
Declarative Specification and Verification of Service
Choreographies

MARCO MONTALI, MAJA PESIC, WIL M. P. VAN DER AALST, FEDERICO CHESANI,

PAOLA MELLO and SERGIO STORARI

Service oriented computing, an emerging paradigm for architecting and implementing business col-
laborations within and across organizational boundaries, is currently of interest to both software
vendors and scientists. While the technologies for implementing and interconnecting basic ser-
vices are reaching a good level of maturity, modeling service interaction from a global viewpoint,
i.e., representing service choreographies, is still an open challenge. The main problem is that,
although declarativeness has been identified as a key feature, several proposed approaches specify
choreographies by focusing on procedural aspects, leading to over-constrained and over-specified
models.

To overcome these limits, we propose to adopt DecSerFlow, a truly declarative language, to
model choreographies. Thanks to its declarative nature, DecSerFlow semantics can be given in
terms of logic-based languages. In particular, we present how DecSerFlow can be mapped onto
Linear Temporal Logic and onto Abductive Logic Programming. We show how the mappings onto
both formalisms can be concretely exploited to address the enactment of DecSerFlow models, to
enrich its expressiveness and to perform a variety of different verification tasks. We illustrate the
advantages of using a declarative language in conjunction with logic-based semantics by applying
our approach to a running example.

Categories and Subject Descriptors: D.1.7 [Programming Techniques]: Visual Programming;
H.3.5 [Information Storage and Retrieval]: Online Information Services—Web-based services;
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods - Tempo-
ral Logic, Rule-based Representations; I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Logic programming, Inference Engines

General Terms: Languages, Management, Verification

Additional Key Words and Phrases: Service Choreographies, Declarative approaches, Linear Tem-
poral Logic, Abductive Logic Programming, Conformance Checking, Interoperability, Reasoning

Authors’ present address:
Wil M. P. van der Aalst - Department of Mathematics and Computer Science, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands, e-mail: w.m.p.v.d.aalst@tue.nl.
Federico Chesani, Marco Montali and Paola Mello - DEIS, University of Bologna, V.le
Risorgimento 2, 40136 Bologna (BO), Italy, e-mail: {marco.montali, federico.chesani,
paola.mello}@unibo.it.
Maja Pesic - Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands, e-mail: m.pesic@tm.tue.nl.
Sergio Storari - Dept. of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (FE),
Italy, email: strsrg@unife.it.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0000-0000/2009/0000-0001 $5.00

ACM Transactions on the Web, Vol. V, No. N, May 2009, Pages 1–0??.

2 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

1. INTRODUCTION

Service oriented computing, an emerging paradigm for architecting and implement-
ing business collaborations within and across organizational boundaries, is currently
of interest to both software vendors and scientists [van der Aalst et al. 2003]. In its
web implementation, the functionality provided by business applications is encapsu-
lated within web services: software components described at a semantic level, which
can be invoked by application programs or by other services through a stack of Inter-
net standards including HTTP, XML, SOAP [Box et al. 2000], WSDL [Christensen
et al. 2001] and UDDI [Belwood et al. 2000]. Once deployed, web services provided
by various organizations can be inter-connected in order to implement business col-
laborations, leading to composite web services where participating services interact
in a choreography.

Let us for example consider a B2B setting, in which different organizations share
their own services to mutually benefit from each other, trying to reach complex
strategic goals, impossible to be pursued autonomously. In this context, it is often
impossible to make the assumption that one of the involved organizations will take
the lead during the interaction, acting as an orchestrator. As clearly pointed out
in the WS-CDL 1.0 specification [Kavantzas et al. 2004] “in real-world scenarios,
corporate entities are often unwilling to delegate control of their business processes
to their integration partners. Choreography offers a means by which the rules of
participation within a collaboration can be clearly defined and agreed to, jointly.
Each entity may then implement its portion of the Choreography as determined by
the common or global view.”

In a B2B setting, the birth of a service choreography is often determined by
putting together external norms/regulations and internal policies, requirements,
best practises, business goals of each participating organization. All these different
contributions have the effect of constraining the possible allowed interactions, and
they will therefore be referred to as constraints throughout the paper. The obtained
global model should suitably mediate between compliance and flexibility: on the one
hand, all interacting services must respect the agreed constraints; on the other hand,
each party should be able to execute the business processes which cover its part of
the choreography as free as possible, preserving interoperability and replaceability
of services. In other words, we claim that a service choreography should play the
role of a public global contract which focuses on the rules of engagement required
to make all the interacting parties collaborate correctly, without stating how such
a collaboration is concretely carried out. This kind of knowledge is inherently
declarative.

As pointed out in [Barros et al. 2005; van der Aalst et al. 2005], while the tech-
nologies for implementing and interconnecting basic services are reaching a good
level of maturity, modeling service interaction from a global viewpoint, i.e., rep-
resenting service choreographies, is still an open challenge: the leading current
proposals for modeling service interaction, such as WS-BPEL [Andrews et al. 2003]
and WS-CDL [Kavantzas et al. 2004], fail to tackle a suitable balance between
compliance and flexibility. The main problem is that, although declarativeness has
been identified as a key feature, current mainstream approaches propose languages
and methodologies which model choreographies by focusing on procedural aspects,
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 3

e.g. by specifying control and message flow of the interacting services. This leads
to loose the declarative nature of the knowledge involved in the choreography defi-
nition, forcing the modeler to capture it at a procedural level.

To overcome these limits, we propose a framework for dealing with service chore-
ographies at the declarative level. In particular, we adopt DecSerFlow [van der
Aalst and Pesic 2006] as a truly declarative language for the graphical specification
of service flows, and present a mapping from the DecSerFlow graphical constructs
to two underlying logic-based languages, enabling the possibility of reasoning upon
the developed models. DecSerFlow adopts a more general and high-level view of
services specification, by directly defining them through a set of policies or business
rules referred to as constraints. Hence, it does not give a complete and procedu-
ral specification of what is allowed in services, but concentrates on what is the
(minimal) set of constraints to be fulfilled in order to successfully accomplish the
interaction (i.e., what is forbidden and mandatory in services).

It is the declarative nature of DecSerFlow which opens the possibility of providing
suitable underlying semantics in terms of logic-based languages. In particular, we
present how DecSerFlow can be mapped onto Linear Temporal Logic (LTL) [Clarke
et al. 1999] and onto the SCIFF framework [Alberti et al. 2008]. The LTL mapping
of DecSerFlow currently focuses only on the process perspective of services (i.e.,
on activities executed in services), while SCIFF is able to consider activities, data
elements and time. We discuss how the mappings onto both formalisms can be
concretely exploited to address the enactment of DecSerFlow models, to enrich its
expressiveness and to perform a variety of different verification tasks, as shown in
Table I.

LTL SCIFF
enactment X

conformance checking X X
interoperability X X

conflicts and dead activities detection X X
mining X

support of activities-data and quantitative time constraints X

Table I. DecSerFlow verifications and extensions-support through LTL and SCIFF.

LTL is a special type of logic that, in addition to classical logical operators,
uses several temporal operators. Mapping to LTL enables DecSerFlow to exploit
automata generated form LTL expressions [Gerth et al. 1996; Giannakopoulou and
Havelund 2001] for execution of individual services and verification of participating
services and whole compositions. The LTL representation of DecSerFlow models
also enables a posteriori verification of properties and checking of service interaction
(i.e. conformance checking) in the LTL Checker [van der Aalst et al. 2005] plug-in
of the process mining ProM framework [van der Aalst et al. 2007].
SCIFF is a framework based on Abductive Logic Programming (ALP) [Kakas

et al. 1993], originally developed within the SOCS EU Project 1 for the specification

1Societies Of ComputeeS (SOCS): a computational logic model for the description, analysis and
verification of global and open societies of heterogeneous computees. IST-2001-32530. Home Page:

ACM Transactions on the Web, Vol. V, No. N, May 2009.

4 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

and verification of global interaction protocols in open Multi-Agent Systems (MAS),
which share many aspects with the Service-oriented Computing setting [Baldoni
et al. 2005a]. Similarly to the case of service choreographies and DecSerFlow, the
need for modeling global interaction protocols by respecting the autonomy and het-
erogeneity of interacting agents has motivated the shift from mentalistic approaches
to declarative and social-based ones [Singh 2000]. The SCIFF framework belongs to
the latter family: it envisages a powerful logic-based language for specifying social
interaction, and is equipped with a proof procedure capable to check at run-time
or a posteriori whether a set of interacting entities is behaving in a conformant
manner w.r.t. a given specification. Thanks to the mapping from DecSerFlow to
SCIFF proposed in this work, we achieve two complementary advantages. On the
one hand, the mapping extends the applicability of SCIFF outside of the MAS
setting, opening the possibility of exploiting its verification capabilities in the SOC
context and by non-expert users: they have not to deal directly with the com-
plexity of the SCIFF syntax, but can instead work at the intuitive graphical level
of DecSerFlow, automatically obtaining the corresponding SCIFF specification.
On the other hand, DecSerFlow can benefit of the expressiveness and verification
capabilities of SCIFF, addressing conformance checking and static verification of
DecSerFlow choreographies, enabling mining of DecSerFlow models from service
execution traces, and enriching the language with data-related aspects and quanti-
tative time constraints. Even if the main focus of a choreography is on the involved
activities and their flow dependencies, adding data and quantitative time-related
aspects enables to model a wider range of situations, such as desired deadlines, con-
straints which span over multiple choreography instances, content-based decisions
points, interactions in which multiple concrete services play the same role (e.g.,
bidders in an auction). The possibility of addressing such kind of specifications
does not depend on DecSerFlow (which can be extended for the purpose), but is
instead affected by the underlying chosen formalization.

We illustrate the advantages of using a declarative language in conjunction with
logic-based semantics by applying our approach to a motivating choreography ex-
ample.

The remainder of this paper is organized as follows. Section 2 motivates why
the challenging issue of modeling service choreographies should be faced by adopt-
ing a declarative approach. Section 3 describes the DecSerFlow language together
with its mapping onto LTL. The SCIFF language is presented in Section 4, and
in section 5 the mapping of DecSerFlow concepts onto SCIFF is shown. Section 6
describes then how LTL and SCIFF can be used for enactment and various veri-
fication tasks of DecSerFlow models. A discussion, focused on the usability of the
whole framework for what concerns features of the language as well as performances
and scalability of the verification techniques and current available tools, follows in
Section 7. Related work is presented in Section 8, while Section 9 concludes the
paper sketching ongoing and future works. To make this article as concise as pos-
sible, the complete description of all the core DecSerFlow constraints and of the
corresponding mapping onto LTL and SCIFF is described in Appendix A.

http://lia.deis.unibo.it/research/socs/.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 5

2. MOTIVATION

To illustrate the difficulty of handling even simple choreography constraints with
classical procedural approaches, let us consider a fragment of a purchase choreogra-
phy, regulating the seller’s decision about the confirmation or rejection of an order.
The seller could freely decide whether to confirm or refuse customer’s order, but
must obey to the following constraints:

—if the warehouse cannot ship the order, then the seller must refuse it;
—the seller can accept the order only if the warehouse has previously accepted its

shipment;
—both the seller and the warehouse cannot accept and reject the same order, i.e.,

answers are mutually exclusive.

By considering these global rules, many different compliant interactions can be
established by a concrete seller and a concrete warehouse. For example, when
and how the warehouse is contacted is not specified, and there could be different
choreography executions in which the warehouse is not contacted at all: an execu-
tion in which the seller autonomously decides to reject the order, without asking
warehouse’s opinion, is foreseen by the choreography. This execution trace clearly
attests that many different compliant ways to interact are not explicitly mentioned
in the choreography, but are instead implicitly supported. We argue that this is
due to the fact that choreography rules constitute a form of declarative knowledge,
which states what is forbidden and mandatory in services without giving details
about how to carry out the interaction.

When the user tries to model this kind of knowledge using a classical procedural
specification language such as WS-BPEL or WSCDL, she is forced to explicitly enu-
merate all the implicitly supported executions, and to introduce further unnecessary
details. Consider for example the BPMN [White 2006] collaborative diagrams as a
modeling language to capture the above described choreography fragment.

Figure 1 compares the adoption of BPMN collaborative diagrams versus the use
of a declarative constraint-based language such as DecSerFlow when modeling the
choreography fragment described above. While DecSerFlow (Figure 1(a)) is able
to capture the choreography in a compact and easily understandable way, BPMN
(Figures 1(b) and 1(c)) experiences difficulties when trying to suitably mediate
between compliance and flexibility: unnecessary activities are introduced (such as
the “contact warehouse” activity) and some acceptable execution traces are not
supported. For example, both the BPMN diagrams shown in Figures 1(b) and 1(c)
do not support the possibility that the warehouse refuses the shipment after the
refusal of the seller; even if the refusal of the warehouse seems to be, in this case,
insignificant, it could be involved in other constraints of the choreography, and
should therefore be supported. Adding this behaviour would require to complicate
the model, replicating execution paths and activities, and introducing ambiguous
decision points. And obviously, this issue would be even more hard to handle when
the modeled fragment has to be composed with other constraints to capture the
whole choreography.

These difficulties arise when the modeler tries to interconnect the choreography
activities by means of control and message flows. In particular, a non-exhaustive

ACM Transactions on the Web, Vol. V, No. N, May 2009.

6 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

1) the seller can confirm the order only if the
warehouse has previously confirmed the shipment

2) if the warehouse is unable to execute the shipment,
then the seller should refuse (or have refused) the order

4)
confirmation
and refusal
are mutually
exclusive

3)
confirmation
and refusal
are mutually
exclusive

(a)

seller warehouse

accept
order

refuse
order

contact
warehouse

refuse
shipment conrm

shipment

...

(b)

seller warehouse

accept
order

cancel
request

contact
warehouse

refuse
shipment

conrm
shipment

cancel
request

refuse
order

...

(c)

Fig. 1. Declarative vs. procedural style of modeling a simple choreography.

list of issues for which procedural languages do not provide a suitable support are:
How to deal with negative information such as “the seller cannot accept and reject
the same order”? How to deal with non-ordered constraints, such as the one stating
that “if the warehouse refuses the order, then the seller must also refuse (or have
refused) it”? Who is in charge to contact the warehouse? And when?

The difficuly of providing an answer to these question by adopting a procedural
style of modeling is threefold:

—lack of proper abstractions. Activities can be inter-connected only by means of
positive temporally-ordered relationships (sequence patterns, mixed with con-
structs aimed at splitting/merging the control or the message flow). Modeling
other kind of constraints forces the user to complicate the model. For example,
capturing temporally-unordered relationships leads either to choose one ordering
and impose it in the model, compromising flexibility, or to explicitly capture all
the possible orderings, introducing ambiguous decision points to combine them.

