
Workflow Completion Patterns

Nikola Trčka Wil van der Aalst Natalia Sidorova
Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: {n.trcka, w.m.p.v.d.aalst, n.sidorova}@tue.nl

Abstract— The most common correctness requirement for a
(business) workflow is the completion requirement, imposing
that, in some form, every case-instance of the workflow reaches
its final state. In this paper, we define three workflow completion
patterns, called themandatory, optional and possible completion.
These patterns are formalized in terms of the temporal logic
CTL∗, to remove ambiguities, allow for easy comparison, and
have direct applicability. In contrast to the existing methods, we
do not look at the control flow in isolation but include some data
information as well. In this way the analysis remains tractable
but gains precision. Together with our previous work on data-
flow (anti-)patterns, this paper is a significant step towards a
unifying framework for complete workflow verification, using
the well-developed, stable, adaptable, and effective model-
checking approach.

I. I NTRODUCTION

A business processis a set oftasks(atomic units of work)
that need to be performed in a specific way to achieve
a particular and well-defined business goal. Examples of
business processes are a handling of an insurance claim, a
booking of a flight, and a loan approval. In a loan approval
process the goal is to grant or reject the loan; a typical task
in this process is to check the client’s credit history.

The concept of aworkflowhas been introduced to facilitate
the documentation, management and execution of complex
business processes. The workflow is amodelof a business
process, specifying the rules for desired coordination and
cooperation of individual business tasks. A typical business
workflow defines the 1)control-flow perspective (the order-
ing of tasks); 2)data-flow perspective (document sharing
and exchange); and 3) theresourceperspective, defining the
(groups of) resources, such as humans, machines, or services,
suitable for performing certain tasks.

Designing business workflow is similar to software pro-
gramming, and thus an error-prone task. The presence of
“bugs” in a business workflows may lead to angry customers,
dissatisfied employees, legal issues, and increased production
time and cost. Unfortunate situations are not uncommon; we
do sometimes have a wrong book delivered, never receive
our requested flight information, get two bills for our holiday
trip, or hear about a business fraud discovered too late.

Control-flow analysis is the most widely employed type of
workflow verification, and arguably the most important one.
This analysis tries to answer questions like “Does task A
ever happen?”, “Is there a deadlock?”, “Does task A always
precede task B?”, etc. Although many control-flow properties

are domain specific, like e.g. the requirement that some task
follows another, the properties like deadlock freedom, are
applicable in any business context. Most of these generic
requirements are considered with work-progress and can
simply be combined into one property ensuring that the
workflow (its every case-instance, to be precise) eventually
reaches its final state. We call this unifying property the
workflow completion property.

There already exist several verification techniques having
the completion property as their central requirement (most
of them appeared under the namesoundness[1], [2]). The
exact form of the completion requirement, however, changes
dependent on the author or the context. Sometimes the work-
flow is allowed to reach its end state and leave some work
behind, while sometimes no leftover “garbage” is allowed.
Sometimes the workflowmust always complete eventually,
while sometimes only the existence of one path from the
beginning to the end is required. There is a plethora of
different (sub)conditions and combinations. Moreover, not
all of these notions have been defined in the same setting,
which makes their comparison difficult.

The absence of a systematic classification and of a unify-
ing analysis method are not the only weaknesses of existing
approaches to workflow completion verification. Another
important weakness is that these approaches consider the
control flow in isolation and completely ignore the other two
perspectives of the workflow. Although it makes sense to
abstract from resources, as they are external and dynamic
in nature, the same does not hold for data. Ignoring the
data perspective could, e.g., cause a deadlock error to pass
undetected, or to be falsely reported. This is because the
routing decisions in a workflow are typically based on data,
while in the absence of data information they can only
be considered as non-deterministic and fair. Moreover, a
workflow obviously cannot complete if some scheduled task
is requiring a document that no other task has produced.

