Reduction Rules for Reset/Inhibitor Nets

H.M.W. Verbeek ** , M.T. Wynn b W.M.P. van der Aalst®" |
A.H.M. ter Hofstede P
&Department of Mathematics and Computer Science, Eindhoven University of Technology
PO Box 513, NL-5600 MB Eindhoven, The Netherlands.

b Business Process Management Group, Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia.

Abstract

Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These ex-
tensions can be used to model cancelation and blocking. A reset arc allows a transition to
remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a
transition from being enabled if the place contains one or more tokens. While reset/inhibitor
nets increase the expressive power of Petri nets, they also result in increased complexity of
analysis techniques. One way of speeding up Petri net analysis is to apply reduction rules.
Unfortunately, many of the rules defined for classical Petri nets do not hold in the presence
of reset and/or inhibitor arcs. Moreover, new rules can be added. This is the first paper
systematically presenting a comprehensive set of reduction rules for reset/inhibitor nets.
These rules are liveness and boundedness preserving and are able to dramatically reduce
models and their state spaces. It can be observed that most of the modeling languages used
in practice have features related to cancelation and blocking. Therefore, this work is highly
relevant for all kinds of application areas where analysis is currently intractable.

Key words: Reduction rules, Petri nets, reset arcs, inhibitor arcs, liveness, boundedness.

1 Introduction

Petri nets are a well-established formalism for modeling and analyzing concurrent
systems. Over time many extensions have been proposed in order to capture spe-
cific, possibly quite complex, behavior in a more direct manner. These extensions

* H.M.W. Verbeek, Phone: +31 40 247 2181, Fax: +31 40 246 3992
Email addresses: h.m.w.verbeek@tue.nl (H.M.W. Verbeek),

m.wynn@qut.edu.au (M. T. Wynn), w.m.p.v.d.aalst@tue.nl (W.M.P. van der
Aalst), a.terhofstede@qut.edu.au (A.H.M. ter Hofstede).

Preprint submitted to Elsevier 28 May 2009



include reset arcs and inhibitor arcs. Reset arcs provide a natural means of deal-
ing with cancelation behavior. A reset arc is a type of arc that goes from a place
to a transition and its semantics is to remove all tokens from that place when the
transition fires [1-5]. For example, a customer may cancel a travel request which
would result in certain activities terminating. Inhibitor arcs provide a natural means
of dealing with blocking behavior. An inhibitor arc is a type of arc that goes from
a place to a transition and its semantics is to prevent the transition from firing when
the place contains one or more tokens [6,7]. For example, an invoice should only
be generated when the items ordered are ready for delivery and the order has not
been canceled.

While these extensions increase the expressiveness of Petri nets, they can com-
promise analysis techniques and certain properties may even become undecidable.
Examples of such properties are

e the reachability problem, which is undecidable for Petri nets with inhibitor arcs
and for Petri nets with reset arcs, and
e the existence of place invariants, which do not hold for Petri nets with reset arcs.

Examples of such analysis techniques are reachability and coverability analysis,
which can be used to detect structural and behavioral properties of Petri nets [8].
Coverability analysis has been extended in order to deal with Petri nets with reset
arcs [4] and also in order to deal with Petri nets with inhibitor arcs [9]. Limiting
the practical applicability of reachability and coverability analysis is the problem of
state explosion, which occurs in nets where a very large number of markings need
to be considered for analysis.

Reduction rules for Petri nets have been proposed to deal with the state explosion
problem. Reduction rules can reduce the size of the net while preserving certain
essential properties such as liveness. Their application therefore has the potential
to significantly speed up the analysis process. A significant body of research exists
that addresses the concept of reduction in the area of Petri nets (see e.g. [10,8]) and
its various subclasses (see e.g. [11]) and extensions (see e.g. [12]). However, as far
as we know, the issue of reduction in Petri nets with both reset and inhibitor arcs
has not been considered in the literature. Existing reduction rules are not directly
applicable in the presence of both types of arcs.

Business process modeling languages used in practice, e.g. UML Activity Dia-
grams [13], the Business Process Modeling Notation (BPMN) [14] and the Busi-
ness Process Execution Language (BPEL) [15], offer features which correspond to
cancelation and blocking. To capture their semantics, reset arcs and inhibitors arcs
can play a prominent role, as reset arcs can model cancelation and inhibitor arcs
can model blocking. Hence the analysis of business process modeling languages
mapped to Petri nets with reset and inhibitor arcs could benefit from reduction
rules developed for such nets. Here it can be added that the application of general



translations of modeling notations to Petri nets typically results in nets with many
“dummy” transitions (with a single input place and a single output place) that are
used to simply glue various parts of the model together. Reduction rules can then
be quite effective in reducing the resulting nets, as these rules are likely to reduce
these “dummy” transitions.

In this paper a number of reduction rules for Petri nets with reset and inhibitor arcs
are proposed. These are inspired by reduction rules provided for Petri nets in [10,8]
and for Free Choice Petri nets provided in [11]. Additional conditions are proposed
to cater for the presence of reset and inhibitor arcs. The proposed rules are shown
to preserve liveness and boundedness.

The contributions of the paper are as follows. (1) The paper aims to make a contri-
bution to the body of theory in Petri nets with reset and inhibitor arcs by providing
a set of liveness and boundedness preserving reduction rules. (2) In practical terms,
the reduction rules presented in this paper can be used for an efficient analysis of
business process models described using various business process modeling lan-
guages that support cancelation and blocking such as the Business Process Model-
ing Notation (BPMN), the Business Process Execution Langauge (BPEL) and the
Unified Modeling Language (UML).

The organization of the remainder of this paper is as follows. Section 2 provides ter-
minology, concepts, notations and formal definitions that are required in subsequent
sections of the paper. In Section 3 a set of liveness and boundedness preserving re-
duction rules for Petri nets with reset and inhibitor arcs are introduced. Section 4
discusses related work and Section 5 concludes the paper.

2 Preliminaries

This section provides the formal foundation for Petri nets and reset/inhibitor nets
as it is used throughout this paper. Readers familiar with Petri nets, reset arcs, and
inhibitor arcs, may skip this section, although the particular notations used in the
paper might still be of interest to them.

2.1 Petri nets

In its basic form, a Petri net consists of a set of places, a set of transitions, and a
set of arcs that connect places to transitions and vice versa. Note that arcs do not
connect places to places or transitions to transitions.

Definition 1 (Petri net [8]) A Petri net is a tuple (P, T, F') where P is a finite set
of places, T is a finite set of transitions, PN'T = @and F C (P x T)U (T x P)



is the (finite) set of arcs.

Let N be a Petri net (P, T, F'), and let « be a node of N, thatis, letz € PUT.
We use ez and ze to denote the set of input nodes and output nodes respectively. If
the net involved cannot be understood from the context, we explicitly include net
N in the notation and we write « x and z «. Relation F is a function and F(x,y)
evaluates to 1 if (x,y) € F" and to O otherwise.

