 </Timestamp>
 <Originator>MoeW</Originator>
 </AuditTrailEntry>

...
 </ProcessInstance>

...
</Process>

(a) A log entry for the completion of ac-
tivity ‘receive application’ carried out by
resource MoeW with loan amount $550

<OrgModel>
 <OrgEntity>
 <EntityID>1</EntityID>
 <EntityName>manager</EntityName>
 <EntityType>Role</EntityType>
 </OrgEntity>
 <OrgEntity>
 <EntityID>2</EntityID>
 <EntityName>clerk</EntityName>
 <EntityType>Role</EntityType>
 </OrgEntity>
 ...
 <Resource>
 <ResourceID>PA-529f00b8-0339</ResourceID>
 <ResourceName>JonesA</ResourceName>
 <HasEntity>2</HasEntity>
 </Resource>

...
</OrgModel>

(b) An excerpt from an organizational
model with roles and resources, where re-
source JonesA has role ‘clerk’

Fig. 4. Part of the historical data (a) and organizational model (b) extracted from the
workflow engine

Finally, a function has been created to extract the current workflow state
from YAWL in the WFState XML format, which we introduce and explain in
more detail later in this paper.

5.3 Generating the Simulation Model

From (1) the extracted workflow specification, (2) the newly extracted organi-
zational model, and (3) the event log file, we can now generate a simulation
model that reflects the process as it is currently enacted. The direct use of de-
sign information avoids mistakes that are likely to be introduced when models
are constructed manually, and the automated extraction of data from event logs
allows the calibration of the model based on actually observed parameters.

To capture simulation-relevant information independently of a concrete work-
flow language (e.g., YAWL) we created a generic data structure in ProM that we
call “high-level process”. With high-level information we refer to process infor-
mation beyond the pure control flow, i.e., additional information like data and
time that can be either attached to the process as a whole, or to certain elements
in the process. Figure 5 shows the data structures that are produced by each
step in the simulation model creation process. Extra information that is attached
to activities or choice points in the process is visualized as clouds, while global
process information is listed textually at the bottom of each high-level struc-
ture. Because this extra information is orthogonal to the actual control-flow, it
is separated and different types of process models can be enriched with high-level
information. Currently, Petri nets, YAWL and Protos models can be enriched
with simulation-relevant information, and there are several plug-ins that either

9

YAWL 2.0
Import

MergeOrgModel
Import

+ roles and their corresponding
resources in the whole organization

Log
Analysis A B C

+ time

+ case arrival rate
+ data attributes
 (value range)

+ time + time

CPN
ExportConvert

+ case arrival rate
+ data attributes (inital
 value and value range)
+ roles and resources per role

A
B

C

... ...

...

...

+ case arrival rate
+ data attributes (inital
 value and value range)
+ roles and resources per role

manager

ceo

clerk
Fred Lisa Joe...

Sarah

+ data attributes
 (inital value)
+ roles in process

A

B

C

+ link
condition

+ data
+ role + data

+ role

+ data
+ role

A

B

C

+ link
condition

+ data
+ role
+ time

+ data
+ role
+ time

+ data
+ role
+ time

Fig. 5. A generic data structure in ProM captures simulation-relevant information in
a language-independent way

deal with, or produce, high-level structures that can be used to generate simu-
lation models.

Figure 5 illustrates how the different pieces of simulation-relevant informa-
tion are integrated and transformed to create the simulation model. For example,
while the YAWL 2.0 Import produces a YAWL-based high-level process includ-
ing information about link conditions, data, and roles, the Log Analysis step
produces a set of activities with associated time information but no concrete
control flow model (i.e., no information about the causal activities between ac-
tivities in the process). After integrating the YAWL-based high-level process
with the information obtained from the OrgModel Import and the Log Analy-
sis as illustrated by the Merge operation in Figure 5, the control flow model
is translated into a Petri net (the Convert operation in Figure 5), which then
yields a Petri net-based high-level process that can be used as input for the CPN
Export.

In summary, four basic steps need to be performed within ProM to generate
the simulation model for a running YAWL process (a sample screenshot of the
implementation is shown in Figure 6):

Step 1: The workflow, the organizational model and the event log are imported
from the YAWL workflow system and analyzed.