To overcome the limitations of the existing approaches this
paper proposes an analysis framework based on a) workflow
nets with data information, b) model-checking, and c) work-
flow completion patterns. AWorkFlow net with Data(WFD-
net) is a special type of a Petri net with a clear start and end
point, with annotations describing read/write data operations,
and with data-dependant guards on transitions. The idea of
this (conceptual) formal model is to fully cover the control-
flow perspective while also including data information in

some limited form. The model supports the interplay of
data elements but abstracts from their concrete values. This
allows for a more precise, albeit still tractable, workflow
analysis. Note that the industrial languages like Business
Process Modeling Notation (BPMN), extended Event-driven
Process Chains (eEPCs) and UML activity diagrams, are all
examples of languages that can, from a pragmatic point of
view, be translated to WFD-nets.

Assuming a WFD-net representation of our process, we
define threepatternsrelated to workflow completion (called
mandatory, optional, andpossible completionrespectively),
and show how the standard completion requirements from the
literature fit into these patterns. The patterns are formalized
in terms of the temporal logicCTL∗ [3] (and its subsetsCTL
and LTL). In this way we not only remove all ambiguities
inherent to formulations in a natural language, but also
automatically obtain a highly configurable (properties can
be easily changed, added or removed) and stable (model-
checking has been successfully used for years) verification
setting, with excellent diagnostic features (model-checking
provides error traces). Moreover, together with the data-flow
(anti-)patterns we formulated in [14], our results enable a
seamless integration of all aspects of workflow verification.

The structure of the rest of this paper is as follows.
Section II gives some preliminaries (Petri nets, workflow
nets, and the logicCTL∗) and introduces workflow nets with
data. Section III presents the actual completion patterns. In
Section IV we conclude the paper and discuss future work.

II. PRELIMINARIES

In this section we define the WFD-net model and present
the temporal logicCTL∗.

A. Workflow nets with data

WFD-nets are based on Petri nets and workflow nets, so
we define these two models first.

Definition 1: A Petri net is a tupleN = 〈P, T, F 〉, where
P andT are two disjoint non-empty finite sets ofplacesand
transitionsrespectively, andF ⊆ (P ×T)∪ (T ×P) is a set
of arcs, called theflow relation.

For t ∈ T , we define thepreset of t as •t = {p |
(p, t) ∈ F}, and thepostset oft as t• = {p | (t, p) ∈ F}.
Analogously we define•p and p• for pre- and postsets of
places. A placep is called asourceplace if •p = ∅, and a
sink place if p• = ∅.

At any time a place contains zero or moretokens, drawn
as black dots. The state of the Petri net, called amarking, is
the distribution of tokens over its places, formally defined as
a mappingm : P → N. A pair (N, m), whereN is a Petri
net andm is a marking, is called amarkedPetri net.

A transitiont ∈ T is enabledin a markingm if m(p) ≥ 1
for all p ∈ •t. An enabled transitiont mayfire, which results
in a new markingm′ defined bym′(p) = m(p)+1 if p 6∈ •t
and p ∈ t•, m′(p) = m(p) − 1 if p ∈ •t and p 6∈ t•,
m′(p) = m(p) otherwise. This firing is denoted asm[t〉m′.

The reachability graphof a marked Petri net is a labeled
directed graph in which every node represents a reachable

marking, and every arc indicates the firing of a transition.
For a marked net(N,m0), this graph is formally defined
as the tuple〈S,→〉 where S and→ are the smallest sets
satisfying the following: 1)m0 ∈ S, and 2) if m ∈ S and
m[t〉m′, thenm′ ∈ S and (m, t,m′) ∈→. In this paper we
assume that the reachability graph of a Petri net is always
finite. This property can be checked prior to any analysis.

Workflow nets [1] impose syntactic restrictions on Petri
nets to comply to the workflow concept.

Definition 2: A Petri netN = 〈P, T, F 〉 is aWorkflow net
(WF-net) if it has a single source placestart and a single
sink placeend, and if its every node (place or transition)
is on a path fromstart to end (i.e. if (start, n) ∈ F ∗ and
(n, end) ∈ F ∗ for all n ∈ P ∪ T , whereF ∗ is the reflexive-
transitive closure ofF).

Transitions in a WF-net are also calledtasks. A case is
a workflow instance, i.e., a marked WF-net in which the
start place is marked with one token and all other places
are empty. In this paper we study the completion property
related to one single case in isolation, assuming that different
cases are completely independent from each other.

A workflow net with data elements is a workflow net in
which tasks can read from or write to some data element. A
task can also have a (data dependent) guard that can block
its execution. We formalize the concept of a guard first.