To every place of a Petri net N = (P, T, F') a (non-negative) counter can be as-
sociated. The actual values of all these counters of all places of the net is called
a marking M of that net, and corresponds to a state of the net: M € P — IN.
Note that M can also be interpreted as a vector, function, or multiset over the set
of places P. We use M(N) to denote the set of all possible markings of a net NV.
Typically, a marking M € M(N) is visualized by putting M (p) tokens (black dots)
into every place p. Thus, the number of tokens in a place corresponds to the actual
value of its counter.

A marking M contains another marking M’, denoted M > M, iff for every p € P:
M(p) > M'(p). Likewise, a marking M exceeds a marking M’, denoted M >
M',iff M > M and M # M'. Markings M and M’ can be added, denoted
M + M, in a straightforward way (for every p € P:(M + M')(p) = M(p) +
M’ (p)). Furthermore, these markings can be subtracted, denoted M — M’, in a
straightforward way (for every p € P: (M — M')(p) = M (p) — M'(p)), provided
that the former marking contains the latter (M > M’). In definitions to come, we
use the fact that a set of places induces a marking in a straightforward way (by
associating the value 1 to every place). As a result, we can add (subtract) a set of
places to (from) a marking, and can compare sets of places to markings. Finally, we
use 0 to denote the empty marking, that is, 0(p) = 0 for every place p.

Whereas places hold the current state of a Petri net, transitions may change this
current state by firing. However, before a transition fires, it should be enabled. A
transition is enabled if all input places contain tokens, that is, if all the counters of
its input places exceed zero. If an enabled transition fires, it removes a token from
every input place and adds a token to every output place, that is, it decreases the
counter of its input places, and increments the counter of its output places. Note
that because the transition is enabled, the counters of its input places will be at least
0 after the transition has fired.

Definition 2 (Enabling and firing a transition in a Petri net) Ler N = (P, T, F')
be a Petrinet, t € T and M, M' € M(N). Transition t is enabled at M, denoted
as M[t), iff M > et. If transition t is enabled at M, then it may fire, which results
in a marking M’, where M' = M — ot + te. This, we denote by M =3 M.

If there can be no confusion regarding the net, the expression is abbreviated as
M -5 M’ and if the transition is not relevant, it is written as M — M’. We write



N,o . . . .
M — M, if o = t1t,...1, 1s an occurrence sequence leading from M to M, i.e.

N,t N,t N,tn .

= M, =% ... =" M,. The empty occurrence sequence is denoted .

A Petrinet N = (P, T, F) together with a marking M € M(P) is called a marked
Petri net, denoted (/V, M). Clearly, a marked Petri net induces a state space, where
every state corresponds to a reachable marking. The set of all reachable markings
is called the reachability set of the marked Petri net (/V, M) and is denoted N [M).
This reachability set is the minimal set that satisfies the following conditions:

e the initial marking is reachable, that is, M € N[M), and

e if a reachable marking enables some transition, then the marking that results
from firing this transition is also reachable, that is, if M’ € N[M) and M'[t)
then (M’ — ot +te) € N[M).

Note that we restrict ourselves to single-step semantics in this paper, that is, any
transition fires in isolation. In contrast, in a multi-step semantics, many transitions
may fire together, which could lead to additional reachable states. The reason for
restricting ourselves to single-step semantics is that we assume that the correspond-
ing process model is meant be executed on some process server which will satisfy
at least the well-known ACID (Atomicity, Consistency, Isolation, Durability) prop-
erty. As a result, every transition in the Petri net can be isolated from the others.

A marked Petri net (N, M) is called live iff every transition can get enabled from
every reachable marking.

Definition 3 (Liveness [11]) Let (N, M) be a marked Petri net with the initial
marking M. (N, M) is live iff for every M' € N[M) and every t € T there exists
an M" € N[M') such that M"|t).

A marked Petri net (IV, M) is called bounded iff every counter of every place has a
maximal value. As a result, for a bounded marked Petri net, the number of reachable
states 1s finite.

Definition 4 (Boundedness [11]) Let (N, M) be a marked Petri net with the initial
marking M. (N, M) is bounded iff there exists a natural number b € IN such that
for every M' € N[M) and p € P it holds that M'(p) < b.

2.2 Reset/Inhibitor nets

A reset net [2] is a Petri net with special reset arcs, that can clear the tokens in
selected places. Reset arcs are represented as doubled-headed arrows. An inhibitor
net [6,9] is a Petri net with inhibitor arcs. Inhibitor arcs are used to test for absence
of tokens in a place. A transition ¢ can only fire if all its inhibitor places are empty.
Graphically, an inhibitor arc connects a place to a transition and the arc ends with



an empty circle on the transition side.

Definition 5 (reset/inhibitor net) A reset/inhibitor net is a tuple (P,T,F,R,I)
where (P,T,F) is a Petri net, R : T — IP(P) (IP(P) denotes the powerset of
P) provides the reset places for the transitions, and I : T — IP(P) specifies the set
of inhibitor places for each transition.

The notations R(¢) and I(¢) for a transition ¢ return the (possibly empty) set of
places that it resets and that inhibit it. We also write R~ (p) and 1" (p) for a place
p, which returns the set of transitions that can reset p and that are inhibited by p.
Furthermore, we introduce a notation to project a marking M onto a set of places
P, denoted M | P: (M | P)(p) = M(p)ifp € Pand (M | P)(p) = 0 otherwise.

The notions of inputs, outputs and markings defined for an ordinary Petri net also
apply to reset/inhibitor nets. Clearly, inhibitor arcs affect whether transitions are
enabled, whereas reset arcs affect the result of firing an enabled transition.

Definition 6 (Enabling and firing a transition in a reset/inhibitor net) Let N =
(P, T, F,R, 1) be a reset/inhibitor net, t € T and M, M' € M(N). Transition t is
enabled at M, denoted as M|t), iff M > et and M | I(t) = 0. If a transition is
enabled at M, it may fire, which results in a marking M', where M' = (M — ot) |
(P\ R(1)) + te.

Mutatis mutandis, the definitions of liveness and boundedness for marked reset/in-
hibitor nets are the same as defined for marked Petri nets.

2.3 Avisa application example

To show the usefulness of reset and inhibitor arcs and to motivate the need for
reduction rules, we use the visa application example. This example is loosely based
on the description of the visa application for general skilled migration to Australia,
which can be found on the Internet (see http://www.immi.gov.au). Fig. 1
shows a possible BPMN [14] model for this process.

The process starts when a visa application is received (rva) and ends when the appli-
cant cancels the request (ca), the processing is stopped due to non-responsiveness
of the applicant (sp), or when the application is finalized in a proper way (fa). In
the latter case, the visa can either be granted (gv) or denied (dv), in which case
the applicant is notified (na). Typically, after the application has been received, a
case officer opens a file for the applicant (oaf), processes application fees (paf),
and performs an initial assessment (pia). It the application is complete (c), the of-
ficer continues with the main assessment (pma). Otherwise (nc), the officer sends
an acknowledgement letter to the applicant (sal) and requests further information
(rfi). After having completed the main assessment, the case officer might request



- W

O rec ' @

Fig. 1. BPMN model for the example

for more information (rmi), or s/he makes a decision (mdc or md). However, before
making the decision, the officer first needs to check whether circumstances have
changed (ccc). If the officer receives the requested additional information (rri), the
main assessment is performed again. However, the applicant could wait too long to
supply the office with the requested information (time expiry, te), in which case the
officer needs to decide (dte) whether to stop processing the application (sp) or to
continue anyway (caw).

