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Abstract. Process mining allows for the automated discovery of process
models from event logs. These models provide insights and enable vari-
ous types of model-based analysis. However, in many situations already
some normative process model is given, and the goal is not to discover
a model, but to check its conformance. The process mining framework
ProM provides a conformance checker able to investigate and quantify
deviations between the real process (as recorded in the event log) and
the modeled process. The conformance checker is one of the few tools
available today that is able support regulatory compliance, i.e., ensuring
that organizations and people take steps to comply with relevant laws,
regulations, and procedures. In this paper, we report on a case study
where the ProM framework has been applied to the test processes of
ASML (the leading manufacturer of wafer scanners in the world). In
this case study, we focus on the conformance aspect and compare the
test process as it is really executed to the idealized reference model that
ASML is using to instruct their test teams. This revealed that the real
process is much more complicated than the idealized reference process.
Moreover, we were able to suggest concrete improvement actions for the
test process at ASML.
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1 Introduction

Corporate scandals have triggered an increased interest in corporate governance,
risk management, and regulatory compliance. As a result new regulations such
as the Sarbanes-Oxley Act, Basel II, HIPAA, etc. were introduced. Some of the
key elements are: accountability, auditability, privacy, documentation, policy,
and manageability of information. In this paper, we focus on compliance. In
particular, we focus on the question “Do organizations and people do what is

documented in process models?”. To address this question we conduct a case
study where we apply ProM’s conformance checker [22] to one of the processes
of ASML.

To position our work, we first introduce process mining. The basic idea of
process mining is to discover, monitor and improve real processes by extracting
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knowledge from event logs. Today many of the activities occurring in processes
are either supported or monitored by information systems. Consider for example
ERP, WFM, CRM, SCM, and PDM systems to support a wide variety of business
processes while recording well-structured and detailed event logs. However, also
high-tech devices such as X-ray machines, web services, etc. record events. All of
these applications have in common that there is a notion of a process and that the

occurrences of activities are recorded in so-called event logs. Assuming that we
are able to log events, a wide range of process mining techniques comes into reach.
The basic idea of process mining is to learn from observed executions of a process.
Process mining can be used to (1) discover new models (e.g., constructing a
Petri net that is able to reproduce the observed behavior), (2) to check the
conformance of a model by checking whether the modeled behavior matches the
observed behavior, and (3) to extend an existing model by projecting information
extracted from the logs onto some initial model (e.g., show bottlenecks in a
process model by analyzing the event log). All three types of analysis have in
common that they assume the existence of some event log.
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Fig. 1. Based on the event logs of the wafer scanners, three classes of process mining
techniques are possible: (1) “discovery”, (2) “conformance”, and (3) “extension”

In this paper, we focus on conformance checking and apply ProM’s confor-

mance checker [22] to the test process of ASML. ASML is the world’s leading
manufacturer of chip-making equipment and a key supplier to the chip industry.
ASML designs, develops, integrates and services advanced systems to produce
semiconductors, e.g., wafer scanners that print the chips. There is an ongoing
effort to reduce the line width on silicon wafer to enhance the performance of
the manufactured semi-conductors. Every new generation of wafer scanners is
balancing on the border of what is technologically possible. As a result, the test-
ing of manufactured wafer scanners is an important but also time-consuming
process. Every wafer scanner is tested in the factory of ASML. When it passes
all tests, the wafer scanner is disassembled and shipped to the customer where
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the system is re-assembled. At the customer’s site, the wafer scanner is tested
again. Clearly, testing is a time-consuming process and takes several weeks at
both sites. Since time-to-market is very important, ASML is involved in an on-
going effort to reduce the test period. To assist ASML in these efforts, we applied
process mining techniques to their test processes. Rather than focusing on fault
detection, the subject of study is here the test process itself.