10

(a) The organizational model and the information obtained from the log analysis are
integrated into the imported YAWL model

(b) The integrated YAWL model is translated into a Petri net while preserving all the
simulation-relevant information

Fig. 6. The approach has been implemented in ProM. Here, the choice point ‘Check
for completeness’ is shown before and after the Convert operation in Figure 5

– The information that we can get from the workflow specification covers
a YAWL process model including roles associated with tasks, data flows,
and link conditions at choice points in the process.

– From the workflow log we can extract information about the case ar-
rival rate, value range distributions for data attributes, and observed
execution times at tasks in the process.

11

– The OrgModel file provides information about the relationship between
all roles and resources in the whole organization.

Step 2: Simulation-relevant information from the organizational model and log
analysis are integrated into the YAWL model.

Step 3: The YAWL model is converted into a Petri net model (because our
simulation tool is based on Coloured Petri Nets), wherein we preserve all the
extra information (e.g., time and data) that is relevant for the simulation
model.

Step 4: Finally, the integrated and converted model is exported as a CPN
model.

We can then use the CPN Tools system [10] to simulate the generated model.
However, to produce useful results we do not want to start from an empty initial
state. Instead we load the current state of the actual YAWL system into the
CPN Tools for simulation.

5.4 Loading the Current State

To carry out simulation experiments for operational decision making purposes
(the ‘fast forward’ approach), it is essential to include the current state of the
workflow system. This allows us to make use of the data values for the current
cases as well as the status of the work items for current cases within the sim-
ulation experiments. A new function has been created to extract current state
information of a running workflow from the YAWL system and to export this
information as a CPN Tools input file (InitialState node in Figure 3).

The following information is obtained about the current state and is intro-
duced as the initial state of a simulation run.

– All the running cases of a given workflow and their marking.
– All the data values associated with each case.
– Information about enabled work items.
– Information about executing work items and the resources used.
– The date and time at which the current state file is generated.

When the empty initial state file of the generated simulation model is replaced
with the SML file as depicted in Figure 3, tokens are created in the CPN model
that reflect the current system status (see Figure 7). For example, we can see
that there are three tokens in the Case data place, which each correspond to a
credit card application being processed. We will go into more detail about the
CPN representation and the SML input file in Section 6.

We now experiment with the various scenarios described in Section 4. Re-
call that due to the Christmas promotion 150 cases are in the system. We load
the state file containing these 150 cases into the model and perform simula-
tion experiments for the coming two weeks assuming no changes in terms of
resource availability. We also add more resources to the model and observe how
this influences the backlog and the throughput times for processing credit card
applications within this time horizon.

12

Fig. 7. The generated CPN model after loading the current state file

5.5 Analyzing the Simulation Logs

We simulate the process from the generated CPN model for four different sce-
narios.

1. An empty initial state (‘empty’ in Figure 8). Note that this scenario illus-
trates the warm-up effect in traditional simulation without an explicit initial
state.

2. After loading the current state file with the 150 applications that are cur-
rently in the system and no modifications to the model, i.e., the ‘as-is’ situ-
ation (‘as is’ in Figure 8).

3. After loading the current state file but adding four extra resources (two
having the role ‘manager’ and three having the role ‘clerk’), i.e., a possible
‘to-be’ situation to help clear the backlog more quickly (‘to be A’ in Figure 8).

4. After loading the current state file and adding eight extra resources. Of these
eight additional resources four have the role ‘manager’ and six have the role
‘clerk’ (‘to be B’ in Figure 8).

We can see the difference among these four scenarios in Figure 8, which de-
picts the development of the number of cases (i.e., applications) in the workflow
system over the coming two weeks for an example simulation run per scenario. In
the case of Scenario 1 the simulation starts with having 0 credit card applications
in the system. This neither reflects the normal situation nor does it capture our
current backlog of cases. Note that after a while (the “warm-up period”) this
simulation stabilizes to normal behavior of the credit card application process
(i.e., with ca. 100 applications arriving per week). The other three scenarios load

13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5000 10000 15000 20000 25000

N
o

.
o

f
a

p
p

lic
a

ti
o

n
s
 i
n

 t
h

e
 s

y
s
te

m

Time horizon: two weeks (in seconds)

Number of applications that are in the system for four different scenarios

1)
2)
3)
4)

'as is'

'to be A'

'to be B'

'empty'

Time horizon: two weeks (20160 minutes)