While the application is being processed, but before the decision is made, two
events might occur. First, an applicant may decide to withdraw his/her application
(receive withdraw, rw); second, an applicant can notify the officer that his/her cir-
cumstances (for example, change of address) have changed (receive circumstance
change, rcc). On receipt of this notification, the officer archives the circumstance
change (acc) and creates/updates a circumstance change document (ccd).

The example contains both cancelation regions as blocking behavior. If the pro-
cessing of an application is stopped, then the entire case needs to be canceled.
Furthermore, if the inner block is done, then the possibility to receive and archive a
circumstance change needs to be canceled. Finally, if a circumstance changes was
received and archived, then the officer needs to take this change into account and
the md task should be blocked.

Fig. 2 shows the result after converting the BPMN model into a reset/inhibitor net
in a straightforward manner. As usual, circles represent places, squares represent



transitions, and black dots represent tokens. As mentioned before, the arc with the
empty circle at the end is an inhibitor arc, whereas the arc with the double-headed
arrow 1is a reset arc. For sake of readability, we have emphasized these arcs. The
dashed area represents a cluster of places that is being reset by the same set of
transitions. For sake of readability, we have replaced all reset arcs from these places
to these transitions by one reset area.

The conversion has replaced BPMN nodes by place-bordered fragments, while
BPMN edges were replaced by (black) transitions. For sake of the analysis of both
boundedness and liveness [16], we have added the transition new to the resulting
reset/inhibitor net. The resulting net contains 54 places and 58 transitions, while its
state space contains 199 states.

Fig. 2 shows two things:

(1) When using real-life languages like BPMN, there is a need to model blocking
and cancelation.

(2) Petri nets resulting from translations may be large and have a huge state space.
We have encountered workflow models with hundreds of activities resulting
in Petri nets with thousands of transitions.

3 Reduction rules

In this section, we present eight reduction rules for reset/inhibitor nets. The un-
derlying rules for marked Petri nets presented in this section are based on existing
reduction rules for Petri nets and free-choice nets [8,11], and are therefore not orig-
inal as such, rather the contribution is in the identification of the conditions under
which they can be applied in the presence of reset and inhibitor arcs.

For sake of clarity, we decided to first present applicable conditions for marked Petri
nets, before extending these rules for marked reset/inhibitor nets. We also show that
these reduction rules preserve liveness and boundedness. The style of presentation
is inspired by [11].

3.1 Fusion of Series Transitions (FST)

Using the Fusion of Series Transitions (FST) rule, we can reduce two transitions
and a place to one transition. Thus, we can effectively remove a place and a tran-
sition. For the rule to be applicable, we need the two transitions and place to be
in a series. The place acts as a kind of transient place for the output places of the
series. Tokens from this transient place can be considered as being ghost tokens in
these output places: These ghost tokens are not there yet, but they may arrive at any



? -

new

Fig. 2. The BPMN model converted into a reset/inhibitor net

moment. If something happens to these ghost tokens, it should happen to the tokens
in the transient place. For transitions that consume these ghost tokens, this means
that the intermediate transition (the second one in the series) should fire first.

Definition 7 (FST Rule for marked Petri nets: ¢ps1) Let S = (N1, My) and Sy =
(N, Ms) be two marked Petri nets, where Ny = (Py, Ty, F1) and Ny = (Ps, T, F5).
(S1,S2) € ¢rsr if there exists a place p € Py, two transitions t,u € T, and a tran-
sition v € Ty \ T} such that:

Conditions on S;:
(1) op = {t} (t is the only input of p)
(2) pe = {u} (u is the only output of p)



Fig. 3. Fusion of series transitions

(3) eu = {p} (p is the only input of u)

(4) teNue = I (any output of t is not an output of v and vice versa)
Construction of S,:

(5) Py = P\ {p}

(6) Ty = (T \ {t,u}) U{v}

(7) By = (FiN((Pax To)U(Tyx P)))U( tx {w})U({u} x (£ Uu'd)\{p}))

M (z) if = &ue
Mi(z)+ Mi(p) if € ue

(8) forall x € Py: Msy(x) =

Theorem 1 (The ¢rgt rule is boundedness and liveness preserving) Ler S| and
Sy be two marked Petri nets such that (S1,Ss) € ¢psr. Then Sy is bounded iff Ss
is bounded, and S is live iff Sy is live.

Proof The ¢psr rule is boundedness and liveness preserving [8].

Fig. 3 shows both the ¢rgr and the upcoming ¢fid; rule. As usual, transitions are
visualized using squares and places by circles. The places and transitions that are
relevant for the rule at hand are white inside, whereas the places and transitions in
their allowed environment are grey inside. To visualize that this environment might
include multiple places and/or transitions, we have stacked three places and/or tran-
sitions. Thus, in Fig. 3, transition ¢ may have additional output places, and transi-
tion w is not allowed to reset any place (as there is no reset place for u in the allowed
environment) nor should it inhibit any place. For the ¢rgr rule presented in Def. 7,
we simply have to ignore every reset and inhibitor arc.

As mentioned before, this rule holds as we can consider the tokens in place p to be
matched by ghost tokens in the output places of transition u. These ghost tokens
have not arrived yet, but they will arrive when needed by firing «. From this obser-
vation, the restrictions on reset arcs and inhibitor arcs follow in a straightforward
way:

e Transition u should not be inhibited. As u needs to be enabled if p is marked, any

10



inhibitor should be ineffective: If u is inhibited by some place x, then x should be
empty when p is marked. In some cases this can be checked using only structural
properties. However, it is not possible to formulate simple requirements, and us-
ing a state space to check whether transition  is not effectively inhibited clearly
defeats the purpose of the reduction rule. Therefore, we simply require that u has
no inhibitor arcs.

e Transition v should not reset. We cannot tell exactly when v may fire. However,
the effect of these resets should always be the same: If in some firing sequence
u resets some place x by removing 2 tokens, then in any other firing sequence
it should reset « by removing 2 tokens. As this too is hard to check using only
structural properties, and constructing the state space defeats the rule’s purpose,
we do not allow u to have any reset arcs.

e Place p and the output places of transition u should inhibit the same set of tran-
sitions. Assume that place x is an output place of v and that x inhibits some
transition y. As a result, transition y should be inhibited if = contains ghost to-
kens. Therefore, place p should inhibit y, and thus, every output place of u should
inhibit y (as these places may contain ghost tokens of p as well).

e Place p and the output places of transition u should all be reset by the same set of
transitions. Assume that place x is an output place of w and that z is being reset
by some transition y. As y also resets the ghost tokens in x, it should also reset
p, and thus, all other output places of u.