At any point in time, ASML’s wafer scanners record events that can easily be
distributed over the internet. Hence, any event that takes place during the test
process can be recorded easily. The availability of these event logs and the desire
of ASML to improve the testing process triggered the case study reported in
[24]. Using process discovery, we tried to answer the question “How are the tests
actually executed?”, i.e., based on the event logs we automatically constructed
process models showing the ordering and frequency of test activities. In this pa-
per, we then compared them to the idealized reference model. This revealed that
the real process is much more complicated than the idealized reference model
that ASML is using to instruct the test teams. The reference model shows a
rather structured process while in reality the testing process requires much more
flexibility. Using conformance checking techniques, we investigated this further
by answering the question “How compliant are the actual test executions to the
reference process?”. Through conformance checking we were able to quantify
and pinpoint the deviations of the real test process from the idealized reference
model. For the case study we used our ProM framework3. ProM is open source
and uses a plug-able architecture, e.g., developers can add new process mining
techniques by adding plug-ins without spending any efforts on the loading and
filtering of event logs and the visualization of the resulting models [1]. Version
5.0 of ProM provides 230 plug-ins. For example, there are more than 15 plug-ins
to discover process models from event logs.

The remainder of this paper is organized as follows. Section 2 reviews related
work both in process mining and the test process optimization domains. Next,
the context of the case study is described in more detail in Section 3. Section 4
presents the results of this study, and concrete improvement actions for the
ASML test process are proposed in Section 5. Section 6 concludes the paper.

2 Related Work

Since the mid-nineties several groups have been working on techniques for pro-
cess mining [3, 4, 10], i.e., discovering process models based on observed events.
In [2] an overview is given of the early work in this domain.

The paper builds on the conformance checking techniques presented in [22].
These techniques are inspired by the fitness function used in genetic process
mining [20]. Also related is the work by Cook [9, 8] where the event streams of
a process model and a log are compared based on string distance metrics.

Process mining can be seen in the broader context of Business Process Intel-
ligence (BPI) and Business Activity Monitoring (BAM). In [14, 25] a BPI toolset

3 ProM can be freely downloaded from http://prom.sf.net/.
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on top of HP’s Process Manager is described. The BPI toolset includes a so-called
“BPI Process Mining Engine”. In [21] Zur Mühlen describes the PISA tool which
can be used to extract performance metrics from workflow logs. Similar diag-
nostics are provided by the ARIS Process Performance Manager (PPM) [18].
It should be noted that BPI tools typically do not allow for process discovery
and conformance checking, and offer relatively simple performance analysis tools
that depend on a correct a-priori process model [17]. In [5] it is suggested that
database technology can play an important role in assisting compliance with the
internal control provisions of SOX.

Most of the work on conformance checking has been done on model anal-
ysis without taking into account event logs. For example, in [13] it is checked
whether business processes are compliant with business contracts, and in [12] a
non-monotonic deontic logic of violations is used to detect all obligations that
will not necessarily be fulfilled by executing the model. In [19], the authors in-
troduce OPAL, a compliance-checking framework, and related tools, including a
static method to check business process models against compliance rules. In [11]
semantically annotated process models and formal representations of compliance
requirements are compared for auditing BPMN process models for compliance
with legislative/regulatory requirements, and for exploring alternative modifi-
cations to restore compliance in the event that the processes are found to be
non-compliant.

The conformance checking techniques used in this paper are generic and can
be applied to various types of processes. Hence, it can be used to analyze the logs
of ERP, WFM, CRM, SCM, and PDM systems. However, in this paper we apply
our techniques to a particular type of process: testing ASML’s wafer scanners. See
[7, 6] for more information on testing and test design in this particular setting.

The case study reported in [24] already explores the applicability of process
mining to improve ASML’s test process, and, for example, analyzes idle times to
shorten the time-to-market. In this paper, we investigate the differences between
the actual, executed test sequences and the planned test sequences in more detail.

3 Case Study

This section introduces the case study where process mining was applied to the
test process of ASML’s wafer scanners. After describing the test process of a
wafer scanner in more detail (Section 3.1), we look at the log data recorded
during these tests (Section 3.2). The event logs serve as input for our process
mining techniques and the results of their analysis are described in Section 4.

3.1 The Test Process

The whole test process of a waver scanner at ASML consists of three phases: (1)
the calibration phase, (2) the test phase (the actual testing), and (3) the final
qualification phase. The whole process takes several weeks. When finished, the
wafer scanner is partly taken apart and shipped to a customer. A part of the
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calibration and test phase is repeated at the customer site, after re-assembling
the wafer scanner.