—closed nature. Procedural models makes the implicit assumption that “all that is
not explicitly modeled is forbidden”, and must therefore enumerate all the allowed
executions. Therefore, when a negative requirement (such as forbidding a certain
activity or stating that two activities must never co-exist in the same execution)
must be considered, it is not possible to make it explicit in the model; instead,

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 7

it is responsability of the user to check whether the produced model implicitly
entails the negative requirement or not. This is a difficult task, especially when
the complexity of the model increases.

—premature commitment. Since procedural approaches have a close nature and
do not provide proper abstractions, they force the modeler to prematurely take
decisions and make assumptions about the interaction. For example, even if the
considered choreography fragment does not specify how and when the warehouse
must be contacted, this choice must indeed be taken during the modeling phase.

The combination of these drawbacks has the effect that choreographies become
over-specified and over-constrained : unnecessary activities and constraints are in-
troduced, and acceptable interactions are dropped out. As a consequence, while
compliance is respected, flexibility becomes sacrificed: potential partners are dis-
carded, fruiful interactions are rejected and, at last, the choreography becomes un-
usable. When the modeler tries to get back flexibility by relaxing the imposed con-
straints and reducing premature commitments, the lack of proper abstraction and
the closed nature of procedural approaches lead to further stress over-specification:
the resulting choreography tends to become a tangled, unintellegible spaghetti-like
model, and, at the same time, the risk of supporting undesirable behaviors increases.

3. DECSERFLOW: A TRULY DECLARATIVE SERVICE FLOW LANGUAGE

Web service composition implies collaboration of independent interacting parties,
i.e., services. On the one hand, composition choreography reflects a common agree-
ment of various parties and must be applicable to various demands of interacting
parties. On the other hand, interacting parties are required to follow core rules that
maintain the integrity of the choreography. Figure 2(a) shows that a choreogra-
phy prevents some unwanted (i.e., forbidden) scenarios, and parties can collaborate
only in scenarios allowed in the choreography. Traditional modelling languages
(e.g., Petri nets [Reisig and Rozenberg 1998] and WS-BPEL [Andrews et al. 2003])
are of imperative nature because they specify a scheduling procedure of activities
in the flow. All possible interactions are specified in detail in such a model (as
shown in Figure 2(b)) and unpredicted or exceptional interactions are not possible
between the parties. Therefore, specifying service flows with an imperative lan-
guage limits the number of parties that are able to fulfill the model requirements.
Instead of specifying a detailed flow procedure, DecSerFlow specifies a minimal
set of rules that should be followed by the interacting parties. Figure 2(c) shows
that, by explicitly specifying the rules, a declarative DecSerFlow model implicitly
defines the flow as all scenarios that do not violate the rules. Clearly, the more
rules a DecSerFlow model has, the less possibilities there are in the flow. Because
rules constrain the model, we refer to rules as to constraints.

DecSerFlow process models can play two roles in the context of web services:

—DecSerFlow can be used as a global choreography model [Zaha et al. 2006], i.e.
interactions are described from the viewpoint of an external observer who oversees
all interactions between all services. It is not necessary that a global model is
executable, but it can be used for describing the rules of engagement for making
all the interacting parties collaborate correctly, and for verification purposes (such

ACM Transactions on the Web, Vol. V, No. N, May 2009.

8 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

(a) Forbidden and al-
lowed in service flows.

x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

imperative
model

(b) Traditional impera-
tive model.

x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

DecSerFlow

(c) DecSerFlow declara-
tive model.

x x x
x x x

forbidden
behaviour

allowed
behaviour

possible
behaviour

Fig. 2. DecSerFlow as a declarative language.

as conformance checking and interoperability). Here DecSerFlow is competing
with languages such as the Web Services Choreography Description Language
(WS-CDL) [Kavantzas et al. 2004].

—DecSerFlow can be used as a local model [Zaha et al. 2006], to specify, implement,
or configure a particular service. Here DecSerFlow is competing with languages
such as WS-BPEL [Andrews et al. 2003].

The remainder of this section is organized as follows. In Section 3.1 we present a
running example of a Photo Service. Section 3.2 describes the building blocks of the
DecSerFlow language. Section 3.3 describes the global choreography (Section 3.3.1)
and a local service model (Section 3.3.2) in terms of DecSerFlow.

3.1 Running Example: Photo Shop

In this paper we use an illustrative example to describe how DecSerFlow and its
underlying mappings can be suitably used for specifying and verifying choreogra-
phies. The example is concerned with a Photo Shop. Due to the high competition
and booming of Internet technologies, it is common that shops for development
and printing of photographs (and accompanying services) employ web services for
remote placing orders. Customers (individual or other shops) can use a simple
service to place orders without having to personally come to the shop. Table II
shows the description of the interaction between two services: (1) Customer and
(2) Photo Shop. The Customer service employs an on-line photo ordering service,
while the Photo Shop service prints and delivers ordered products.

Table II. Photo Shop Example
Both the customer and the shop are responsible for executing an order and they
have the following options:

Customer. The customer can enter order data, such as name, address, credit
card number and preferred way of delivery, via activity “register”. Activities
“photo” and “poster” can be used to order photographs and posters (respec-
tively) by uploading files and selecting wanted formats. Customer can also
order photo albums by executing activity “album”. Activities “receive” and
“pay” are used when receiving and paying ordered products, respectively.

Photo Shop. The shop records order data via activity “open order”. Activity
“print” is used to print ordered photos and posters. The shop delivers products
and charges the customer for the service via activities “deliver” and “charge”.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 9

Instead of following an explicitly specified order of service activities (from Ta-
ble II), the two parties obey to several constraints that define the global level of
service interaction (choreography), as presented in Table III:

Table III. Global Choreography Constraints

G1. The shop will not “open order” before the customer executes activity “reg-
ister”. When the customer executes activity “register”, the shop will update
its data via activity “open order”. This rule ensures that the shop has the right
order data.

G2. After the customer orders photos and posters (via activities “photo” and
“poster”), the shop prints ordered products via activity “print”.

G3. Each ordered product (“photo”, “poster” or “album”) has to be delivered
via activity “deliver”. The shop will not “deliver” before at least one product
is ordered.

G4. Customer can receive products only after the shop executes “deliver”.

G5. Customer can “pay” before (e.g., credit card) or after (e.g., when picking
up) the shop executes its activity “charge”.

Each of the parties can employ a local service model by their own preference, as
long as these models comply with the agreed choreography, i.e., with the agreed
global constraints G1, G2, G3, G4 and G5 presented in Table III. For example, the
Photo Shop can implement its local process by the constraints presented in Table IV
or it can even employ a procedural process model.

Table IV. Local Photo Shop Constraints

L1. Shop local service will start with activity “open order” .

L2. Each printed (activity “print”) item will be delivered (activity “deliver”).

L3. The shop will “charge” administrative fixed costs even for empty orders.

3.2 DecSerFlow Constraint Templates

A DecSerFlow model consists of activities and constraints that represent rules to
be followed while activities are executed. A constraint represents a relation be-
tween activities. For example, constraint G3 represents a relation between activities
“photo”, “poster” and “album” on one side and activity “deliver” on the other side.
This type of rule is called “succession” and it specifies that some activity “A” has
to be followed by some activity “B” and activity “B” cannot be executed before
activity “A”. Constraint G2 between activities “photo” and “poster” on one side
and activity “print” on the other side is also a “succession”. One can imagine that
one type of constraint can occur in various models between various activities. To
support reusability of types of constraints, DecSerFlow language consists of a set of
constraint templates. A constraint template represents a type of relation between
activities that can be reused in various models to create constraints between ac-
tivities. Each template has a unique name and consists of: (1) a Linear Temporal
Logic (LTL) formula that specifies the semantics and (2) a graphical representa-
tion. LTL is a special type of logic that, in addition to classical logical operators,

ACM Transactions on the Web, Vol. V, No. N, May 2009.

10 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

uses several temporal operators: always (!), eventually ("), until (!) and next
time (©) [Clarke et al. 1999]. When adding a constraint to a model, one works
with graphical representation of the template and the underlying LTL formula re-
mains hidden. Because of this, LTL expertise is not required for the development of
DecSerFlow models. Currently, there are more than twenty DecSerFlow templates
[van der Aalst and Pesic 2006], and templates can easily be added, removed or
changed in DecSerFlow. Some of these templates are shown in Table V.

name LTL expression graphical

existence(A) !(A) A
1..*

existence (A) !(A ∧ ©(existence(A)))

2..*

A

existence (A) !(A ∧ ©(existence(A)))

3..*

A

absence (A) ¬existence(A)

0..1

A

absence (A) ¬existence(A)

0..2

A

exactly (A) existence(A) ∧ absence(A)

1

A

exactly (A) existence(A) ∧ absence(A)

2

A

response(A,B) "(A ⇒ !(B)) A B

precedence(A,B) !(B) ⇒ ((¬B) $ A) A B

succession(A,B) response(A,B) ∧ precedence(A,B) A B

neg response(A,B) "(A ⇒ ¬(!(B))) A B

responded existence(A,B) (!A) ⇒ (!B) A B

alternate response(A,B)
response(A,B)

∧"(A ⇒ ©(precedence(B,A))
A B

chain response(A,B) "(A ⇒ ©(B)) A B

Table V. Some DecSerFlow templates.

Table V shows some of the DecSerFlow templates involving one or two activi-
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 11

ties. Note that it is also possible to make DecSerFlow templates for three or more
activities. Some templates specify the minimal number of execution of an activity.
For example, templates “existence” and “existence 3” specify that activity “A” has
to be executed at least once and three times, and are graphically represented with
“1..*” and “3..*” above the activity, respectively. There are also templates that
specify the maximal number of executions of an activity. Templates “absence 2”
and “absence 3” specify that activity “A” can be executed at most once or two times
and are graphically represented with “0..1” and “0..2” above the activity, respec-
tively. It is also possible to specify the exact number of executions of an activity,
e.g., exactly once or two times with templates “exactly 1” or “exactly 2”. The “re-
sponse” template specifies that if “A” is executed then “B” has to be executed after
“A”, and is denoted with a special line between “A” and “B”. According to the
“precedence” template, “B” can be executed only after “A”. The “succession” tem-
plate is a conjunction of templates “response” and “precedence”. It is also possible
to specify that “B” cannot be executed after “A” with template “neg response”.
The template “responded existence” specifies that if “A” is executed then also “B”
has to be executed before or after “A”, thus without specifying in which order. The
“alternate response” formula takes the order of activities into account: in addition
to the semantics of the “response” template, it imposes interposition, i.e., at least
one target activity has to be executed between each two executions of the source
activity. Finally, “chain response” specifies the most strict ordering relations by
requiring that the target activity must be executed immediately next to the source
one. For a complete description of all DecSerFlow constraints, see Appendix A.

It is worth noting that constraints are interpreted within a given case (or chore-
ography instance). As a consequence, negative relationships, such as the absence or
the negation response constraints, forbid the presence of a certain activity within
the same case in which the constraint has been triggered: other cases are not af-
fected.

Finally, note that LTL is not the only language that can be used for the specifi-
cation the semantics of DecSerFlow templates. Other declarative languages can be
also used. Indeed, in this paper we show that declarative SCIFF is also suitable
for specifying the semantics of DecSerFlow templates. Moreover, other types of
logic can also be used. For example, Computation Tree Logic (CTL) is another
logic that can be used in DecSerFlow. Although LTL and CTL are similar lan-
guages, each of them has some advantages over the other. For example, there are
some relationships that can be specified only in LTL or in CTL, but not in both
languages [Holzmann 2003]. However, so far, the debate about which of these two
languages is more expressive remains unsolved [Holzmann 2003]. Finally, we chose
LTL for the specification of DecSerFlow models because we were inspired by the so
called LTL Checker plug-in in the process mining tool ProM, which can be used for
verification of past executions against properties specified in LTL (the LTL Checker
is described in more detail in Section 6.1.3 of this paper).

3.3 DecSerFlow Models

DecSerFlow models consists of activities and constraints. Constraints represent
relationships between activities and are created from DecSerFlow templates. Dec-
SerFlow models can be used both for global models of choreographies and local

ACM Transactions on the Web, Vol. V, No. N, May 2009.

12 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

models of services. In this section we present two DecSerFlow models: one for the
global choreography model and one for the local model of the Photo Shop service.

3.3.1 Global Choreography Model. Figure 3 shows a global DecSerFlow model
with agreed upon choreography constraints G1, G2, G3, G4 and G5 (cf. Table III)
between a customer and the shop2. Each constraint in this model originates from a
template: the constraint inherits its name, semantics and graphical representation
from its template. However, a constraint assigns “real” activities from a model to
template’s parameters. For example, the “precedence” constraint replaces parame-
ter “A” from the “precedence” template with activity “deliver” and parameter “B”
with activity “receive”.

SellerCustomer

posteralbum

print

deliver

receive

pay charge

register open order
succession

succession

succession

precedence

responded existence

photo

G1

G3

G2

G4

G5

Fig. 3. Global Choreography DecSerFlow Model

Constraint “succession” between activities “register” and “open order” (G1) spec-
ifies that each alternation of customer data will be registered in the shop and the
shop cannot open orders before the customer executes activity “register”. When
this constraint is created, the activities “register” and “open order” replace param-
eters “A” and “B” in the template formula presented in Table V:

succession(register, open order)

= response(register,open order) ∧ precedence(register,open order)

= (!(register ⇒ "(open order)))∧ ("(open order) ⇒ ((¬open order) # register))

Note that this constraint (and its template) allows multiple executions of activi-
ties “register” and “open order” and also (multiple) executions of other activities
between them. For example, this model allows a scenario where the user first “reg-
isters” data and then soon executes this activity again to alter data, while the shop

2Note that, for the purpose of the example, orders of different items (photos, albums and posters)
have been represented as different activities.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 13

executes activity “open order” only once after the second execution of the activity
“register”.

