
Designing a Workflow System using Coloured
Petri Nets???

Nick Russell1, Wil M.P. van der Aalst1,2 and Arthur H.M. ter Hofstede2

1Eindhoven University of Technology,
PO Box 513, 5600MB, Eindhoven, The Netherlands

{n.c.russell,w.m.p.v.d.aalst}@tue.nl
2Queensland University of Technology,
PO Box 2434, QLD, 4001, Australia

a.terhofstede@qut.edu.au

Abstract. Traditional workflow systems focus on providing support for
the control-flow perspective of a business process, with other aspects such
as data management and work distribution receiving markedly less at-
tention. A guide to desirable workflow characteristics is provided by the
well-known workflow patterns which are derived from a comprehensive
survey of contemporary tools and modelling formalisms. In this paper
we describe the approach taken to designing the newYAWL workflow
system, an offering that aims to provide comprehensive support for the
control-flow, data and resource perspectives based on the workflow pat-
terns. The semantics of the newYAWL workflow language are based on
Coloured Petri Nets thus facilitating the direct enactment and analy-
sis of processes described in terms of newYAWL language constructs.
As part of this discussion, we explain how the operational semantics for
each of the language elements are embodied in the newYAWL system
and indicate the facilities required to support them in an operational
environment. We also review the experiences associated with developing
a complete operational design for an offering of this scale using formal
techniques.

Keywords: newYAWL, workflow technology, workflow patterns, busi-
ness process management, coloured Petri nets

1 Introduction

There are a plethora of workflow systems on the market today providing organ-
isations with various forms of automated support for their business processes.
It is ironic however, that despite the rigour that workflow systems introduce
? An earlier version of this work was presented at PNDS’08, the International Work-

shop on Petri Nets and Distributed Systems [1].
?? This research is conducted in the context of the Patterns for Process-Aware Informa-

tion Systems (P4PAIS) project which is supported by the Netherlands Organisation
for Scientific Research (NWO).

into the conduct of the processes that they coordinate, they themselves do not
demonstrate the same rigour in the workflow languages that they enact. Indeed,
it is a salient fact that, almost without exception, workflow languages are defined
on an informal basis leaving their precise operation unclear to anyone other than
the system developers. An additional shortcoming of existing workflow solutions
is their focus on the control-flow aspects of business processes.

The YAWL Initiative sought to address the first of these issues. YAWL [2]
is an acronym for Yet Another Workflow Language. It provides a comprehen-
sive modelling language for business processes based on formal foundations. The
content of the YAWL language is an adaptation of Petri Nets informed by the
workflow patterns [3]. One of its major aims was to show that a relatively small
set of constructs could be used to directly support most of the workflow pat-
terns identified. It also sought to illustrate that they could coexist within a
common framework. In order to validate that the language was capable of direct
enactment, the YAWL System1 was developed, which serves as a reference im-
plementation of the language. Over time, the YAWL language and the YAWL
System have increasingly become synonymous and have garnered widespread
interest from both practitioners and the academic community alike2.

Initial versions of the YAWL System focussed on the control-flow perspec-
tive and provided a complete implementation of 19 of the original 20 patterns.
Subsequent releases incorporated limited support for selected data and resource
aspects of processes, however this effort was hampered by the lack of a com-
plete formal description of the requirements in these perspectives. Recent work
conducted as part of the Workflow Patterns Initiative has identified the core el-
ements in other process perspectives (data, resource, exception handling) and a
recent review [4] of the control-flow perspective has identified 23 additional pat-
terns which illustrate a number of commonly used control-flow constructs, many
of which YAWL is unable to provide direct support for, including the partial
join, transient and persistent triggers, iteration and recursion.

In an effort to manage the conceptual shortcomings of YAWL with respect
to the range of workflow patterns that have now been identified, a substantial
revision of the language — termed newYAWL is proposed — which aims to sup-
port the broadest range of the workflow patterns in the control-flow, data and
resource perspectives. newYAWL synthesises this work to provide a fully for-
malised workflow language based on a comprehensive view of a business process.
The validation of this proposal is to design (and ultimately build) the workflow
system that embodies the workflow language. An interesting consequence of for-
malising the operational semantics for the language constructs in newYAWL,
has been the establishment of the functional architecture for the system to be

1 See http://www.yawl-system.com for further details of the YAWL System and to
download the latest version of the software.

2 Hereafter in this paper, we refer to the collective group of YAWL offerings developed
to date — both the YAWL language as defined in [2] and also more recent YAWL
System implementations of the language based on the original definition (up to and
including release Beta 8.2) — as YAWL.

developed. This is based on a detailed consideration of the causal effects and data
interactions required to support each of the language constructs and their be-
haviour in a broader operational environment. This paper outlines the approach
taken to designing the newYAWL system. In this paper we not only describe
the design of newYAWL using Coloured Petri Nets, but also reflect on the use
of such a design approach from a software engineering standpoint.

The remainder of this paper proceeds as follows: Section 2 introduces the
YAWL language from a functional perspective. Section 3 presents newYAWL,
a significant extension to YAWL that encompasses the broad range of workflow
patterns which identify desirable workflow functionality that have recently been
identified. Section 4 describes the approach to designing a workflow system that
can enact business processes described in terms of the newYAWL language.
Section 5 overviews related work and Section 6 discusses the experiences of
designing a workflow system using formal methods and concludes the paper.

2 YAWL: Yet Another Workflow Language

YAWL has its genesis in the workflow patterns which aimed to delineate desir-
able constructs in the control-flow perspective of workflow processes. Hence the
initial version of the YAWL language focussed solely on control-flow aspects of
processes. It aimed to show that the patterns could be operationalised in an inte-
grated framework. Furthermore, it also aimed to show that this could be achieved
in the context of a formal framework, providing both a syntax and semantics
for language constructs to remove any potential for ambiguity or uncertainty in
their interpretation.

The formal foundation for YAWL is based on hierarchical Petri nets and
there is a striking similarity between the two graphical representations with tasks
taking the place of classical Petri net transitions and conditions representing the
various states between tasks in the same way that places typically serve as the
inputs and outputs to transitions in Petri nets. However Petri nets only serves
as a basis for the fundamental aspects of YAWL and it significantly extends its
capabilities in a variety of ways.

