
XES, XESame, and ProM6

H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{h.m.w.verbeek,j.c.a.m.buijs,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. Process mining has emerged as a new way to analyze busi-
ness processes based on event logs. These events logs need to be extracted
from operational systems and can subsequently be used to discover or
check the conformance of processes. ProM is a widely used tool for pro-
cess mining. In earlier versions of ProM, MXML was used as an input
format. In future releases of ProM, a new logging format will be used:
the eXtensible Event Stream (XES) format. This format has several ad-
vantages over MXML. The paper presents two tools that use this format
- XESame and ProM 6 - and highlights the main innovations and the
role of XES. XESame enables domain experts to specify how the event
log should be extracted from existing systems and converted to XES.
ProM 6 is a completely new process mining framework based on XES
and enabling innovative process mining functionality.

1 Introduction

Unlike classical process analysis tools which are purely model-based (like simu-
lation models), process mining requires event logs. Fortunately, today’s systems
provide detailed event logs. Process mining has emerged as a way to analyze sys-
tems (and their actual use) based on the event logs they produce [1, 2, 3, 4, 6, 16].
Note that, unlike classical data mining, the focus of process mining is on concur-
rent processes and not on static or mainly sequential structures. Also note that
commercial Business Intelligence (BI for short) tools are not doing any process
mining. They typically look at aggregate data seen from an external perspective
(including frequencies, averages, utilization and service levels). Unlike BI tools,
process mining looks “inside the process” and allows for insights at a much more
refined level.

The omnipresence of event logs is an important enabler of process mining,
as analysis of run-time behavior is only possible if events are recorded. Fortu-
nately, all kinds of information systems provide such logs, which include classi-
cal workflow management systems like FileNet and Staffware, ERP systems like
SAP, case handling systems like BPM|one, PDM systems like Windchill, CRM
systems like Microsoft Dynamics CRM, and hospital information systems like
Chipsoft. These systems provide very detailed information about the activities
that have been executed.



2 H.M.W. Verbeek et al.

However, also all kinds of embedded systems increasingly log events. An em-
bedded system is a special-purpose system in which the computer is completely
encapsulated by or dedicated to the device or system it controls. Examples in-
clude medical systems like X-ray machines, mobile phones, car entertainment
systems, production systems like wafer steppers, copiers, and sensor networks.
Software plays an increasingly important role in such systems and, already to-
day, many of these systems log events. An example is the “CUSTOMerCARE
Remote Services Network” of Philips Medical Systems (PMS for short), which is
a worldwide internet-based private network that links PMS equipment to remote
service centers. Any event that occurs within an X-ray machine (like moving the
table or setting the deflector) is recorded and can be analyzed remotely by PMS.
The logging capabilities of the machines of PMS illustrate the way in which em-
bedded systems produce event logs.

The MXML format [7] has proven its use as a standard event log format in
process mining. However, based on practical experiences with applying MXML
in about one hundred organizations, several problems and limitations related
to the MXML format have been discovered. One of the main problems is the
semantics of additional attributes stored in the event log. In MXML, these are all
treated as string values with a key and have no generally understood meaning.
Another problem is the nomenclature used for different concepts. This is caused
by MXML’s assumption that strictly structured process would be stored in this
format [10].

To solve the problems encountered with MXML and to create a standard
that could also be used to store event logs from many different information
systems directly, a new event log format is under development. This new event
log format is named XES, which stands for eXtensible Event Stream. Please note
that this paper is based on XES definition version 1.0, revision 3, last updated
on November 28, 2009. This version serves as input for standardization efforts by
the IEEE Task Force Process Mining [13]. Minor changes might be made before
the final release and publication of the format.

The remainder of this paper is organized as follows. Section 2 introduces the
new event log format XES. Of course, we need to be able to extract XES event
logs from arbitrary information systems in the field. For this reason, Section 3
introduces the XES tool XESame. This tool can connect to any ODBC database,
and allows the domain expert to provide the details of the desired extraction in
a straightforward way. After having obtained an XES event log, we should be
able to analyze this log in all kinds of ways. For this reason, Section 4 introduces
the XES tool ProM 6, which is the upcoming release of the ProM framework
[8]. ProM 6 supports the XES event log format, and provides a completely new
process mining framework. Finally, Section 5 concludes the paper.

