Workflow Completion Patterns

Nikola Trcka Wil van der Aalst Natalia Sidorova
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: {n.trcka, w.m.p.v.d.aalst, n.sidoroM@tue.nl

Abstract—The most common correctness requirement for a are domain specific, like e.g. the requirement that some task
(business) workflow is the completion requirement imposing follows another, the properties like deadlock freedom, are
that, in some form, every case-instance of the workflow reaches applicable in any business context. Most of these generic

its final state. In this paper, we define three workflow completion . ¢ idered with K d
patterns, called themandatory optional and possible completion requirements are considered with work-progress and can

These patterns are formalized in terms of the temporal logic Simply be combined into one property ensuring that the
CTL*, to remove ambiguities, allow for easy comparison, and workflow (its every case-instance, to be precise) eventually
have direct applicability. In contrast to the existing methods, we reaches its final state. We call this unifying property the
do not look at the control flow in isolation but include some data workflow completion property

information as well. In this way the analysis remains tractable Th Iread ist ral verification techni havin
but gains precision. Together with our previous work on data- ere already exist several verilicalion techniques having

flow (anti-)patterns, this paper is a significant step towards a the completion property as their central requirement (most
unifying framework for complete workflow verification, using of them appeared under the nam@undnes$l], [2]). The

the well-developed, stable, adaptable, and effective model- exact form of the completion requirement, however, changes
checking approach. dependent on the author or the context. Sometimes the work-
flow is allowed to reach its end state and leave some work
behind, while sometimes no leftover “garbage” is allowed.
A business proceds a set oftasks(atomic units of work) Sometimes the workfloomustalways complete eventually,
that need to be performed in a specific way to achiewkhile sometimes only the existence of one path from the
a particular and well-defined business goal. Examples @keginning to the end is required. There is a plethora of
business processes are a handling of an insurance claimditierent (sub)conditions and combinations. Moreover, not
booking of a flight, and a loan approval. In a loan approvadll of these notions have been defined in the same setting,
process the goal is to grant or reject the loan; a typical tasithich makes their comparison difficult.
in this process is to check the client’s credit history. The absence of a systematic classification and of a unify-
The concept of avorkflowhas been introduced to facilitate ing analysis method are not the only weaknesses of existing
the documentation, management and execution of complewproaches to workflow completion verification. Another
business processes. The workflow isnadelof a business important weakness is that these approaches consider the
process, specifying the rules for desired coordination argbntrol flow in isolation and completely ignore the other two
cooperation of individual business tasks. A typical businegserspectives of the workflow. Although it makes sense to
workflow defines the 1yontrol-flow perspective (the order- abstract from resources, as they are external and dynamic
ing of tasks); 2)data-flow perspective (document sharingin nature, the same does not hold for data. Ignoring the
and exchange); and 3) thiesourceperspective, defining the data perspective could, e.g., cause a deadlock error to pass
(groups of) resources, such as humans, machines, or serviagsidetected, or to be falsely reported. This is because the
suitable for performing certain tasks. routing decisions in a workflow are typically based on data,
Designing business workflow is similar to software prowhile in the absence of data information they can only
gramming, and thus an error-prone task. The presence e considered as non-deterministic and fair. Moreover, a
“bugs” in a business workflows may lead to angry customersyorkflow obviously cannot complete if some scheduled task
dissatisfied employees, legal issues, and increased productismequiring a document that no other task has produced.
time and cost. Unfortunate situations are not uncommon; we To overcome the limitations of the existing approaches this
do sometimes have a wrong book delivered, never receiyaper proposes an analysis framework based on a) workflow
our requested flight information, get two bills for our holidaynets with data information, b) model-checking, and c) work-
trip, or hear about a business fraud discovered too late. flow completion patterns. AVorkFlow net with DatgWFD-
Control-flow analysis is the most widely employed type ohet) is a special type of a Petri net with a clear start and end
workflow verification, and arguably the most important onepoint, with annotations describing read/write data operations,
This analysis tries to answer questions like “Does task And with data-dependant guards on transitions. The idea of
ever happen?”, “Is there a deadlock?”, “Does task A alwaythis (conceptual) formal model is to fully cover the control-
precede task B?”, etc. Although many control-flow propertielow perspective while also including data information in