Definition 8 (FST Rule for marked reset/inhibitor nets: ¢p£.) Let S| = (Ny, M)
and Sy = (Ny, Ms) be two marked reset/inhibitor nets, where Ny = (P, Ty, F1, Ry, I1)
and Ny = (P, Ty, Fy, Ry, I5). (S1,9:) € oELy if there exists a place p € Py, two
transitions t,u € Ty, and a transition v € Ty \ Ty such that:

Extension of the ¢rst rule:
(1) (P, Th, Fr), My), (P, T3, F3), M2)) € drsr
(Note that, by definition, the t, u, v, and p mentioned in this definition have
to coincide with the t, u, v, and p as mentioned in the definition of ¢gsr.)
Conditions on R;:
(2) forall q € ue: Ry (p) = Ry (q)
(p is being reset by the same transitions as every output place of u is)
(3) Ri(u) =0 (u does not reset)
Conditions on 1:
(4) forall g € ue: I (p) = I (q)
(p inhibits the same transitions as every output place of u does)
(5) Ii{(u) =2 (u is not inhibited)
Construction of Ry:

By(x)\{p} i x#v
By()\{p} if z=v

(6) forall x € Ty: Ry(x) =

Construction of I,:

11



Li)\{p} ¥ x#v
LON\A{pt ¥ x=v

(7) forall v € Ty: Iy(z) =

We now present two lemmas that show that occurrence sequences in N; and No
correspond to each other. These lemmas are then used to prove that the ¢fL; rule
preserves liveness and boundedness.

Lemma 1 [Under the ¢Fir rule, sequences in S correspond to sequences in Sy]
Let Sy = (N1, My) and Sy = (Ns, M) be two marked reset/inhibitor nets such
that (S, S5) € @By, let oy € Tr and M| € M(P,) be such that My "=5* M,
and let 09 = a(0y), where o € T} — Ty removes every occurrence of u from the
sequence, and replaces every occurrence of t with v:

e afe) =¢

e afto) =va(o),

e a(uo) = a(o), and

e a(xo) =zxa(o), where z € Ty \ {t,u}.

No,o
Then My 25° M), where

M) = Mi(z)+ M{(p) if z¢€ u'e )
’ M (z) if z¢u'

Proof By induction on the length of o;.

Base Assume oy = e. Clearly, M; "5 M, and M, "25% M. Eq. 1 holds, as ¢FL,
implies ¢FST

Step Assume the lemma holds for some o7y, let M| be such that M1 M{ and
let M} be such that M, """ M}, We prove that it also holds if we extend oy
by one transition.

e First, assume that we extend oy by ¢t. As ¢ and v have the same preset, we
can extend (o) by v. t adds a token to place p, whereas v adds tokens to its
postset, which does not violate Eq. 1.

e Second, assume that we extend oy by w. It is obvious that v does not violate
Eq. 1.

e Third, assume that we extend oy by x, where © € P; \ {t,u}. As all places
in M) contain at least as many tokens as their counterparts in M| (Eq. 1), we
know that x is enabled in Sy at M), as well, provided it is not inhibited by a
place in the postset of u (as these places may contain more tokens in A/} than
in M7). However, due to Eq. 1, a transition inhibited in Sy at M), would have
been inhibited in S; at M| as well.

Lemma 2 [Under the ¢FLr rule, sequences in Sy correspond to sequences in Si]

12



Let S1 = (N1, My) and Sy = (Na, M) be two marked reset/inhibitor nets such
that (S, S) € ¢BL., let oy € Ty and M}, € M(Py) be such that My "25* M}, and
let 01 = [3(02), where 3 € Ty — Ty replaces every occurrence of v with tu:

N1l,0
Then M, ="' M, where

0 ) =
M(z) = foe=y @)

Mi(z) if ze Py
Proof By induction on the length of os.

Base Assume o, = €. Clearly, M, 25 M, and M; "25* M. Eq. 2 holds, as JoTi,
implies ¢rgT, Which also implies M (p) = 0.

T2

Step Assume the lemma holds for some o, let M} be such that Mo N2 M}, and

let M! be such that M; "7 M{. We prove that is also holds if we extend o5

by one transition.

e First, assume that we extend o5 by v. It is obvious that ¢ is enabled in S; at M7,
and that v is enabled after having fired ¢. Furthermore, the combination of tu
and v does not violate Eq. 2.

e Second, assume that we extend o by z such that z € T, \ {v}. Again, it is
obvious that x is enabled in S; at M, and that = does no violate Eq. 2.

From these lemmas, preservation of liveness and boundedness follow in a straight-
forward way.

Theorem 2 (The ¢£i. rule preserves liveness)

Proof Assume (S1,S2) € ¢ELL such that S is live and S, is not live (a similar
proof can be constructed for the other case as well). Thus, in S; we can reach a
marking M/ from which some transition ¢ cannot be enabled. Due to Lemma 2, we
can reach a marking M7 in S; such that its where-clause holds. As S is live, we
can reach a marking M/ in S; through some occurrence sequence o such that ¢
is enabled. Due to Lemma 1 we can thus reach a marking M in Sy such that its
where clause-holds. Obviously, ¢ should be enabled in M. Thus, S, has to be live
as well.

Theorem 3 (The ¢Z.; rule preserves boundedness)

Proof Assume (S;,5;) € ¢fLy such that S is bounded and Ss is not bounded (a
similar proof can be constructed for the other case as well). Thus, for every b € IN
we can reach a marking MY in Sy in which some place p contains more than b

13



Fig. 5. Necessity of Condition 5: u should not be inhibited

tokens. Due to Lemma 2, we can reach a marking M| in S; such that M| (p) =
M/ (p). Thus S; has to be unbounded as well.

We end this section on the ¢£L;. rule with two examples that show the necessity of
conditions 2 and 5. For the conditions 3, 4, 6 and 7, such examples can be given as
well, but to save space we have chosen not to do so.

Fig. 4 shows why any place in the postset of « and p need to be reset by the same
set of transitions. In the example, place r is in the postset of u and is reset by
transition x, but p is not reset by x. The leftmost net is unbounded (places p and r
are unbounded), while the rightmost net is bounded.

Fig. 5 shows why transition u should not be inhibited. The leftmost net is not live,
while the rightmost net is live. Note that in both nets the inhibitor arc from ¢ to
t is redundant, but it is added to show that even when ¢ and u are inhibited by
the same (non-empty) set of places the rule does not apply. Note that adding a
transition-place pair in-between place ¢ and transition w removes the problem, as
firing this new transition would remove the inhibition for transition « in the leftmost
net. However, to take such a situation into account would lead to very complex rules
(as we have to take additional places and transitions into account), and for now we
decided to keep it simple and to stick to the original rules as much as possible.

The remaining reduction rules all preserve liveness and boundedness. For the Fu-
sion of Series Places, the required proofs for this claim are similar to the proofs

14



presented for the current, Fusion of Series Transitions rule, whereas for the other
rules the required proofs are simpler. As these proofs add little or nothing to the
paper, we decided not to include them.