2 XES: eXtensible Event Stream

To explain the structure of an XES event log, we compare the way a single
process containing only a single event is captured in both the MXML and the



XES, XESame, and ProM 6 3

Listing 1. Example MXML log.

<WorkflowLog xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi:noNamespaceSchemaLocation=

”http://is.ieis.tue.nl/research/processmining/WorkflowLog.xsd”
description=”Example log”>

<Process id=”Order”>
<ProcessInstance id=”Order 1” description=”instance with Order 1”>
<Data>
<Attribute name=”TotalValue”>2142.38<Attribute>

</Data>
<AuditTrailEntry>
<WorkflowModelElement>Create</WorkflowModelElement>
<EventType>complete</EventType>
<Originator>Wil<Originator>
<Timestamp>2009−01−03T15:30:00.000+01:00</Timestamp>
<Data>
<Attribute name=”currentValue”>2142.38</Attribute>
<Attribute name=”requestedBy”>Eric</Attribute>
<Attribute name=”supplier”>Fluxi Inc.</Attribute>
<Attribute name=”expectedDelivery”>

2009−01−12T12:00:00.000+01:00
</Attribute>

</Data>
</AuditTrailEntry>

</ProcessInstance>
</Process>

</WorkflowLog>

XES format. The event corresponds to the creation of an order on January 3,
2009 at 15:30 hours CET by the employee called Wil. The total value of the
entire order is 2,142.38 Euros, it was requested by a customer called Eric, it is
supplied by a company called Fluxi Inc., and delivery is expected on January
12, 2009 at 12:00 hours CET.

Listing 1 shows the way this log is captured in MXML. In MXML, a Pro-
cessInstance element captures a single process instance, whereas an Audit-
TrailEntry element captures a single event. Data attributes can be associated
to these elements using a Data element containing multiple Attribute elements.
MXML uses a number of predefined MXML attributes:

WorkflowModelElement This attribute captures the name of the activity that
triggered the event.

EventType This attribute captures the type of the event, like start, complete,
suspend, and resume.

Originator This attribute captures the name of the resource (human or not) who
actually executed the activity.



4 H.M.W. Verbeek et al.

Timestamp This attribute captures the time at which the event occurred in the
system.

Although the meaning of any of these standard attributes is generally well-
understood, the meaning of the any of the other, non-standard, attributes is
not.

In contrast, Listing 2 shows this log in XES, whereas Fig. 1 shows the XES
meta model [11]. Intuitively, the XES log element replaces, the MXML Worfk-
lowLog element, the trace element replaces the ProcessInstance element, and
the event element replaces the AuditTrailEntry element. However, there are a
number of differences worth mentioning. First of all, in XES the log, trace and
event elements only define the structure of the document: they do not contain
any information themselves. To store any data in the XES format, attributes are

Log

Trace

Event

Attribute

Extension

Key

String

Date

Int

Float

Boolean

Value

<contains>

<contains>

<contains>

<contains>

<trace-global>

<event-global>

<defines>

<declares>
name

prefix

URI

Classifier
<defines><defines>

Fig. 1. XES Meta Model.



XES, XESame, and ProM 6 5

Listing 2. Example XES log.

<log>
<extension name=”Lifecycle” prefix=”lifecycle”

uri=”http://www.xes−standard.org/lifecycle.xesext”/>
<extension name=”Time” prefix=”time”

uri=”http:///www.xes−standard.org/time.xesext”/>
<extension name=”Concept” prefix=”concept”

uri=”http:///www.xes−standard.org/concept.xesext”/>
<extension name=”Semantic” prefix=”semantic”

uri=”http:///www.xes−standard.org/semantic.xesext”/>
<extension name=”Organizational” prefix=”org”

uri=”http:///www.xes−standard.org/org.xesext”/>
<extension name=”Order” prefix=”order”

uri=”http://my.company.com/xes/order.xesext”/>
<global scope=”trace”>
<string key=”concept:name” value=”unknown”/>