Fig. 8. Number of applications in the simulated process for the different scenarios.
While the scenario with the empty state has initially 0 applications, the other scenarios
are initialized by loading 150 applications from the current state file. Note that these
are just sample runs. See Figure 9 for confidence intervals

a defined initial state, which contains the 150 applications that we assume to
be currently in the system. Furthermore, one can observe that in the scenarios
where we add extra resources to the process, the case load decreases more quickly
to a normal level than without further intervention. However, the scenario ‘to be
B’ does not seem to perform much better than the scenario ‘to be A’ although
twice as many resources have been added. This way, we can assess the effect of
possible measures to address the problem at hand, i.e., we can compare different
‘what-if’ scenarios in terms of their estimated real effects.

CPN Tools has powerful simulation capabilities, which we can leverage. For
example, it is possible to automatically replicate simulation experiments to en-
able statistical analyses, such as calculating confidence intervals for specific pro-
cess characteristics. For instance, Figure 9 depicts the 95% confidence intervals
of the average case throughput times based on 50 replicated simulations for each
of the four simulation scenarios. One can observe that the estimated through-
put time for the ‘empty’ scenario is ca. 4 days, while the expected throughput
time for the ‘as is’ scenario (i.e., actually expected based on the current backlog
situation) is almost 6 days.

While CPN Tools already provides powerful logging facilities and even gener-
ates gnuplot scripts that can be used to plot certain properties of the simulated

14

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 1 2 3 4 5

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l

Simulation Scenarios

95 % Confidence Intervals Average Throughput Time in Min
for the Four Simulation Scenarios (50 Replications each)

Confidence Intervals

'as is'

5.88 days

'to be A'

4.91 days

'empty'

3.86 days

'to be B'

4.72 days

Fig. 9. Simulation run showing the 95% confidence intervals of the throughput times
for the different simulation scenarios. The length of the confidence interval indicates
the degree of variation

process, we also generate MXML event log fragments during simulation, similar
to the one shown in Figure 4(a) for the workflow log. These fragments can then
be combined using the CPN Tools filter of the ProMimport framework, which
facilitates the conversion of event logs from various systems into the MXML
format that is read by ProM.

The ability to use the same toolset for analyzing the simulation logs and
analyzing the actual workflow logs constitutes a big advantage because the sim-
ulation analysis results can be more easily related to the initial properties of
the process. In particular, since we support the loading of current cases into
the initial state at the beginning of the simulation, we can easily combine the
real process execution log (‘up to now’) and the simulation log (which simulates
the future ‘from now on’) and look at the process in a unified manner (with the
possibility of tracking both the history and the future of particular cases that
are in the system at this point in time).

Figure 10 shows a screenshot of ProM while analyzing the simulation logs
generated by CPN Tools. Various plug-ins can be used to gain more insight
into the simulated process. For example, in Figure 10 the Log Dashboard (top
left), the Basic Statistics plug-in (bottom left), the Performance Analysis plug-
in (bottom right), and the LTL Checker (top right) are shown. The former
two provide a general overview about the cases and activities in the process,

15

Fig. 10. The generated simulation logs can be analyzed with the same tool set as the
initial workflow logs

whereas the Performance Analysis plug-in finds bottlenecks (e.g., in Figure 10 a
bottleneck for starting the activity ‘Make decision’ is highlighted), and the LTL
Checker can be used to verify specific properties of interest (e.g., “How many
cases could be processed until they are in the stage where a decision can be made
in under 3 days?”).

6 The Current State

Having demonstrated the importance of incorporating an initial state into the
simulation model, we now want to explain in more detail how the state of a
workflow system can be specified and incorporated. In this section, we describe
how a workflow state can be exported from the YAWL engine using a generic
Workflow State XML schema format and how this could be translated into a
CPN input file for simulation purposes using the running example.