Why is this test process so important for ASML? ASML operates in a market
where the time-to-market of system enhancements and the time-to-market of
new system types is critical. Wafer scanners are continuously enhanced. As a
result, the number of manufactured wafer scanners of a single type is typically
less than 50. With each new type, parts of the calibration and test phase are
adjusted. On average five different system types are manufactured in parallel.
The short time-to-market, the constant innovation, and the high value of wafer
scanners make testing very important. Spending too much time on testing will
result in high inventory costs and lost sales. However, inadequate tests will result
in systems which are malfunctioning.

Fig. 2. Example sequence of three job steps with a synchronization point

Sets of calibration and test actions are grouped into so-called job steps. These
job steps are executed according to a certain sequence. Only large changes in the
system design result in changes in the job step sequence, so the job step sequence
can be considered a fixed sequence across different systems. Some of these job-
steps can be executed independently of each other. An example sequence of three
job steps is depicted in Figure 2. Note that in ASML such structures are referred
to as “sequences”. However, strictly speaking these are process models rather
than sequences. The synchronization point sync enforces that both job step A
and job step B must be finished before job step C can start. Each calibration
action or test case can fail. Some of the causes for test failure can require a
replacement of a faulty hardware component. The duration of this replacement
can take up to hours or longer. If such a failing test is in the example job step
A, then the independent job step B can be started to ensure maximal progress.
When the replacement hardware becomes available, either job step B is finished
first and then job step A is finished, or the other way around. Job step C is
started when job step A and B are both finished. Note that a failure in a test
case in job step C results in no activity on the system (idle time) until the
malfunctioning part of system is fixed and testing can continue.
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Some of the causes for a failure can be fixed immediately. For example, some
parameters in the system can be out of specification. This measurement infor-
mation can now be used to adopt the control set-points in the system. After a
second measurement, the parameters can be within specification and the test
passes. Most of the software which executes the tests is constructed such that
this fast-fix loop is automated. Testing, calibration and retesting is performed
in a single test. Finally, a change in low-level machine parameters, because of
a hardware replacement, can cause a re-execution of a previous job-step. For
instance, the profile of some of the mirrors in a wafer scanner are measured and
stored in X,Y and Z directions. This profile information is used in all positioning
calibrations, such that the errors caused by the non-flat mirrors are minimized.
Replacing these mirrors results in a new profile. For this reason, a large set of job
steps needs to be redone if a faulty mirror is replaced in one of the last job steps
in the sequence. In summary, job steps are executed according to a fixed sequence
for a set of machine types. The sequence allows variation of the detailed tests
within the limits of the synchronization points. The actual execution of tests
results in failing test cases, which can result in a lengthy re-test of parts of the
sequence depending on the failure at hand. For ASML, the goal is to minimize
the waiting time for a hardware fix (idle time) and to reduce the re-execution
of parts of the job-step sequence. This goal could be easily met by testing all
components and building blocks thoroughly before and during system assembly.
However, the increase in test effort would result in an increase of the total test
duration and therefore an increase in time-to-market. This is the main reason
that testing everything thoroughly beforehand is not considered a solution, so
the main goal is a reduction of the duration of the test process and not cutting
costs.

3.2 Log Data and Conversion

Each wafer scanner in the ASML factory produces a log of the software tests
which are executed. The manual assembly and calibration actions are not logged
and appear as idle time in this log. The wafer scanner is calibrated and tested
using calibration and performance software, indicated in the logging as a four-
letter code. The logging contains the start and stop moment of each test. The
idle time, i.e., the time between stop of the previous test and the start of the next
test, is not specified in detail. This idle time has a number of causes, ranging
from inexperienced operators reading the procedures, the end of the automated
test queue during the night to diagnosing a problem, or waiting for additional
parts. Some parts of the test sequence are executed in an automated fashion.
The operator starts a test queue which contains a set of test cases which are
executed in a sequence. This test queue can also contain part of the recovery
and retry sequence for certain failing test cases. The recovery or retry tests are
executed depending on the outcome of a test in the queue.