3.2 Fusion of Series Places (FSP)

Using the Fusion of Series Places (FSP) rule, we can reduce two places and one
transition to one place. Thus, like the Fusion Series Transitions rule, this rule also
effectively removes a transition and a place. However, the Fusion of Series Places
may be applicable in situations where the Fusion of Series Transitions rule is not.
Again like the Fusion of Series Transitions rule, this rule is applicable if the places
and transitions are in a series, and again we can use the concept of ghost tokens to
explain the rule. Tokens which reside in the first place of the series can be consid-
ered to be ghost tokens for the second place. If some transition needs to consume
these ghost tokens, the intermediate transitions should fire first, replacing the ghost
tokens by real ones.

Definition 9 (FSP Rule for marked Petri nets: ¢psp) Let S; = (Ny, My) and Sy =
(N2, My) be two marked Petri nets, where Ny = (Py, T\, Fy) and Ny = (Ps, T, F).
(S1,52) € ¢rsp if there exist two places p,q € Py, a transition t € T, and a place
r € Py \ Py such that:

Conditions on S,:

(1) ot = {p} (p is the only input of t)
(2) te = {q} (q is the only output of t)
(3) pe = {t} (t is the only output of p)
(4) epNeq = (any input of p is not an input of q and vice versa)

Construction of Ss:
(5) Po= (P \{p,q})V{r}
(6) Ty =T\ {t}
(7) By = (BN ((Pax To)U(To x Po))U(((4pU ¥ )\ {£3) x {rD) U({r} x ')
M;(z) if w#r

Mi(p) +Mi(q) if z=r

(8) forall x € Py: My(z) =

Tokens in place p are matched by ghost tokens in place ¢q. Again, these tokens have
not arrived yet, but they will materialize if needed by firing transition ¢. Again, the
restrictions on reset arcs and inhibitor arcs follow in a straightforward way from
this observation:

e Transition ¢ should not be inhibited. As it is hard to check on ineffective inhibitor
arcs, we simply require that ¢ has no inhibitor arcs.

e Transition ¢ should not reset. As it is hard to check that every reset has the same
effect, we simply require that ¢ has no reset arcs.

15



Fig. 6. Fusion of series places

e Place p should be inhibited by the same set of transitions as place q.
e Place p should be being reset by the same set of transitions as place q.

Definition 10 (FSP Rule for marked reset/inhibitor nets:¢£..) Let S, = (Ny, M)
and Sy = (N3, M) be two marked reset/inhibitor nets, where Ny = (P, Ty, F1, Ry, I1)
and Ny = (Py, Ty, Fy, Ra, I). (S1, S2) € ¢BL, if there exist two places p,q € P, a
transition t € Ty, and a place r € Py \ Py such that:

Extension of the ¢rsp rule:
(1) (((P1, Ty, Fy), My), (P2, T3, F3), Ms)) € ¢psp
(Note that, by definition, the p, q, t, and r mentioned in this definition have
to coincide with the p, q, t, and r as mentioned in the definition of ¢psp.)
Conditions on R.:

(2) Ri(t) = o (t does not reset)

(3) Ry (p) = Ry (q) (p and q are being reset by the same transitions)
Conditions on I;:

(4) L(t) =2 (t does not have inhibitor arcs)

(5) I (p) = I, (q) (p and q have the same set of inhibitor arcs)

Construction of Rs:

(Ri(z)\{p,q}) U{r} if {p,a} NRi(x) # @

(6) forallx € Ty: Ry(x) =
Ru(2) if {p,q}NRi(z) =2

Construction of I,:

(7) forall x € Ty: Ir(z) = (L) \{p.ah) Uirt i {p.g}Nhiz) #2
%)

I(z) if {p,qyNI(x)=

3.3 Fusion of Parallel Transitions (FPT)

Using the Fusion of Parallel Transitions (FPT) rule, we can reduce a number of
transitions to one transition. This rule is applicable if all transitions have the same

16



Fig. 7. Fusion of parallel transitions

set of input places and the same set of output places. Clearly, all transitions are
enabled at the same time, and all have the same effect.

Definition 11 (FPT Rule for marked Petri nets: ¢ppr) Let S; = (Ny, M) and
Sy = (N, Ms) be two marked Petri nets, where Ny = (P, T}, F1) and Ny =
(P, T, F3). (S1,S2) € ¢ppr if there exist transitions V' C Ty where |V| > 2, an
arbitrary transition t € V, and a transition v € Ty \ T} such that:

Conditions on S;:
(1) forallz,y €V : ex = oy (input places for all transitions in V' are
identical)
(2) forallz,y € V : re = ye
(output places for all transitions in V are identical)
Construction of Ss:
(3) P,=P
(4) Ty = (T, \ V) U {v}
(5) FQ = (F1 N ((P2 X TQ) U (T2 X PQ))) U (Izlt X {U}) U ({U} X tl\il)
(6) My = M,

As the transitions should be enabled at the same times, either all or none should
be inhibited. As a check on ineffective inhibitor arcs is hard, we simply require
the transitions to have the same set of inhibitors. Furthermore, their effects should
be identical. As it is hard to check when the effect of a transition that resets some
place is identical to the effect of a transition that does not reset that place, we simply
require that every transition resets the same set of places.

Definition 12 (FPT Rule for marked reset/inhibitor nets: ¢fL) Let S; = (Ny, M)
and Sy = (Ny, My) be two marked reset/inhibitor nets, where Ny = (Py, Ty, F1, Ry, I1)
and Ny = (Py, Ty, Fy, Ry, I5). (S1,52) € ¢ELy if there exist transitions V C Ty
where |V| > 2, an arbitrary transition t € V, and a transition v € Ty \ T} such
that:

17



Extension of the ¢ypr rule:
(1) (P, Th, F1), My), (P, Ty, F3), Ms)) € ¢ppr
(Note that, by definition, the V' and v mentioned in this definition have to
coincide with the V and v as mentioned in the definition of ¢rpr.)
Condition on R;:
(2) forallz,y € V : Ri(z) = Ry(y) (all transitions in V' reset the same
places)
Condition on 1:
(3) forallx,y € V : I,(x) = I,(y)
(all transitions in V' share the same set of inhibitor arcs)
Construction of Rs:

Ri(z) if z#v
Ri(t) if z=v

(4) forall x € Ty: Ry(x) =

Construction of I>:
Li(z) if x#v
Lt) if z=v

(5) forall x € Ty: I(x) =

3.4 Fusion of Parallel Places (FPP)

Using the Fusion of Parallel Places (FPP) rule, we can reduce a number of places to
one place. This rule is applicable if all places have the same set of input transitions
and the same set of output transitions. Clearly, only those places among these places
that initially contains the fewest tokens can become empty and can, hence, disable
any transitions. Therefore, all other places are implicit and can be removed.