6.1 From Workflow State-XML to SML File

Figure 11 depicts the XML schema definition of the WFState schema. The key
elements of interest for simulation purposes are as follows:

– WorkFlowState: This is the root element of the schema and contains infor-
mation about the workflow state, including among others, the time at which

16

Fig. 11. A visualization of the WFState XML Schema definition (schema available via
http://www.yawlfoundation.org/yawlschema/WorkFlowState.xsd)

17

<WorkFlowState>
<Source program="YAWL Current State Export"/>
<Timestamp>2008-09-24T14:05:16.252+10:00</Timestamp>
<Process id="CreditApp.ywl" description="Credit card application process.">

<ProcessInstance id="39" description="Application 39">
<Data>

<Attribute name="loanAmt">500</Attribute>
<Attribute name="completeApp">false</Attribute>
<Attribute name="decideApp">false</Attribute>

</Data>
<Timestamp>2008-08-27T12:03:40.301+10:00</Timestamp>
<WFModelElementRecord id="1">

<WFModelElement type=”COND”>c2_15</WFModelElement>
<Status>marked</Status>

</WFModelElementRecord>
</ProcessInstance>
<ProcessInstance id="40" description="Application 40">

<Data>
<Attribute name="loanAmt">0</Attribute>
<Attribute name="completeApp">false</Attribute>
<Attribute name="decideApp">false</Attribute>

</Data>
<Timestamp>2008-09-24T14:02:16.252+10:00</Timestamp>
<WFModelElementRecord id="3">

<WFModelElement type=”COND”>InputCondition_1</WFModelElement>
<Status>marked</Status>

</WFModelElementRecord>
</ProcessInstance>
<ProcessInstance id="41" description="Application 41">

<Data>
<Attribute name="loanAmt">1500</Attribute>
<Attribute name="completeApp">false</Attribute>
<Attribute name="decideApp">false</Attribute>

</Data>
<Timestamp>2008-09-24T14:02:16.252+10:00</Timestamp>
<WFModelElementRecord id="5">

<WFModelElement type=”TASK”>check_for_completeness_4<WFModelElement>
<Status>executing</Status>
<Timestamp>2008-09-24T14:02:36.416+10:00</Timestamp>
<Originator>JonesA</Originator>

</WFModelElementRecord>
</ProcessInstance>

</Process>
</WorkFlowState>

Fig. 12. The WFState XML file for the running example

fun getInitialCaseData() = [(41, {loanAmt = 1500,completeApp = false,decideApp = false}),

(40, {loanAmt = 0,completeApp = false,decideApp = false}),

(39, {loanAmt = 500,completeApp = false,decideApp = false})];

fun getNextCaseID() = 42;

fun getInitialTokensExePlace(pname:STRING) = case pname of

"TASK_check_for_completeness_4`E"=>[(41,"-154","JonesA")] | _ => empty;

fun getInitialTokens(pname:STRING) = case pname of

"Process`COND_c2_15"=>[(39,"-43200")] | "Overview`Start"=>[(40,"-155")] | _ => empty;

fun getBusyResources() = ["JonesA"];

fun getCurrentTimeStamp() = “1205203218”;

fun getTimeUnit() = “Sec”;

Fig. 13. CPN Tools input file with initial state information. Several cases are in dif-
ferent states in the system. For example, application No. 41 is currently being checked
by JonesA for completeness, and has a run time of 154 sec, i.e., ca. 2.57 min.

18

this snapshot is taken. In addition, it contains a set of Process elements
which represents the set of active YAWL specifications.

– Process: Each process element may contain a set of data attributes and val-
ues as well as a set of running cases of a YAWL specification (ProcessInstance
elements).

– ProcessInstance: Each process instance element may contain a set of data
attributes and values as well as the identifier of a parent process instance
in the case of hierarchical models. In addition, it contains the start time of
a particular case (Timestamp) and a set of currently executing YAWL tasks
and enabled YAWL conditions (WFModelElementRecord elements).

– WFModelElementRecord: Each WFModelElementRecord element may con-
tain a set of data attributes and values. In addition, it contains informa-
tion regarding a task or a condition (WFModelElement) which has the status
marked for an enabled condition or the status executing for an executing
task, the start time (Timestamp) and also who has started a currently run-
ning task (Originator).

An example WFState XML file is given in Figure 12 for the running ex-
ample. For the credit card application process, three currently running process
instances (39, 40, and 41) with their respective values for the three data at-
tributes (‘loanAmt’, ‘completeApp’, and ‘decideApp’) are shown. You can see
that for process instance 39, condition ‘c2’ is enabled, and the input condition
is enabled for process instance 40. For process instance 41, it shows that the
‘Check for completeness’ task is currently being worked on by ‘JonesA’. All the
timestamps are represented as instances of the dateTime datatype.

A ProM plug-in has been implemented to translate this information into a
CPN Tools input file for the initial state. The corresponding SML file is shown
in Figure 13. We will explain the functions in this SML file and their role in
linking the current state to the simulation model in Section 6.3.