Definition 3: LetD be a set of data elements. Apredicate
(on d1, . . . , dn ∈ D) is an expressionpred(d1, . . . , dn) that
evaluates totrue or false. A guard is either a predicate or
the negation of a predicate. The set of all guards overD is
denotedGD.

We now define workflow nets with data.
Definition 4: A tuple 〈P, T, F,D, r,w,grd〉 is a Work-

flow net with data (a WFD-net)iff 〈P, T, F 〉 is a WF-net,D
is a set ofdata elements, r : T → 2D is the reading data
labeling function, w : T → 2D is the writing data labeling
function, and grd : T ⇀ GD is the guarding function,
assigning guards to some transitions.

Fig. 1 shows a WFD-net representing a simplified loan
approval process. The first task in the process is to register
the request of a client. This task creates two data elements:c
to store clients information andr for the actual request. In the
next task the client’s history is checked and a decisiond is
made. The guardclient ok(d) evaluates totrue if d denotes
a positive decision; otherwise it evaluates tofalse. In the
positive case the taskApprove executes, producing a docu-
ment (a) describing the approved loan (amount, conditions,
etc.). This document is then communicated to the client (task
Inform client). The actual payment is done in parallel via the
Utilize loan task that also produces the final report (stored
in p). The two parallel branches are synchronized by the
task Sync. In the case of a negative decision, a report is
made (the same data elementp is used) and sent to the
client. Finally, regardless of the decision, the client’s record
is updated, based on the information given in the report. We
implicitly assume that inside a task reading always precedes
writing, so when the last task is executed the old version of
c is overwritten and thus lost.

����� ��

�� ���
�� �

�� �
��

	
����
�

�
��
��

��
��

���
��
����

������

�� ���

�� �

������	
������
�� ��

��

�� ���

�� ���

�� �

 �!��"
���
��

#����$

����

%&��

�'

�(

	
)
��

�� �

����
�����	
������

�� ���

%
��
�
��
�

���*

�� ���

�� �

#����

���
��
����

c: client information
r: loan request
d: decision
a: approval document
p: final report

Fig. 1. A WFD-net representing a loan approval process

B. Temporal logicCTL∗

The (state-based) temporal logicCTL∗ [3] is a powerful
temporal logic combining linear time and branching time
modalities. The logic is usually defined on Kripke structures,
so we introduce this model first.

Definition 5: A Kripke structureis a tuple(S, A,L,→)
whereS is a set of states,A is a non-empty set ofatomic
propositions, L : S → 2A is a (state) labeling function, and
→ ⊆ S × S is a transition relation.
If (s, s′) ∈ →, then there is astep from s to s′, also then
written ass → s′. For a states, L(s) is the set of atomic
propositions thathold in s.

A path from s is an infinite sequence of states
s0, s1, s2, . . . such thats = s0, and eithersk → sk+1 for all
k ∈ N, or there exists ann ≥ 0, such thatsk → sk+1 for
all 0 ≤ k < n, sn 6→ , and sk = sk+1 for all k ≥ n. For
a pathπ = s0, s1, s2, . . . and somek ≥ 0, πk denotes the
pathsk, sk+1, sk+2,

We now define the syntax ofCTL∗ [3].
Definition 6: The classesΦ of CTL∗ state formulasand

Ψ of CTL∗ path formulasare generated by the following
grammar:

φ ::= a | ¬φ | φ ∧ φ | Eψ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

wherea ∈A, φ ∈ Φ, andψ ∈ Ψ.
Validity of CTL∗ formulas is defined as follows.
Definition 7: We define when aCTL∗ state formulaφ is

valid in a states (notation:s |= φ) and when aCTL∗path
formula ψ is valid on a pathπ (notation: π |= ψ) by
simultaneous induction as follows:

• s |= a iff a ∈ L(s);
• s |= ¬φ iff s 6|= φ;
• s |= φ1 ∧ φ2 iff s |= φ1 ands |= φ2;
• s |= Eψ iff there exists a pathπ from s such thatπ |= ψ;
• π |= φ iff s is the first state ofπ ands |= φ;
• π |= ¬ψ iff π 6|= ψ;
• π |= ψ1 ∧ ψ2 iff π |= ψ1 andπ |= ψ2;
• π |= Xψ iff π1 |= ψ; and
• π |= ψ U ψ′ iff there exists aj ≥ 0 such thatπj |= ψ′,

andπk |= ψ for all 0 ≤ k < j.
A formula Xψ says thatψ holds next, i.e., in the second

state of a considered path. A formulaψ U ψ′ says that,
along a given path,ψ holds until ψ′ holds. As standard, as
a shorthand we writeFψ for >Uψ (“In the futureψ” or “ ψ
will hold eventually”), Gψ for ¬F¬ψ (“Globally ψ” or “ ψ
holds alwaysalong a path”), andAψ for ¬E¬ψ (“ψ holds

along all paths”). The combinatorsAG andEF can then be
interpreted as “in all states” and ”in some state” respectively.

A CTL∗ state formula of the formAψ, whereψ contains
no non-atomic state formulas, is aLinear Temporal Logic
(LTL) formula. A CTL∗ state formula in which every sub-
formula of the typeψUφ occurs in a pair with the quantifier
A or E, is a Computational Tree Logic(CTL) formula.

C. From a WFD-net to a Kripke structure

The reachability graph of a WF-net can simply be seen
as a Kripke structure if transition labels are ignored and if
suitable atomic propositions are generated for every state
using its underlying marking information. For a WFD-net,
however, data information must also be incorporated as
data can influence state reachability. In [14] we proposed
a preprocessing step that converts a WFD-net into a WF-
net with the same structure, but with explicit encoding of
dependencies between data elements and guards. We do
not elaborate on this transformation here (details are given
in [14]), but assume for the rest of the paper that a Kripke
structure representing the behavior of a WFD-net has been
built, with atomic propositions being 1)p ¦ i, for p ∈ P ,
i ∈ N and ¦ ∈ {≤,≥,=}, valid in a state(=marking)m
wherem(p) ¦ i, and 2)exec(t), for t ∈ T , valid in a state
where transitiont is executing.1

III. C OMPLETION PATTERNS

In this section we define three patterns for workflow com-
pletion: the mandatory, optional, and possible completion
pattern. For each pattern we give:

1) Description with motivation.
2) Formalization in terms of a (parametric)CTL∗ for-

mula. – The parameterτ will appear in all the pat-
terns. It is aCTL∗ state formula representing the final
state of the workflow, allowing the user to choose
for the most appropriate notion of successful termi-
nation. One typical value forτ is end ≥ 1, which
says that the completion of at least one workflow
tread was successful (placeend has at least one to-
ken). Another, more commonly used value forτ is
end = 1 ∧ ∧

p∈P\{end}(p = 0). This formula ensures
that all parallel treads have been properly synchronized
and that the final state is reached without any leftover
work (placeend is marked with exactly one token and
all the other places are empty). Every pattern-instance

1The transformation of [14] splits every transition into its start and its
end, allowing us to capture transition execution as a state property.

having this formula forτ will be referred to asproper
completion.

3) Several instances, in form of concrete completion re-
quirements, with relations to the existing notions from
the literature.

4) Discussion on verification. –CTL∗ model checking
is, in general, inefficient, so working in one of its
subclasses is preferable. Moreover, tools supporting
CTL∗ are rare, while there is a plethora ofLTL and
CTL model-checkers accepting Petri nets as input [11],
[4]. For these reasons we show when the pattern can
be rewritten to an equivalentLTL or CTL formula.

5) Comparison with the other two patterns.
6) Examples showing the difference with other patterns

and between the different instances of the pattern.
We now proceed with pattern definitions.

Pattern 1: Mandatory completion

Description: Mandatory completion pattern captures
the requirement that, starting from the initial state,all
execution paths of the workflow must complete. It is a very
restrictive pattern that is based on the intuitive idea that the
workflow should not specify any non-completing behavior.
Besidesτ , the pattern has two other parameters. The first
parameter is used to exclude some paths from consideration,
and e.g. allow the completion property to hold in the presence
of loops. The second parameter strengthens the completion
property by imposing extra requirements on the completing
paths, like e.g. that some transition is executed or that some
data is always available.