Definition 13 (FPP Rule for marked Petri nets: ¢ppp)

Let S; = (N1, M) and Sy = (Ns, M) be two marked Petri nets, where N; =
(P, T\, Fy) and Ny = (P, Ty, F). (S1,52) € ¢rpp if there exist places Q) C P,
where |Q)| > 2, an arbitrary place p € Q) and a place q € P, \ Py such that:

Conditions on S;:
(1) forallz,y € Q : ex = oy (input transitions for all places in () are
identical)
(2) forallz,y € Q : ve = ye
(output transitions for all places in () are identical)
Construction of Ss:
(3) P = (P\ Q) U{g}
(4) T =T,
(5) FQ = (Fl N ((PQ X Tg) U (T2 X PQ))) U (I\Llp X {q}) U ({Q} X pN.l)
(6) forall x € Py: Msy(x) = M) f et
mingeMi(y) if x=g¢

18



Fig. 9. Fusion of parallel places: Sibling inhibitor places should have a minimal initial
marking (Condition 3)

When adding reset arcs and inhibitor arcs, we should guarantee that the other places
remain implicit. Thus, these other places should always contain at least as many to-
kens as the place we keep. Therefore, any transition that resets any other place,
should also reset the place we keep. However, we may not allow the other places
to become unbounded if the place we keep is bounded. For this reason, we require
that any transition that resets the one place, should also reset all other places. As a
result, we require that all places in () are being reset by the same set of transitions.
However, for inhibitor arcs something similar does not hold. Fig. 9 shows an exam-
ple where the rightmost parallel place contains more tokens than the leftmost place.
Note that we should not initialize the place in the right-hand net with two tokens,
as this would allow for two firings of transition v. In both marked nets transition v
can fire once, but the left-hand net is then dead, whereas the right-hand net is not.
Clearly, this is caused by the fact that a token was left in the right-most parallel
place (of the left-hand net), which inhibits transition ¢. For this reason, we do not
allow a parallel place to inhibit a transition if initially it contains more tokens than
its sibling places. Note that due to reset arcs both places may be drained from to-
kens, after which we could allow an inhibitor arc for both places. However, as there
is no simple way to guarantee (using only structural information) that the parallel
places have to be reset before they can inhibit, we do not use this insight.

Definition 14 (FPP Rule for marked reset/inhibitor nets: ¢%.) Lets; = (Ny, M)

and Sy = (N, Ms) be two reset nets, where Ny = (Py, Ty, F1, Ry, I;) and Ny =

19



(Py, Ty, Fy, Ry, I5). (S1,S2) € oEL, if there exist places Q C P, where |Q| > 2
and a place q € P, \ P such that:

Extension of the ¢ppp rule:
(1) (((Py, Ty, Fy), M), (P, T, Fy), M3)) € ¢ppp
(Note that, by definition, the () and q mentioned in this definition have to
coincide with the () and q as mentioned in the definition of ¢rpp.)
Condition on R;:
(2) forallz,y € Q: Ry (z) = Ry (y)
(all places in () are being reset by the same transitions)
Condition on 1:
(3) forallx € Q : if My(x) > min,eqMi(y) then 17 (z) = @
(only places with a minimal initial marking may inhibit transitions)
Construction of Ry:

(Ri(zx)\Q)U{q} if Ri(z)NQ#2
Ry () if Ri(z)NQ=2

(4) forallx € Ty: Ry(x) =

Construction of I,:
(L(x)\ Q) U{q} if Lz)NQ#2
I(x) f L@NQ=2

(5) forall x € Ty: Ir(x) =

3.5 Elimination of Self-Loop Transitions (ELT)

Using the Elimination of Self-Loop Transitions (ELT) rule, we can remove a self-
loop transition, that is, a transition that has only one input place and only one output
place, and for which the input place and the output place are identical. Clearly, firing
the transition does not have any effect. Thus, removing the transition does not affect
boundedness. However, removing it could affect liveness, as it can be the only non-
live transition. To prevent this, we require that the input/output place has at least
one additional input transition.

Definition 15 (ELT Rule for marked Petri nets: ¢g1r) Let Sy = (Ny, M) and
Sy = (N, Ms) be two marked Petri nets, where Ny = (P, T}, Fy) and Ny =
(P, Ty, Fy). (S1,S2) € ¢grr if there exists a place p € Py, and a transition t € T}
such that:

Conditions on S;:

(1) ot ={p} (p is the only input place of t)

(2) te = {p} (p is the only output place of t)

(3) |ep| > 2 (p has at least one additional input transition)
Construction of S,:

(4) P =D

(5) To =Ti\ {t}

20



Fig. 10. Elimination of self-loop transitions

(6) F2 = (Fl N ((P2 X Tg) U (TQ X Pg)))
(7) My = M

Clearly, after reset arcs and inhibitor arcs have been added, ¢ should be enabled at
some point in time, and its effect should not result in a new marking. Thus:

e any place that inhibits ¢ should be emptiable while place p is marked, and
e ¢ should not reset any place.

As the first requirement is hard to obtain from the structure of the marked net, we
simply require that ¢ is not inhibited at all.

Definition 16 (ELT Rule for marked reset/inhibitor nets: ¢5/1) Let S, = (Ny, M)
and Sy = (Ny, My) be two marked reset/inhibitor nets, where Ny = (Py, Ty, F1, Ry, 1)
and Ny = (P, Ty, Fy, Ry, I5). (S, S2) € ¢BL. if there exists a place p € Py N Py
and a transition t € T} such that:

Extension of the ¢g 1 rule:
(1) (P, Ty, Fy), M), (P, T, Fy), My)) € ¢prr
(Note that, by definition, the t and p mentioned in this definition have to
coincide with the t and p as mentioned in the definition of ¢rrr.)
Condition on R;:

(2) Ri(t) = o (t does not reset)
Condition on 1,:
(3) L(t) = (t does not have any inhibitor arcs)

Construction of Ry:

(4) forall x € Ty: Ry(x) = Ry(x)
Construction of I,:

(5) forall x € Ty: Ir(x) = I (x)

3.6 Elimination of Self-Loop Places (ELP)
The Elimination of Self-Loop Places (ELP) rule can be used to remove places that
are always marked. As a result, these places never disable any output transition.

Definition 17 (ELP Rule for marked Petri nets: ¢ p) Let S; = (Ny, M) and

21



(Ll

2

Fig. 11. Elimination of self-loop places

Sy = (Ny, Ms) be two marked Petri nets, where Ny = (P, Ty, F1) and Ny =
(P, Ty, Fy). (S1,S2) € ¢rLp if there exists a place p € Py \ P, such that:

Conditions on S;:

(1) pe = ep (the inputs of p are also its outputs)

(2) Mi(p) > 1 (p is marked at M)
Construction of S,:

(3) Py = P\ {p}

4) 1o =T,

(5) F2 = (F1 N ((P2 X TQ) U (TQ X PQ)))

(6) forall x € Py: My(x) = M;(x)

Clearly, place p should not inhibit any transition. Furthermore, to ensure that the
place is always marked, any transition that removes tokens from this place should
put at least one token back. Thus, any transition that resets p should also put a
token in p. However, a transition that resets p and puts a token in p does not need
to consume a token using a normal input arc. Therefore, the ¢&, rule is not a
simple extension of the ¢ p rule. This is illustrated by the two sets of transitions
in Fig. 11.