Template “succession” is also used for the to constraints representing rules G2 and
G3. Unlike the previous constraint (G1) that utilizes only one activity (i.e., “regis-
ter”) as the first parameter (i.e, “A”) in the template, G2 and G3 use two and three
activities, respectively. This means that G2 and G3 branch parameter “A” of the
succession on more activities. When a parameter is branched on several activities,
then it is replaced by disjunction of these activities in the constraint formula. There-
fore, formula for the “succession” constraint between activities “photo”, “poster”
and “print” (G2) is:

succession(photo ∨ poster, print)
= response(photo ∨ poster, print) ∧ precedence(photo ∨ poster, print)
= (("print) ⇒ ((¬print) ! (photo ∨ poster))) ∧ !((photo ∨ poster) ⇒ ("print))

This constraint specifies that shop cannot execute activity “print” before the cus-
tomer executes activity “photo” or activity “poster” and that after every time ac-
tivities “photo” or “poster” are executed, shop eventually executes activity “print”.
This constraint allows, for example, situations where photos are ordered and printed
and then posters are ordered and printed. It also allows situations where both pho-
tos and posters are first ordered and then they are printed at the same time.

Similarly, the “succession” constraint between activities “photo”, “poster”, “al-
bum” and “deliver” (G3) specifies that each execution of activities “photo”, “poster”
or “album” is eventually followed by at least one execution of activity “deliver”.
Also, activity “deliver” can be executed only after at least one of the activities
“photo”, “poster” or “album” was executed. With this constraint, the shop can
first collect orders for photos, posters and albums and then deliver them at once.
However, it is also possible to immediately deliver each of the orders as soon as it
is placed.

The “precedence” constraint between activities “receive” and “deliver” (G4) pre-
vents the execution of activity “receive” before the execution of activity “deliver”.
In other words, customer can execute activity “receive” only after the first exe-
cution of activity “deliver”. An example of a scenario allowed by this constraint
is when two packages were sent in one delivery and the customer receives them
separately (e.g., one get lost in the postal system and arrives three days later).

The last constraint is the “responded existence” constraint between activities
“charge” and “pay”. It makes sure that customer executes activity “pay” when
the shop executes activity “charge” (G5). It is possible that the payment is done
before activity “charge” takes place, e.g., if the customer payed with a credit card
immediately after ordering, and the shop executed activity “charge” only after all
products were delivered.

Note that, although this is not the case with model in Figure 3, DecSerFlow
constraints can be conditional. Conditions on constraints are logical expressions
involving instance data elements. For example, a constrain can be valid (interacting
parties should fulfill the constraint) only if “price > 1000”. Because data are not
directly involved in constraints (like, e.g., activities are) but only in conditions,
LTL representation of DecSerFlow covers only partially the perspective of instance

ACM Transactions on the Web, Vol. V, No. N, May 2009.

14 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

data.
The DecSerFlow model in Figure 3 shows global constraints as rules that all

parties have to follow in the choreography regardless their local service models.
Because of the declarative nature of DecSerFlow constraints, it is possible to em-
ploy various local models for both parties as long as they comply to such a global
choreography model.

3.3.2 Local Shop Model. Besides for specification of global choreography mod-
els, DecSerFlow can be used to specify local models of services. Because of the
declarative nature of DecSerFlow, service models become flexible and able to en-
gage in a variety of choreographies. Figure 4 depicts two examples of possible local
models for the Photo Shop service.

print deliver
response

open order

init

charge

1..*

L1

L2
L3

(a) DecSerFlow - fixed costs.

print deliver
response

open order

init

charge

responded
existence

(b) DecSerFlow - deliveries.

Fig. 4. Two examples of local shop models

Figure 4(a) shows a DecSerFlow model for the Photo Shop service based on the
local constraints as presented in Table IV. Constraint “init” implements rule L1 and
specifies that each service execution has to start with activity “register”, but this
activity can be executed multiple times at later stages of the execution. Rule L2 is
represented using a “response” constraint that makes sure that all printed products
are eventually delivered. It might be that all products are printed first in several
stages (several executions of activity “print”) and then delivered at once. It is also
possible that products are delivered immediately after they are printed, without
waiting for other products to be printed (e.g., some products are delivered to home
address via mail and a large poster has to be picked up personally in the shop).
Finally, constraint “1..*” makes sure that the shop will execute activity “charge”
at least once, even if no delivery has been made and only fixed administrative costs
are charged (L3). Activity “charge” can be executed multiple times in the shop
process if necessary to charge part by part of the order (e.g., one part from the
credit cart for photos and other in the shop when the large poster is picked up).

The local shop model presented in Figure 4(a) is compliant with the global chore-
ography model in Figure 3. Moreover, because of the declarative nature of the
global model, this model is flexible enough to allow for many other local models of
involved parties. For example, Figure 4(b) shows a DecSerFlow model of another
shop which does not charge fixed costs for empty services (but only deliveries). This
local model can also join the choreography in Figure 3.
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 15

4. THE SCIFF FRAMEWORK

SCIFF [Alberti et al. 2008] is a logic-based framework aimed at specifying global
interaction protocols (e.g. a service choreography) in a declarative fashion as well
as providing support for performing different verification tasks.
SCIFF tackles interaction by adopting a social approach, as it is called in the

MAS community [Singh 2000]. Interaction is specified in a declarative manner by
only constraining the external observable behaviour of interacting entities, with-
out stating any assumption on their internal architecture and, thus, supporting
heterogeneity. Moreover, as in DecSerFlow the adopted perspective is open, i.e. in-
teracting entities can freely behave where not explicitly constrained.

The fundamental concepts used by SCIFF to specify such interaction are (i) ob-
servable and relevant events which occur at execution time, (ii) expectations about
further events and courses of interaction and (iii) (Social) Integrity Constraints
which allow the user to constrain the global interaction.

4.1 Events, Happened Events and Expected Events

Deciding what has to be considered an event strictly depends on the application
domain. Furthermore, even if the application domain is fixed, there could be several
different notions of events, because of the assumed perspective, the granularity, and
so on.

The SCIFF language completely abstracts from the problem of deciding “what
is an event”, and rather lets the developers decide which are the important events
for modeling the domain, at the desired level. For example, in a business context,
an event could be the fact that some atomic activity has been performed

performed(Activity,Originator , InputData,OutputData)

Happened events are represented as an atom

H(Event, T ime)

where Event is a Term and T ime is an integer, representing the discrete time
point at which the event happened. HAP is the set of all the events that happened
during the execution. Together, these events form a log (or execution trace).

Beside the explicit representation of “what” happened and “when”, it is possible
to explicitly represent also “what” is expected, and “when” it is expected to happen.
The notion of expectation is used to represent the (un)desired course of interaction,
and plays a key role when defining interaction protocols, choreographies, and more
in general any dynamically evolving process: it is quite natural, in fact, to think
of such processes in terms of rules of the form “if A happened, then B is expected
(not) to happen”.

In agreement with DecSerFlow, SCIFF pays particular attention to the openness
of interaction; this means that the prohibition of a certain event should be explicitly
expressed in the model and this is the reason why SCIFF supports also the concept
of negative expectation (i.e. of what is expected not to happen).

Positive expectations about events come with form

E(Event, T ime)
ACM Transactions on the Web, Vol. V, No. N, May 2009.

16 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

where Event and T ime can be variables, or they could be grounded to a particular
term/value. Constraints can be specified over each variable; for example T ime > 10
states that the expectation is about an event to happen at a time greater than 10
(hence the event is expected to happen after the time instant 10).

Conversely, negative expectations about events come with form

EN(Event, T ime)

Generally speaking, quantification of the variables inside happened events and
positive/negative expectations follows their intuitive meaning: an happened event
represents a “class” of possible occurring events, and therefore variables used in a
happened event are universally quantified. For example,

H(performed(deliver, Originator), Td) ∧ Td > 10

matches with any execution of the activity “deliver” at a time greater than 10 time
units, performed by a whatsoever Originator. Positive expectations are existen-
tially quantified: an expectation is fufilled when one single matching event indeed
happens; hence, specifying

E(performed(deliver, Originator), Td) ∧ Td > 10

means that there should exists an Originator which performs activity “deliver” at
a time greater than 10. Finally, negative expectations are universally quantified,
since they specify what is forbidden and when;

EN(performed(deliver, Originator), Td) ∧ Td > 10

means that nobody can perform the activity “deliver” at any time greater than 10.
For a complete description of variables quantification, the interested reader may

refer to [Alberti et al. 2008].

4.2 Social Integrity Constraints

Social Integrity Constraints (ICS) are rules used to relate happened events and ex-
pectations. They allow the user to constrain global interaction, given some previous
situation that can be represented in terms of happened events.

They are represented as forward rules of the form Body → Head, where Body
can contain literals and (conjunctions of happened and expected) events, and Head
can contain (disjunctions of) conjunctions of expectations.

In Table VI we show the definition of a subset of the grammar (for a complete de-
scription, see [Alberti et al. 2008]), where Atom and Term have the usual meaning
in Logic Programming [Lloyd 1987] and Constraint is interpreted as in Constraint
Logic Programming (CLP) [Jaffar and Maher 1994].

CLP constraints and Prolog predicates can be used to impose conditions or re-
strictions on each variable that occurs in happened events and expectations. For
example, time conditions might define orderings between messages, or enforce dead-
lines.

Definition of such predicates and of all “static” background knowledge about
interaction (i.e., information independent from specific executions) is formalized
inside a knowledge base KB , which completes the definition of Integrity Constraints.
Here we could specify roles descriptions, list of participants, conditions on data, etc.
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 17

ExtLiteral ::= Literal | Exp | Constraint
Exp ::= E(Event, T ime) | EN(Event, T ime)

HEvent ::= H(Event, T ime)
Event ::= Term
ICS ::= [IC]!
IC ::= Body → Head

Body ::= (HEvent | Exp | true) [∧ BodyLiteral]!
BodyLiteral ::= HEvent | ExtLiteral

Head ::= HeadDisjunct [∨ HeadDisjunct]! | false
HeadDisjunct ::= ExtLiteral [∧ ExtLiteral]!

KB ::= [Clause]!
Clause ::= CHead ← CBody
CHead ::= Atom
CBody ::= ExtLiteral [∧ ExtLiteral]! | true

Table VI. Syntax of Integrity Constraints (ICS) and the Knowledge Base (KB)

KB is expressed in the form of clauses (a logic program); clauses may contain in
their body expectations about the behaviour of participants, defined literals, and
constraints (see Table VI).

Example 4.1. A rule like

“If a premium customer pays for an item by credit card, then the seller
should answer within 10 minutes by delivering a corresponding receipt,
or by communicating a payment failure.”

can be translated in a straightforward manner, e.g. in the corresponding rule (sup-
posing that times are expressed in minutes):

H(pay(Customer,Seller, Item, credit card), Tp)

∧ premium customer(Customer,Seller)

→E(deliver(Seller,Customer, receipt(Item, Info)), Td) ∧ Td > Tp ∧ Td < Tp + 10

∨E(tell(Seller,Customer, failure, Reason), Tf) ∧ Tf > Tp ∧ Tf < Tp + 10.

(1)

where premium customer(Customer, Seller) is used to represent whether Customer
is actually a premium one.

To express mutual exclusion between delivery and failure communication, we
could also add a rule like

H(deliver(Seller,Customer, receipt(Item,Info)), Td)

→EN(tell(Seller,Customer, failure, Reason), Tf).
(2)

and viceversa 3 .

In the following, we show that DecSerFlow can be suitably mapped onto a SCIFF
specification (see section 5), and we exploit its operational counterpart (in terms
of the SCIFF proof procedure) to perform different verification tasks (see section
6.2).

3Note that such rules model the “not coexistence” formula in DecSerFlow.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

18 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

5. MAPPING DECSERFLOW ONTO THE SCIFF FRAMEWORK

All the different DecSerFlow formulas can be intuitively mapped onto SCIFF In-
tegrity Constraints. More specifically, we now introduce the mapping of basic
DecSerFlow formulas, and then discuss how the expressive power of the SCIFF
language could be used to extend DecSerFlow with explicit temporal constraints,
such as delays and deadlines, by maintaining a complete valid underlying seman-
tics in SCIFF. Finally, we summarize how a specific DecSerFlow diagram could be
mapped onto SCIFF, by directly combining the formalization of template formulas
with a specific knowledge representing the diagram.

5.1 Formalization of activities

As pointed out in Section 4.1, SCIFF completely abstracts from what has to be
considered as an observable and relevant event inside the application domain.

To formalize DecSerFlow, we adopt an atomic model for activities, mapping a
whatsoever activity execution to an Event of the form performed(Activity). Thus,
notation H(performed(buy item), 18) means that the buy item activity has been
executed at time 18. If also the originator and input/output data have to be
considered, we could simply extend the representation as follows:

performed(Activity, Originator, InputData, OutputData)

It is worth noting that, in principle, a non atomic model of activities could be
seamlessly supported, by mapping the start and completion of each activity to
events.

5.2 Mapping of DecSerFlow constraints

Table VII introduces the mapping of some DecSerFlow formulas onto SCIFF.
Let us consider first unary formulas. The “absence N” formula leads to the gen-

eration of a negative expectation about the execution of the involved activity, after
N different executions of the same activity have already occurred. Instead, the
“existence N” one states that N different execution of the activity are expected
to happen. Since SCIFF adopts an explicit notion of time, the difference between
expectations about the same activity is modeled as a difference between the corre-
sponding execution times.

The SCIFF representations of the “absence” and the “existence N” formulas do
not have any triggering condition (i.e. their body do not contain happened events):
the involved expectations are always hypothesized and should always be fulfilled,
independently from the course of interaction.

The same holds for the DecSerFlow “substitution” formula, which specifies that
at least one of the involved activities should be executed. The substitution between
“A” and “B” is mapped onto SCIFF as follows:

true → E(performed(A), TA) ∨ E(performed(B), TB).

To express that “A” is expected to be executed exactly N times, it is possible
to combine together the “absence N” and the “existence N” formulas about “A”.
The former is indeed satisfied when N executions of “A” happened; but these N
happened events trigger the latter, which forbids further executions of “A”.
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 19

name Integrity Constraint graphical

existence(A) true → E(performed(A), T) A
1..*

existence N(A)

true

→
N̂

i=1

“
E(performed(A), Ti) ∧ Ti > Ti−1

”
N..*

A

absence(A) true → EN(performed(A), T)
0

A

absence N + (A)

N̂

i=1

“
H(performed(A), Ti) ∧ Ti > Ti−1

”

→EN(performed(A), T) ∧ T > TN

0..N

A

exactly N(A) existenceN(A) ∧ absenceN + (A)
N

A

response(A,B)
H(performed(A), TA)

→E(performed(B), TB) ∧ TB > TA.
A B

precedence(A,B)
H(performed(B), TB)

→E(performed(A), TA) ∧ TA < TB.
A B

succession(A, B) response(A,B) ∧ precedence(A,B) A B

neg response(A,B)
H(performed(A), TA)

→EN(performed(B), TB) ∧ TB > TA.
A B

responded existence(A,B)
H(performed(A), TA)

→E(performed(B), TB).
A B

alternate response(A,B)

response(A,B)∧
H(performed(A), TA)

∧ H(performed(A), TA2) ∧ TA2 > TA

→E(performed(B), TB)

∧ TB > TA ∧ TB < TA2.