Formalization in CTL∗: For the path formulaψ that
selects the “interesting” paths, the path formulaϕ denoting
the additional requirement for completing paths, and the state
formula τ representing the final state of the workflow, the
pattern specifies that all paths satisfyingψ must also satisfy
ϕ and eventually reach the final state described byτ . In
CTL∗ terms we write this as:

A (ψ ⇒ ϕ ∧ F τ).

Instances:For ψ = true we have theclassicalmanda-
tory completion property. The parameterψ, however, is
mostly used as a fairness assumption [7], to remove inade-
quate, i.e. unfair, infinite paths. Thestrong fairnessassump-
tion includes only those sequences in which an infinitely
often enabled transition is infinitely often executed, and is
formalized asψ = ∨t∈T [GF (

∧
p∈•t p ≥ 1) ⇒ GF exec(t)].

The weak fairnessassumption, requires only that continu-
ously enabled transitions are infinitely often executed. Its
formalization is the same as for the strong fairness but with
the firstGF replaced byFG.

In [8], workflow completion is required for all paths and
no leftover work is allowed. It is thus proper mandatory
completion withψ = true. The completion property of [6]
adds strong fairness (for all transitions) to the requirement
of [8]. In [9], the formulaAG(initial state⇒ AF goal state)
(that does not fit into our patterns) is used to describe generic
workflow properties. If there is only one initial state (as

in our case), and the goal is to reach states that satisfyτ
(andτ implies that no transition is enabled), the formula can
simply be rewritten toAFτ , which is mandatory completion.
The missing dataanti-pattern from [14] captures the data-
flow error where a task that reads from some data precedes
a task in which this data is created. The negation of this
anti-pattern can also be seen as mandatory completion with
ψ = true, τ = true and ϕ = (¬read(d) U write(d)).
Here read(d) abbreviates

∨
t:d∈r(t)∪data(grd(t)) exec(t) and

write(d) is defined similarly.
Examples: The WF-net from Fig. 2a has the proper

mandatory completion property withϕ = Fexec(t3) (and
thus also withϕ = true). No matter whethert1 or t2 fires,
there will be a token inp1 and a token inp2. These two
tokens are then consumed byt3 which puts a token in place
end and (properly) completes the workflow.

The WF-net from Fig. 2b does not satisfy the manda-
tory completion requirement whenψ = true as the loop
t2, t4, t2, . . . might never be exited. This net, however, does
have the proper mandatory completion property with the
strong (but not weak) fairness assumption implying thatt4
must eventually changed in such a way thatpred evaluates
to true.

It is not hard to see that the WFD-net from Fig. 2c
satisfies the requirement of proper mandatory completion
with e.g. ϕ = (¬read(d) U write(d)). In this perfectly
realistic example, however, if data information is removed,
the sequencet1, t2, t5 becomes possible (the information
that pred(d) is thentrue in both parallel branches is lost)
which leads to a deadlock. The example clearly illustrates
the importance of including data information into control-
flow verification.

Finally, Fig. 2d is an example of mandatory completion
with ψ = ϕ = true and τ = (end = 1). The patht1, t3, t4
leads to the end state but leaves some work behind (token in
p1); the completion is, therefore, not proper.

Verification: If ψ and ϕ contain only atomic state
formulas, andτ is not of the formEτ ′, then mandatory
completion is anLTL property. Forψ = true andϕ = true
the formula for mandatory completion is clearly also anCTL
formula. Moreover, ifψ is of the formGψ′, neitherψ′ nor
τ are of the formEρ, and Fτ implies ϕ, then the formula
for mandatory completion can be rewritten to the equivalent
CTL formula AF(¬ψ′ ∨ τ).

Pattern 2: Optional completion

Description: Optional completion does not require that
every path must complete, but that fromevery stateof the
workflow thereexistsa path to completion. The focus is thus
shifted from (initial) paths to states, which also eliminates
the need for an additional path-restricting parameter likeψ.
The pattern, however, still has one parameter for imposing
extra requirements on states. This parameter is typically used
to check whether a place always has less thann tokens, or
whether some transition could be executed in future.