I. INTRODUCTION

some limited form. The model supports the interplay ofnarking, and every arc indicates the firing of a transition.
data elements but abstracts from their concrete values. THisr a marked netN,my), this graph is formally defined
allows for a more precise, albeit still tractable, workflowas the tuple(S,—) where S and — are the smallest sets
analysis. Note that the industrial languages like Businesatisfying the following: 1)my € S, and 2) ifm € S and
Process Modeling Notation (BPMN), extended Event-drivem[t)m’, thenm’ € S and (m,t,m’) €—. In this paper we
Process Chains (eEPCs) and UML activity diagrams, are alksume that the reachability graph of a Petri net is always
examples of languages that can, from a pragmatic point &ifiite. This property can be checked prior to any analysis.
view, be translated to WFD-nets. Workflow nets [1] impose syntactic restrictions on Petri
Assuming a WFD-net representation of our process, weets to comply to the workflow concept.
define threepatternsrelated to workflow completion (called Definition 2: A Petri netN = (P, T, F') is aWorkflow net
mandatory optional andpossible completiomespectively), (WF-net)if it has a single source placgart and a single
and show how the standard completion requirements from tisink placeend, and if its every node (place or transition)
literature fit into these patterns. The patterns are formalized on a path fromstart to end (i.e. if (start,n) € F* and
in terms of the temporal logi€TL* [3] (and its subset€TL (n,end) € F* for all n € PUT, whereF* is the reflexive-
and LTL). In this way we not only remove all ambiguities transitive closure of").
inherent to formulations in a natural language, but also Transitions in a WF-net are also calléakks A caseis
automatically obtain a highly configurable (properties cama workflow instance, i.e., a marked WF-net in which the
be easily changed, added or removed) and stable (modsfart place is marked with one token and all other places
checking has been successfully used for years) verificati@me empty. In this paper we study the completion property
setting, with excellent diagnostic features (model-checkingelated to one single case in isolation, assuming that different
provides error traces). Moreover, together with the data-flosases are completely independent from each other.
(anti-)patterns we formulated in [14], our results enable a A workflow net with data elements is a workflow net in
seamless integration of all aspects of workflow verificationwhich tasks can read from or write to some data element. A
The structure of the rest of this paper is as followstask can also have a (data dependent) guard that can block
Section 1l gives some preliminaries (Petri nets, workflowts execution. We formalize the concept of a guard first.
nets, and the logi€TL*) and introduces workflow nets with ~ Definition 3: Let D be a set of data elements.phedicate
data. Section Ill presents the actual completion patterns. (pnds,...,d, € D) is an expressiopred(ds, ..., d,) that
Section IV we conclude the paper and discuss future worlevaluates tarue or false. A guard is either a predicate or
the negation of a predicate. The set of all guards @ves
Il. PRELIMINARIES denotedGp.
In this section we define the WFD-net model and present We now define workflow nets with data.
the temporal logicCTL". Definition 4: A tuple (P, T, F,D,r,w,grd) is a Work-
i flow net with data (a WFD-nei}f (P, T, F) is a WF-net,D
A. Workflow nets with data is a set ofdata elementsr : 7 — 27 is the reading data
WFD-nets are based on Petri nets and workflow nets, $abeling function w : T — 27 is the writing data labeling

we define these two models first. function andgrd : T — Gp is the guarding function
Definition 1: A Petri netis a tupleN = (P, T, F), where assigning guards to some transitions.