</global>
<global scope=”event”>
<string key=”concept:name” value=”unknown”/>
<string key=”lifecycle:transition” value=”unknown”/>
<string key=”org:resource” value=”unknown”/>

</global>
<classifier name=”Activity classifier” keys=”concept:name lifecycle:transition”/>
<string key=”concept:name” value=”Example log” />
<trace>
<string key=”concept:name” value=”Order 1” />
<float key=”order:totalValue” value=”2142.38” />
<event>
<string key=”concept:name” value=”Create” />
<string key=”lifecycle:transition” value=”complete” />
<string key=”org:resource” value=”Wil” />
<date key=”time:timestamp” value=”2009−01−03T15:30:00.000+01:00” />
<float key=”order:currentValue” value=”2142.38” />
<string key=”details” value=”Order creation details”>
<string key=”requestedBy” value=”Eric” />
<string key=”supplier” value=”Fluxi Inc.” />
<date key=”expectedDelivery” value=”2009−01−12T12:00:00.000+01:00” />

</string>
</event>

</trace>
</log>



6 H.M.W. Verbeek et al.

Table 1. List of XES extensions and their attribute keys.

Extension Key Level Type Description

concept name log,
trace,
event

string Generally understood name.

instance event string Identifier of the activity whose execu-
tion generated the event.

lifecycle model log string The transactional model used for the
lifecycle transition for all events in the
log.

transition event string The lifecycle transition represented by
each event (e.g. start, complete, etc.).

organizational resource event string The name, or identifier, of the resource
having triggered the event.

role event string The role of the resource having trig-
gered the event, within the organiza-
tional structure.

group event string The group within the organizational
structure, of which the resource having
triggered the event is a member.

time timestamp event date The date and time, at which the event
has occurred.

semantic modelReference all string Reference to model concepts in an on-
tology.

used. Every attribute has a string based key, a known type, and a value of that
type. Possible types are string, date, integer, float and boolean. Note that
attributes can have attributes themselves which can be used to provide more
specific information.

The precise semantics of an attribute is defined by its extension, which could
be either a standard extension or some user-defined extension. Standard exten-
sions include the concept extension, the lifecycle extension, the organizational
extension, the time extension, and the semantic extension. Table 1 shows an
overview of these extensions together with a list of possible keys, the level on
which these keys may occur, the value type, and a short description, whereas
Listing 3 shows the definition of the concept extension. Note that the seman-
tic extension is inspired by SA-MXML (Semantically Annotated MXML) [15].
Note that in the example of Listing 2 some attributes are defined by an order
extension (totalValue and currentValue), where other attributes are not defined
by any extension (including details and supplier).

Furthermore, event classifiers can be specified in the log element which as-
sign an identity to each event. This makes events comparable to other events
via their assigned identity. Classifiers are defined via a set of attributes, from
which the class identity of an event is derived. A straightforward example of a



XES, XESame, and ProM 6 7

Listing 3. Concept extension.

<xesextension name=”Concept” prefix=”concept”
uri=”http:///www.xes−standard.org/concept.xesext”>

<log>
<string key=”name”>
<alias mapping=”EN” name=”Name”/>
<alias mapping=”DE” name=”Name”/>
<alias mapping=”FR” name=”Appellation”/>
<alias mapping=”ES” name=”Nombre”/>
<alias mapping=”PT” name=”Nome”/>

</string>
</log>
<trace>
<string key=”name”>
<alias mapping=”EN” name=”Name”/>
<alias mapping=”DE” name=”Name”/>
<alias mapping=”FR” name=”Appellation”/>
<alias mapping=”ES” name=”Nombre”/>
<alias mapping=”PT” name=”Nome”/>

</string>
</trace>
<event>
<string key=”name”>
<alias mapping=”EN” name=”Name”/>
<alias mapping=”DE” name=”Name”/>
<alias mapping=”FR” name=”Appellation”/>
<alias mapping=”ES” name=”Nombre”/>
<alias mapping=”PT” name=”Nome”/>

</string>
<string key=”instance”>
<alias mapping=”EN” name=”Instance”/>
<alias mapping=”DE” name=”Instanz”/>
<alias mapping=”FR” name=”Entit”/>
<alias mapping=”ES” name=”Instancia”/>
<alias mapping=”PT” name=”Instncia”/>

</string>
</event>

</xesextension>

classifier is the combination of the event name and the lifecycle transition as
used in MXML, which is included in Listing 2.