The motivation for the optional completion pattern comes
from the fact that mandatory completion cannot satisfactorily

�����

��
��

��	

�

��

�

a) Proper mandatory completion withϕ = Fexec(t3)

����� �� ��
��

��� �

��

�����
�	

��

�����
��� �

�	
����������

��

���������

b) Proper mandatory completion with strong fairness

����� ���

�	

�

��

��
�

��

���������

�

�������������

��

�

��

���������

��

�������������

��

�	

��� �

c) Proper mandatory completion where data information is
important (without data a deadlock would be reported)

�����

��

��
��	

�

��

�

��

��

d) Mandatory completion withτ = (end = 1) that is not proper

Fig. 2. Mandatory completion pattern

deal with arbitrary loops (see example below), and that a
better and more direct capturing of progress is needed.

Formalization inCTL∗: Let φ be aCTL∗ state formula
representing an extra requirement for states. Then every state
must satisfyφ and be the start of a completing path:

AG(φ ∧ EF τ).

Instances: The notion of weak soundness[10] cor-
responds to proper optional completion withφ = true.
Classical soundness[1] adds the requirement that there
are no dead tasks, i.e., that every task can potentially be
executed. This can be seen as proper optional completion
whereφ = [start = 1 ⇒ ∧

t∈T EF exec(t)]. In the notion of
lazy soundness[12] tokens may be left behind as long as the
placeend is marked precisely once. This can be expressed as
optional completion withφ = (end ≤ 1) andτ = (end = 1).
Finally, [13] strengthens the notion of classical soundness by
requiring that all places aresafe, i.e. that they always hold at
most one token. This notion, calledsafe classical soundness,
is (without the requirement for no dead tasks) proper optional
completion withφ = ∧p∈P (p ≤ 1).

�����
���

�	

�

��

��

�

��

�

��

�	 ��

Fig. 3. Proper optional completion withφ = F exec(t6)

Examples:Fig. 3 shows a WF-net that has the optional,
but not the mandatory, completion property. Note that neither
of the two standard fairness assumptions for mandatory

completion help here ast6 is never enabled in the infinite
sequencet2, t3, t4, t5, t2,

Comparison: Optional completion is less restrictive
than mandatory completion whenψ = true and ϕ implies
Gφ. Note however that optional completion still captures
all important properties like livelocks and deadlocks. For
ψ = true andϕ = Gφ the two notions agree on workflows
without loops.

Verification: Optional completion is aCTL∗ formula.
When φ = true, the formula can be rewritten toAGEF τ ,
which is CTL. For this formula there exists no equivalent
LTL formula (unless all paths are finite, in which case we
can equivalently use mandatory completion).

Pattern 3: Possible completion

Description: Possible completion is the least restrictive
form of completion; it only requires that from the initial state
thereexistsa (special) path towards completion. The notion,
therefore, allows for deadlocks and livelocks in the workflow.
The main idea behind the requirement is the assumption
that users always make intelligent choices and avoid bad
situations. The pattern has one parameter for putting extra
requirements on the completing path.

Formalization inCTL∗: Let ϕ be a path formula de-
noting some additional requirement for the completing path,
and let, as before,τ represent the final state of the workflow.
Then the possible completion pattern can be expressed as: In
the beginning there is at least one completing path satisfying
ϕ. In CTL∗ terms we write

E (ϕ ∧ F τ).

Instances: The notion of Easy soundness[13], [2]
corresponds to proper possible completion withϕ = true.
Relaxed soundness[5] requires that for each transition there
is at least one execution towards completion. This amounts

�����

��
��

��	

�

��

�

a) Proper possible completion withϕ = Fexec(t3)

����� �� ��
��

��� �

��
�	

��

�	
����������

��

���������

b) Proper possible completion where guards restrict behavior

Fig. 4. Possible completion

to checking proper possible completion withϕ = Fexec(t),
for each transitiont.

Examples:The workflow from Fig. 4a does not have the
optional completion property as the execution oft2 leads to a
deadlock. It does, however, satisfy the requirement for proper
possible completion withϕ = exec(t3) (and thus withϕ =
true too) as the sequencest1, t3 leads to (proper) completion.

The workflow in Fig. 4b illustrates proper possible com-
pletion withϕ = Fexec(t2). If t1 sets the value ofto pred to
true, the sequencet1, t2, t3 is completing properly. The net,
however, does not have the optional completion property as
it enters the livelockt2, t4, t2, . . . when the value ofpred is
false. Note that without the data information this workflow
would be reported as satisfying the mandatory completion
requirement with strong fairness.