A B

chain response(A,B)

H(performed(A), TA)

→E(performed(B), TB) ∧ TB > TA

∧EN(performed(X), TX)

∧ TX > TA ∧ TX < TB .

A B

Table VII. Mapping of some DecSerFlow formulas onto SCIFF.

The mapping of relation formulas has a more fixed structure. The body of each
Integrity Constraint is constituted in this case by the happened event which corre-
sponds to the formula’s source; in fact, each DecSerFlow relation is triggered when
its source activity is performed.

While the LTL formalization implicitly models concepts like before and after
by exploiting temporal modalities, SCIFF specifies them by explicitly constraining
time variables, i.e. by adopting a point algebra [Vilain et al. 1990] and exploiting the
underlying CLP solver; hence, to formalize the “response” formula SCIFF states
that if the source activity “A” happens at time “TA”, then the target activity B
is expected to happen at a time “TB > TA”. The “precedence” version of each

ACM Transactions on the Web, Vol. V, No. N, May 2009.

20 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

DecSerFlow relation is therefore formalized in the same way as the “response” one,
except from the fact that temporal constraints are inverted.

Formalization of “alternate” formulas imposes, in addition to normal “response”/
“precedence” behaviour, the interposition between activities; closely following the
natural language description, interposition is expressed by stating that between
two executions of the source activity the target activity must be performed at least
once.

The “chain response” formula is instead formalized by applying the “response”
rule and by forbidding all events between the execution of source and target activ-
ities. In this way, we map the concept of next state in LTL with the one of first
next time at which some new activity is performed (and, in the “chain response”
case, such a new activity must be the target one). This is a proper formalization
when execution times may be explicitly constrained, and this is one of the added
feature that SCIFF provides to DecSerFlow (see section 5.4).

Finally, it is worth noting that mapping of negation formulas resembles very
closely the one of relation formulas. The main obvious difference is that while
relation formulas specifies what should be done, negation formulas specifies what is
forbidden, hence their formalization substitutes the concept of positive expectation
with the the one of negative expectation.

5.3 Branching formulas

For the sake of simplicity, in the previous section we have limited our mapping to
binary relation and negation formulas. However, SCIFF is able to capture also
branching formulas, i.e. relation and negation formulas which envisage more than
two activities. As sketched in section 3.2, the presence of n source or target activi-
ties is interpreted by DecSerFlow in a disjunctive manner. More specifically, when
n source activities “A1”,. . .,“An” are used, then the formula should be satisfied
whenever “A1” or “A2” or . . . or “An” is executed; hence, modeling a formula with
disjunctive sources is a short-cut for applying the formula on each source activity.
The intended meaning can then be easily captured by replicating the SCIFF for-
malization for each single source activity. The presence of n target activities means
instead that the formula is satisfiable in different ways, i.e. it is true whenever it is
satisfied at least by one of the target activities. Hence, the formalization of a for-
mula with disjunctive targets can be expressed by considering disjunction of target
expectations (together with the corresponding temporal constraints) as rule’s head.

Table 5.3 shows how such a formalization is applied to the case of a branching
“responded existence” formula. It 4 tackles also the situation, not envisaged by core
DecSerFlow formulas, of a branching “responded existence” where target/source
multiplicity is interpreted in a conjunctive manner. Such an interpretation behaves
in the opposite way w.r.t. the disjunctive one. A formula with conjunct targets
is fulfilled when it is true for all target activities, and hence it can be formalized
by replicating the corresponding Integrity Constraint for each activity. A more
complex case is the one in which the formula has conjunct source activities: it
should trigger only when all such activities are executed. SCIFF is directly able to
represent this feature: the corresponding rule will have as body the conjunction of

4But the same holds also for the other relation and negation formulas.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 21

name representation
equivalent
representation

formalization

responded existence

(A1 ∨ A2, B)
A2

B

A1

A2

B

A1
H(performed(A1), TA)

→E(performed(B), TB).

H(performed(A2), TA)

→E(performed(B), TB).

responded existence

(A, B1 ∨ B2)
B2

A

B1 H(performed(A1), TA)

→E(performed(B1), TB1)

∨E(performed(B2), TB2).

responded existence

(A, B1 ∧ B2)
B2

A

B1

B2

A

B1
H(performed(A), TA)

→E(performed(B1), TB).

H(performed(A), TA)

→E(performed(B2), TB).

responded existence

(A1 ∧ A2, B)
A2

B

A1 H(performed(A1), TA2)

∧ H(performed(A2), TA2)

→E(performed(B), TB).

Table VIII. Formalization of a branching “responded existence” formula in SCIFF.

the involved happened events.

5.4 Extending DecSerFlow with quantitative temporal constraints

Another interesting feature, due to SCIFF reasoning capabilities on content data
(and therefore also on execution times), is the possibility to extend the basic DecSer-
Flow relation formulas (and the simple negation formulas, i.e. “negation response”
and “negation precedence”) with quantitative information over times, e.g. to ex-
press delays and deadlines. Such an information is used to reduce the validity of
formula’s target time (or, in the negative case, to delimit the forbidding of the
target), by defining either a lower or an upper bound on it.

Let us modify, for example, the photo choreography shown in Figure 3 by spec-
ifying also that “at most 24 hours can elapse between the order of a product and
the corresponding delivery”. By assuming that times are expressed in hours, such
a statement could be represented by augmenting the “succession” formula between
the three kinds of order and the “deliver” activity with the knowledge about the
deadline: the delivery time should be after the order one, but also less than the
order one plus 24 hours (and vice versa). This could be seamlessly modeled in
SCIFF by extending the formalization of the “succession” formula as follows (for
simplicity, in the formalization we consider only activities “photo” and “deliver”):

H(performed(photo), Tp) → E(performed(deliver), Td)

∧Td > Tp ∧ Td < Tp + 24. (3)

H(performed(deliver), Td) → E(performed(photo), Tp)

∧Tp < Td ∧ Tp > Td − 24. (4)

To graphically show these temporal extensions, a possible choice is to annotate
the different DecSerFlow constraints with a time interval marked off by two non
negative instants (Tmin and Tmax) which could be considered both in an exclusive

ACM Transactions on the Web, Vol. V, No. N, May 2009.

22 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

or inclusive manner. As usually, parentheses ((. . .)) are used to indicate exclusion
and square brackets ([. . .]) to indicate inclusion. The interval is treated as relative
w.r.t. the time at which the source happens, and is translated backward or forward
w.r.t. it depending on the nature of the formula (i.e. whether it is a “response” or
“precedence” one).

posteralbum

print

deliver

receive

pay charge

register open order
succession

succession

succession

precedence

responded existence

photo

(0,24)

Fig. 5. Modification of the DecSerFlow running example by adding a temporal deadline.

For example, let us consider again the modified running example, denoting with
To and Td the execution times of one of the order activities and “deliver” respec-
tively. As shown in Figure 5, the annotation of the succession formula to reflect
the declared deadline should be (0, 24), since Td has to belong to the time interval
(Tp, Tp + 24) and, conversely, To to the interval (Td − 24, Td).

This intended meaning is clarified in Figure 6, which summarizes how temporal
annotations could be used to model different kind of quantitative temporal relation-
ships in case of simple relation formulas, namely “responded existence”, “response”
and “precedence”.

Quantitative temporal constraints should not be interpreted as a way to force
the emission of a message from a certain service; indeed, when the focus is on
the choreography the concrete interacting services execute in an autonomous way,
and cannot be controlled. Instead, temporal constraints should be considered as
a mean to specify further requirements on the interacting service, contributing to
the definition of the QoS that must be guaranteed during the interaction: com-
pliant executions must not only respect the modeled constraints, but also satisfy
all the temporal requirements. For example, the deadline of 24 hours introduced
in Figure 5 could represent a QoS requirement of the customer, who considers as
good candidates to interact with only photo services able to deliver within a max-
imum timespan. This information can be used either to statically select “good”
photo services, i.e., photo services whose behavioural interface respects (promises
to respect) the desired temporal constraint, and to check at run-time if the real be-
haviour effectively satisfies it. Identifying a violation may be useful in this setting
to alert the customer that the photo service is breaking the choreographic contract.
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 23

after

after(N)
TA+N

A performed at time TA

before(N)
TA-N

before

between(N1,N2)
TA+N1 TA+N2

TA-N2 TA-N1

between(N1,N2)

anytime

equals(N)

TA+Nequals(N)

TA-N

A B

A B

A B

A B

A B

(N,-)

A B

(N,-)
A B

(N1,N2)

A B
(N1,N2)

[N,N]

[N,N]
A B

validity of TB

Fig. 6. Temporal constraints templates and their corresponding representation on simple formulas.

5.5 Cross-flow Constraints

Similarly to the approach presented in the previous Section aimed at extending
DecSerFlow specifications w.r.t. the temporal dimension, also other kinds of data
may be modeled and constrained by SCIFF. For example, rule 1 (page 17) shows
how sender, receiver and content data of a message can be seamlessly introduced
and used. However, introducing data and their corresponding constraints at the
graphical level of DecSerFlow is a complex task, mainly because the right balance
between expressiveness and usability must be found. Even if the introduction of
data and data-related conditions into the DecSerFlow notation has not been yet
investigated, in this Section we briefly sketch how the possibility of dealing with
data, provided by SCIFF, could be exploited to model a wider range of constraints.

In particular, let us review the concept of negative relationship in DecSerFlow.
Negative relationships deal with the forbidding of an activity under certain cir-
cumstances. For example, the “negation response” between two activities “a” and
“b” states that if “a” is executed, then “b” cannot be executed afterwards. The
forbidding of “b” is limited to the case inside which “a” has been executed: each
choreography instance follows its own evolution, independentely from the other
cases. However, there could be situations in which it would be desirable that con-
straints span across multiple cases. An example of a cross-flow constraint woule
be that if the seller detect that a certain customer C is behaving in a fraudolent
way, then it will never deliver anything to C in the future, even in new instances
of execution.
SCIFF is able to easily capture this requirement. A possible solution would be

ACM Transactions on the Web, Vol. V, No. N, May 2009.

24 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

associate each activity to a case identifier, modeled as a special datum. By default,
constraints operate within the same instance, and therefore a “normal” negation
response would be modeled as follows:

H(performed(a, Case), Ta) → EN(performed(b, Case), Tb) ∧ Tb > Ta.

Here, the same Case variable is shared by the events associated to “a” and “b”,
and therefore if “a” is executed inside case c1, then the forbidding of “b” will be
imposed only on the same c1.

Cross-flow constraints could be therefore modeled by simply introducing two
different case variables. For example, to model that “when a seller S detect that a
customer C is behaving in a fraudolent way, it will never deliver goods to C” the
following (extended) negation response could be adopted:

H(performed(fraud detected(C), S, Case), Tf)
→ EN(performed(deliver(S, C, G), Case2), Td) ∧ Td > Ta.

Since two different variables Case and Case2 are used, when a fraud is detected
the forbidding is imposed on any case (Case included): negative expectation are
universally quantified. Contrarywise, the same customer C is involved in the body
and in the head of the rule, and therefore the forbidding is imposed only on that
C, without affecting the interaction between S and other customers.

5.6 Explicit and implicit formalization of DecSerFlow templates

We have shown the mapping of core DecSerFlow templates to SCIFF Integrity
Constraints. Obviously, for a given model these different rules will be grounded
on each specific instance, substituting involved activities with the concrete names.
In this respect, for each relationships of the model the formalization will explicitly
contain a corresponding set of rules. However, it is possible to generalize the for-
malization of DecSerFlow formulas by directly representing templates. In this way,
specific concrete rules are implictly model: the translation of a specific DecSerFlow
diagram simply reduces to compile a knowledge base with a list of facts representing
the different modeled formulas.

The general formalization is realized by adding as a first conjunct in the bodies
of rules a predicate which represents the corresponding relationship. This predicate
will match, for a given knowledge base, with all the facts representing instances of
such relationship.

To define relation and negation templates, we therefore adopt the following pat-
tern:

formula Type(Source, Target)
∧body → head.

(5)

It is worth noting that in the first line of all Integrity Constraints of this kind,
variables (i.e. activities) are universally quantified. This ensures that, when con-
sidering a specific diagram, each rule will be replicated for all concrete (ground)
activities subject to the formula addressed by the rule.
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 25

An example which clarifies this approach in case of the “response” template
follows.

Example 5.1. Let us consider the general specification of the “response” rela-
tion, which is formalized as follows:

response(A, B)
∧H(performed(A), TA) → E(performed(B), TB) ∧ TB > TA.

(6)

This rule may be read as follows: “for each A, for each B and for each TA, if
A and B are subject to a “response” formula and A is executed at time TA, then
there should exist a TB after TA at which B is expected to be performed”.

Let us now consider the simple following knowledge base:

response(ask_for_payment, pay).
response(receive_spam, delete_spam).

During execution, SCIFF will find two different matches for the “response” for-
mula, automatically grounding the above Integrity Constraint on each concrete re-
lationship:

H(performed(ask for payment), TA) → E(performed(pay), TB) ∧ TB > TA.

H(performed(receive spam), TA) → E(performed(delete spam), TB) ∧ TB > TA.

5.7 Implicit and explicit mapping of the running example onto SCIFF

By using this kind of “implicit” formalization we have now the possibility to com-
pletely separate the formalization of the general DecSerFlow templates and the
formalization of a specific model. In particular, DecSerFlow can be mapped onto
an abductive logic program whose Integrity Constraints are the ones which implic-
itly formalize template formulas, and whose knowledge base is used to capture the
general background knowledge of DecSerFlow concepts. For example, in such a
knowledge base we will find that the “succession” formula is defined in terms of the
“response” and the “precedence” ones:

response(A, B) ← succession(A, B).
precedence(A, B) ← succession(A, B).

Then, as already pointed out in example 5.1, formalizing a particular DecSerFlow
diagram just implies to (i) compile another knowledge base which maps the specific
diagram structure enumerating all its constraints as facts, and (ii) use it together
with the general specification.