An example fragment of the test log of one of the wafer scanners is depicted
in Figure 3(a). Each line corresponds to the execution of one test. The number
at the beginning of the line identifies the machine (i.e., the wafer scanner) that is
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(a) Fragment of the original log 
data. Each line corresponds to 
a test execution with start and 
end time

(b) Log fragment in MXML 
format. A separate audit trail 
entry is created for the start 
and the end of each test

1596,31-01-2006 17:33:13,31-01-2006 17:33:39,POLA
1596,31-01-2006 17:33:50,31-01-2006 17:34:46,OSWL
1596,31-01-2006 17:34:48,31-01-2006 17:35:10,OSSP
1596,31-01-2006 17:36:18,31-01-2006 17:36:49,AHZI
1596,31-01-2006 17:42:18,31-01-2006 17:43:25,DSNA
1596,31-01-2006 17:43:39,31-01-2006 17:44:56,AHZI
1596,31-01-2006 17:44:57,31-01-2006 17:59:10,SVEI
1596,01-02-2006 07:15:37,01-02-2006 07:33:25,SVEI
1596,01-02-2006 07:35:00,01-02-2006 07:53:24,SCEI
1596,01-02-2006 07:53:25,01-02-2006 07:54:58,YHLH
1596,01-02-2006 07:54:59,01-02-2006 07:57:41,AHHJ
1596,01-02-2006 07:57:42,01-02-2006 08:04:40,AHCA

<ProcessInstance id="1596" description="Test instance 1596">
  ...
<AuditTrailEntry>
<WorkflowModelElement>OSWL</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2006-01-31T17:33:50.000+01:00</Timestamp>
<Originator>unknown</Originator>

  </AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>OSWL</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-01-31T17:34:46.000+01:00</Timestamp>
<Originator>unknown</Originator>

</AuditTrailEntry>
  ...
</ProcessInstance>

Fig. 3. Converting the log into the MXML format

tested. Afterwards the start time, the completion time, and the four-letter code
for the executed test are recorded.4

To analyze the log data with ProM we had to convert them into the MXML5

format. This was realized by a custom-built converter plug-in for the ProM import
framework6. ProMimport facilitates log transformation tasks and provides con-
verter plug-ins for a wide variety of systems to the XML format used by ProM
[15]. In the MXML format, a log is composed of process instances (i.e., cases)
and within each instance there are audit trail entries (i.e., events) with various
attributes. These attributes refer to, for example, data fields, timestamps, or
transactional information (i.e., whether the activity was scheduled, started, or
completed). Depending on the kind of information that is in the log, we may
be able to answer different questions about the process. Figure 3(b) depicts the
MXML log fragment for the highlighted test from Figure 3(a). One can see that
the start and the completion of the test are captured by separate audit trail en-
tries (including the corresponding timestamps), and that the enclosing process
instance (i.e., the case) corresponds to the tested machine.

Note that the logging takes place on the test-code level, and that there is
no reference to the job step in whose context the test is performed. However, in
addition to the log data and the job step reference sequence, ASML also provided
us with an additional document specifying which test codes should be executed
in which job step. In this mapping, there are a number of tests that appear in
more than one job step (i.e., are executed in different phases of the test process).

4 Conformance Analysis Results

In the following, we provide a summary of the results from analyzing the test
process execution logs. (More details about the specific process mining tech-
niques and used ProM plug-ins can be found in our technical report [23].) In
Section 5, these results are then evaluated from an ASML perspective and con-
crete improvement actions are proposed.

In most domains, we usually see a large number of relatively short log traces,
i.e., many process instances with just a few events. For example, when looking

4 Note that both the actual machine numbers and the four-letter test codes have been
anonymized for confidentiality reasons.

5 The XML schema definition is available at http://www.processmining.org/.
6 ProMimport can be freely downloaded from http://promimport.sf.net/.