6.2 CPN Representation

Coloured Petri nets (CPNs) are a modeling formalism that combine Petri nets
with a high-level programming language [10]. Petri nets can be used to model
processes based on a bi-partite structure that consists of places, which may hold
tokens, and transitions, which under certain rules may fire and move tokens in
that structure to change the state of the process. In ordinary Petri nets tokens are
indistinguishable, but in CPNs every token has a value (i.e., they are “colored”
and can be distinguished and used in computations). CPN Tools is a tool for
Coloured Petri nets, where the values of tokens are typed, and can be tested and
manipulated with a functional programming language, which is called Standard
ML (SML). Furthermore, the CPNs are extended by the notion of hierarchy
and time, and their behavior can be simulated. In the following, we provide a
brief summary of the CPN representation for business processes our simulation
approach is based on. We then describe in detail how we modified this CPN

19

representation to dynamically load an initial state into the simulation model in
Section 6.3.

Consider Figure 14, which illustrates the hierarchical structure of the gener-
ated CPN models. A model is distributed over several modules called pages, and
next to the depicted decomposition relationships these pages may be linked by
shared places (so-called fusion places). For example, in Figure 7 one can see that
the data attributes (‘loanAmt’, ‘completeApp’, and ‘decideApp’) for each newly
created case are stored in a separate token in the Case data place. The same
Case data place can be accessed on a sub page to test or modify the value, like,
for example, shown in Figure 15 for activity ‘Check for completeness’, where
the outcome of the check activity is randomly determined and stored in the
corresponding case data token.

Activity 'Start approval'

Overview

Environment
(cf. Figure 7)Process

Activity 'Get more info' Activity 'Check for completeness'
(cf. Figure 15)...

sub page sub page

sub page sub page sub page

Fig. 14. The generated CPN models have a hierarchical structure: New cases are cre-
ated on the Environment page and placed into the ‘Start’ place of the Process (cf.
Figure 7). Details about each task are provided on the corresponding Activity sub page
(cf. Figure 15)

Furthermore, the concept of time allows us to delay the progress of tokens
in the process, which we used to model the time between the start and the end
of an activity in the business process. For example, in Figure 15 the execution
of activity ‘Check for completeness’ takes on average 1800 seconds (i.e., 30 min-
utes) and the actual delay during simulation is randomly determined based on
a normal distribution with a variance of 519.42. Finally, a resource that is cur-
rently performing an activity (cf. resource ‘JonesA’ in Figure 15) is not available
for the execution of concurrently enabled activities, i.e., it is not available in the
global Resources place, where available resources reside. Further details on our
CPN representation can be found elsewhere [19].

6.3 Incorporating the Current State

Now we explain how the SML functions depicted in Figure 13 for the running
example are used by the parameterized simulation model to dynamically load
tokens for executing cases, busy resources, etc.

20

Fig. 15. Sub page for task ‘Check for completeness’ of the simulation model with loaded
current state

The functions that are defined in the SML file are included in the CPN
model by the declaration use "creditApp.sml"; shown in the following CPN
declaration fragment. After this declaration clause, the SML functions defined
in the external file can be used as if they were defined within the CPN itself and,
thus, dynamically changed.

...
colset slist = list STRING;
use "creditApp.sml";
val busy:slist = getBusyResources();
fun freeResources i = not (mem busy i);
colset FREE = subset ANYBODY by freeResources;
...

Figure 7 shows the environment page of the CPN model where the simulation
parameters are set up and the information from the initial state data is loaded.
One can see that the Case data place makes use of the getInitialCaseData()
function, which is defined in the SML file depicted in Figure 13, as the initial
marking function to generate three tokens with case data for current cases.

Similarly, the next case ID place makes use of the getNextCaseID() function
to generate a token with ‘42’ as the starting case ID. The function getBusyRe-
sources() is used to identify available resources by removing busy resources from

21

all resources (which were previously obtained from the OrgModel file and are
defined elsewhere by the ANYBODY data type) to create a subset of FREE
resources (see also CPN declaration fragment above). This set of free resources
is then used to populate the initial tokens for the Resources place before starting
the simulation.