P andT are two disjoint non-empty finite sets placesand Fig. 1 shows a WFD-net representing a simplified loan

transitionsrespectively, and” C (P x T)U (T x P) is a set approval process. The first task in the process is to register

of arcs called theflow relation the request of a client. This task creates two data elements:
For t € T, we define thepreset oft as*t = {p | to store clients information andfor the actual request. In the

(p,t) € F}, and thepostset oft ast®* = {p | (t,p) € F'}. next task the client’s history is checked and a decisida
Analogously we defin@p and p*® for pre- and postsets of made. The guardlient_ok(d) evaluates tdrue if d denotes
places. A place is called asourceplace if *p = @), and a a positive decision; otherwise it evaluates ftdse. In the
sink place if p* = 0. positive case the taskpprove executes, producing a docu-

At any time a place contains zero or mdokens drawn ment @) describing the approved loan (amount, conditions,
as black dots. The state of the Petri net, calledaaking is etc.). This document is then communicated to the client (task
the distribution of tokens over its places, formally defined amform client). The actual payment is done in parallel via the
a mappingm : P — N. A pair (N, m), whereN is a Petri Utilize loan task that also produces the final report (stored
net andm is a marking, is called anarkedPetri net. in p). The two parallel branches are synchronized by the

A transitiont € T is enabledin a markingm if m(p) > 1 task Sync. In the case of a negative decision, a report is
for all p € *t. An enabled transition mayfire, which results made (the same data elementis used) and sent to the
in a new markingn’ defined bym’(p) = m(p)+1if p ¢ *t client. Finally, regardless of the decision, the client's record
andp € t*, m'(p) = m(p) —1if p € *¢t andp ¢ t*, is updated, based on the information given in the report. We
m/(p) = m(p) otherwise. This firing is denoted as[t)m’. implicitly assume that inside a task reading always precedes

The reachability graphof a marked Petri net is a labeled writing, so when the last task is executed the old version of
directed graph in which every node represents a reachalaslés overwritten and thus lost.

c: client information

[client_ok(d)] ‘ ‘
- Py D
- Inform client
O
pe MR

r: loan request
Utilize loan d: decision
regiter Todate e a ?pplroval document
request client data) client data - final report
On P P
Reject Send letter
Fig. 1. A WFD-net representing a loan approval process
B. Temporal logicCTL* alongall paths”). The combinator8G and EF can then be

The (state-based) temporal logiTL* [3] is a powerful Interpreted as “in all states” and "in some state” respectively.
temporal logic combining linear time and branching time A CTL state formula of the formAy, wheres contains

modalities. The logic is usually defined on Kripke structured]C_non-atomic state formulas, islanear Temporal Logic
so we introduce this model first. (LTL) formula. A CTL* state formula in which every sub-

Definition 5: A Kripke structureis a tuple (S, A, £, —) formula'of the typey) U'qb occurs in a pair with the quantifier
where S is a set of statesd is a non-empty set oftomic A or E, is aComputational Tree Logi¢CTL) formula.
propositionslﬁ 1S — .2_“‘ is a(s_tate) labeling functionand = Fom a WFD-net to a Kripke structure
— C S x S is atransition relation
If (s,s") € —, then there is atepfrom s to s’, also then
written ass — s’. For a states, £(s) is the set of atomic
propositions thahold in s.

A path from s is an infinite sequence of states
S0, 81, $2,- .. such thats = sg, and eithers;, — sy for all
k € N, or there exists am > 0, such thats; — sy, for
al0 <k <n,s, /~,andsy = spyq for all k > n. For
a pathm = sg, s1, s2,... and somek > 0, 7 denotes the
path Sky Sk41ySk42y----

We now define the syntax &fTL* [3].