Tables IX and X show how the running example depicted in Figure 3 can be
mapped onto SCIFF by respectively adopting explicit rules grounded on the exam-
ple or by exploiting the possibility to use the general mapping and simply formalize
the specific diagram as a list of facts. It is worth noting that, exactly as shown in
example 5.1, matching the general implicit DecSerFlow Integrity Constraints with
the knowledge base of Table X will have the effect of obtaining the rules shown in
Table IX.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

26 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

G1 a H(performed(register), Tr) → E(performed(open order), To) ∧ To > Tr .

b H(performed(open order), To) → E(performed(register), Tr) ∧ Tr < To.

G2 a H(performed(photo), Tph) → E(performed(print), Tpr) ∧ Tpr > Tph.

b H(performed(poster), Tpo) → E(performed(print), Tpr) ∧ Tpr > Tpo.

c H(performed(print), Tpr) → E(performed(photo), Tph) ∨ Tph < Tpr

∨ E(performed(poster), Tpo) ∨ Tpo < Tpr .

G3 a H(performed(photo), Tp) → E(performed(deliver), Td) ∧ Td > Tp.

b H(performed(poster), Tp) → E(performed(deliver), Td) ∧ Td > Tp.

c H(performed(album), Ta) → E(performed(deliver), Td) ∧ Td > Ta.

d H(performed(deliver), Td) → E(performed(photo), Tph) ∧ Tph < Td

∨ E(performed(poster), Tpo) ∧ Tpo < Td

∨ E(performed(album), Ta) ∧ Ta < Td.

G4 H(performed(receive), Tr) → E(performed(deliver), Td) ∧ Td < Tr .

G5 H(performed(charge), Tc) → E(performed(pay), Tp).

Table IX. Explicit SCIFF mapping of the DecSerFlow running example.

G1 succession(register,open order).
G2 succession([photo, poster], print).
G3 succession([photo, poster, album], deliver).
G4 precedence(deliver, receive).
G5 responded existence(charge, pay).

Table X. Mapping the DecSerFlow running example to a simple knowledge base.

6. ENACTMENT, VERIFICATION AND DYNAMIC CHANGE OF DECSERFLOW
MODELS

The LTL and SCIFF notations of DecSerFlow enables various verification tech-
niques and even enactment of DecSerFlow models. Through the combination of
DecSerFlow as a modeling language and the two underlying semantics with their
corresponding verification techniques, we aim to realize a comprehensive framework
for the specification, enactment, and verification of service choreographies (see Fig-
ure 7). DECLARE [Pesic et al. 2007] 5 is a tool that can be used to develop and
execute models specified in DecSerFlow or any other LTL based language. Al-
though it is not implemented as a web service application, DECLARE can be used
to experiment with templates and models in order to better understand templates
and the execution semantics of DecSerFlow models. DECLARE uses the approach
described in this section for the execution, dynamic change and verification of Dec-
SerFlow models.

5DECLARE can be downloaded from http://declare.sf.net.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 27

formal
choreography
specication

DecSerFlow

SCIFF

graphical
choreography
specication

MAPPING

verications

LTL

MAPPING

mining properties
verication

conformance
vericationenactment interoperability

verication

ENABLES ENABLE

Fig. 7. General schema of a framework for the specification and verification of service choreogra-
phies, and its possible realization by the conjunct use of DecSerFlow, LTL and SCIFF.

6.1 LTL Enactment and Verification

The LTL mapping of DecSerFlow enables the computer-supported execution of local
models of participating services, verification of models, monitoring (conformance-
checking) of service execution and verification of composition interoperability (i.e.,
can different models be combined into one composition).

6.1.1 Supporting Execution of DecSerFlow Models. While interacting within a
global choreography, each service should align its execution with its local model
and the global choreography model. With respect to DecSerFlow, this means that
a completed interaction must satisfy the local model of interacting services and the
global choreography model. A DecSerFlow model is satisfied if it is executed in
such a way that all its constraints are satisfied at the end of the execution. Some
application can regulate a correct execution of DecSerFlow models thanks to (1) the
constraint semantics expressed with LTL formulas and (2) the possibility to gener-
ate an automaton that represents all executions that satisfy an LTL formula. The
desire to generate automata for LTL formulas and to define algorithms for this pur-
pose originates in the field of model checking [Clarke et al. 1999; Gerth et al. 1996;
Giannakopoulou and Havelund 2001]. In this field, systems can be checked against
certain properties specified in LTL using the generated automata. the computer-
supported regulation of a correct execution of DecSerFlow relies on the automaton
generated from LTL specifications of constraints in the model (i.e., one automaton
is generated for a formula representing a conjunction of all constraints) [van der
Aalst and Pesic 2006]. Because it is generated for the conjunction of all constraints
form a DecSerFlow model, such an automaton represents exactly all correct exe-
cutions of the model (i.e., all executions that satisfy all constraints) [Clarke et al.
1999; Gerth et al. 1996; Giannakopoulou and Havelund 2001]. In other words,
using this automaton, it is possible to, during execution, (1) monitor the current
state of the execution by monitoring the current state of the automaton, and (2)
precisely identify which activities can be executed next given the current state of
the automaton. Consider, for example, the “precedence” DecSerFlow template. If
a DecSerFlow model contains a “precedence” constraint between two activities “de-

ACM Transactions on the Web, Vol. V, No. N, May 2009.

28 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

liver” and “receive” (e.g., Figure 3), then the automaton created for this model will
allow execution of “receive” only after “deliver” is executed, as shown in Figure 8.
The theory on automata and their generation from LTL formulas is out of scope
of this paper and we refer the interested reader to [Clarke et al. 1999; Gerth et al.
1996; Giannakopoulou and Havelund 2001].

S1S0

!receive true

deliver

Fig. 8. Automaton for the LTL notation of constraint “precedence(deliver,receive)”.

Note that it is possible that a constraint (and a model) is temporarily violated at
some points of execution and satisfied at the end of execution. For example, the “re-
sponded existence” template and a (local or global) model containing a “responded
existence” constraint between activities “charge” and “pay” (e.g., Figure 3). This
constraint specifies that, if “charge” is executed, then “pay” must also be executed
before or after “charge”. As long as none of these two actives is executed, the
constraint and the model are satisfied. At the moment when “charge” is executed
for the first time, the constraint and the model become temporarily violated. This
is only a temporary violation because it is still possible to satisfy this constraint
and the model in the future, by executing activity “pay”. Indeed, this execution
can be considered to be a correct execution only after activity “pay” is executed,
because only then the “responded existence” and the model become satisfied. The
automata generated from LTL specifications of each constraint and the conjunc-
tion of all constraints in the model can be used to monitor states of constraints
and the model. For example, Figure 9 shows the automaton created for constraint
“responded existence(charge,pay)”. This automaton can indeed be used to monitor
the state of this constraint: executing activity “charge” brings the automaton to a
non-accepting (denoted by a single border) state “S1”, and only executing activity
“pay” again brings the automaton to the accepting (denoted by a double border)
state “S2”.

S1

S0

!charge /\ !pay

!pay

charge

S2

true

pay

pay

Fig. 9. Automaton for the LTL notation of constraint “responded existence(charge,pay)”.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 29

The automata generated for each constraint and the conjunction of all constraints
in a model can be used to: (1) make sure that interacting activities execute only
activities that eventually lead to the satisfaction of their local models and the global
choreography model, and (2) provide feedback about the current state of the inter-
action with respect to the satisfaction of local models and the global choreography
model and the satisfaction of each constraint from these models (state of one con-
straint can be monitored using the automaton generated for the LTL notation of
that particular constraint).

Note that the word “execution” should not understood literarily when it comes
to web services because it is not possible to enforce a certain execution of a service.
Instead, the method described in this section could be used as a guideline towards
a deadlock-free execution. The automata generated from a conjunction of LTL
specifications of constraints ensures that deadlocks do not occur. On the one hand,
if activities of services are executed in a way allowed by the automata, a deadlock
will not occur. On the other hand, it the automaton is not in an accepting state,
interaction constraints are not satisfied and the interaction cannot yet be success-
fully completed. Note that, enforcing an execution becomes even more unrealistic
when it comes to timed constraints, i.e., constraints with deadlines. For example,
it is not possible to enforce that a service executes a task within five days.

6.1.2 Verifying Local and Global DecSerFlow Models. The risk of introducing
errors in DecSerFlow models is high because it is hard to maintain an overall un-
derstanding of many different constraints. Two types of errors can occur in DecSer-
Flow models due to an unwanted combination of constraints: dead activities and
conflicts.

Figure 10(a) shows a composition of one global and two local models (customer
and shop) for the photo shop example. In this case, the customer does not change
the global choreography constraints. Due to two “succession” constraints in the
global model, each ordered photo and poster will be printed in the shop and de-
livered. However, the shop developed uses a local model that contains a “not co-
existence” constraint specifying that activities “print” and “deliver” exclude each
other. This means that the shop either prints or delivers within one order, but
never both. Therefore, if activities “photo” or “poster” are executed the chore-
ography cannot be successfully executed because it will not be possible to satisfy
the three constraints (i.e., two “succession” constraints and the “not co-existence”
constraint). Therefore, it will never be possible to execute activities “photo” and
“poster” in the customer service, i.e., these are dead activities. Moreover, activity
“print” is also a dead activity since it should be executed after activities “photo”
or “poster”, which are dead activities.

While it is still possible to execute choreography presented in Figure 10(a) (with
ordering albums or empty orders as only possibilities), the example presented in
Figure 10(b) is not executable at all, i.e., it contains a conflict ; this means that
the DecSerFlow model is inconsistent. As described before, the local shop model
handles only album orders (i.e., preventing executions of dead activities “photo”
and “poster”) in the global choreography model. The local customer model in Fig-
ure 10(b) imposes execution of activity “photo” via constraint “1..*” which makes
it impossible for this customer and shop to interact in this global choreography

ACM Transactions on the Web, Vol. V, No. N, May 2009.

30 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

posteralbum

print

deliver

receive

pay charge

register open order
succession

succession

succession

precedence

responded existence

not co- existence

photo

Local
Shop

(a) Dead activities in a DecSerFlow composi-
tion (“photo”, “poster” and “print”).

posteralbum

print

deliver

receive

pay charge

1..*

register open order
succession

succession

succession

precedence

responded existence

photo

not co- existence
Local
Shop

Real
Customer

(b) Conflict in a DecSerFlow composition.

Fig. 10. Verification of DecSerFlow models.

model. The Conflict in the model in Figure 10(b) is caused by the combination
of four constraints: the “1..*” constraint, the two “succession” constraints and the
“not co-existence” constraint.

6.1.2.1 Detecting Dead Activities and Conflicts. Errors such as the ones just
described can easily be detected in DecSerFlow models using the automata gen-
erated[Clarke et al. 1999; Gerth et al. 1996; Giannakopoulou and Havelund 2001]
from constraints (cf. Section 6.1.1). To verify a combination of several models (i.e.,
global model and two local models), an automaton is created for a conjunction of all
constraints in all models. The generated automata allow for all possible execution
traces of the DecSerFlow model at hand. Models are executed by triggering ac-
tivities via automaton transition, where each transition triggers none, one or more
activities. A dead activity is an activity that never appears in any of the execution
traces, i.e., there is no transition in the automaton that allows this activity. A
conflict is detected when the automata does not parse any trace, i.e., the automata
does not contain any state or transition.

DecSerFlow models can be verified against dead activities and conflicts in the DE-
CLARE tool. For a full verification support, DECLARE not only detects errors,
but also reports the smallest subset of constraints that causes the error. The achieve
this, the tool verifies the conjunctions of smaller groups of constraints by searching
through the power set of constraints. Figure 11 shows the verification report gen-
erated by DECLARE for model in Figure 10(a): activities “photo”, “poster” and
“print” are dead due to the combination of three constraints.

Fig. 11. DECLARE reports the three dead activities of model depicted in Figure 10(a).

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 31

local
A

local
Bglobal

(a) Local error.

local
A

local
Bglobal

(b) Global error.

local
A

local
Bglobal

(c) Local model not compatible with global one.

local
A global local

B

(d) Composition of local models not compatible
with global one.

Fig. 12. Implications of errors in DecSerFlow models.

6.1.2.2 Interoperability Verification. Errors discovered in verification can imply
four types of problems in interoperability of service compositions, as illustrated
by Figure 12. First, local service models can be verified (cf. Figure 12(a)). For
example, if a conflict is found, the local model has to be fixed before being employed
in any choreography, i.e., the local model cannot be employed in any choreography.
Second, a global choreography model may contain errors. Global models with
conflicts cannot be enacted by a set of parties (regardless of the local models), as
shown in Figure 12(b). Third, an error can be discovered in the composition of a
local model of one party and the global choreography model (cf. Figure 12(c)). In
this case, the party is not compatible with the global choreography rules. Finally,
Figure 12(d) shows that an error can be discovered in the service composition,
i.e., local models are not compatible with each other with respect to the global
model. For example, if this is a conflict error, then the two parties cannot join the
choreography. Note that the model presented in Figure 12(b) is an example of a
composition where the book shop and the print shop are not compatible with the
global choreography model (cf. Figure 12(d)).

6.1.3 Monitoring DecSerFlow Services. Besides for execution and verification of
models and choreographes, DecSerFlow can be used for service monitoring (i.e, for
conformance checking of completed service executions) using the ProM (Process
Mining) framework [van der Aalst et al. 2007; van der Aalst et al. 2005]. The
ProM framework is an open-source infrastructure for process mining techniques.
One of the more than 150 plug-ins offered by ProM is the so-called LTL Checker
[van der Aalst et al. 2005]. For each process instance, LTL Checker determines
whether an LTL expression holds or not, i.e., given an LTL expression all process
instances are partitioned on two classes: compliant and non-compliant. Because
each DecSerFlow constraint is represented by an LTL expression, it is possible to
use the ProM LTL Checker to assess conformance of a DecSerFlow model in the
context of a real log.

6.1.4 Dynamic Change of DecSerFlow Models. DecSerFlow models can be changed
dynamically, i.e., while they are being executed, by adding and removing activities
and constraints. Note that it is not allowed to remove an activity that is involved
in a constraint. This problem can be solved in two ways: (1) removing such an
activity is rejected, or (2) the activity and all related constraints are removed. In

ACM Transactions on the Web, Vol. V, No. N, May 2009.