Finally, the fact that certain attributes have well-defined values for every
trace and/or event in the log can be specified by the global element. For example,
in the example shown in Listing 2 the event attributes concept name and lifecycle
transition have well-defined values for every event, which of course is very nice
(though not mandatory) as these attributes are used in an event classifier. In case



8 H.M.W. Verbeek et al.

a trace and/or event does not have the attribute, the value of the corresponding
global attribute will be used. As a result of these global elements, plug-ins that
require these attributes to have values for every trace and/or event can quickly
check whether these attributes indeed have values for every trace and/or event.

3 XESame

Although many information systems record the information required for process
mining, chances are that this information is not readily available in the XES
format. Since the information is present in the data storage of the information
system, it should be possible to reconstruct an event log that contains this in-
formation. However, extracting this information from the data storage is likely
to be a time consuming task and requires domain knowledge, knowledge which
is usually held by domain experts like business analysts.

For the purpose of extracting am (MXML) event log from an information
system, the ProM Import Framework [9] was created. Although there is a col-
lection of plug-ins for various systems and data structures, chances are that a
new plug-in needs to be written by the domain expert in Java. The main prob-
lem with this approach is that one cannot expect the domain expert to have
Java programming skills. Therefore, there is a need for a tool that can extract
the event log from the information system at hand without the domain expert
having to program. This tool is XESame [5]1.

XESame provides a generic way for extracting an event log from some data
source, and is designed to be easy to use. A key strength of XESame is that
no programming skills are required: The entire conversion from data source to
event log can be defined through the GUI. We use a simple example to showcase
XESame. Table 2 shows the contents of two tables, from which we will gener-
ate an event log. Fig. 2 shows the internal representation of the conversion in
XESame. Among other things, these details show that:

– The resulting log will use the concept, lifecycle, organizational, time, and
semantic extension.

– The resulting log will originate from the events.csv table, will have name
‘Testlog’, and will use the standard lifecycle model.

– The resulting log will contain the standard event classifier.
– In the resulting log, every trace corresponds to an order.
– The resulting log will contain all traces that correspond to orders with or-

derID less than 100.
– Every trace will contain all events that are related to the corresponding order.
– Every event will use the eventname field as concept name, the eventtype

field as lifecycle transition, and the timestamp field as time timestamp.
– Every event will use the usergroup field from the users.csv table as organi-

zational group, where both tables have been linked on the userId field.

1 Note that in [5] the tool is called the XES Mapper instead of XESame



XES, XESame, and ProM 6 9

Name

Demo mapping

Description
Demo mapping’s 

description

Mapping

DriverURL

jdbc:odbc:CSVMultiple

Username Password Description
sun.jdbc.odbc.

JdbcOdbcDriver
Description of the 

connection

Connection

From
events.csv AS events

Where
Log

From
events.csv AS events

Where
orderID < 100

Trace
traceID
orderID

From
events.csv AS events

Where
Event

traceID
orderID

DisplayName
Generated Event

eventOrder
timestamp

Specification
users.csv AS users ON 

users.userID = events.userID

Links

Attributes
Key

concept:instance
concept:name

lifecycle:transition
org:group

org:resource

Value Type
String

eventname String
eventtype String

users.usergroup String
users.username String

Extension
Concept
Concept
Lifecycle

Organizational
Organizational

org:role users.userrole String Organizational
time:timestamp timestamp Date Time

semantic:modelReference String Semantic
New_Attribute ‘New!’ String

Attribute
Key

concept:name
Value Type

'order ' & orderID String
Extension
Concept

semantic:modelReference String Semantic

Attributes
Key

author
Value Type

‘Joos Buijs’ String
Extension

generated_on [{now()}] Date

Attributes
Key

concept:name
Value Type

‘Testlog’ String
Extension
Concept

lifecycle:model ‘standard’ String Lifecycle
semantic:modelReference String Semantic