Definition 18 (ELP Rule for marked reset/inhibitor nets: ¢£/ ) Let S; = (N, M)
and Sy = (N, M) be two marked reset/inhibitor nets, where Ny = (P, Ty, F1, Ry, I1)
and Ny = (Py, Ty, Fy, Ry, I5). (S1,S9) € ¢BlL if there exists a place p € P, \ Py
such that:

Conditions on S;:
(1) pe C ep (the outputs of p are also inputs)
(2) Mi(p) > 1 (p is marked at M)
Condition on R;:
(3) Ry (p)Upe =ep
(every reset transition or output transition should also be an input
transition)
Condition on 1:
(4) I (p) =92 (p does not inhibit any transition)
Construction of S,:
(5) P, =P\ {p}
(6) 1o =T,

22



(7) Fy=(F1N (P, xTy)U(Ty x Py)))
(8) forall x € Py: Msy(x) = Mi(x)
Construction of Rs:
(9) forallx ey Rg(ﬂf) = Rl(I) NP,
Construction of I,:
(]0) IQ - Il

3.7 Abstraction (A)

Like the Fusion of Series Transitions rule and the Fusion of Series Places rule,
using the Abstraction rule, we can remove a place and a transition. In fact, the
Abstraction rule is in some way a mix of both fusion rules. As is the case for the
two fusion rules, this rule can be understood using the concept of ghost tokens.
Basically, we can replace a place-transition pair (where the place is the only input
of the transition and the transition is the only output of the place) by a number
of arcs connecting every input transition of the place to every output place of the
transition, thus bypassing both. Any token in the place is matched by ghost tokens
in the output places of the transition. If needed, these ghost tokens can materialize
by firing the transition.

Definition 19 (Abstraction Rule for marked Petri nets: ¢,) Let S; = (Ny, M;)
and Sy = (Ny, Ms) be two marked Petri nets, where Ny = (P, Ty, Fy) and Ny =
(P, T, F). (N1, No) € ¢a if there exists places Q C Py N Py, aplace s € Py \ Q,
transitions U C T} N1y, and a transition t € Ty \ U such that:

Conditions on S,:

(1) ot ={s} (s is the only input of t)
(2) se ={t} (t is the only output of s)
(3) es=U (transitions in U are input transitions for s)
(4) te = () (places in () are output places for t)

(5) (es X te)NF =
(any input of s is not connected to an output of t and vice versa)
Construction of S,:
(6) szpl\{S}
(7) Ty =T0 \ {t}
(8) Fo=(FiN (P, x To) U (Ty x Py)))U (s x t'd)

M () if z¢Q

(9) forall x € Py: Msy(x) =
My(z) + Mi(s) if z€Q

As for the fusion rules, transition ¢ should not be inhibited, as this might disable the
firing of ¢. Also likewise, ¢ should not reset any place. As for the Fusion of Series
Transitions rule, place s should inhibit the same set of transitions as every output

23



Fig. 12. Abstraction

place of ¢ does, and it should be reset by the same set of transitions that reset every
output place of t.

Definition 20 (Abstraction Rule for marked reset/inhibitor nets: gbfl ) Let S| =
(N1, M) and Sy = (N2, My) be two marked reset/inhibitor nets, where Ny =
(P, Ty, Fi,Ri, 1) and Ny = (Py, Ty, Fy, Ry, I5). (S1,S2) € R if there exists
places ) C PN Py, aplace s € Py \ Q, transitions U C T1 Ny, and a transition
t € Ty \ U such that:

Extension of the ¢ rule:
(1) (P, Th, F1), My), (P, Ts, F2), M3)) € éa
(Note that, by definition, the s, t, (), and U mentioned in this definition have
to coincide with s, t, ), and U as mentioned in the definition of ¢x.)
Conditions on R;:
(2) Ry (s) = Ry (q), forevery q € Q) (s is being reset by transitions that reset
Q)
(3) Ri(t) = o (t does not reset)
Conditions on 1,:
(4) I(s) = I(g), for every g € Q
(s inhibits the same transitions as every place from () does)
(5) Li(t) =2 (t is not inhibited by any place)
Construction of Rs:
(6) forall x € Ty: Ry(x) = Ri(z) N Py
Construction of I5:
(7) forall x € Ty: Ir(x) = I(z) N Py

24



Fig. 13. Reset reduction

3.8 Reset reduction (R)

If a transition u resets a place that inhibits it, then the reset arc is clearly redundant:
The transition can only fire if the place is empty. Note that the place may optionally
be an input place and/or output place of u as well (if it is an input place as well, u
will be dead of course, but the rule still applies).

Definition 21 (Reset Reduction Rule for marked reset/inhibitor nets: ¢5') Let S, =
(N1, My) and Sy = (N2, My) be two marked reset/inhibitor nets, where Ny =

(P, Ty, Fy, Ry, 1) and Ny = (Py, Ty, Fy, Ry, I5). (S1,S2) € ¢R! if there exists a
place uw € P, N P, and a transition t € T1 N Ty such that:

Conditions on S,:
(1) p € Ry(u) N Ii(u)
Construction of Ss:

(2) P, =P
(3) T =T
(4) Fy =F

Ri(z) if v#u
By(z)\{p} ¥ z=u

(5) forallx € Ty: Ry(x) =
(6) I, =1,
(7) My = M,

3.9 The visa application example

To illustrate what we can achieve by reduction, we have applied the rules defined
earlier to the visa example shown in Fig. 2. Fig. 14 shows the resulting net.

As a result of applying the reduction rules on the visa example, the number of
places is reduced from 54 to 14, and the number of transitions drops from 58 to 18.
As a result, the size of the state space is reduced from 199 to 17. This will make
it easier to determine both boundedness and liveness and other related properties

25



‘ rri
caw

Fig. 14. The reduced visa example

such as soundness [16]. Note that the visa example only has a few states. Hence
the reduction in states is not very spectacular. However, for more realistic examples
the state space grows very rapidly. As shown in different studies (e.g., [17,18])
reduction rules can reduce the state space dramatically. Given the generic character
of the rules presented in this paper, it is obvious that similar results can be obtained
for Petri nets extended with reset arcs and inhibitor arcs.

26



4 Related work

In the general area of reset nets, Dufourd et al.’s work has provided valuable in-
sights into the decidability of various properties of reset nets including reachability,
boundedness and coverability [2,3]. The use of backwards coverability techniques
to analyse reset nets is discussed in [5,4]. In [7,19], the extension to Petri nets us-
ing inhibitor arcs is mentioned. The reachability problem of Petri nets with one
inhibitor arc is studied in [20] and shown to be decidable. The reachability prob-
lem of Petri nets with at least two inhibitor arcs is shown to be undecidable in [6].
In [9], the author focuses on expressiveness of inhibitor arcs and shows that an ex-
tension of coverability tree construction could be used as an analysis technique for
Petri nets with inhibitor arcs. In [21], the authors propose an extension to colored
Petri nets with inhibitor arcs that supports both zero-testing inhibitors and threshold
inhibitors.