32 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

this way, we prevent situations where a model contains a constraints involving an
activity that is not in the model. When it comes to continuing the execution after
a dynamic change, DecSerFlow uses the following procedure. First, the automa-
ton is created from a conjunction of all constraints in the new model and attempt
is made to ‘replay’ the current execution trace (i.e., a list of all executed activ-
ities)on this automaton. If this attempt succeeds, the execution continues using
the new automata. If the attempt fails, this means that the current execution
trace contradicts to the new model. In this case the dynamic change is rejected
and the execution resumes with the old model. Note that the automata generated
for DecSerFlow constraints allow for execution of activities that are not involved
in constraints. Consider, for example, the automaton for constraint “responded
existence(charge,pay)” shown in Figure 9. Although this constraint involves only
activities “charge” and “pay”, it allows execution of other activities. For example,
transitions “(pay” and “ (charge∧ (pay” allow execution of other activities. This
is a useful feature when it comes to dynamic change for two reasons. First, it is
possible to remove an activity even after it has been executed, because it will be
possible to ‘replay’ the removed activity on the automaton. Second, adding a new
activity means that, from that moment, it becomes possible to execute it in the
automaton.

6.2 SCIFF Verification

Beside the possibility of extending the DecSerFlow notation with data-related and
quantitative temporal constraints, mapping DecSerFlow to SCIFF enables con-
formance checking, both at run-time or a posteriori, of service execution w.r.t. a
DecSerFlow diagram (maintaining a complete support even when considering its
extensions), and mining of DecSerFlow models starting from a set of execution
traces, previously labeled as compliant or not. Furthermore, SCIFF has been ex-
tended to deal also with static verifications (interoperability, discovery of conflicts
and dead activities).

6.2.1 Abductive declarative and operational semantics of the SCIFF framework.
Within the logic programming setting, a typical approach is to define both a declar-
ative and operational semantics for logic programs (in our specific case, for SCIFF
interaction specifications). Roughly speaking, declarative semantics aims at defin-
ing the “meaning” of what is specified, whereas operational semantics describes
a general-purpose algorithm capable of concretely exploit the specification. The
main advantages of such an approach are that specifications are interpreted in a
clear and intuitive way, and that it is possible to prove soundness and completeness
of the operational semantics w.r.t. the declarative one, ensuring that its behaviour
really respect the intended meaning.

In the SCIFF framework, declarative semantics of interaction specifications is
given in terms of an Abductive Logic Program (ALP), whereas the corresponding
operational semantics is given in terms of an abductive proof procedure [Alberti
et al. 2008], thought for performing different verification tasks.

In general, an ALP [Kakas et al. 1993] is a triple 〈P, A, IC〉, where P is a logic
program, A is a set of predicates named abducibles, and IC is a set of Integrity
Constraints. Roughly speaking, the role of P is to define predicates, the role of A

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 33

is to fill-in the parts of P which are unknown, and the role if IC is to control the
ways elements of A are hypothesised, or “abduced”.

In SCIFF, similarly to the general ALP setting, an interaction specification S is
defined by the triple:

S ≡ 〈KB , E , ICS〉

where:

—KB is the Social Knowledge Base, suitable for specifying the static knowledge on
interacting entities;

—E is the set of abducible predicates, namely positive expectations (functor E) and
negative expectations (functor EN);

—ICS is the set of Social Integrity Constraints, used to specify the rules of inter-
action.

Reasoning in abductive logic programming is usually goal-directed (being G a
goal), and it accounts to find an abductive explanation ∆ built from predicates in
A such that P ∪ ∆ |= G and P ∪ ∆ |= IC. In the past, a number of
proof-procedures have been proposed to compute ∆ ([Kakas and Mancarella 1990;
Fung and Kowalski 1997; Denecker and Schreye 1998], etc.). In SCIFF, the major
difference is that not only the logic program has to be taken into account, but also
the (dynamic) set of occuring happened events (which incrementally compose the
execution trace). Furthermore, when modeling DecSerFlow constraints in SCIFF
the goal is not directly exploited; actually, we could consider as goal the conjunc-
tion of “existence N”, “exactly N”, “absence” and “mutual substitution” formulas
inside the model: they directly impose expectations about (not) performing cer-
tain activities indepentendly from executions (indeed, their formalization consists
in rules with a true body).

The idea we exploited in the SCIFF framework is to adopt abduction to dy-
namically generate the expectations. Expectations are defined as abducibles, and
they are hypothesised by the SCIFF abductive proof procedure [Alberti et al. 2008],
i.e. the proof procedure makes hypotheses about the expected peers behaviour. The
set of abduced expectations must satisfy the Integrity Constraints which formalize
the choreography.

6.2.2 Conformance checking with SCIFF. As sketched in the previous section,
the main and original aim of the SCIFF framework was not only to provide a
suitable and rich language for describing global interactions, but also to equip such
a language with different verification capabilities.

The major innovation of SCIFF’s declarative semantics w.r.t. classical abductive
frameworks is the concept of fulfillment, which defines in an intuitive way the rela-
tionship between happened events and expectations and makes SCIFF suitable for
verification. In particular, SCIFF is thought to realize the conformance checking
task, namely to verify whether a set of interacting entities behave accordingly to
the specification.

The basic intuitive idea of conformance in SCIFF, which is indeed supported both
by a declarative and operational semantics, is to take into account the hypothesized

ACM Transactions on the Web, Vol. V, No. N, May 2009.

34 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

expectations and link them with the actual peers behaviour, to check whether
happened events really adhere to expectations. In particular, a positive expectation
requires a corresponding matching happened event, whereas a negative expectation
forbid the presence of a matching occurred event. When this is the case, we say
that the expectation is fulfilled.

Example 6.1. Let us consider the “time-extended” succession formula between
“photo” and “deliver” activities shown in Figure 5, whose SCIFF (explicit) formal-
ization is described by Integrity Constraints (3) and (4).

Let us also consider the following execution trace:

H(performed(photo), 16).
H(performed(photo), 19).
H(performed(deliver), 30).

Each of the first two happened events matches with the body of (3), leading to
generate two expectations about the execution of the “deliver” activity, whereas the
third happened event triggers the “precedence” part of the “succession” formula,
generating a backward expectation about a previous execution of activity “photo”:

EXP = { E(performed(deliver), Td) ∧ Td > 16 ∧ Td < 40,

E(performed(deliver), Td′) ∧ Td′ > 19 ∧ Td′ < 43,

E(performed(photo), Tp) ∧ Tp < 30 ∧ Tp > 6}

All the three expectations actually have a matching happened event in the execution
trace, which is therefore evaluated as conformant. In particular, the SCIFF proof
procedure will find two different solutions for fulfilling the expectations: one with
Td/30, Td′/30, Tp/16 and one with the same unification for Td and Td′ but having
Tp/19. Indeed, there are two different executions of activity “photo” capable to
satisfy the third expectation.

Let us now consider the same execution trace but containing the execution of
“deliver” at time 42. In this case, the history is evaluated as non conformant:
deadline about the delivery is not respected for the first execution of activity “photo”,
and the first expectation does not have any corresponding happened event.

The formal definition of fulfillment follows the above described intuition.

Definition 6.2 Fulfillment. Given an execution trace HAP, a set of expectations
EXP is fulfilled by HAP if and only if for all (ground) terms p:

∀E(p) ∈ EXP ⇒ H(p) ∈ HAP ∀EN(p) ∈ EXP ⇒ H(p) (∈ HAP (7)

Otherwise, EXP is violated by HAP.
Starting from the concept of fulfillment, it is now possible to give a formal defi-

nition of conformance 6.

Definition 6.3 Conformance. Given an execution trace HAP and an interaction
specification S, HAP is conformant to S if and only if there exists an E-consistent

6For the sake of simplicity, we have omitted the goal, which is considered to be true.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 35

7 abductive explanation EXP such that definition 6.2 holds.

Intuitively, conformance ensures that all positive expectations have indeed a cor-
responding happened event, and that no forbidden event occurs.

The conformance checking task is concretely performed by the SCIFF proof pro-
cedure, which has been proven sound and complete w.r.t. its declarative semantics
[Alberti et al. 2008]. The proof procedure is a transition system which extends the
well known IFF proof-procedure [Fung and Kowalski 1997], by dealing with confir-
mation of hypothesized expectations and with dynamic occurring happened events.
The latter feature makes SCIFF able to monitor the behaviour of interacting enti-
ties both a posteriori, by analyzing a complete execution trace of the interaction,
or at run-time, by considering occurred events as soon as they happen and waiting
if expectations can be still confirmed.

The proof procedure has been wrapped into the SOCS-SI [Alberti et al. 2006]
tool, which is capable to accept different event sources and to visualize step-by-
step the status of the proof, showing pending, fulfilled and violated expectations.
SOCS-SI typically works in a run-time setting: it is able to dynamically acquire
happened events and, by exploiting the proof procedure, to raise violations as soon
as they happen. Figure 13 shows a screenshot of the tool, dealing with the violation
of example 6.1.

Fig. 13. Screenshot of the SOCS-SI tool

Furthermore, SCIFF is being embedded into a ProM plug-in called SCIFF-
Checker, to the aim of classifying process instance w.r.t. declarative SCIFF rules,
in the style of LTL Checker.

7A set of expectations EXP is E-consistent if and only if no event is expected to happen and not
to happen at the same time, i.e. if, for each (ground) term p:

{E(p), EN(p)} '⊆ EXP

ACM Transactions on the Web, Vol. V, No. N, May 2009.

36 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

6.2.3 Interoperability and Detection of Conflicts and Dead Activities in SCIFF.
The SCIFF proof procedure has been extended to deal also with verification of
properties (g-SCIFF [Alberti et al. 2005]); the term “property” means in this con-
text a specific domain dependent property. The basic underlying idea of g-SCIFF
is to consider the desired property as the initial goal, and to apply fulfillment of
a positive expectation (see definition 6.2) by checking whether it already has a
matching happened event and, if it is not the case, by “hypothesizing” it. Hence,
it operates by simulating a sequence of intensional happened events which fulfill
the positive expectations and by checking that negative expectations are not vio-
lated. Simulated events are intensional in the sense that they are partially specified
(i.e., they may contain variables). If the given property can be actually satisfied,
g-SCIFF also returns as proof a partially specified execution trace capable to fulfill
both the Integrity Constraints and the property.

The problem of detecting a conflict in a DecSerFlow model can be then treated
as the problem of finding a successfull g-SCIFF derivation for the goal true, by
considering the Integrity Constraints which formalize the model. If it is not the
case, then there does not exist any possible execution trace for such a model, and
therefore it is a conflicting one.

Example 6.4. Let us consider the DecSerFlow model of Figure 10(b). Its corre-
sponding (explicit) SCIFF formalization is given by the Integrity Constraints shown
in Table IX, together with the following rules (for the sake of simplicity, we omit
the “init” constraint):

true → E(performed(photo), Tph). (8)
H(performed(print), Tp) → EN(performed(deliver), Td). (9)

H(performed(deliver), Td) → EN(performed(print), Tp). (10)

Rule 8 is used to model the “existence” of at least one “photo” activity, whereas
rules 9 and 10 impose the “not coexistence” between “print” and “deliver”.

To verify if the model contains conflicts, we simply invoke g-SCIFF and check
if such a proof fails. The proof procedure starts by applying rule 8 (since its body
is true), generating an expectation abouth the execution of activity “photo” (at
any time). Such an expectation becomes an happened event, which triggers In-
tegrity Constraints G2a and G3a, generating two forward expectations about activ-
ities “print” and “deliver”. g-SCIFF selects now the expectation about printing
the photo, transforming it to an happened event. Such an event matches with the
antecedent of rules G2c and (9). Let us consider now the latter rule, which leads
to generate a negative expectation about the delivery; by explicitly showing only the
pending expectations (i.e., expectations wich still do not have a matching happened
event) the status of the proof is the following:

HAP = {H(performed(photo), Tph),H(performed(print), Tp) ∧ Tp > Tph}
EXP = {E(performed(deliver), Td) ∧ Td > Tph,EN(performed(deliver), Td′)}

The set EXP is not E-consistent: after time Tph, the “deliver” activity is expected
to happen and not to happen at the same time. As a consequence, it is impossible
to fulfill the delivery expectation, and no successfull proof can be found by g-SCIFF.
This attests that actually a conflict is present in the model.
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 37

Detecting dead activities is a very similar task. To verify whether an activity is
dead or not, it is sufficient to run g-SCIFF by giving as goal the execution of the
activity, at any time. Failure of the proof means that it is impossible to perform
the activity under study, namely that it is actually a dead activity. From the
DecSerFlow point of view, giving as goal the execution of an activity at any time
can be modeled by attaching to the activity a “1..*” cardinality constraint. Hence,
proving that an activity is dead is the same as proving that the DecSerFlow model,
augmented with such an existence formula, contains conflicts.

As an example, let us consider the DecSerFlow diagram of Figure 10(a) and the
task of verifying that activity “photo” is dead. By adding the “1..*” cardinality
constraint on the “photo” activity, we obtain (except for the “init” constraint on
activity “open order”) the model of Figure 10(b), which has been proven to contain
conflicts in example 6.4; therefore, “photo” is a dead activity.

Algorithm 1 summarizes how the discovery of dead activities can be addressed
by g-SCIFF.

Input: SM , SCIFF formalization of the DecSerFlow model M
Output: D, the set of dead activities
D ← ∅;
foreach Activity A ∈ M do

S′
M ← SM ∪ existence(A);

if call(g-SCIFF(S′
M)) fails then

D ← D ∪ A;
end

end
Algorithm 1: Detection of dead activities with g-SCIFF.

Let us finally deal with the interoperability problem. There are many different
definitions of interoperability [Chopra and Singh 2006; Baldoni et al. 2006], which
mainly differ by the “degree of similarity” they require between the local and the
global models. DecSerFlow leads to the definition of a very weak interoperability:
as described in section 6.1.2 a local model is considered interoperable w.r.t. a global
one if the composition of the two models admits at least one execution trace, i.e. if
the composition is conflicts free. It is clear that such a verification does not ensure
that the two models completely overlap, nor that if a local model is interoperable
w.r.t. a global model it will correctly comply with any other local model which has
been proven interoperable (see Figure 12). Adopting a proof-theoretic approach
like the one of SCIFF leads to face this kind of weak interoperability by simply
composing the formalizations of models under study (i.e., adopting the “implicit”
approach, by joining the knowledge bases of each specific model) and using g-SCIFF
for testing conflict freeness on the composite model.

6.2.4 Mining of DecSerFlow specifications by using SCIFF as an intermediate
language. An important advantage of adopting a logic programming representation
(like SCIFF), relies in the possibility to apply on it all the algorithms and tech-
niques developed within the logic programming setting. More specifically, it makes
possible to apply Inductive Logic Programming (ILP) [Muggleton and De Raedt

ACM Transactions on the Web, Vol. V, No. N, May 2009.