Definition 6: The classe$ of CTL* state formulasand
¥ of CTL® path formulasare generated by the following

The reachability graph of a WF-net can simply be seen
as a Kripke structure if transition labels are ignored and if
suitable atomic propositions are generated for every state
using its underlying marking information. For a WFD-net,
however, data information must also be incorporated as
data can influence state reachability. In [14] we proposed
a preprocessing step that converts a WFD-net into a WF-
net with the same structure, but with explicit encoding of
dependencies between data elements and guards. We do
not elaborate on this transformation here (details are given
in [14]), but assume for the rest of the paper that a Kripke
structure representing the behavior of a WFD-net has been
built, with atomic propositions being 1) ¢ i, for p € P,

rammar:

g 1 € Nando € {<,>,=}, valid in a state(=marking)n
pu=al|l "¢ | pAQP| EY wherem(p) ¢4, and 2)exec(t), for t € T, valid in a state
Y= | | wAY| X | pUy where transitiort is executing:

wherea €4, ¢ € @, andy € V. [1l. COMPLETION PATTERNS

Validity of CTL* formulas is defined as follows.

Definition 7: We define when &TL* state formulag is
valid in a states (notation:s = ¢) and when aCTL*path
formula ¢ is valid on a pathr (notation: 7 |) by

simultaneous induction as follows: 1) Description with motivation. _
s aiff ae L(s) 2) Formalization in terms of a (parametri€§TL* for-
L] 1

s g iff 5 [6 mula. — The parameter will appear in all the pat-
* o ARG terns. It is aCTL* state formula representing the final
° 3|:¢1/\(252 Iffs)zqﬁl ands‘:¢2; b g

L ere s o rom s uch b -1 2 1 0 o, low e e oo
o T ¢ iff sis the first state ofr ands = ¢; Pprop

. 7 iff T O nation. One typical value for is end > 1, which
by Ay i 7T”:w andr = o; says that the completion of at least one workflow

. 1 2 1 — ¥2,

o T Xoiff 7 4; and tread was successful (plaedd has at least one to-

« 7= U iff there exists aj > 0 such thatr? | ¢ ken). Another, more commonly'used value foris
andr* = o for all 0 < k < ;. - end =1 A A cp\ fena} (P = 0). This formula ensures

L that all parallel treads have been properly synchronized
A formula Xy) Says that) holdsnext i.e., |r1 the second and that the final state is reached without any leftover
state of a considered path. A formula U ¢’ says that, . .
. o work (placeend is marked with exactly one token and
along a given pathy holdsuntil v holds. As standard, as all the other places are empty). Every pattern-instance
a shorthand we writ&y for T U (“In the future«” or “v P PLy). yp

will hold eventua”)’})' Gy for ~F=y (“G|0ba"y Y or*y 1The transformation of [14] splits every transition into its start and its
holds alwaysalong a path”), and\y) for ~E— (“¢) holds end, allowing us to capture transition execution as a state property.

In this section we define three patterns for workflow com-
pletion: the mandatory optional and possible completion
pattern. For each pattern we give:

having this formula forr will be referred to agproper in our case), and the goal is to reach states that satisfy
completion (andT implies that no transition is enabled), the formula can
3) Several instances, in form of concrete completion resimply be rewritten toAF+, which is mandatory completion.
quirements, with relations to the existing notions fromrhe missing dataanti-pattern from [14] captures the data-
the literature. flow error where a task that reads from some data precedes
4) Discussion on verification. €TL* model checking a task in which this data is created. The negation of this
is, in general, inefficient, so working in one of its anti-pattern can also be seen as mandatory completion with
subclasses is preferable. Moreover, tools supporting = true, 7 = true and ¢ = (—read(d) U write(d)).
CTL" are rare, while there is a plethora bTL and Hereread(d) abbreviates\/, ;.. 4)udata(gra(t)) e<ec(t) and
CTL model-checkers accepting Petri nets as input [11jyrite(d) is defined similarly.
[4]. For these reasons we show when the pattern can Examples: The WF-net from Fig. 2a has the proper
be rewritten to an equivalehiTL or CTL formula. mandatory completion property with = Fexec(t3) (and
5) Comparison with the other two patterns. thus also withy = true). No matter whethet; or t, fires,
6) Examples showing the difference with other patternghere will be a token inp; and a token inp;. These two
and between the different instances of the pattern. tokens are then consumed hywhich puts a token in place
We now proceed with pattern definitions. end and (properly) completes the workflow.
) The WF-net from Fig. 2b does not satisfy the manda-
Pattern 1: Mandatory completion tory completion requirement whep = true as the loop
Description: Mandatory completion pattern capturest,, t,,t,,... might never be exited. This net, however, does
the requirement that, starting from the initial sta@| have the proper mandatory completion property with the
execution paths of the workflow must complete. It is a vergtrong (but not weak) fairness assumption implying that
restrictive pattern that is based on the intuitive idea that th@ust eventually changé in such a way thapred evaluates
workflow should not specify any non-completing behaviorto true.
Besidesrt, the pattern has two other parameters. The first |t is not hard to see that the WFD-net from Fig. 2c
parameter is used to exclude some paths from consideratigatisfies the requirement of proper mandatory completion
and e.g. allow the completion property to hold in the presencgith e.g. ¢ = (-read(d) U write(d)). In this perfectly
of loops. The second parameter strengthens the completiggalistic example, however, if data information is removed,
property by imposing extra requirements on the completinhe sequence;,t,,t; becomes possible (the information
paths, like e.g. that some transition is executed or that sorigat pred(d) is thentrue in both parallel branches is lost)
data is always available. which leads to a deadlock. The example clearly illustrates
Formalization inCTL": For the path formula) that the importance of including data information into control-
selects the “interesting” paths, the path formylalenoting flow verification.
the additional requirement for completing paths, and the stateFinally, Fig. 2d is an example of mandatory completion
formula 7 representing the final state of the workflow, thewith 1) = ¢ = true and = (end = 1). The patht,, t3, 4
pattern specifies that all paths satisfyingnust also satisfy leads to the end state but leaves some work behind (token in
¢ and eventually reach the final state describedrbyin p1); the completion is, therefore, not proper.
CTL" terms we write this as: Verification: If + and ¢ contain only atomic state
Al = o AFT). formula§, a_ndr is not of the formE7’, then mandatory
completion is anLTL property. Fory) = true and ¢ = true
Instances:For) = true we have theclassicalmanda- the formula for mandatory completion is clearly also@RL
tory completion property. The parameter, however, is formula. Moreover, ify) is of the formGy)’, neithery’ nor
mostly used as a fairness assumption [7], to remove inade-are of the formEp, and Fr implies ¢, then the formula
quate, i.e. unfair, infinite paths. Ttsrong fairnessassump- for mandatory completion can be rewritten to the equivalent
tion includes only those sequences in which an infinitelC. TL formula AF (-’ v 7).
often enabled transition is infinitely often executed, and is)]
formalized asy) = Vier[GF (A,ce,p > 1) = GFexec(t)]. ~Pattemn 2 Optional completion
The weak fairnessassumption, requires only that continu- Description: Optional completion does not require that
ously enabled transitions are infinitely often executed. Itsvery path must complete, but that fragwery stateof the
formalization is the same as for the strong fairness but witiorkflow thereexistsa path to completion. The focus is thus
the first GF replaced byFG. shifted from (initial) paths to states, which also eliminates
In [8], workflow completion is required for all paths andthe need for an additional path-restricting parameter dike
no leftover work is allowed. It is thus proper mandatoryThe pattern, however, still has one parameter for imposing
completion withy) = true. The completion property of [6] extra requirements on states. This parameter is typically used
adds strong fairness (for all transitions) to the requiremend check whether a place always has less thaokens, or
of [8]. In [9], the formulaAG(initial state= AF goal statg = whether some transition could be executed in future.
(that does not fit into our patterns) is used to describe genericThe motivation for the optional completion pattern comes
workflow properties. If there is only one initial state (asfrom the fact that mandatory completion cannot satisfactorily

[not pred(d)]

[pred(d)]

t; [t
a) Proper mandatory completion with= Fexec(t3) b) Proper mandatory completion with strong fairness

[pred(d)]

d) Mandatory completion with- = (end = 1) that is not proper

ts

¢) Proper mandatory completion where data information is
important (without data a deadlock would be reported)

Fig. 2. Mandatory completion pattern

deal with arbitrary loops (see example below), and that eompletion help here ag; is never enabled in the infinite
better and more direct capturing of progress is needed. sequencés, ts,ty,ts,ts,. . ..