1. YAWL allows for tasks to be directly connected by an arc in the situation
where there would normally be a single condition between them (that was
not connected to any other tasks);

2. YAWL provides for direct representation of AND-split, AND-join, XOR-
split, XOR-join and OR-split constructs rather than requiring their explicit
modelling in terms of fundamental language constructs. In conjunction with
direct connections between tasks, this serves to significantly simplify process
models;

3. The notion of the (inclusive) OR-join, which is frequently described in pro-
cess modelling notations without any consideration of how it will actually be
enacted, is directly available as a modelling construct in YAWL. Moreover,
there is a complete formal treatment of its operationalisation described in
[5];

4. Task concurrency, which is not a consideration in many process modelling
formalisms, is directly represented via the notion of the multiple instance
task. This denotes a task (or subprocess) which executes multiple times in
parallel with some or all instances needing to be synchronised before the
thread of control can pass to subsequent tasks;

5. Cancellation of individual tasks, portions of a process or even an entire
process can be explicitly represented in YAWL process models through the
notion of a cancellation region. Cancellation regions are attached to a specific
task in a process and when it completes, any threads of control residing in
conditions within the cancellation region are removed and any executing
tasks within the cancellation region are terminated; and

6. A YAWL process model (whether it is the top-level net in a process or a
subprocess definition) has a single start and endpoint denoted by specific
input and output conditions. This provides a precise semantics for process
enablement and termination and allows a range of verification techniques to
be applied to YAWL process models.

XOR−join taskInput condition XOR−split task

OR−join task

AND−join taskAtomic task

Multiple instances
a composite task Cancellation region

Condition

Output condition Multiple instances
of an atomic task

OR−split task

AND−split task

Composite task

Fig. 1. YAWL symbology

The specific symbols used in a YAWL process are shown in Fig. 1. An ex-
ample of a complete YAWL model using many of these symbols is depicted in
Fig. 2. It denotes the sales fulfillment process for an ironmonger which sells and
manufactures specialist metal fittings. An instance of the process is triggered
when an order is received. This then initiates two distinct branches of activities
(as signified by the outgoing AND-split). The first of these focusses on the finan-
cial aspects of the order. The other triggers the tasks associated with the actual
assembly of the order for despatch, manufacturing and packing tasks. The first

branch involves a credit check. If the customer has sufficient funds, then their or-
der can be invoiced. It progresses to the despatch stage when the order handling
is complete. If there is insufficient credit, then a reminder is sent and there is a
waiting period for the required payment to be received from the customer. If it is
not received within 10 days, the order is cancelled (denoted by the timeout task
which is linked to a cancellation region which encompasses all tasks which might
be active in the process). The branch associated with order assembly involves a
series of tasks. First the order is prepared for picking. This is a composite task
involving a sequence of three distinct activities: reviewing the order contents,
producing a picking slip for items available from the warehouse and reviewing
the requirements for any parts that need to be specially cast. Having done this,
one or both of the picking and custom cast tasks are triggered via the OR-split
operator from the prepare picking task. The custom cast task is a multiple in-
stance task and a separate instance of it is triggered for each component that
requires manufacturing. Once all of the picking and custom cast tasks that were
initiated have been completed, the order is packed. After invoicing and packing
have been completed, the despatch task can run, followed by the archiving of the
order and completion of the case.

orderdespatch archive

payment
receive

reminder
sendtimeout

review
order

produce
picking

slip

review
casting

reqs

receive
order

prepare
picking

pick

pack

invoicecheck
credit

cast
custom

Fig. 2. Example of a YAWL process model: sales fulfillment

YAWL provides effective coverage of many commonly encountered control-
flow constructs. However, a recent review [4] of the control-flow perspective
identified a number of additional control-flow constructs that commonly arise
in business processes. Moreover, there is also the need to consider other aspects
of business processes, such as the requirements encountered in the data [6] and
resource [7] perspectives as delineated by the data and resource patterns. In the

next section, we introduce a comprehensive extension to the YAWL language
that addresses these issues.

3 newYAWL: Extending YAWL to Multiple Perspectives

newYAWL is a multi-perspective business process modelling and enactment lan-
guage founded on the workflow patterns. It provides a comprehensive and in-
tegrated formal description of the workflow patterns, which to date have only
partially been formalised. It has a complete abstract syntax which identifies the
characteristics of each of the language elements together with an executable se-
mantic model in the form of a series of Coloured Petri Nets which define the
runtime semantics of each of the language constructs. The following sections
provide an overview of the features of newYAWL in the control-flow, data and
resource perspectives.

3.1 Control-Flow Perspective

The control-flow perspective of newYAWL is based on the revised workflow
control-flow patterns [4] and serves to significantly extend the control-flow capa-
bilities of the current YAWL language [2]. It retains all of the existing language
elements in YAWL and they continue to perform the same functions. Several new
constructs have been added based on the full range of workflow patterns that
have now been identified. These are identified in Fig. 3. The specific capabilities
provided by each of them are as follows:

Disablement arc

#

#

task

Completion arcRepetitive task

Thread merge task

(while/repeat)

Partial−Join task

Persistent triggerThread split task
task

Transient trigger

Fig. 3. Additional control-flow constructs in newYAWL

– the Thread split and Thread merge constructs, allow the thread of control
to be split into multiple concurrent threads or several distinct threads to be
merged into a single thread of control respectively. The number of threads
being created/merged is specified for the construct in the design-time model.
Fig. 4(a) illustrates these constructs. After the make box task, twelve threads
of control are created ensuring that the fill bottle task runs 12 times before
the pack box task can run (merging these threads before it commences);

booked

fill
#

bottle

#
make

box
pack

box

deadline

(a) Thread split and merge

(d) Trigger and disablement arc

(c) Structured loop and completion region

(b) Partial join

1 box = 12 bottles

prepare
proc’gs

call for
papers

paper
accept

initiate

review
backup

backup
check

report

issue
review

test
full

recov’ry

book
flight

car
book

hotel
book

issue
tickets

cancel
booking

file

car

flight

flight
failure

hotel

hotel
failure

booked

booked

failure
car

n=12

1−of−3 join

n=12

repeat until
backups verified

Fig. 4. Examples of newYAWL control-flow constructs

– the Partial join (also known as the m-out-of-n join) allows a series of in-
coming branches to be merged such that the thread of control is passed to
the subsequent branch when m of the incoming n branches are enabled. The
number of active threads required for the partial join to fire is specified in
the design-time model. After firing, it resets (and can fire again) when all
incoming branches have been enabled. In Fig. 4(b), the cancel booking task
has a 1-out-of-3 join associated with it. If any of the incoming branches are
enabled, then the cancel booking task is enabled (and any preceding tasks
that are still executing in the associated cancellation region are withdrawn);