Generation_Details ‘Generation Details’ String

Extensions
Name

Concept
Lifecycle

Organizational
Time

Semantic

Prefix URL
concept http://www.xes-standard.org/concept.xesext
lifecycle http://www.xes-standard.org/lifecycle.xesext

org http://www.xes-standard.org/org.xesext
time http://www.xes-standard.org/time.xesexttime

semantic http://www.xes-standard.org/semantic.xesext

name

Activity Classifier

Classifiers
keys

concept:name lifecycle:transition

Fig. 2. An example mapping instance.



10 H.M.W. Verbeek et al.

Table 2. Example source data.

events.csv

orderID eventName timestamp eventType userID

1 Create 1-1-2009 10:00 Start 1
1 Create 1-1-2009 11:00 Complete 1
2 Create 1-1-2009 11:00 Start 1
2 Create 1-1-2009 12:00 Complete 1
1 Send 2-1-2009 10:00 Start 2
3 Create 2-1-2009 10:01 Start 1
1 Send 2-1-2009 10:10 Complete 2
3 Create 2-1-2009 11:00 Complete 1
2 Send 2-1-2009 12:00 Start 2
2 Send 2-1-2009 13:00 Complete 2
1 Receive 3-1-2009 10:00 Start 3
1 Receive 3-1-2009 10:05 Complete 3
1 Pay 3-1-2009 15:00 Start 4
2 Pay 3-1-2009 15:00 Start 4
1 Pay 3-1-2009 15:30 Complete 4
2 Pay 3-1-2009 15:30 Complete 4
2 Receive 3-1-2009 17:00 Start 3
2 Receive 3-1-2009 17:05 Complete 3

123 Create 14-2-2009 9:00 Start 1
123 Create 14-2-2009 9:10 Complete 1

users.csv

userID userName userGroup userRole

1 George Purchase OrderCreator
2 Ine Support Secretary
3 Eric Warehouse Reciever
4 Wil Finance Payer

To demonstrate the applicability of XESame, we have performed two case
studies on data from different systems. The first case study was performed on
data from an SAP system. This case study showed that a conversion definition
could be defined using different tables and columns from the data source. The
other case study showed that data exported from a custom system can also be
converted to a log by XESame. For both case studies, the performance was also
investigated and shown to be linear in time with the size of the resulting event
log.

4 ProM

After having extracted the event log from the information system, we can analyze
the event log using ProM [8], the plugable generic open-source process mining
framework. The ProM toolkit has been around for about six years. During this



XES, XESame, and ProM 6 11

period, the ProM framework has matured to a professional level, which has
allowed dozens of developers in different countries to contribute their research
in the form of plug-ins. In the end, this resulted in ProM 5.2, which contains
286 plug-ins, and which has been used in over one hundred case studies. Some
examples include:

For a provincial office of Rijkswaterstaat (the Dutch National Public Works De-
partment), we have analyzed [1] its invoice process and have shown that
its bad performance was mainly due to employees working at remote sites.
Furthermore, we showed that it is worthwhile to combine different mining
perspectives to reach a richer understanding of the process. In this case, for
example, the process model revealed the problems (loops), but it took an or-
ganizational model to identify the key players, and a case-oriented analysis
to understand the impact of these loops on the process performance.

For ASML (the leading manufacturer of wafer scanners in the world), we have
investigated [17] its test process, and have made concrete suggestions for
process improvement, which included reordering of tasks to prevent feed-
back loops and using idle time for scheduling. However, we also showed that
further research is needed to develop process mining techniques that are par-
ticularly suitable for analyzing processes like the highly dynamic test process
of ASML.

For the Dutch AMC hospital, we have shown [14] that we were able to derive
understandable models for large groups of patients, which was confirmed by
people of the hospital. Nevertheless, we also showed that traditional process
mining approaches have problems dealing with unstructured processes as,
for example, can be found in a hospital environment.