Formalization inCTL*: Let ¢ be aCTL" state formula Comparison: Optional completion is less restrictive
representing an extra requirement for states. Then every stéten mandatory completion whan = true and ¢ implies
must satisfyp and be the start of a completing path: G¢. Note however that optional completion still captures

all important properties like livelocks and deadlocks. For

1 = true and ¢ = G¢ the two notions agree on workflows
Instances: The notion of weak soundnes§l0] cor- without loops.

responds to proper optional completion with = true. Verification: Optional completion is &TL* formula.

Classical soundnes§l] adds the requirement that thereWhen ¢ = true, the formula can be rewritten tAGEF 7,

are no dead tasks, i.e., that every task can potentially Wénich is CTL. For this formula there exists no equivalent

executed. This can be seen as proper optional completibiL formula (unless all paths are finite, in which case we

where¢ = [start = 1 = A, EFexec(t)]. In the notion of can equivalently use mandatory completion).

lazy soundnesg 2] tokens may be left behind as long as the

placeend is marked precisely once. This can be expressed >tern 3: Possible completion

optional completion with) = (end < 1) andr = (end = 1). Description: Possible completion is the least restrictive
Finally, [13] strengthens the notion of classical soundness ¥rm of completion; it only requires that from the initial state
requiring that all places aigafe i.e. that they always hold at thereexistsa (special) path towards completion. The notion,
most one token. This notion, calledfe classical soundness therefore, allows for deadlocks and livelocks in the workflow.
is (without the requirement for no dead tasks) proper optionghe main idea behind the requirement is the assumption
completion withg = Apep(p < 1). that users always make intelligent choices and avoid bad
situations. The pattern has one parameter for putting extra
requirements on the completing path.

Formalization inCTL": Let ¢ be a path formula de-
noting some additional requirement for the completing path,
and let, as before; represent the final state of the workflow.
Then the possible completion pattern can be expressed as: In
the beginning there is at least one completing path satisfying
©. In CTL* terms we write

AG(¢ AEF 7).

E(p AFT).

Fig. 3. Proper optional completion wiih = F exec(ts)

Instances: The notion of Easy soundnes§l3], [2]
Examples:Fig. 3 shows a WF-net that has the optionalcorresponds to proper possible completion wjith= true.
but not the mandatory, completion property. Note that neithdRelaxed soundne$S] requires that for each transition there
of the two standard fairness assumptions for mandatoiy at least one execution towards completion. This amounts

a) Proper possible completion with = Fexec(t3)

[not pred(d)]

[pred(a)]

t t t

b) Proper possible completion where guards restrict behavior

Fig. 4. Possible completion

to checking proper possible completion with= Fexec(¢),
for each transitiort.

this way we keep the size of the system tractable, but increase
the precision of the analysis. Although our method can still

Examples:The workflow from Fig. 4a does not have thegive false positives and false negatives, the number of cases
optional completion property as the executiortpfeads to a where this happens is less compared to the existing methods
deadlock. It does, however, satisfy the requirement for proparhich do not take data into account.

possible completion witlp = exec(t3) (and thus withy =

We are in the process of makingZ @ L* based verification

true too) as the sequences t3 leads to (proper) completion. tool for WFD-nets, aiming at a framework for flexible,
The workflow in Fig. 4b illustrates proper possible com-adaptive and complete workflow verification. The patterns of

pletion with ¢ = Fexec(t3). If t; sets the value ab pred to

this paper, and the patterns for data-flow errors we defined

true, the sequence,, ¢, t3 is completing properly. The net, in [14], are important steps in this process.