– the Structured loop (which supports while, repeat and combination loops)
allows a task (or a sequence of tasks in the form of a subprocess) to exe-
cute repeatedly based on conditional tests at the beginning and/or end of
each iteration. The loop is structured in form and it has a single entry and
exit point. The entry and/or exit conditions are specified in the design-time
process model. Fig. 4(c) illustrates a repeat loop for the check backup task
which executes repeatedly until all backups have been verified (i.e. it is a
post-tested loop);

– the Completion region supports the forced completion of tasks which it en-
compasses. In Fig. 4(c) the test full recovery task is forcibly completed once
(all iterations of) the check backup task has finished. This allows the issue
review report task to be immediately enabled;

– Persistent triggers and Transient triggers support the enablement of a task
being contingent on a trigger being received from the operating environment.
They are durable or transient in form respectively. Each trigger is associated

with a specific task and has a unique type so that incoming triggers can be
differentiated. These details are captured in the design-time process model.
Fig. 4(d) illustrates a persistent trigger (assumedly associated with some
form of alarm) which allows the deadline task to be enabled when it is
received. As this trigger is durable in form, it is retained for future use if it
is received before the thread of control arrives at the deadline task;

– the Disablement arc allows a dynamic multiple instance task to be prevented
from creating further instances but allows for each of the currently executing
instances to complete normally. Fig. 4(d) has a disablement arc associated
with the deadline task which prevents any further papers from being ac-
cepted once it has completed.

3.2 Data Perspective

Whilst the control-flow perspective has received considerable focus in many
workflow initiatives, the data perspective is often only minimally supported with
issues such as persistence, concurrency management and complex data manipu-
lation being outsourced to third party products. In an effort to characterise the
required range of data facilities in a workflow language, newYAWL incorporates
a series of features derived from the data patterns. These include:

– Support for a variety of distinct scopes to which data elements can be bound.
This allows the visibility and use of data elements to be restricted. The
range of data scopes recognised include: global (available to all elements of
all process instances), folder (available to the elements of process instances
to which the folder is currently assigned), case (available to all elements in a
given process instance), block (available to all elements of a specific process
or subprocess definition for a given process instance), scope (available to a
subset of the elements in a specific top-level process or subprocess definition
for a given process instance), task (available to a given instance of a task)
and multiple-instance (available to a specific instance of a multiple instance
task);

– Formal parameters for specifying how data elements are transferred between
process constructs (e.g. block to task, composite task to subprocess decom-
position, block to multiple instance task). These parameters take a function-
based approach to data transfer, thus providing the ability to support inline
formatting of data elements and setting of default values. Parameters can
be associated with tasks, blocks and processes;

– Link conditions for specifying conditions on outgoing arcs from OR-splits
and XOR-splits that allow the determination of whether these branches
should be activated;

– Preconditions and postconditions for tasks and processes. They are evaluated
at the enablement or completion of the task or process with which they are
associated. Unless they evaluate to true, the task or process instance with
which they are associated cannot commence or complete execution; and

– Locks which allow tasks to specify data elements that they require exclusive
access to (within a given process instance) in order to commence. Once these
data elements are available, the associated task instance retains a lock on
them until it has completed execution preventing any other task instances
from using them concurrently. The lock is relinquished once the task instance
completes.

review
order

produce
picking

slip

review
casting

reqs

payment
receivetimeout

reminder
send

prepare
picking

check
credit

invoice

invoice:

D

D pick

pack

despatch archive
order

receive
order

picking−slip:

customer:
order:

scope

case

order.total <
customer.avail−credit

case variables

cast

order.total >=
customer.avail−credit

precondition:
despatch + 14 days

order.items−to−pick > 0

order.items−to−make > 0
custom

Fig. 5. Data perspective of sales fulfillment process

Figure 5 illustrates the main aspects of the data perspective for the sales
fulfillment model (shown earlier in Fig. 2). The case variables customer, order
and picking-slip are used throughout the tasks in the model. They are record-
based in format and are passed on a reference basis between task instances. The
lock beside each variable name indicates that when it is passed to a task instance
an exclusive lock is applied to it whilst it is in use by that task instance to prevent
problems arising from concurrent usage. In contrast to the case variables, the
invoice variable is bound to a specific scope involving only three tasks and,
although also passed by reference, does not require a lock as it is only updated
by the first task in the scope and cannot be used concurrently by several tasks
in the scope. The credit check task has an XOR-split associated with it and the
(disjoint) conditions on outgoing branches are illustrated. Similarly, the prepare
picking task has an OR-split associated with it and the two outgoing conditions
are also shown although in this case, there is no requirement for them to be

disjoint since one or both outgoing branches can be enabled. For both split
constructs, the default branch is indicated with a D and this branch is enabled
if none of the conditions specified evaluate to true. The archive order task has
a precondition associated with it which ensures it can only commence 14 days
after the despatch task has completed. This is to allow for any returns or damage
claims that might arise during transport.

3.3 Resource Perspective

The resource perspective in newYAWL provides a variety of means of controlling
and optimising the way in which work is distributed to users and the manner
in which it is progressed through to ultimate completion. For each task, a spe-
cific interaction strategy can be specified which precisely describes the way in
which the work item will be communicated to the user, how their commitment
to executing it will be established and how the time of its commencement will
be determined. Similarly, a detailed routing strategy can be defined which deter-
mines the range of potential users that can undertake the work item. The routing
strategy can nominate the potential users in a variety of ways — they can be di-
rectly specified by name, in terms of roles that they perform or the decision as to
possible users can be deferred to runtime. There is also provision for determining
the range of potential users based on capabilities that individual users possess,
the organisational structure in which the process operates or the recorded ex-
ecution history. The routing strategy can be further refined through the use
of constraints that restrict the potential user population. Indicative constraints
may include: retain familiar (i.e. route to a user that undertook a previous work
item) and four eyes principle (i.e. route to a different user than one who under-
took a previous work item). Allocation directives can also be used where a single
user need to be selected from a group of potential users to whom a task can be
allocated. Candidate allocation directives include random allocation (route to a
user at random from the range of potential users), round robin allocation (route
to a user from the potential population on an equitable basis such that all users
receive a similar number of work items over time) and shortest queue allocation
(route the work item to the user with the shortest work queue).

newYAWL also supports two advanced operating modes that are designed
to expedite the throughput of work by imposing a defined protocol on the way
in which the user interacts with the system and work items are allocated to
them. These modes are: piled execution where all work items corresponding to a
given task are routed to the same user and chained execution where subsequent
work items in a process instance are routed to the same user once they have
completed a preceding work item. Finally, there is also provision for specifying a
range of user privileges, both at process and individual task level, that restrict or
augment the range of interactions that they can have with the workflow engine
when they are undertaking work items.