8

at processes related to patient flows, insurance claims, traffic fines, etc., then
there are typically thousands of cases each containing less than 50 events. When
we examine the log, it becomes clear that this test process has very different
characteristics, since there are just a few cases (i.e., machines) but for each
machine there may be thousands of log events. In the initial data set we faced
process instances that contained more than 50000 log events (each indicating
either the start or the completion of a specific test). As mentioned earlier, the
test process of a wafer scanner lasts for several weeks and is partly repeated
after the machine has been re-assembled at the customer, thus explaining the
huge number of events per machine. From a larger set of machines we selected 24
machines that fulfilled our criteria: (1) the test process needed to be completed,
(2) only include the test period on the ASML (and not the customer) site, (3)
belong to the same family (recall that typically not more than 50 wafer scanners
of the same type are produced), and (4) not be a pilot system (as a pilot system
is used for development testing and not for manufacturing qualification). These
24 cases comprise 154966 log events in total, and the number of log events per
process instance (i.e., the length of the executed test sequence) ranges from
2820 to 16250. Finally, we can see that there are 720 different types of audit
trail entries in the log, which corresponds to 360 different four-letter test codes
as each test is captured by both a ‘start’ and ‘complete’ event.

Furthermore, we are interested in analyzing the job steps, i.e., the test phases
that can be associated to the reference sequence. To be able to analyze the log
on the job-step level, we first have to apply certain filtering techniques. Recall
that there is no information about job steps recorded in the log, but that we
have obtained a document specifying which tests need to be executed for each
job step. In this mapping, there are 184 out of the 360 detected test codes
associated to a job step. This means that 176 of the four-letter codes cannot be
connected to a specific job step (in the remainder of this paper we call them
“unmapped” codes). They mainly correspond to additional (more specific) tests
that are executed as part of the diagnosis process after a failure. At the same
time, there are 49 out of the 184 mapped test codes that are associated to more
than one job step, i.e., they occur in different phases of the test process (in the
remainder we call them “multiple” codes). The rest of the four-letter codes (i.e.,
135 test codes) can be unambiguously mapped onto a specific job step.

In Figure 4 we show as an example how a part of the log fragment from
Figure 3 is transferred to the job-step level7 using a combination of multiple log
filters. As a first step, we mapped each of the unambiguous test codes onto their
corresponding job step identifier, or the ‘multiple’ or ‘unmapped’ category if this
was not possible. For example, Figure 4 shows that the tests ‘OSWL’, ‘OSSP’,
and ‘AHZI’ are associated to the job step ‘e’, while the test ‘DSNA’ cannot be
mapped to any job step (i.e., ‘unmapped’). As a next step, we abstracted from
all events that occurred between the first and the last event belonging to the
same job step in a row. For example, in Figure 4 only the beginning of the first

7 Note that, again, the actual job step names have been replaced by simple letter codes
for confidentiality reasons.
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Fig. 4. A combination of filtering techniques was applied to bring the log data from
the test-code level to the job-step level

occurrence of a test in job step ‘e’ (i.e., test ‘OSWL’) and the end of the last
occurrence in job step ‘e’ (i.e., test ‘AHZI’) is retained. Note that using this
mapping, now also idle times within one job step are covered by the overall job-
step duration (for example, the idle time between the completion of test ‘OSWL’
and the start of test ‘OSSP’). As a result, only changes between job steps become
visible in the log, which we will use in the following for process discovery on the
job-step level.

We now want to apply process discovery techniques to gain insight into the
actual flow of the test process to find out where re-executions were often nec-
essary. Process discovery algorithms automatically construct a process model
based on the behavior that was observed in the event log. While it is interesting
to visualize dependencies on the test-code level, we also want to analyze the
process on the job-step level to compare the discovered model to the existing
reference sequence. The translated reference sequence is depicted in Figure 5(a),
and it reflects the normal flow of the test sequence if nothing goes wrong (i.e.,
if no test fails). We already know that in reality parts of the test sequence need
to be repeated in certain occasions. This also becomes visible in the discovered
model based on the log filtered for job step executions (cf. Figure 4), which is
depicted in Figure 5(b). Note that the discovered process model allows for con-
siderably more paths than the reference model. Figure 6(a), shows the framed
part of the mining result in more detail, where one can easily recognize the repet-
itive nature of the real (as opposed to the ideal, i.e., reference) test process. Note
that the numbers next to the arcs show the importance of the different paths
(the lower number indicates how often this connection was observed in the log,
while the upper number indicates the heuristic strength of the corresponding
connection).

So far, we have seen that it is possible to automatically discover models
which represent the behavior that was observed in the event log. But how well
is the actual process represented by these models? And to which extent does
the observed process comply with the behavior specified in the reference model?
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(a) Reference model (b) Discovered process model

Fig. 5. Translated reference sequence and discovered process model on job-step level

Where in the process do most of the deviations occur? These are questions that
are addressed by conformance techniques. In the following we use conformance
checking [22] to analyze the conformance of both the reference model and the
discovered model on the job-step level (cf. Figure 5) with respect to our test log.