A number of authors have investigated reduction rules for Petri nets and for various
subclasses of Petri nets. In Murata’s paper [8], six reduction rules are presented for
Petri nets and this set of rules has been used as a starting point for the rules men-
tioned in this paper. In the book by Desel and Esparza [11], a set of reduction rules
are proposed for free-choice Petri nets while preserving well-formedness. Berth-
elot [10,22] presents a set of reduction rules for general Petri nets, which later on
were extended to Time Petri nets by Sloan and Buy [12]. However, these reduction
rules do not take cancelation or blocking into account. As part of our work on work-
flow verification, a set of soundness preserving reduction rules for YAWL models
was presented in [23]. In this technical report similar ideas are applied to YAWL
workflows with cancelation regions and OR-joins, but without blocking behavior.

In [18] a comprehensive comparison of the different state-space reduction tech-
niques is reported. Here, different reduction techniques are applied to both artificial
and real-life examples. The study shows that the classical Petri net reduction rules
(for nets without reset arcs and inhibitor arcs) perform very well and are able to re-
duce state-spaces dramatically. This illustrates the practical relevance of the results
reported in this paper.

5 Conclusion

It is widely known that applying reduction rules to large Petri nets can dramatically
reduce the time it takes to perform all kinds of analyses. Typically, a reduction
rule will decrease the number of elements under consideration by removing certain
transitions and/or places in the net while preserving some interesting properties. For
Petri nets extended with reset arcs and inhibitor arcs, the existing Petri net reduction
rules do not apply since each rule can be invalidated by the presence of reset arcs

27



and/or inhibitor arcs.

In this paper, we have presented a set of eight reduction rules for reset/inhibitor nets
that are liveness and boundedness preserving. These reduction rules are generic
and easy to implement. We used an example to illustrate the applicability of our
approach. The results allow for potentially spectacular reductions of the state space
and, therefore, facilitate a more efficient analysis of reset/inhibitor nets.

In our view these results are highly relevant because real-life modeling languages
such as UML, BPEL, BPMN, etc. have features such as cancelation and block-
ing that correspond directly to reset and inhibitor arcs. Moreover, model transla-
tions typically introduce lots of “dummy” transitions that do not correspond to real
events. The results presented in this paper therefore potentially allow for a substan-
tial speed-up of any form of Petri-net-based analysis using languages such as UML,
BPEL and BPMN as a starting point.

Finally, the reduction rules can also be applied in the reverse direction to create
correctness preserving construction rules. One could make a graphical editor that
allows for the incremental construction of process models such that in each step of
the design process the model is correct by construction.

References

[1] P. Darondeau, Unbounded Petri net synthesis, in: J. Desel, W. Reisig, G. Rozenberg
(Eds.), Lectures on Concurrency and Petri Nets, Advances in Petri Nets, Vol. 3098 of
Lecture Notes in Computer Science, Springer-Verlag, Eichstitt, Germany, 2003, pp.
413-428.

[2] C. Dufourd, A. Finkel, P. Schnoebelen, Reset nets between decidability and
undecidability, in: K. Larsen, S. Skyum, G. Winskel (Eds.), Proceedings of the 25th
International Colloquium on Automata, Languages and Programming, Vol. 1443 of
Lecture Notes in Computer Science, Springer-Verlag, Aalborg, Denmark, 1998, pp.
103-115.

[3] C. Dufourd, P. Jancar, P. Schnoebelen, Boundedness of reset P/T nets, in:
J. Wiedermann, P. Boas, M. Nielsen (Eds.), Lectures on Concurrency and Petri Nets,
Vol. 1644 of Lecture Notes in Computer Science, Springer-Verlag, Prague, Czech
Republic, 1999, pp. 301-310.

[4] A. Finkel, J.-F. Raskin, M. Samuelides, L. van Begin, Monotonic extensions of
Petri nets: Forward and backward search revisited, Electronic Notes in Theoretical
Computer Science 68 (6) (2002) 1-22.

[5] A.Finkel, P. Schnoebelen, Well-structured transition systems everywhere!, Theoretical
Computer Science 256 (1-2) (2001) 63-92.
URL
citeseer.ist.psu.edu/article/finkel98wellstructured.html

28



[6] M. Hack, Petri net language, Tech. rep., Cambridge, MA, USA (1976).
[7] J.L. Peterson, Petri nets, ACM Computing Surveys 9 (3) (1977) 223-252.

[8] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77 (4) (1989) 541-580.

[9]1 N.Busi, Analysis issues in Petri nets with inhibitor arcs, Theoretical Computer Science
275 (1-2) (2002) 127-177.

[10] G. Berthelot, Transformations and decompositions of Nets, in: W. Brauer, W. Reisig,
G. Rozenberg (Eds.), Petri Nets: Central Models and Their Properties, Advances in
Petri Nets, Proceedings of an Advanced Course, Part 1, Vol. 254 of Lecture Notes in
Computer Science, Springer-Verlag, Bad Honnef, 1986, pp. 359-376.

[11] J. Desel, J. Esparza, Free Choice Petri Nets, Vol. 40 of Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, Cambridge, United Kingdom, 1995.

[12] R. H. Sloan, U. A. Buy, Reduction rules for time Petri nets, Acta Informatica 33 (7)
(1996) 687-706.

[13] J. Rumbaugh, I. Jacobson, G. Booch., The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

[14] OMG, Business process modeling notation (BPMN) 1.0, OMG Final Adopted
Specification dtc/06-02-01 (2006).

[15] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weerawarana, Business Process
Execution Language for Web Services, Version 1.1, Specification, BEA Systems,
IBM, Microsoft (May 2003).

[16] W. M. P. van der Aalst, The application of Petri nets to workflow management, The
Journal of Circuits, Systems and Computers 8 (1) (1998) 21-66.

[17] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, H. M. W. Verbeek,
Choreography conformance checking: An approach based on BPEL and Petri nets
(extended version), BPM Center Report BPM-05-25, BPMcenter.org (2005).

[18] S. Duri, U. Buy, R. Devarapalli, S. M. Shatz, Application and experimental evaluation
of state space reduction methods for deadlock analysis in Ada, ACM Transactions on
Software Engineering Methodology 3 (4) (1994) 340-380.

[19] J. L. Peterson, Petri net theory and the modeling of systems, Prentice-Hall, Englewood
Cliffs, USA, 1981.

[20] K. Reinhardt, Reachability in Petri nets with inhibitor arcs, Technical report WSI-96-
30, Wilhelm Schickard Institut fiir Informatik, Universitat Tiibingen (1996).

[21] S. Christensen, N. Hansen, Coloured Petri nets extended with place capacities, test arcs
and inhibitor arcs, in: Proceedings of the 14th International Conference on Application
and Theory of Petri Nets, Springer-Verlag, London, UK, 1993, pp. 186-205.

29



[22] G. Berthelot, Checking properties of nets using transformation, in: Advances in Petri
Nets 1985, covers the 6th European Workshop on Applications and Theory in Petri
Nets-selected papers, Springer-Verlag, London, UK, 1986, pp. 19-40.

[23] M. T. Wynn, H. M. W. Verbeek, W. M. P. van der Aalst, A. ter Hofstede, D. Edmond,
Business process verification - finally a reality!, Business Process Management Journal
(to appear).

30