Figure 6 illustrates the resource perspective for the sales fulfillment process.
Each task is annotated with the basic distribution strategy (DS) and interaction
strategy (IS) for the task. The distribution strategy indicates which users and

check
credit

despatch archive
order

pack

pick

DS:C
IS:SSR

DS:A
IS:SSR

DS:W
IS:SSR

DS:M
IS:SSR

DS:W
IS:SSR

review
order

produce
picking

slip

review
casting

reqs

DS:W
IS:SSR

DS:W
IS:SSR

DS:M
IS:SSR

payment
receive

reminder
sendtimeout

DS:C
IS:SSS

DS:AUTO DS:C
IS:SSR

OD: manager or above

CD:exp with req casts

prepare
picking

DS:C
IS:SSR

receive
order

DS:A
IS:SSR

A: Administration
C: Accounts
M: Manufacturing
W: Warehouse

Routing directives

Allocation directives

custom cast

shortest queue:
pick

random: all other tasks

DS:W
IS:SSS

invoice

4 eyes

retain familiar

HD:least busy this week

cast
custom

Fig. 6. Resource perspective of sales fulfillment process

roles the task will be routed to at runtime. For the purposes of this model,
routing is either to specific roles (e.g. A is the role for Administration users) or
AUTO where tasks are done automatically without requiring resource support.
Extended routing directives apply to the invoice, pick and custom cast tasks.
These operate in conjunction with the basic distribution strategy and further
refine the specification of the user(s) to whom a task may be distributed. An
organisational distribution directive applies to the invoice task requiring it be
distributed to a member of the Accounts role that is at least a manager in
organisational seniority. A historical distribution directive applies to the pick
task requiring it be distributed to the member of the Warehouse role that has
been least busy in the past week. A capability distribution directive applies to the
custom cast task requiring it be distributed to the member of the Manufacturing
role that has experience with the required casts that need to be manufactured
for this order.

The interaction strategy indicates whether the system or an individual re-
source are responsible for triggering the offer, allocation and commencement of
a task. For this model, the SSR and SSS interaction strategies are utilised. The
former involves the system allocating the task to a specific user but the user
being able to nominate the time at which they commence it, the latter (also
known as “heads down processing”) involves the system allocating a task to a
user and indicating when they should start it. In both cases, allocation directives
are employed to select the individual user to whom a task should be allocated,

this is generally based on random selection of a user although the pick and cus-
tom cast tasks are allocated to user on the basis of who has the shortest current
work queue. Distribution constraints exist between various pairs of tasks in the
model. There is a four eyes constraint between the receive payment and send
reminder tasks indicating they should not be allocated to the same user in a
given case. There is also a retain familiar constraint between the review order
and produce picking slip tasks indicating that they should be undertaken by the
same user in a given case.

This section has focussed on providing a comprehensive introduction to the
various language elements that make up newYAWL from a conceptual stand-
point. In the next section, we discuss the design of a system that is able to
operationalise these constructs.

4 newYAWL: The System

A workflow system encompasses a number of distinct functions as illustrated by
the diagram in Fig. 7. Generally the business process that is to be automated
is captured in the form of a process model. A workflow management system is
responsible for coordinating the execution of instances of the process model. It
comprises a number of discrete components. First the workflow engine is re-
sponsible for managing the control-flow and data elements that are associated
with each process instance. As the thread of control flows through a process, it
results in the triggering of individual tasks that make up the process model. The
enabling of a task results in the creation of a new work item which needs to be
executed by a human resource. However, in order for this to occur, the identity
of one or more suitable resources needs to be determined. This activity is the
responsibility of the work item routing component and is based on the interpre-
tation of task routing information associated with each task in the context of
the current state of the process instance.

handler
worklist

workflow
engine

workflow
administrat’n system user

workflow administrator

work item
routing

worklist
management

workflow designer

process
model

workflow management system workflow client

organisational model

Fig. 7. Outline of major workflow system components

Once a set of suitable resources have been determined for a work item, it
is necessary to advise them of the pending work item. This function is under-
taken by the worklist management component which places the work item on
the worklist of each resource to whom it is to be routed. Thus the workflow man-
agement system retains a centralised view of the state of all work items and also
provides workflow administration facilities should it be necessary to intervene in
the normal conduct of this process. However despite the consistent centralised
view of pending work maintained by the workflow management system, there
is another layer of complexity in managing the actual distribution and conduct
of work items across the range of resources coordinated by the workflow sys-
tem. This stems from the fact that resources typically operate independently
of the workflow system. They retain a distinct view of the work that they are
conducting which is accessed via a worklist handler (which typically takes the
form of a software client running at a distinct location to that of the workflow
management system). The worklist handler operates on a client-server basis with
respect to the workflow management system. It is generally disconnected from
the workflow system, connecting only when it wishes to refresh its view of the
current work allocation or to advise the workflow system of a change of state in
the work items it has been allocated.

Clearly a workflow system involves a relatively complex set of software com-
ponents and interactions. In order to provide a precise definition of how a busi-
ness process should actually be enacted in an operational environment, it is nec-
essary not only to provide an operational semantics for the workflow language
that describes the business process, but also to define the overall architecture
and operation of the workflow system. This has been done for newYAWL us-
ing a series of interrelated Coloured Petri Nets developed using the CPN Tools
environment [8]. This approach to formalising the system offers the dual bene-
fits of establishing a precise definition of the operation of each of the language
constructs which comprise newYAWL and also providing a means of describ-
ing exactly how an instance of a newYAWL specification should be executed.
There are 55 distinct CPNs which make up the newYAWL system description.
These are illustrated in Fig. 8 along with the relationships between them. The
correspondence between the functional workflow system components identified
in Fig. 7 and each of the CPNs is also delineated. An indication of the com-
plexity of individual nets is illustrated by the p and t values included for each
of them which indicate the number of places and transitions that they contain.
Clearly it is not possible to discuss the operation of all of these nets in the con-
fines of this paper, however some of them (indicated by the shaded boxes and
cross-references) are discussed in further detail in subsequent sections. A com-
prehensive description of the 55 CPNs which comprise the newYAWL system
can be found in [9]. In the following sections, we will outline the operation of
three of these areas, illustrated by the shaded boxes in Fig. 8. These provide
an overview of the workflow engine, worklist management and worklist handler
components of the workflow system.