Figure 15 shows the actual process status after loading the SML file. The
figure depicts the subpage for task ‘Check for completeness’ where the executing
place of that task (E) contains a token. Here we use the the getInitialTokensEx-
ePlace() function in the SML file to initialise the values of the token4. Similarly,
the getInitialTokens() function is used to initialise all those places in the CPN
model with an appropriate number of tokens that mark the progress of a case
but that do not represent a currently ongoing action.

Finally, the functions getCurrentTimeStamp() and getTimeUnit() are used
to translate the CPN model’s time into the actual process time. This is needed
to create simulation logs with time stamps that can be related to the real process
and the simulated time horizon.

7 Discussion

In this paper we presented an innovative way to link workflow systems, simu-
lation, and process mining. By combining these ingredients it becomes possible
to analyze and improve business processes in a consistent way. The approach
is feasible, as demonstrated by our implementation using YAWL and ProM. To
conclude, we would like to discuss the three main challenges that have been
addressed in this research.

7.1 Faithful Simulation Models

Although the principle of simulation is easy to grasp, it takes time and expertise
to build a good simulation model. In practice, simulation models are often flawed
because of incorrect input data and a näıve representation of reality. In most
simulation models it is assumed that resources are completely dedicated to the
simulated processes and are eager to start working on newly arriving cases. In
reality this is not the case and as a result the simulation model fails to capture
the behavior of resources accurately. Moreover, in manually constructed models
steps in the processes are often forgotten. Hence simulation models are usually
too optimistic and describe a behavior quite different from reality. To compensate
for this, artificial delays are added to the model to calibrate it and as a result
4 Note that for a running activity we calculate the remaining run time by halving a

random value based on the execution time distribution of the activity. This is realized
by the time delay ‘round(normal(1800.0,519.42)) div 2’ added to the token created
by the getInitialTokensExePlace() function in Figure 15. Looking at an arbitrary
point in time, half the time is the best estimate. This could be improved further by
using the passed run time of the activity from the WFState file, but would require
an analysis of the probability distribution function.

22

its predictive value and trustworthiness are limited. In the context of workflow
systems, this can be partly circumvented by using the workflow design (the
process as it is enforced by the system) and historic data. The approach presented
in this paper allows for a direct coupling of the real process and the simulation
model. However, the generated CPN models in this paper can be improved by a
better modeling of resource behavior. Furthermore, this resource behavior needs
to be approximated in some way. Here, the mining of historic data can help to
automatically choose suitable simulation parameters. As a consequence, more
advanced process mining algorithms that extract characteristic properties of
resources are needed to create truly faithful simulation models.

7.2 Short-term Simulation

Although most workflow management systems offer a simulation component,
simulation is rarely used for operational decision making and process improve-
ment. One of the reasons is the inability of traditional tools to capture the real
process (see above). However, another, perhaps more important, reason is that
existing simulation tools aim at strategic decision making. Existing simulation
models start in an arbitrary initial state (without any cases in the pipeline)
and then simulate the process for a long period to make statements about the
steady-state behavior. However, this steady-state behavior does not exist (the
environment of the process changes continuously) and is thus considered irrele-
vant by the manager. Moreover, the really interesting questions are related to the
near future. Therefore, the ‘fast-forward button’ provided by short-term simula-
tion is a more useful option. Because of the use of the current state and historic
data, the predictions are more reliable and valuable, i.e., of higher quality and
easier to interpret and apply. The approach and toolset presented in this paper
enable short-term simulation. A drawback is that in the current implementation
three different systems are used. For example, the translation of insights from
simulation via ProM and CPN Tools to concrete actions in the workflow system
YAWL can be improved. Further research is needed to provide a seamless, but
generic, integration. An interesting question regarding short-term simulation is
how long this “short-term” can actually be. In general, the time horizon of in-
terest depends on the questions that people have. However, assuming that a
business process owner has a short-term simulation tool at hand, one also needs
to consider the delay of decisions, or the delay of the realization of decisions,
which has an impact on the estimated values in the predicted interval.