As XES is a new log format that is still under development, the older versions
of ProM do not handle XES logs. Fortunately, the upcoming version of ProM,
ProM 6, will be able to handle XES logs.

The fact that ProM 6 can handle XES logs where earlier versions of ProM
cannot is not the only difference between ProM 6 and its predecessors (ProM 5.2
and earlier). Although these predecessors have been a huge success in the pro-
cess mining field, they limited future work for a number of reasons. First and
foremost, the earlier versions of ProM did not separate the functionality of a
plug-in and its GUI. As a result, a plug-in like the α-miner [3] could not be run
without having it popping up dialogs. As a result, it was impossible to run the
plug-in on some remote machine, unless there would be somebody at the remote
display to deal with these dialogs. Since we are using a dedicated process grid
for process mining, this is highly relevant. Second, the distinction between the
different kind of plug-ins (mining plug-ins, analysis plug-in, conversion plug-ins,
import plug-ins, and export plug-ins) has disappeared; leaving only the concept
of a generic plug-in. Third, the concept of an object pool has been introduced:
plug-ins take a number of objects from this pool as input, and produce new
objects for this pool. Fourth, ProM 6 allows the user to first select a plug-in,
and then select the necessary input objects from the pool. As some plug-in can
handle different configurations of objects as input, ProM 6 also introduces the



12 H.M.W. Verbeek et al.

concept of plug-in variants. The basic functionality of variants of some plug-in
will be identical, but every variant will be able to take a different set of objects
as input.

Fig. 3. ProM 6 view on the log.

We use the XES event log obtained from XESame, as described in the previ-
ous section, to showcase ProM 6. Fig. 3 shows shows some basic characteristics
of the log, which includes:

– the number of case (traces) (3),
– the number of events (18),
– the number of event classes (8),
– the number of event types (2),
– the number of originators (4),
– a graphical representation of the distribution of events per case,
– a graphical representation of the distribution of event classes per case, and
– some general information on the log.

Fig. 4 shows the action view of ProM 6, which includes a view on the filtered
list of installed plug-ins. For every plug-in this list includes:

– the name of the plug-in (like “Simple Log Filter”),
– the name of the author of the plug-in (like “H.M.W. Verbeek”), and



XES, XESame, and ProM 6 13

Fig. 4. ProM 6 action view.

– a URL where additional information on this plug-in may be found (like
“http://www.processmining.org”).

ProM 6 is aware of all required inputs and all output types for every plug-in.
As a result, because the user has selected the event log named “Testlog.xes” to
be a required input, the list of installed plug-ins show only those plug-ins that
can actually take an event log as input. Plug-ins for which all required inputs
are satisfied, that is, plug-ins that only need an event as input, are colored
green in the plug-in list (like “Simple Log Filter”), whereas plug-ins that require
additional inputs are colored yellow (like “Fitness”, which also requires a Petri
net as input). Note that it is also possible to filter the list of plug-ins on the
output types, which allows the user to get quickly to those plug-ins that can
produce an object of a type s/he needs.

Fig. 5 shows a dotted chart [18] on the log. This chart shows a graphical
view on the log, where all events of a single case are plotted on a horizontal line,
where the position on this line corresponds to the timestamp of the event, and
where the color of the dot corresponds to the name of the event. For example,
the two selected green dots in the middle correspond to two events for the case
named “order 2”, the first event corresponds to a send activity started by “Ine”
on January 2, 2009 at 12:00 PM, whereas the second event corresponds to the
matching complete event that occurred an hour later.

Fig. 6 shows the fuzzy model that result from running the “Fuzzy miner”
[12] on the example log. This fuzzy model clearly shows that no strict ordering
exists between the “Receive” and “Pay” activities.



14 H.M.W. Verbeek et al.

5 Conclusions

This paper has introduced the new event log format XES. The XES format
enhances the existing MXML [7] in many ways, as is shown in this paper. XES is

Fig. 5. ProM 6 dotted chart.

Fig. 6. ProM 6 fuzzy model.