handler
worklist

select

start

abort

process
start request

suspension
resumption

route manual
allocation

completion
process process

deallocation

exit
work item

start work
item instance

complete work

reject reoffer route manual
offers

reallocation
reject

reallocation
route process manual

immediate start

reject offer

state oriented
reallocation

process
distribution

failure

autonomous
completion

route allocationroute offers

work item
routing

autonomous
initiation

process
selection
request

logonandlogoff complete

skipsuspend

deallocate halt instance

stateless
reallocate

manipulate
worklist allocate

reallocate
stateful

delegate

complete
work item

fail
work item

cancel
work item

interrupt
processing

end casestart caseadd
work item

process

management
data

work item
distribution

immediate
route

start
manual

distribution

route
delegation

route reoffers

terminate block
item instance &

p:40 t:4 p:11 t:4 p:12 t:1 p:10 t:1 p:8 t:1

p:15 t:3

p:6 t:3 p:7 t:4

p:7 t:2p:7 t:1

p:5 t:1 p:2 t:1 p:2 t:1

p:4 t:1

p:4 t:1 p:12 t:3

p:12 t:3

p:5 t:1p:3 t:1

p:2 t:1 p:7 t:6 p:2 t:1

p:5 t:1
start

immediate

p:39 t:33

p:20 t:2 p:8 t:1 p:7 t:2

p:4 t:2

p:5 t:3

p:4 t:1

p:4 t:1

p:4 t:1 p:3 t:1

p:10 t:1

p:4 t:1

p:4 t:1

p:5 t:1 p:11 t:1

p:5 t:1

p:3 t:1

p:2 t:1

p:8 t:1

p:3 t:1

p:4 t:1

p:5 t:2

p:6 t:1

p:21 t:1 p:3 t:1

p:2 t:1

p:2 t:1

worklist
handler

(see Figure 7)
p:25 t:15

workenter
work item

p:17 t:1

p:22 t:9

execution
(see Figure 5)

(see Figure 6)
distribution

p:12 t:3

management
intervention

p:13 t:9

workflow

routing
workitemworklist

workflow engine

administration

management

Fig. 8. newYAWL system CPN model hierarchy

4.1 Workflow Engine

Figure 9, which is the topmost net in the newYAWL model, provides a useful
summary of the operation of a workflow engine. The various aspects of control-
flow, data management and work distribution information which make up a static
newYAWL specification are encoded in the CPN model as tokens in individual
places. The top level view of the lifecycle of a process instance is indicated by the
transitions in this diagram connected by the thick black line. First a new pro-
cess instance is started, then there is a succession of enter→start→complete
→exit transitions which fire as individual task instances are enabled, the work
items associated with them are started and completed and the task instances are
finalised before triggering subsequent tasks in the process model. Each atomic
work item needs to be routed to a suitable resource for execution, an act which
occurs via the work distribution transition. This cycle repeats until the last
task instance in the process is completed. At this point, the process instance is
terminated via the end case transition. There is provision for data interchange
between the process instance and the environment via the data management
transition. Finally, where a process model supports task concurrency via mul-
tiple work item instances, there is provision for the dynamic addition of work
items via the add transition.

The major data items shared between the activities which facilitate the pro-
cess execution lifecycle are shown as shared places in this diagram. Not sur-
prisingly, this includes both static elements which describe characteristics of

��� ��������� �������

������	�
���	��������	�
���	�

����
��� �	��� ���	��� �
�������
��������� ����� �	���	����	���� ���	�����
������ ����� �������� ����� �	���	��

�� ���� �������� ���� �����������	��

�����	� �� ��	����������	��

�� ������ ������	
� ���

����������	
� ����������������
�� �����
��������������������� ��� �
	����
�� �� �����
�� ���� �
	�

� � �� ����	��

�� ��� � ����
����� ����!��� �������"��� ��� �#�	��� �!������

�������$�� �� ��$ ��%���

�
����
�� ��	 ��&�
��&�

�����	

�����

#� ����
��	���	��� ��'� ��	���
#� ����
����
� ��� ��	� �'�
�����
 ���� � ��

�'�����(������� �
���
��)� ��(��(� ��)� �����
���� ���

�� �������� ����

����������� ����� �	���	��

�������	�
���	�

��� �������

'�����
�

��
�� ������	
������������� ��
�	�����

�	�������	������

�������� �
� ������������ ������������� ������)� ��� ������� �������� ����� ����
��������� ����� �	���	����	���� ���	�����
���

*+�,�
������	� �� ��	��	�� ��	�� ���� ��� �����	�� ���� ��� ���� ��������

	���������	� ��

��� �
	� ��� ����!��� ���� � ��� ���!� ��	������ ��� ���!� ��	������ ��� ���!� ��	
Fig. 9. Overview of the newYAWL workflow engine

individual processes such as the flow relation, task details, variable declarations,
parameter mappings, preconditions, postconditions, scope mappings and the hi-
erarchy of process and subprocess definitions which make up an overall process
model, all of which remain unchanged during the execution of particular in-
stances of the process. It also includes dynamic elements which describe how an
individual process instance is being enacted at any given time. These elements
are commonly known as the state of a process instance and include items such as
the current marking of the place in the flow relation, variable instances and their
associated values, locks which restrict concurrent access to data elements, de-
tails of subprocesses currently being enacted, folder mappings (identifying shared
data folders assigned to a process instance) and the current execution state of
individual work items (e.g. enabled, started or completed).

There is relatively tight coupling between the places and transitions in Fig. 9,
illustrating the close integration that is necessary between the various aspects
of the control-flow and data perspectives in order to enact a process model. The
coupling between these places and the work distribution transition however is
much looser. There are no static aspects of the process that are shared with other
transitions in the model (i.e. the transitions underpinning work distribution)
and other than the places which serve to communicate work items being dis-
tributed to resources for execution (and being started, completed or cancelled),
the variable instances place is the only aspect of dynamic data that is shared
with the work distribution subprocess. This reflects the functional independence
of the workflow engine, work item routing and worklist management components.
The next section looks at the issue of worklist management in more detail.

4.2 Worklist Management

The main motivation for workflow systems is achieving more effective and con-
trolled distribution of work. Hence the actual distribution and management of
work items are of particular importance. The process of managing the distri-
bution of work items to resources is summarised by Fig. 10. It coordinates the
interaction between the workflow engine, work item routing, worklist handler
and workflow administration components.