however, does not have the optional completion property as
it enters the livelock,, t4, t2, ... when the value opred is

false. Note that without the data information this workflow [1]
would be reported as satisfying the mandatory completion

requirement with strong fairness. 2]
Finally, Fig. 5 shows a workflow that does not complete
according to the possible completion pattern; tagkcan
never be executed as it needs a tokeibath p; and ps. 3]
(4]
(5]

Fig. 5. A workflow that does not have the possible completion property [6]

Comparison: Possible completion is implied by op-
tional completion wheneves is implied byG¢. The opposite [g]
holds only (in the non-interesting case) when there are no
explicit choices in the workflow ang implies G¢.

Verification: The formula capturing possible completion
is a CTL formula wheny = true. If ¢ is a path formula
containing no state formulas of the fory’, then the
negation of the property is ihTL.

Remark 1:We could now also define the fourth pattern
that would be the “state based” version of possible complélo]
tion (like optional completion is for mandatory completion).[11;
For this pattern, however, we found no practical applicatiorE.

(9]

IV. CONCLUSIONS AND FUTURE WORK

We defined three generic patterns for representing the
workflow completion requirement, and we formalized these
patterns in terms o€TL". We showed that the patterns en-13
compass most of the variants of the completion requirement
described in the literature. In many cases, pattern-instances
were eitherCTL or LTL formulas, which immediately en- [14]
ables the use of many tools available on the market.

Our method does not fully abstract from data but includes
information about data reading, data writing, and guards. In

REFERENCES

W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers
8(1):21-66, 1998.

W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede,
N. Sidorova, H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn. Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis.
BPM Center Report BPM-08-02, BPMcenter.org, 2008.

E.M. Clarke, O. Grumberg, and D.A. Peletlodel Checking The

MIT Press, Cambridge, Massachusetts and London, UK, 1999.

CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes.
In K.R. Dittrich, A. Geppert, and M.C. Norrie, editoBroceedings of

the 13th International Conference on Advanced Information Systems
Engineering (CAISE’01)volume 2068 ofLecture Notes in Computer
Science pages 157-170. Springer-Verlag, Berlin, 2001.

R. Eshuis. Symbolic Model Checking of UML Activity Diagrams.
ACM Transactions on Software Engineering Methodolabfy(1):1—

38, 2006.

N. Francez.Fairness Springer, New York, 1987.

C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater.
Model Checking of Workflow Schemas. Froceedings of the Fourth
International Enterprise Distributed Object Computing Conference
(EDOC'00), pages 170-181, Los Alamitos, CA, USA, 2000. IEEE
Computer Society.

J. Koehler, G. Tirenni, and S. Kumaran. From Business Process
Model to Consistent Implementation: A Case for Formal Verifica-
tion Methods. In6th International Enterprise Distributed Object
Computing Conference (EDOC’02), 17-20 September 2002, Lausanne,
Switzerland pages 96—-106. IEEE Computer Society, 2002.

A. Martens. On Compatibility of Web ServiceBetri Net Newsletter
65:12-20, 2003.

Model-Checking Kit Home Page.http://www.informatik.
uni-stuttgart.de/fmi/szs/tools/mckit/ .

12] F. Puhimann and M. Weske. Investigations on Soundness Regarding

Lazy Activities. In S. Dustdar, J.L. Faideiro, and A. Sheth, editors,
International Conference on Business Process Management (BPM
2006) volume 4102 ofLecture Notes in Computer Scienqeages
145-160. Springer-Verlag, Berlin, 2006.

R. van der Toorn. Component-Based Software Design with Petri
nets: An Approach Based on Inheritance of Behavi®hD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands,
2004.

N. Trcka, W.M.P. van der Aalst, and N. Sidorova. Data-Flow Anti-
Patterns: Discovering Data-Flow Errors in Workflows. 2ist Inter-
national Conference on Advanced Information Systems (CAISE’'09)
2009. LNCS. To appear.