Next to visualizing the discrepancies between an event log and a given process
model, conformance checking can also be used to measure the degree of fitness

based on the amount of missing and remaining tokens during log replay [22],
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Table 1. Fitness values (f) indicating the degree of compliance for each of the test
instances with respect to both the reference model and a discovered process model.
Clearly, the discovered model fits much better than the reference model

Machine ID Reference Model Discovered Model Job-step Events Test-code Events

0431 f = 0.309 f = 0.751 238 6504
0278 f = 0.385 f = 0.828 270 6136
0185 f = 0.376 f = 0.717 206 5710
0466 f = 0.356 f = 0.745 422 8162
0391 f = 0.384 f = 0.727 159 3902
1722 f = 0.334 f = 0.760 301 6270
1694 f = 0.397 f = 0.782 526 10408
1256 f = 0.410 f = 0.744 222 5722
1343 f = 0.399 f = 0.701 130 5360
1981 f = 0.357 f = 0.667 551 12670
1754 f = 0.402 f = 0.776 192 16250
1662 f = 0.414 f = 0.769 182 3830
1453 f = 0.405 f = 0.596 164 6410
1298 f = 0.378 f = 0.424 170 3852
1876 f = 0.356 f = 0.753 150 4538
1656 f = 0.368 f = 0.656 126 2820
1099 f = 0.424 f = 0.672 193 3946
1919 f = 0.337 f = 0.727 205 5048
1348 f = 0.410 f = 0.638 184 5240
1596 f = 0.410 f = 0.581 224 5784
1164 f = 0.376 f = 0.672 499 10860
1032 f = 0.324 f = 0.706 301 6896
1794 f = 0.394 f = 0.734 114 2972
1160 f = 0.405 f = 0.770 186 5676

Average f = 0.375 f = 0.711 246.458 6456.917

i.e., it quantifies to which degree the log traces comply with a given process
model. This fitness analysis clearly indicates that the discovered model is much
more representative for the observed test process than the reference model (cf.
fitness values in Table 1). Table 1 contains the fitness values for each of the test
instances with respect to both the reference sequence and the discovered model
on the job-step level as depicted in Figure 5, whereas possible values range from
0.0 (corresponds to the case where the model and the log do not fit at all) to
1.0 (i.e., model and log fit to 100%). Furthermore, it shows how many job step
executions were contained in the filtered log for each machine (column before the
last column in Table 1), and how many test code events were originally recorded
for this machine (last column in Table 1). Finally, in the bottom row average
values are given for all the 24 machines. We can see that, although the discovered
process model does not completely “match” the behavior observed in the log,
it clearly fits much better than the reference sequence. This is not surprising
as we already know that—in contrast to the discovered model—the reference
model does not capture the possible repetitions in the process at all, but it
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describes the ideal flow of the process if nothing goes wrong. So, the discovered
model is a much better representation of the test process as it took place, which
demonstrates that process mining can provide insight into how processes are
really executed.

5 Evaluation From ASML Perspective

To identify concrete improvement suggestions, we evaluated the presented pro-
cess mining results from an ASML perspective. For this, the order of job steps
was analyzed. The job-step order is the sequence in which job steps are executed
in the factory. Some variation is allowed, but not too much. We investigated
whether—according to the discovered model as in Figure 5—the test process
followed the reference process (including the allowed variations).

When we investigated whether the real process followed the reference pro-
cess, considering the allowed variations, we obtained three types of results: (1) job
steps that are actually executed on a different place in the reference sequence
(i.e., deviations from the process model shown in Figure 5(a)), (2) groups of
highly connected job steps, and (3) job steps that are not in the reference se-
quence but in the test log. In the following, we describe them in more detail.