7.3 Viewing Real and Simulated Processes in a Unified Manner

Both simulation tools and management information systems (e.g., BI tools)
present information about processes. It is remarkable that, although both
are typically used to analyze the same process, the results are presented
in completely different ways using completely different tools. This may be
explained by the fact that for a simulated process different data is available
than for the real-world process. However, the emergence of process mining

23

techniques allows for a unification of both views. Process mining can be used to
extract much more detailed and dynamic data from processes than traditional
data warehousing and business intelligence tools. Moreover, it is easy to extend
simulation tools with the ability to record event data similar to the real-life
process. Hence, process mining can be used to view both simulated and real
processes. As a result, it is easier to both compare and to interpret ‘what-if’
scenarios. Finally—while a detailed evaluation of the generated simulation
models is beyond the scope of this paper—a unified view of real-life logs and
simulation logs enables the validation of the simulation model by re-analyzing
the simulation logs in a ‘second pass’ [18]. This way, we can ensure that
the ‘as-is’ situation is captured appropriately by the simulation model (by
comparing process run times, availabilities, etc.) before starting to analyze
‘what-if’ scenarios.

Acknowledgements. This research was supported by the IOP program of the
Dutch Ministry of Economic Affairs and by Australian Research Council grant
DP0773012. The authors would like to especially thank Michael Adams, Eric
Verbeek, Ronny Mans, and also Christian Günther, Minseok Song, Lindsay Brad-
ford, and Chun Ouyang plus the code review team for their valuable support in
implementing the approach for YAWL and ProM. We also would like to thank
Marlon Dumas for sharing his valuable insights during the many discussions we
had about this topic.

References

1. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, Berlin, 2007.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

3. W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process
Simulation: How to get it right? BPM Center Report BPM-08-07, BPMcenter.org,
2008.

4. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

5. R. Ardhaldjian and M. Fahner. Using simulation in the business process reengi-
neering effort. Industrial engineering, pages 60–61, July 1994.

6. J.A. Buzacott. Commonalities in Reengineered Business Processes: Models and
Issues. Management Science, 42(5):768–782, 1996.

7. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

8. C. Hall and P. Harmon. A Detailed Analysis of Enterprise Architecture, Process
Modeling, and Simulation Tools. Technical report 2.0, BPTrends, September 2006.

24

9. M. Jansen-Vullers and M. Netjes. Business Process Simulation – A Tool Survey.
In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, Aarhus, Denmark, October 2006.

10. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools
for Modelling and Validation of Concurrent Systems. International Journal on
Software Tools for Technology Transfer, 9(3-4):213–254, 2007.

11. D.W. Kelton, R. Sadowski, and D. Sturrock. Simulation with Arena. McGraw-Hill,
New York, 2003.

12. J. Kleijnen and W. van Groenendaal. Simulation: A Statistical Perspective. John
Wiley and Sons, New York, 1992.

13. M. Laugna and J. Marklund. Business Process Modeling, Simulation, and Design.
Prentice Hall, Upper Saddle River, New Jersey, 2005.

14. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

15. H. Reijers. Design and Control of Workflow Processes: Business Process Manage-
ment for the Service Industry, volume 2617 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2003.

16. H.A. Reijers and W.M.P. van der Aalst. Short-Term Simulation: Bridging the Gap
between Operational Control and Strategic Decision Making. In M.H. Hamza,
editor, Proceedings of the IASTED International Conference on Modelling and
Simulation, pages 417–421. IASTED/Acta Press, Anaheim, USA, 1999.

17. S.M. Ross. A Course in Simulation. Macmillan, New York, 1990.
18. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation

Models. Accepted for publication in Information Systems (pre-version available as
BETA Working Paper, WP 223).

19. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Col-
ored Petri Nets From Event Logs. International Journal on Software Tools for
Technology Transfer, 10(1):57–74, 2008.

20. A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge.
Workflow Simulation for Operational Decision Support Using Design, Historic and
State Information. In M. Dumas, M. Reichert, and M.-C. Shan, editors, BPM
2008, volume 5240 of Lecture Notes in Computer Science, pages 196–211. Springer-
Verlag, Berlin, 2008.

21. A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge.
Workflow Simulation for Operational Decision Support using YAWL and ProM.
BPM Center Report BPM-08-04, BPMcenter.org, 2008.

22. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag, Berlin, Heidelberg, 2007.

23. M.T. Wynn, M. Dumas, C.J. Fidge, A.H.M. ter Hofstede, and W.M.P. van der
Aalst. Business Process Simulation for Operational Decision Support. In A.H.M.
ter Hofstede, B. Benatallah, and H.-Y. Paik, editors, BPM 2007 Workshops, volume
4928 of Lecture Notes in Computer Science, pages 66–77. Springer-Verlag, 2008.

25