Finally, Fig. 5 shows a workflow that does not complete
according to the possible completion pattern; taskt3 can
never be executed as it needs a token inboth p1 andp2.

�����

��
��

��	

�

��

�

Fig. 5. A workflow that does not have the possible completion property

Comparison: Possible completion is implied by op-
tional completion wheneverϕ is implied byGφ. The opposite
holds only (in the non-interesting case) when there are no
explicit choices in the workflow andϕ implies Gφ.

Verification: The formula capturing possible completion
is a CTL formula whenϕ = true. If ϕ is a path formula
containing no state formulas of the formEϕ′, then the
negation of the property is inLTL.

Remark 1:We could now also define the fourth pattern
that would be the “state based” version of possible comple-
tion (like optional completion is for mandatory completion).
For this pattern, however, we found no practical application.

IV. CONCLUSIONS AND FUTURE WORK

We defined three generic patterns for representing the
workflow completion requirement, and we formalized these
patterns in terms ofCTL∗. We showed that the patterns en-
compass most of the variants of the completion requirement
described in the literature. In many cases, pattern-instances
were eitherCTL or LTL formulas, which immediately en-
ables the use of many tools available on the market.

Our method does not fully abstract from data but includes
information about data reading, data writing, and guards. In

this way we keep the size of the system tractable, but increase
the precision of the analysis. Although our method can still
give false positives and false negatives, the number of cases
where this happens is less compared to the existing methods
which do not take data into account.

We are in the process of making aCTL∗ based verification
tool for WFD-nets, aiming at a framework for flexible,
adaptive and complete workflow verification. The patterns of
this paper, and the patterns for data-flow errors we defined
in [14], are important steps in this process.

REFERENCES

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers,
8(1):21–66, 1998.

[2] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede,
N. Sidorova, H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn. Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis.
BPM Center Report BPM-08-02, BPMcenter.org, 2008.

[3] E.M. Clarke, O. Grumberg, and D.A. Peled.Model Checking. The
MIT Press, Cambridge, Massachusetts and London, UK, 1999.

[4] CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

[5] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes.
In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors,Proceedings of
the 13th International Conference on Advanced Information Systems
Engineering (CAiSE’01), volume 2068 ofLecture Notes in Computer
Science, pages 157–170. Springer-Verlag, Berlin, 2001.

[6] R. Eshuis. Symbolic Model Checking of UML Activity Diagrams.
ACM Transactions on Software Engineering Methodology, 15(1):1–
38, 2006.

[7] N. Francez.Fairness. Springer, New York, 1987.
[8] C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater.

Model Checking of Workflow Schemas. InProceedings of the Fourth
International Enterprise Distributed Object Computing Conference
(EDOC’00), pages 170–181, Los Alamitos, CA, USA, 2000. IEEE
Computer Society.

[9] J. Koehler, G. Tirenni, and S. Kumaran. From Business Process
Model to Consistent Implementation: A Case for Formal Verifica-
tion Methods. In6th International Enterprise Distributed Object
Computing Conference (EDOC’02), 17-20 September 2002, Lausanne,
Switzerland, pages 96–106. IEEE Computer Society, 2002.

[10] A. Martens. On Compatibility of Web Services.Petri Net Newsletter,
65:12–20, 2003.

[11] Model-Checking Kit Home Page.http://www.informatik.
uni-stuttgart.de/fmi/szs/tools/mckit/ .

[12] F. Puhlmann and M. Weske. Investigations on Soundness Regarding
Lazy Activities. In S. Dustdar, J.L. Faideiro, and A. Sheth, editors,
International Conference on Business Process Management (BPM
2006), volume 4102 ofLecture Notes in Computer Science, pages
145–160. Springer-Verlag, Berlin, 2006.

[13] R. van der Toorn. Component-Based Software Design with Petri
nets: An Approach Based on Inheritance of Behavior. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands,
2004.

[14] N. Trčka, W.M.P. van der Aalst, and N. Sidorova. Data-Flow Anti-
Patterns: Discovering Data-Flow Errors in Workflows. In21st Inter-
national Conference on Advanced Information Systems (CAiSE’09),
2009. LNCS. To appear.