(1) It appeared that job step ‘i’ was positioned in 81% of the cases just after
the ‘zero’ job step, i.e., at the beginning of the discovered process model, while—
according to the reference sequence—it should be executed in the middle of the
test process. While looking for possible root causes for this difference, we realized
that a newer version of the reference sequence was released in the end of 2006.
The main change in the new reference sequence was that job step ‘i’ and ‘j’ were
positioned just after the ‘zero’ job step at the beginning of the test sequence.
The analyzed systems were build up according to the new sequence for job step
‘i’. Interestingly, job step ‘j’ was still found in the original position. If job step
‘j’ is really to be executed in the beginning of the sequence, then active steering
should take place to align the test execution. Note that we also re-checked the
conformance of the test log with respect to the updated reference sequence, but
the fitness values did not change significantly (on average f ≈ 0.45).

(2) Two highly connected groups of job steps are included in the discovered
process model. The first group is depicted in Figure 6(a), a strong connection
between job step ‘f’ and a number of other job steps: ‘e’, ‘b’, ‘g’ and ‘o’. These
connections are bi-directional between ‘f’ and the other job steps. A reason for
this effect could be that any execution of the job steps ‘e’, ‘b’, ‘g’ and ‘o’ results in
a re-execution of job step ‘f’. Job step ‘f’ is a relatively short job step which can
be executed automatically. As a result, the entire test set is executed. Specific
parts of the test set in job step ‘f’ could be faster when job step ‘f’ needs to
be executed after job step ‘e’, ‘b’, ‘g’ and ‘o’ are executed. In general, speeding
up job step ‘f’ is beneficial because it is executed multiple times in the entire
sequence.

The second highly connected group is centered around job steps ‘r’, ‘s’, ‘t’,
and ‘j’. The mined process showed the following pattern (see Figure 6(b)). Job
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(a) Framed area in Figure 5(b) (b) Other group

Fig. 6. Highly connected groups of job steps, which have been identified based on the
process mining results presented in Section 4

step ‘r’ and ‘t’ are bi-directionally connected. Job steps ‘r’, ‘j’ and ‘t’ are illu-
mination steps, while job step ‘s’ is a non-illumination step. The root cause of
a failure of job step ‘t’ is solved by job step ‘r’. A re-execution of job step ‘r’
causes a re-execution of job step ‘s’ (and possibly ‘j’). An improvement proposal
would be to introduce a more thorough test in job step ‘r’ (i.e., add a similar
test to the one in job step ‘t’) which causes that, if the failure occurs, it already
occurs in job step ‘r’ and can be immediately fixed in job step ‘r’. This prevents
the re-execution of job step ‘s’ (and possibly ‘j’).

(3) One of the feedback loops revealed that job step ‘d’ is executed, although
it is not in the reference sequence. Job step ‘d’ is currently not investigated to
be improved to decrease the cycletime, because this job step is not supposed to
be executed. The process mining results revealed that job step ‘d’ is executed as
part of a recovery plan. Job step ‘d’ could be further investigated for cycle time
reduction.

The above analysis illustrates that process mining can be applied to check
the conformance of processes, i.e., deviations can be detected and analyzed.

6 Conclusion

Using a test process in ASML, we have illustrated the applicability of ProM’s
conformance checker. The case study clearly shows that, given an event log and a
process model as input, conformance checking can be used to detect deviations.
The severity of these deviations can be qualified and possible causes can be
analyzed. Hence, conformance checking is a useful tool in assessing regulatory
compliance.

The case study is a bit a-typical, i.e., regulatory compliance is often asso-
ciated with regulations such as the Sarbanes-Oxley Act, Basel II, and HIPAA.
These regulations focus on banks, insurance companies, governmental agencies,
hospitals, etc. However, ProM’s conformance checker is generic and applicable
to any notation that can be mapped onto Petri nets. Moreover, the case study
within ASML illustrates the trend that more and more devices are connected to
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the internet. Another example is the “CUSTOMerCARE Remote Services Net-
work” of Philips Healthcare (PH). This is a worldwide internet-based private
network that links PH equipment to remote service centers. Any event that oc-
curs within an X-ray machine (e.g., moving the table, setting the deflector, etc.)
is recorded and can be analyzed [16]. The logging capabilities of the machines of
PH illustrate the increasing availability of event data. The omnipresence of such
detailed logging will have dramatic effects on compliance. While today many
processes are not auditable because vital information is missing, it is clear that
much more audit data will be available in the near future.
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