XES, XESame, and ProM 6 15

used as input for standardization efforts within the IEEE Task Force on Process
Mining [13].

This paper also introduced a tool that allows the domain expert to extract
an XES event log from some existing system. This tool, XESame [5], improves
on the ProM Import framework [9] in the way that it is generic, and that it
does not require the domain expert to create a Java plug-in for specifying (and
executing) the extraction. Instead, XESame allows the domain expert to simply
specify from which fields in the database which attributes in the event log should
be extracted.

Finally, this paper has introduced a new version of the ProM framework [8],
ProM 6. In contrast to earlier versions of ProM, ProM 6 can handle XES event
logs, can be executed on remote machines, and can guide the user into selecting
the appropriate inputs for a certain plug-in. As a result, it better supports the
analysis of event logs than any of the earlier releases did.

ProM 6 will be released in the Summer of 2010, but interested readers may
already obtain a prerelease (which also contains XESame) or so-called ‘nightly
builds’ through the Process Mining website (www.processmining.org).

Acknowledgements The authors would like to thank Christian Günther for
his work on the XES standard and the new UI of ProM 6.

References

1. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

2. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

3. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

4. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

5. J.C.A.M. Buijs. Mapping Data Sources to XES in a Generic Way. Master’s thesis,
Eindhoven University of Technology, 2010.

6. A. Datta. Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research, 9(3):275–301,
1998.

7. B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining
Data. In J. Casto and E. Teniente, editors, Proceedings of the CAiSE’05 Workshops
(EMOI-INTEROP Workshop), volume 2, pages 309–320. FEUP, Porto, Portugal,
2005.

8. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory



16 H.M.W. Verbeek et al.

of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
444–454. Springer-Verlag, Berlin, 2005.

9. C. Günther and W.M.P. van der Aalst. A Generic Import Framework for Process
Event Logs. In J. Eder and S. Dustdar, editors, Business Process Management
Workshops, Workshop on Business Process Intelligence (BPI 2006), volume 4103
of Lecture Notes in Computer Science, pages 81–92. Springer-Verlag, Berlin, 2006.

10. C. W. Günther. Process Mining in Flexible Environments. PhD thesis, Eindhoven
University of Technology, Eindhoven, 2009.

11. C. W. Günther. XES Standard Definition. Fluxicon Process Laboratories, Novem-
ber 2009.

12. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 328–343.
Springer-Verlag, Berlin, 2007.

13. IEEE Task Force on Process Mining. www.win.tue.nl/ieeetfpm.
14. R. S. Mans, M.H. Schonenberg, M. Song, W. M. P. van der Aalst, and P. J. M.

Bakker. Application of process mining in healthcare - a case study in a Dutch
hospital. In A. Fred, J. Filipe, and H. Gamboa, editors, Biomedical Engineering
Systems and Technologies, volume 25 of Communications in Computer and Infor-
mation Science, pages 425–438. Springer Berlin Heidelberg, 2009.

15. A.K. Alves de Medeiros, C. Pedrinaci, W.M.P. van der Aalst, J. Domingue,
M. Song, A. Rozinat, B. Norton, and L. Cabral. An Outlook on Semantic Busi-
ness Process Mining and Monitoring. In R. Meersman, Z. Tari, and P. Herrero,
editors, Proceedings of the OTM Workshop on Semantic Web and Web Semantics
(SWWS ’07), volume 4806 of Lecture Notes in Computer Science, pages 1244–1255.
Springer-Verlag, Berlin, 2007.

16. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

17. A. Rozinat, I. S. M. de Jong, C. W. Günther, and W. M. P. van der Aalst. Process
mining applied to the test process of wafer steppers in ASML. In IEEE Transac-
tions on Systems, Man, and CyberneticsPart C: Applications and Reviews. 2009.
To appear.

18. M. Song and W.M.P. van der Aalst. Supporting Process Mining by Showing Events
at a Glance. In K. Chari and A. Kumar, editors, Proceedings of 17th Annual
Workshop on Information Technologies and Systems (WITS 2007), pages 139–145,
Montreal, Canada, December 2007.