The correspondences between these components and the transitions in Fig. 10
can be summarised as follows:

– the worklist management component is facilitated by the work item distrib-
ution transition, which handles the overall management of work items through
the distribution and execution process (note that it subsumes the work item
routing component);

– the worklist handler component corresponds to the worklist handler tran-
sition, which is the user-facing client software that advises users of work items
requiring execution and manages their interactions with the main work item
distribution transition in regard to committing to execute specific work
items, starting and completing them;

�������������� ����� �	�����������
 ���� ����� �	�

�����
�

� �
� ��������	�� ����
 ������
��
��
� ������ ��

���
� ���
�
��� �������� �
� �
 ���
� �

��

��

����� ������ ����
�� ����
� ���������� ����
�� ������
��
�� ���� ���
�	������� �	� ���

�� �����	�� ����
��� ���

� ������ ��	��� �	� ����
��� �����	 � �
 ����
��

� ��	������	�� ����
 �����
	 � ����	�� ����
 �����

��� ��	��� �	������ ����� �	����

���� ��

��� ��	��� �	����
���� � ���� ��	��� �	����
����� ����
�� �� ���
� ��	��� �	� ���

��� ��	��� �	�����
����	 � � ����
��

����� �� ��	��� �	� ������� �	 � � ��

��
���� �	����
�
���
 �	����

�� �� ���

�	����� �	����

��!����� ���
� ���������
� ���� �	� ���
� ���� ���	 � � ���

	 � � ������

����������
 ���� ����� �	� �	�� ����� �
� ����� �	��	��
 ����
� �
� ����� �	��	��
 ����
� �
� ����� �	� �	����
����� �� ��	 ����
�
���� �� �

���	�	�	�
�	�� ���� ���
 ����	�	�	�
�	�� ����
���� �	��������	�� ����
������ � �����	�� ����

����� �����
� �

����

�	�� ����
 	 � � �
� ����� �	������� �� ��������
�����
������

���� ��������� �� ����� �����
��	��

 ������� �����
��	��

 ����	����
�
���� �� �

�	�������	�� ���� � ���	 �� ����
����� ��	 �� ��������

Fig. 10. Top level view of the worklist management component

– the workflow administration component is facilitated via two distinct tran-
sitions: the management intervention transition, that provides the ability
for a workflow administrator to intervene in the work distribution pro-
cess and manually reassign work items to users where required; and the
interrupt handler transition that supports the cancellation, forced com-
pletion and forced failure of work items as may be triggered by other com-
ponents of the workflow engine (e.g. the control-flow process, exception han-
dlers).

Work items that are to be distributed are communicated between the work-
flow engine and the worklist management components via the work items for
distribution place. This then prompts the work item distribution transi-
tion to determine how they should be routed for execution. This may involve
the services of the workflow administrator in which case they are sent to the

management intervention transition or alternatively they may be sent directly
to one or more resources via the worklist handler transition. The various
places between these three transitions correspond to the range of requests that
flow between them. In the situation where a work item corresponds to an auto-
matic task, it is sent directly to the autonomous work item start place and
no further distribution activities take place. An automatic task is considered
complete when a token is inserted in the autonomous work item finish place.

A common view of work items in progress is maintained for the work item
distribution, worklist handler, management intervention and interrupt
handler transitions via the offered work items, allocated work items and
started work items places (although obviously this information is only avail-
able to the worklist handler when it is actually connected to the workflow man-
agement system). There is also shared information about users in advanced op-
erating modes that is recorded in the piled exec users and chained exec
users places. Although there is significant provision for shared information
about the state of work items, the determination of when a work item is ac-
tually complete rests with the work item distribution transition and when
this occurs, it inserts a token in the completed work items place. Similarly,
work item failures are notified via the failed work items place. The only ex-
ception to these arrangements are for work items that are subject to some form
of interrupt (e.g. an exception being detected and handled). The interrupt
handler transition is responsible for managing these occurrences on the basis of
cancellation, forced completion and failure requests received in the cancel work
item, complete work item and fail work item places respectively. All of the
activities in the worklist management component are illustrated by substitution
transitions indicating that each of them are defined in terms of significantly more
complex subprocesses. It is not possible to present each of them in this paper.
Finally we focus on one other significant component: the worklist handler.

4.3 Worklist Handler

The worklist handler component is illustrated in Fig. 11 and describes how the
user-facing workflow interface (typically a worklist handler software client) op-
erates and interacts with the worklist management component. The main path
through this process is indicated by the thick black arcs. There are various tran-
sitions that make up the process, these correspond to actions that individual
users can request in order to alter the current state of a work item to more
closely reflect their current handling of it. These actions may simply be requests
to start or complete it or they may be “detour” requests to reroute it to other
users e.g. via delegation or deallocation. The manner in which these requests
operate is illustrated by the shared places in Fig. 10. Typically the inclusion of
a request in one of these shared places results in a message flowing between the
worklist handler and worklist management components which ultimately causes
the relative states of the two components to be synchronised.

�� �� �������� �������

	�
��� �������
����	�
��� ������� �
����

��� ����� ��

����� ������� ������������ ����� ��� �������
������� ���� �������������� �� ��� �������

�		�� ������� ���		�� �������� ��
�� ���
���
���� ��� �
���
��

��� ���������� �������
�� �������� ������

�
���
�� �����
������
�
��� ���� �
 ���	�����

��	��������
 ���	��	�����

����
 �
� �������
�
������ ������ �
 ���	�� ����
����� ������� ����� �������
���� �
������ ��� ����� �������� �������
 ���	���� ����� �����������
 ���	���� �������� ������
 ���	���� ����

��� �����
 ���

���������� ��
�
 ���

����� ������� ���������� ���������� ���� ���������� ���

�� ��������� ���
��� ���������� ���

�		�� ������� ���
 ��� ����	���� ��������
���� ������ ����� ���� ������ ��
�
 ���
� ������ ��
��������� ������

�
 �������� ������
������ �
����� ����

����� ������� ��
 ������� ��
 ��� �� ������� ����� �������
 ���

��	�������� ���

���������
 ����

���

�
 ���
�
�

�
 ����������

���
���

������

�

�

��� ��� ��� ��� ���
�� ����

����
�
����

��	�����

��� ��
�����
��
��

�� ������
��� �������

�� ��� �
���
���		�� �������� ��������� �� ��� �������
����� ����� ��� �������

��� ��

	�
��� ������� �
����

� �������

Fig. 11. Worklist handler component

5 Related Work

There have been numerous papers advocating approaches to workflow and busi-
ness process modelling based on Petri Nets (cf. [10,11,12,13]), however these
tend to either focus on a single aspect of the domain (e.g. the control-flow per-
spective) or they are based on a relatively simplistic language. There have also
been attempts to provide formal semantics using Petri Nets for many of the
more widely used approaches to business process modelling including EPCs [14],
UML 2.0 Activity Diagrams [15] and BPMN [16], although in each case arriv-
ing at a complete semantics has been hampered by inherent ambiguities in the
informal descriptions for each of the formalisms. There has been minimal work
on formalisation of the other workflow perspectives, one exception is [17] which

investigates mechanisms for work distribution in workflows and presents CPN
models for a number of the workflow resource patterns.