38 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

Compliant
instances

DecMiner

SCIFF specicationDecSerFlow
model

Mapping

SCIFF
Checker

Non compliant
instances

Execution
traces

Fig. 14. The “mining-checking” cycle, in which SCIFF is used as the source/target language and
DecSerFlow as the representation notation.

1994] techniques for learning declarative models from examples and background
knowledge.

Such a possibility has been concretely exploited by adapting the system ICL
[De Raedt and Van Laer 1995] to the problem of learning SCIFF constraints. In
[Lamma et al. 2007], the authors cast the problem of mining declarative specifica-
tions of processes as a learning from interpretation problem. In particular, they
consider the discriminant problem that is solved by ICL, which starts by consider-
ing a set of positive and negative interpretations and aims to learn a clausal theory
that discriminates the two. In their case they assume to have a set of compliant and
non-compliant process execution traces and find a SCIFF theory that accurately
classifies a new trace of the process as compliant or not.

This learning process has been extended in [Lamma et al. 2007] to learn DecSer-
Flow models. Here, the mapping of DecSerFlow onto SCIFF presented in this work
is exploited in the opposite way: some of the learned Integrity Constraints can be
in fact considered as the SCIFF representation of DecSerFlow formulas, especially
if the language bias of the learning algorithm is opportunely tuned. In this context,
SCIFF is therefore used as an intermediate language for learning DecSerFlow mod-
els starting from a set of execution traces, previously labeled as compliant or not.
A tool called DecMiner is actually being implemented inside the ProM framework
to cover all the phases of such a mining process.

6.2.5 The “mining-checking” cycle. Having shown the feasibility of using the
SCIFF language as the core element of both a framework for conformance checking
and an algorithm to mine declarative process models, we may put together the two
settings to realize a “mining-checking” cycle, shown in Figure 14.

From one side we may start from a set of positive and negative execution traces
and apply DecMiner to mine a SCIFF theory; such a theory can then be partially
rendered in a graphical way by applying the inverse mapping onto DecSerFlow, and
used in conjunct with the SCIFF proof procedure to classify new execution traces.

From the other side, the modeler may design a DecSerFlow diagram for classifying
a set of process execution traces; the actual classification can be performed by
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 39

automatically mapping the diagram onto SCIFF and checking conformance of the
different logs. The classified logs may be finally used as input of DecMiner, to
induce a new SCIFF theory (and thus a new DecSerFlow model); if the language
bias is opportunely tuned, such a model could be noticeably different from the
initial one, hence expressing the same classification criterion by shifting the point
of view.

7. THE FRAMEWORK IN USE

Having introduced the main components of the service choreograpies framework
sketched in Figure 7, an important issue is to evaluate its usability, for what con-
cerns both the DecSerFlow language itself and performances of the verification
tasks. We will try to briefly assess the usability of the language by considering
the Cognitive Dimensions framework [Green 1989], and then evaluate verification
techniques by means of some benchmarks and summarizing current available tools.

7.1 Usability of the language

Cognitive Dimensions [Green 1989] are a useful tool to subjectively assess the us-
ability of languages and notations in an easy-to-comprehend way. They have been
applied to a broad range of programming languages and environments/editors, also
visual [Green and Petre 1996]. Although a deep and extensive analysis of DecSer-
Flow from the end-users viewpoint has not yet been carried out, we will try to
briefly review its usability in terms of some Cognitive Dimensions (whose definition
is briefly listed in table XI8).

Closeness of mapping Closeness of representation to domain
Abstraction Types and availability of abstraction mechanisms
Consistency Similar semantics are expressed in similar syntactic forms

Hidden dependencies Important links between entities are not visible
Premature commitment Constraints on the order of doing things

Progressive evaluation Work-to-date can be checked at any time

Table XI. Some Cognitive Dimensions.

The main strength of DecSerFlow relies on the closeness of mapping between
the notation and the problem of capture choreography constraints: it provides
various expressive abstractions to constrain activities execution in many different
ways, overcoming both over-constraining and over-specification issues. DecSerFlow
diagrams can range from classical procedural models (by only using the chain suc-
cession formula, which is the DecSerFlow counterpart of the sequence relationship
in procedural languages) to purely declarative/loosely-coupled ones (e.g. by impos-
ing constraints such as the responded presence, or by modeling the forbidding of
activities with negation formulas). Such a flexibility can be summarized by stating
that DecSerFlow follows an open approach: interacting services can freely behave

8See http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

40 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

where not explicitly constrained 9. In our view, such an approach is of key impor-
tance when modeling service choreographies, which are open in nature: they should
impose only the strictly necessary rules of collaboration, allowing as much as pos-
sible different concrete services to interoperate. This is a fundamental requirement
for satisfying the re-usability principle of Service Oriented Architecture.

DecSerFlow not only provides a plethora of different abstractions: it is also ab-
straction tolerant, supporting the modeler in the definition of new constraint tem-
plates.

Another valuable feature of DecSerFlow is the consistency of its core formulas:
they have a representation which coherently combine only the few basic intuitive
concepts shown in Table XII. For example, the representation of “succession”
relationships can be easily inferred: both semantics and representation of this kind
of formula is determined by combining/overlapping the semantics/representation
of the corresponding “response” and “precedence” ones.

concept notation
unary formula cardinality constraints a lá UML
relationship source •
negation ‖
temporal ordering !

normal −
relationship’s strength alternate =

chain ≡
succession representation response + precedence formulas, e.g.:

a b

a b

Table XII. Basic DecSerFlow graphical elements and their corresponding meaning.

Even though DecSerFlow combines simple concepts, rendered in a consistent way,
when the complexity of models increases their readability would quickly be com-
promised. The semantics of a DecSerFlow model is determined as the conjunction
of its formulas: the user is driven to adopt a non-structured approach to modeling,
avoiding premature commitments; but unfortunately, from the other side the overall
meaning tends to become unclear: because of the interplay between the different
formulas, many hidden dependencies among activities are implicitly introduced.

To better clarify the problem, let us consider the simple example of Figure 15.
Suppose that activity “a” is executed; this leads to forbid further executions of

“a” (due to the absence formula attached to it), but implicitly also to forbid the
execution of both “b” and “c”. Actually, either by executing “b” or “c” activity “a”
should be eventually executed afterwards, but this would be impossible, because
it cannot be performed anymore. This situation arises from the interplay between
the “absence 2” and “response” formulas, which introduces an hidden “negation
response” in the diagram (hidden relationships are shown in Figure 15 as dashed

9Note that, indeed, the “chain succession” expresses a “closed” relationship, because it completely
fixes the sequencing of involved activities.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 41

a b c

0..1

Fig. 15. Hidden dependencies in a simple DecSerFlow model.

connections). In complex cases, such an interplay could lead to produce diagrams
containing dead activities or even inconsistent models.

Anyway, the possibility of mapping DecSerFlow onto different logic-based lan-
guages shown in this article comes in support: DecSerFlow models can be verified
at any time to ensure consistency and discover dead activities, satisfying the im-
portant Cognitive Dimension of progressive evaluation. Not only, the modeler can
also exploit the enactment tool in order to simulate interactions and see how the
state of the different formulas evolves when executing activities.

As shown in Figure 16, the enactment of the simple DecSerFlow diagram shown
in Figure 15 leads to blocking the execution of all activities after having performed
“a” once, giving an explicit feedback about the hidden dependencies of the model.

(a) Initial state. (b) After having performed activity “a”.

Fig. 16. Enactment of the simple example shown in Figure 15.

7.2 Quantitative evaluation of the proposed techniques

In order to assess the usability of the framework, a key point is to evaluate perfor-
mances and scalability of the presented techniques. The performance issues related
to the LTL-based notation are presented in Section 7.2.1, while Section 7.2.2 dis-
cusses the performance of the SCIFF notation. We will mainly focus on static
verification, i.e. conflict detection and discovery of dead activities (which are the
most expensive one for both approaches)10.

7.2.1 Performance of the LTL-based notation of DecSerFlow. When it comes
to the LTL-based notation of DecSerFlow, performance is an issue related to the
complexity of models with a large number of constraints. Due to the use of LTL
for constraint specification, performance dramatically decreases when the number
and complexity of constraints in DecSerFlow models rises.

10Note that, for the sake of efficiency and in order to avoid some trivial loops, some of the SCIFF
rules are, in this case, transformed onto an equivalent representation, which simply leads to an
a-priori pruning of some useless choice-points

ACM Transactions on the Web, Vol. V, No. N, May 2009.

42 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

As described in Section 6.1, an automaton is generated for a conjunction of
formulas of all constraints (i.e., the so-called “conjunction formula”) in an DecSer-
Flow model. Because this automaton represents exactly all correct executions of the
model, the automaton is used for the computer-supported execution and fully auto-
mated verification of DecSerFlow models based on LTL (cf. sections 6.1.1 and 6.1.2).
Since the automata generated for an LTL formula is exponential in the size of the
formula [Clarke et al. 1999; Gerth et al. 1996; Giannakopoulou and Havelund 2001;
Latvala 2003; Demri and Schnoebelen 1998; Demri et al. 2006; Flum and Grohe
2006], the time needed for generating these automata becomes very long for big
LT formulas. This can cause various problems in the context of DecSerFlow. For
example, generating such automaton for a DecSerFlow model with many complex
constraints may be extremely slow.

There are two possible causes of this problem. First, the more constraints there
are in a model, the larger the “conjunction” formula for the model will be. Sec-
ond, as shown in Appendix A.2, various DecSerFlow templates have different LTL
formulas. For example, the LTL formula for the “succession” template is signifi-
cantly more demanding from a computational point of view than the formula for
the “existence” template (both formalizations are presented in Table V).

Consider, for example, the global choreography model presented in Figure 3 on
page 12. Loading a new instance of this model in DECLARE takes approximately
17 minutes on a computer with a Pentium 4 processor of 3GHz and 1.49GB of
RAM using Microsoft Windows XP Professional version 2002. If the“succession”
constraint between activities “album”, “photo”, “poster” and “deliver” is removed
from the original DecSerFlow model, then generating the automaton for the “con-
junction” formula in DECLARE on the same computer takes approximately 30
seconds. Obviously, the size of the LTL formula for this triple-branched “succes-
sion” constraint dramatically increases the time to construct the automaton for
the “conjunction formula”. Naturally, DecSerFlow models with only few simple
constraints perform much better. For example, creating an automaton for the con-
junction of all constraints for the two local models shown in figures 4(a) and 4(b) on
page 14 takes approximately 200 milliseconds and 100 milliseconds, respectively.

The efficiency problem described above can occur at several points. First, when
initiating a computer-supported execution of a DecSerFlow model (cf. Section 6.1.1),
an automaton is generated for the “conjunction formula”, which can cause the ini-
tiation to take a long time. Second, the same automaton is created during verifica-
tion of single DecSerFlow models and during interoperability verification in order
to identify possible errors (cf. Section 6.1.2), which may cause the error detection
to last too long. Moreover, during verification an automaton is generated for com-
binations of constraints in order to identify the cause of error, which can cause the
verification to be even more time-consuming.

Existence of errors (i.e., dead activities or conflicts) in a DecSerFlow model can
significantly decrease the time needed for the generation of the automaton for the
“conjunction” of all constraints because the automaton then “represents” a model
with less possibilities (i.e., less possible executions). Consider, for example, the
DecSerFlow model for the global choreography shown in Figure 3, for which it takes
approximately 17 minutes to create the automaton. When errors are introduced
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 43

in this model (e.g., dead activities shown in Figures 10(a) and a conflict shown
in Figure 10(b) on page 30), the performance increases. Indeed, the automaton
for the “conjunction” formula is created within approximately 14 seconds and 100
milliseconds for the two DecSerFlow models shown in figures 10(a) and 10(b) on
page 30, respectively.

Note that the LTL Checker [van der Aalst et al. 2005] (cf. Section 6.1.3) does not
use the automata for conformance checking of a DecSerFlow model in the context
of a real log, and, therefore, does not encounter the above described performance
problem.

7.2.2 Performance of the SCIFF notation of DecSerFlow. SCIFF and model
checking face the static verification problem in a complementary way: with LTL
the verification consists in first building a-priori the automaton of the entire Dec-
SerFlow model, and then checking the reachability of a termination state on such
an automaton; SCIFF instead adopts a generative approach, i.e. it directly employs
model’s constraints trying to dynamically build a proof in a depth-first way. Such a
proof consists in an execution trace which satisfies all constraints (this ensure that
at least one possibility to execute the model actually exists). As a consequence,
also advantages and lacks are complementary:

—SCIFF scales very well in the number of constraints in the model, whereas LTL
suffers of the state-explosion problem. Furthermore, SCIFF uses for verification
only the strictly necessary rules. Actually, consistency verification typically de-
pends on the presence of existence (“existence N” and “exactly N” in particular)
and “mutual substitution” formulas, because they directly impose the necessary
execution of some activities, triggering in turn consistency on relationships at-
tached to such activities, and so on. While LTL builds the whole automaton
without taking into account such a peculiar feature, SCIFF starts by considering
just these kind of formulas (Figure 17 sketches how SCIFF deals with inconsis-
tency of the model shown in Figure 10(b)). The extreme case is the one in which
a model does not contain any “existence” nor “mutual substitution” formula,
like in the running example shown in Figure 3: SCIFF immediately evaluates
it as conflicts free, independently of its size, because the void execution trace is
accepted.

—From the other side, a distinguishing feature of LTL is its capability of handling
“infinite” systems, namely models which contain loops 11 ; being SCIFF a gen-
erative approach, it is instead not able to treat looping models, because it loops
as well. A naive solution to this problem is to change SCIFF’s search strategy
in the space of execution traces, by e.g. adopting a bounded iterative deepening
approach. Obviously, a bounded search strategy would undermine completeness;
as a consequence, we will study the insertion of loops-detection algorithms in the
proof procedure (note that this problem has been deeply investigated in the field
of logic programming [Shen et al. 2003]). It is worth noting that such a problem
only affects SCIFF when used in a generative manner: when performing con-
formance verification of execution traces, reasoning is actually driven by events

11Such kind of DecSerFlow models are evaluated as inconsistent, because they do not eventually
terminate (and this would be inconvenient for a choreography or a process model).

ACM Transactions on the Web, Vol. V, No. N, May 2009.

44 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

posteralbum

print

deliver

receive

pay charge

1..*

register open order
succession

succession

succession

precedence

responded existence

not co- existence

photo

Fig. 17. Consistency verification of the diagram shown in Figure 10(b) with SCIFF: only the
subset of formulas “triggered” by the existence of activity “photo” is used; presence of conflicts is
detected in 350 milliseconds.