Historically, the modelling and enactment of processes have often been treated
distinctly and it is not unusual for separate design and runtime models to be
utilised by systems. Approaches to managing the potential disparities between
these models have included the derivation of executable process descriptions
from design-time models [18] and the direct animation of design-time models
for requirements validation [19]. The latter of these approaches which uses a
strategy based on Coloured Petri Nets [8] and CPN Tools [20] as an enablement
vehicle is one of a number of initiatives that have successfully used the CPN
Tools offering as a means of executing various design-time modelling formalisms
including Protos models [21], sequence diagrams [22] and task descriptions [23].

There has been a significant body of work that describes software architec-
tures for workflow management systems. Significant examples of such systems
include MOBILE [24], WIDE [25], CrossFlow [26] and WAMO [27] amongst
many others however none of these systems offer a fully formalised description
both of their language elements and the overall operation of the workflow system.

6 Experiences and Conclusion

The selection of Coloured Petri Nets as the conceptual foundation for newYAWL
proved to be a fortuitous choice. Being state-based and graphical, the formalism
delivered immediate modelling benefits as a consequence of its commonalities
with the domain it was used to represent. The availability of a means of in-
tegrating the handling of the data-related aspects of the newYAWL language
into the model (i.e. using “colour”) and partitioning the model on a hierarchi-
cal basis into units of related functionality meant that a more compact means
of representing the overall newYAWL model was possible. The most significant
advantage of this design choice however proved to be the availability of an inter-
active modelling and execution environment in the form of CPN Tools. Indeed,
it is only with the aid of an interactive modelling environment such as CPN
Tools that developing a formalisation of this scale actually becomes viable.

Although there are other candidates for developing large-scale system de-
signs, none of them deliver the benefits inherent in the Coloured Petri Nets and
CPN Tools combination. Conceptual foundations such as π-calculus and process
algebra as well as software-oriented specification formalisms such as Z and VDM
lack a graphical representation meaning that the visualisation and assessment
of specific design choices is difficult. In contrast, lighter-weight approaches to
business process modelling such as those embodied in offerings such as Protos,
ARIS and other business process modelling tools do provide an intuitive ap-
proach to specifying business process that is both graphical and state-based,
however they lack a complete formal semantics. Moreover, they only allow for
the specification of a specific candidate model and do not provide a means of cap-
turing an arbitrary range of business processes in a single model as is required
for the newYAWL language. This shortcoming stems from the fact that the

modelling formalisms employed in these tools are control-flow centric and lack a
fully fledged data perspective. High-level CASE tools (e.g. Rational Rose) share
similar shortcomings and their generalist nature means that they do not provide
any specific support for business process modelling and enactment initiatives.

One of the major advantages of the approach pursued in developing newYAWL
is that it provided a design that is executable. This allowed fundamental design
decisions to be evaluated and tested much earlier than would ordinarily be the
case during the development process. Where suboptimal design decisions were
revealed, the cost of rectifying them was significantly less than it would have
been later in the development lifecycle. There was also the opportunity to test
alternate solutions to design issues with minimal overhead before a final decision
was settled on. A particular benefit afforded by this approach to formalisation
was that the CPN hierarchy established during the design process provided an
excellent basis on which to make subsequent architectural and development de-
cisions.

Whilst complete, the resultant model newYAWL system model3 is extremely
complex. It incorporates 55 distinct pages of CPN diagrams and encompasses
480 places, 138 transitions and in excess of 1500 lines of ML code. It took ap-
proximately six months to develop. The size of the model gives an indication of
the relative complexity of formally specifying a comprehensive business process
modelling language such as newYAWL. The original motivations for this re-
search initiative were twofold: (1) to establish a fully formalised business process
modelling language based on the synthesis of the workflow patterns and (2) to
demonstrate that the language was not only suitable for conceptual modelling
of business processes but that it also contained sufficient detail for candidate
models to be directly enacted. newYAWL achieves both of these objectives and
directly supports 118 of the 126 workflow patterns that have been identified. It
is interesting to note however that whilst the development of a system model
of this scale offers some extremely beneficial insights into the overall problem
domain and provides a software design that can be readily utilised as the basis
for subsequent programming activities, it also has its limitations. Perhaps the
most significant of these is that the scale and complexity of the model obvi-
ates any serious attempts at verification. Even on a relatively capable machine
(P4 2.1Ghz dual-core, 2Gb RAM), it takes almost 4 minutes just to load the
model. Moreover the potentially infinite range of business process models that
the newYAWL system can encode, rules out the use of techniques such as state
space analysis. This raises the question as to how models of this scale can be
comprehensively tested and verified.

Notwithstanding these considerations however, the development of the new-
YAWL system model delivered some salient insights into areas of newYAWL
that needed further consideration during the design activity. These included:

– the introduction of a deterministic mechanism for recording status changes
in the work item execution lifecycle in order to ensure that the views of

3 This model is available at www.yawl-system.com/newYAWL.

these details maintained by the worklist management and worklist handler
components are consistent;

– the establishment of a coherence protocol to ensure that reallocation of work
items to alternate resources either by resources themselves or the workflow
administrator are handled in a consistent manner in order to ensure that po-
tential race conditions arising during reallocation do not result in the work-
flow engine, workflow administrator or the initiating resource (i.e. worklist
handler) having irreconcilable views of the current state of work item allo-
cations;

– the introduction of a consistent approach for handling the evaluation of
any functions associated with a newYAWL specification e.g. for outgoing
links in an XOR-split, pre/postconditions, pre/post tests for iterative tasks
etc. This issue was ultimately addressed by mapping any necessary function
calls to ML functions and establishing a standard approach to encoding the
invocation of these functions and the passing of any necessary parameters
and the return of associated results;

– adoption of a standard strategy for characterising parameters to functions in
order to ensure that they could be passed in a uniform way to the associated
ML functions that evaluated them;

– the introduction of a locking strategy for data elements to prevent inadver-
tant side-effects of concurrent data usage; and

– recognition that when a self-cancelling task completes: (1) it should process
the cancellation of itself last of all in order to prevent the situation where
it cancels itself before all other cancellations have been completed and (2)
it needs to establish whether it is cancelling itself before it can make the
decision to put tokens in any relevant output places associated with the
task.

The newYAWL system model provides a complete description of an operational
environment for the newYAWL language. It is sufficiently detailed to be directly
useful for system design and development activities. It will serve as the design
blueprint for upcoming versions of the open-source YAWL System. In fact the
resource management component of the newYAWL language has already been
incorporated in the YAWL System.

Acknowledgement The authors would like to thank the anonymous reviewers
for their constructive comments and suggestions.

References

1. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P.: newYAWL: Specifying
a workflow reference language using Coloured Petri Nets. In: Proceedings of the
Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools. Number DAIMI PB-584, Department of Computer Science, University
of Aarhus, Denmark (2007) 107–126

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow lan-
guage. Information Systems 30(4) (2005) 245–275

3. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow patterns. Distributed and Parallel Databases 14(3) (2003) 5–51

4. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Work-
flow control-flow patterns: A revised view. Technical Report BPM-06-22 (2006)
http://www.BPMcenter.org.

5. Wynn, M., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Achieving
a general, formal and decidable approach to the OR-join in workflow using Reset
nets. In Ciardo, G., Darondeau, P., eds.: Proceedings of the 26th International
Conference on Application and Theory of Petri nets and Other Models of Con-
currency (Petri Nets 2005). Volume 3536 of LNCS., Miami, USA, Springer-Verlag
(2005) 423–443

6. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns: Identification, representation and tool support. In Delcambre, L.,
Kop, C., Mayr, H., Mylopoulos, J., Pastor, O., eds.: Proceedings of the 24th Inter-
national Conference on Conceptual Modeling (ER 2005). Volume 3716 of LNCS.,
Klagenfurt, Austria, Springer (2005) 353–368

7. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In Pastor, O.,
Falcão e Cunha, J., eds.: Proceedings of the 17th Conference on Advanced Infor-
mation Systems Engineering (CAiSE’05). Volume 3520 of LNCS., Porto, Portugal,
Springer (2005) 216–232

8. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science.
Springer-Verlag, Berlin, Germany (1997)

9. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.:
newYAWL: achieving comprehensive patterns support in workflow for the control-
flow, data and resource perspectives. Technical Report BPM-07-05 (2007)
http://www.BPMcenter.org.

10. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers 8(1) (1998) 21–66

11. Ellis, C., Nutt, G.: Modelling and enactment of workflow systems. In Marsan,
M.A., ed.: Proceedings of the 14th International Conference on Application and
Theory of Petri Nets. Volume 691 of LNCS., Chicago, IL, USA, Springer (1993)
1–16

12. Adam, N., Atluri, V., Huang, W.: Modeling and analysis of workflows using Petri
nets. Journal of Intelligent Information Systems 10(2) (1998) 131–158

13. Moldt, D., Rölke, H.: Pattern based workflow design using reference nets. In
van der Aalst, W., ter Hofstede, A., Weske, M., eds.: Proceedings of the Business
Process Management Conference 2003. Volume 2678 of LNCS., Eindhoven, The
Netherlands, Springer (2003) 246–260

14. van der Aalst, W.M.P.: Formalization and verification of event-driven process
chains. Information and Software Technology 41(10) (1999) 639–650

15. Störrle, H., Hausmann, J.: Towards a formal semantics of UML 2.0 activities. In
Liggesmeyer, P., Pohl, K., Goedicke, M., eds.: Proceedings of the Software En-
gineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik. Volume 64 of
Lecture Notes in Informatics., Essen, Germany, Gesellschaft fur Informatik (2005)
117–128

16. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12) (2008) 1281–1294

17. Pesic, M., van der Aalst, W.M.P.: Modelling work distribution mechanisms using
colored Petri nets. International Journal on Software Tools for Technology Transfer
9(3) (2007) 327–352

18. Di Nitto, E., Lavazza, L., Schiavoni, M., Tracanella, E., Trombetta, M.: Deriving
executable process descriptions from UML. In: ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, New York, NY, USA, ACM
Press (2002) 155–165

19. Machado, R., Lassen, K., Oliveira, S., Couto, M., Pinto, P.: Requirements valida-
tion: Execution of UML models with CPN tools. International Journal on Software
Tools for Technology Transfer 9(3) (2007) 353–369

20. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. International Journal of Software
Tools for Technology Transfer 9(3) (2007) 213–254

21. Gottschalk, F., van der Aalst, W., Jansen-Vullers, M., Verbeek, H.: Protos2CPN:
Using colored Petri nets for configuring and testing business processes. In Jensen,
K., ed.: Proceedings of the 7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools. Volume PB-579 of DAIMI Reports., Aarhus, Den-
mark (2006) 137–155

22. Ribeiro, O., Fernandes, J.: Some rules to transform sequence diagrams into
coloured Petri nets. In Jensen, K., ed.: Proceedings of the 7th Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. Volume
PB-579 of DAIMI Reports., Aarhus, Denmark (2006) 137–155

23. J.B. Jørgensen, K.L., van der Aalst, W.M.P.: From task descriptions via coloured
Petri nets towards an implementation of a new electronic patient record. In Jensen,
K., ed.: Proceedings of the 7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools. Volume PB-579 of DAIMI Reports., Aarhus, Den-
mark (2006) 137–155

24. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architec-
ture and Implementation. Thomson Computer Press, London, UK (1996)

25. Ceri, S., Grefen, P., Sanchez, G.: WIDE: a distributed architecture for workflow
management. In: Proceedings of the Seventh International Workshop on Research
Issues in Data Engineering (RIDE’97), Birmingham, England, IEEE Computer
Society Press (1997)

26. Ludwig, H., Hoffner, Y.: Contract-based cross-organisational workflows - the Cross-
Flow project. In Grefen, P., Bussler, C., Ludwig, H., Shan, M., eds.: Proceedings
of the WACC Workshop on Cross-Organisational Workflow Management and Co-
Ordination, San Francisco (1999)

27. Eder, J., Liebhart, W.: The workflow activity model (WAMO). In Laufmann, S.,
Spaccapietra, S., Yokoi, T., eds.: Proceedings of the Third International Conference
on Cooperative Information Systems (CoopIS-95), Vienna, Austria, University of
Toronto Press (1995) 87–98