Formulas/activities Time (sec.)
1 3 0.00
2 7 0.01
3 15 0.01
4 31 0.02
5 63 0.04
6 127 0.10
7 255 0.34
8 511 1.04
9 1023 3.64

10 2047 14.01
11 4095 56.85
12 8191 249.77
13 16383 1100.26
14 32767 6194.99

a1

a3

a2
1..* a5

a4

a7

a6

Benchmark with 7 activities/formulas

Fig. 18. Results of the branching response inconsistency benchmark.

contained in the log, and therefore SCIFF will not loop.

To study the scalability of SCIFF when discovering conflicts/dead activities, we
have tested it on some simple yet relevant benchmarks, which involve different
formulas. All benchmarks deal with inconsistent models, to the aim of testing
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 45

Time (sec.)
K N=1 N=2 N=3
1 0.00 0.01 0.02
2 0.00 0.02 0.10
3 0.00 0.03 0.35
4 0.00 0.05 1.12
5 0.00 0.1 3.17
6 0.00 0.16 7.96
7 0.00 0.28 17.54
8 0.01 0.45 40.03
9 0.00 0.74 76.65

10 0.01 1.11 140.95
11 0.00 1.74 279.48
12 0.00 2.58 460.38
13 0.01 3.76 754.50

Time (sec.)
K N=1 N=2 N=3
14 0.01 5.47 1263.34
15 0.01 7.65 2184.68
16 0.01 10.62 3010.70
17 0.01 14.53 > 1 h
18 0.01 19.58 > 1 h
19 0.01 26.16 > 1 h
20 0.01 34.73 > 1 h
21 0.01 45.28 > 1 h
22 0.02 58.43 > 1 h
23 0.02 75.37 > 1 h
24 0.02 93.94 > 1 h
25 0.02 116.44 > 1 h
26 0.02 140.60 > 1 h

a1
N..*

...

aK

0..N-1

a2

Fig. 19. Results of the alternate response inconsistency benchmark.

SCIFF in the worst case: to prove that a model contains a conflict, SCIFF has to
explore the entire search space. Experiments have been performed on a MacBook
Intel CoreDuo 2 GHz machine.

The first benchmark aims to evaluate the scalability of the approach when “branch-
ing responses” are used, i.e. different alternatives are present in the model. The
structure of the model is the following (Figure 18 graphically shows the benchmark
in case of 7 activities). One activity, namely a1, is expected to be executed at least
once. After a1, either one between two activities should be executed, and so on.
“Branching responses” follow one another until a “frontier” is reached; all the activ-
ities belonging to this “frontier” have an outgoing “negation precedence” formula
w.r.t. a1, and therefore no path can be executed without leading to a conflict.

Figure 18 summarizes SCIFF’s behaviour when the number of activities (which
is the same as the number of formulas, except from the “existence 1” on the first
activity) increases. Such experiments attests that SCIFF scales very well: it is
able to detect inconsistency of a model containing 4095 formulas in less than one
minute.

The two next benchmarks aim at evaluate SCIFF’s behaviour respectively in case
of “alternate” and “chain response” formulas, especially when they are combined
with existence formulas which impose more executions of the same activity. The

ACM Transactions on the Web, Vol. V, No. N, May 2009.

46 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

NORMAL
Time (sec.)

K N=1 N=2 N=3
1 0.00 0.01 0.03
2 0.00 0.02 0.35
3 0.00 0.09 4.04
4 0.00 0.34 27.12
5 0.01 1.13 134.77
6 0.00 3.02 616.94
7 0.00 7.63 2733.64
8 0.00 17.10 > 1 h
9 0.01 37.09 > 1 h

10 0.01 71.73 > 1 h
11 0.01 137.03 > 1 h
12 0.00 256.48 > 1 h
13 0.01 756.34 > 1 h
14 0.01 1460.47 > 1 h
15 0.01 2332.65 > 1 h

SIMPLIFIED
Time (sec.)

K N=1 N=2 N=3
1 0.00 0.01 0.04
2 0.00 0.02 0.07
3 0.00 0.03 0.15
4 0.00 0.05 0.24
5 0.10 0.07 0.39
6 0.00 0.09 0.60
7 0.01 0.13 0.89
8 0.00 0.17 1.27
9 0.01 0.21 1.81

10 0.01 0.28 2.38
11 0.00 0.33 3.18
12 0.00 0.41 4.25
13 0.00 0.53 5.55
14 0.01 0.65 7.24
15 0.00 0.78 9.36

Fig. 20. Results of the chain response inconsistency benchmark.

second (third resp.) benchmark impose at least N executions of an activity, which
is source of a sequence of K activities connected by “alternate” (“chain” resp.)
“response” formulas; the last activity of the sequence is subject to an absence
formula which imposes at most N−1 executions (the model is therefore inconsistent,
because also such last activity should be performed at least N times).

Actually, discovering conflicts in alternate/chain response formulas when only one
execution of the source activity is imposed reduces to the case of simple responses.
This is attested also by SCIFF: both for “alternate” (Fig. 19) and “chain response”
(fig. 20) formulas, when N = 1 it answers almost immediately. When N increases,
verification becomes more difficult; for “alternate responses” (but similarly also
for “chain” formulas), this is due to the fact that more executions of the source
activity trigger the interposition part of the formula, imposing and propagating a
huge amount of temporal constrains.

Finally, note that performances in case of “chain” formulas are slower because
its formalization in SCIFF, which contains a time-constrained forbidding of all
events, is rather difficult to be handled (see section 5). If we restrict ourselves
to the basic DecSerFlow core formulas, for performing consistency verification we
can adopt, without loosing generality, a simplified version of “chain response”,
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 47

which states that the target should happen at the immediate next integer w.r.t. the
source execution time 12. By adopting such a simplification, a dramatic speed-up
of verification times is experienced (see Figure 20 to have an overview about a
comparison between the two formalizations).

Summarizing, SCIFF is able to verify in acceptable times even complex Dec-
SerFlow models. Its performances become slower when the model contains both
existence formulas with an high repeatition value and many “strict” relationships
(such as “chain responses”). However, it is rather uncommon to find choreography
models in which a certain activity is a-priori constrained by an existence formula
to be executed many times; furthermore, when the modeler adopts many different
strict relationships in the same diagram, she is breaking DecSerFlow philosophy,
which is to develop loosely-coupled choreographies: the right choice would probably
be to adopt a more classical procedural language (like e.g. BPMN).

The interested reader is referred to [Montali et al. 2008] for further experimen-
tations/benchmarks, together with a comparison with explicit and symbolic model
checking. The results obtained in [Montali et al. 2008] confirm that SCIFF is
clearly superior to explicit model checking when statically verifying DecSerFlow
models, and that it outperforms symbolic model checking in many cases. Also in
these benchmarks, the global trend is that SCIFF scales very well in the number of
constraints, while experiences more difficulties when existence formulas with high
repeatition values are introduced in the model. However, establishing a precise re-
lationship between the size of a DecSerFlow model and the performance of SCIFF
is not a trivial task: as we have seen in the presented benchmarks, the performance
is affected not only by the number of constraints, but also by the interplay between
such constraints. For example, SCIFF answers immediately when testing conflict-
freedom on models containing no existence constraint, independently from the size
of the model.
SCIFF verification times are even faster when performing conformance checking

of execution traces; just to give an intuition about performances, we have exploited
it to analyze real execution traces of a clinical screening process [Chesani et al.
2007]: a SCIFF specification containing 12 rules (with branches and constrains on
both execution times and content data) has been tested on 1950 execution traces,
ranging from 1 to 18 events, in approximately 12 minutes.

Finally, the interested reader is referred to [Lamma et al. 2007; Chesani et al.
2009] for a preliminary quantitative evaluation related to mining DecSerFlow spec-
ification from labeled execution traces, using SCIFF as an intermediate format.

7.3 Tool support

As far as now, different tools can be exploited to verify DecSerFlow models; some of
them are well-established and some others are still under testing. One of our main
ongoing objectives is to integrate such tools in order to cover all the different parts
of the framework for the specification and verification of service choreographies
depicted in Figure 7.

Some of the tools have been developed as part of ProM. ProM is an open source

12When times are not quantitatively constrained, we can map the concept of “next state” to the
one of “next integer”.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

48 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

framework (under the Common Public License, CPL) for process mining, avail-
able at http://www.processmining.org; it is plug-able, i.e., people can plug-in
new pieces of functionality. Beside a plethora of mining techniques, ProM offers a
wide range of plug-ins related to model transformations and model analysis (e.g.,
verification of soundness, analysis of deadlocks, invariants, reductions, etc.).

Figure 21 sketches current availables tools together with their relationships. A
brief description of them follows.

SOCS-SI

SCIFF Proof Procedure

ProM DECLARE

LTL

SCIFF
specication

maps to

maps to

LTL Checker

DecMiner

SCIFF Checker

interaction

DecSerFlow

Extended

Fig. 21. Tools for the specification and verification of DecSerFlow models.

7.3.1 DECLARE. DECLARE [Pesic et al. 2007] is the main tool for editing
and enacting DecSerFlow models. It is mainly composed by two parts: an editor,
supporting the user both in the development of new graphical models as well as in
the definition of new declarative constraints (by specifying their graphical appealing
and the underlying LTL formalization); an enactment module, capable to concretely
execute DecSerFlow models giving a step-by-step feedback about constraints state.
The editor also provides support for checking the correctness of designed models, by
identifying conflicts and discovering dead activities. DECLARE can be downloaded
from http://is.tm.tue.nl/staff/mpesic/declare.htm.

7.3.2 LTL Checker. The LTL Checker [van der Aalst et al. 2005] is a ProM plug-
in for performing process analysis by exploiting LTL. It offers an environment to
provide parameters for predefined parameterized LTL expressions and check these
expressions (as properties related to activities, data, human resources and time)
with respect to some event log in MXML [van Dongen and van der Aalst 2005] for-
mat. Currently, we do not yet provide a direct connection between the DecSerFlow
editor (tool DECLARE) and the ProM LTL checker. Although it is possible to ex-
port DecSerFlow templates, constraints and models to LTL checker and check con-
formance in ProM, it is not yet possible to visualize violations on the DecSerFlow ed-
itor in DECLARE. Such a connection is matter of ongoing work. The LTL Checker
can be downloaded together with Prom from http://www.processmining.org.

7.3.3 SCIFF Proof Procedure. The SCIFF Proof Procedure, downloadable from
http://lia.deis.unibo.it/research/sciff/, is a CHR-based implementation
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 49

[Alberti et al. 2005] of SCIFF’s operational semantics13. Its main application
is to verify conformance of a set of happened events w.r.t. a SCIFF interaction
specification, by checking whether positive (negative resp.) expectations indeed
have (not have resp.) a corresponding matching happened event. By setting some
options, SCIFF can also be configured to work in a generative manner, which
is the basis for performing conflicts detection and discovery of dead activities in
DecSerFlow models. An additional module containing useful predicates for ver-
ifying DecSerFlow models, as well as the complete set of SCIFF projects which
have been used to quantitatively evaluate the framework, can be downloaded from
http://lia.deis.unibo.it/research/climb/. We are currently developing a
graphical editor which supports extended DecSerFlow models (i.e., models con-
taining complex branching and time-annotated relationships) and automatically
translates them onto SCIFF specifications.

7.3.4 SOCS-SI. SOCS-SI [Alberti et al. 2006] wraps the SCIFF proof procedure
into a java-based tool, to the aim of exploiting conformance verification at run-time.
In particular, it can be interfaced with different event sources and supports a step-
by-step visualization of the proof status, showing pending, fulfilled and violated
expectations (see Figure 6.1). Violations are raised as soon as they happen, because
temporal aspects (deadlines in particular) are taken into account. To download the
software, visit http://www.lia.deis.unibo.it/research/socs_si/.

7.3.5 SCIFF-Checker. Conformance verification of past execution traces w.r.t. a
SCIFF specification has been integrated inside ProM as an analysis plug-in, which
resembles the LTL Checker. In this application, called SCIFF-Checker [Chesani
et al. 2008], all the peculiar features of the SCIFF language are extensively ap-
plied to classify execution logs by considering not only causal relationships among
activities, but also their execution times, originators and involved content data.
The tool provides different template rules (included the DecSerFlow ones) whose
activity types, originators and execution times can be constrained and specialized
by the user through a GUI. Results obtained by applying classification can be then
directly exploited by the DecMiner plug-in, supporting the “mining-checking” cycle
sketched in Section 6.2.5. SCIFF-Checker can be downloaded as part of the latest
version of ProM.

7.3.6 DecMiner. DecMiner is a ProM plug-in which implements the mining al-
gorithm described in [Lamma et al. 2007]. Its purpose is to mine a declarative
constraint-based specification starting from a set of MXML execution traces pre-
viously labeled as conformant or not. Such a specification is composed by SCIFF
rules. Because the structure of rules which can be mined by the algorithm can be
configured by the user, DecMiner restricts to SCIFF rules that map DecSerFlow
formulas. As a consequence, it is also able to apply the mapping presented in this
work in the opposite way, automatically obtaining a graphical DecSerFlow model
as result of the mining process. The plug-in can be downloaded as part of the
latest version of ProM. The interested reader is referred to [Chesani et al. 2009] for

13The proof procedure has been implemented in SICStus Prolog, available from http://www.sics.

se/sicstus/.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

50 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

a description of the plug-in and its experimentation.

8. RELATED WORK

In this work we propose a declarative DecSerFlow language for the specification of
service flows. Compared to the related research in the area, the most important
added value of DecSerFlow is in the comprehensiveness: to our knowledge DecSer-
Flow is the only language which, besides for (1) the declarative modelling of service
interaction protocols, can be used for (2) design-time verification (i.e., detection of
contradictory constraints), (2) checking interoperability of services, (3) preventing
deadlocks, (4) monitoring service executions and (5) learning service models from
past executions. Many other approaches deal with each of these areas, but, to our
knowledge, the work presented in this paper is the only one that tackles all of them.
In the remainder of this section we will describe the most interesting related works:
each paragraph describes the related work in one area and explains the added value
of DecSerFlow.

Process modelling, enactment and verification is the focus in the field of work-
flow technology [Georgakopoulos et al. 1995]. Most process modelling languages
(e.g., Petri nets, BPMN [White 2006], WS-BPEL [Andrews et al. 2003]) are highly
procedural. Petri nets have been used for the modelling of workflows [van der Aalst
and van Hee 2002; Chrzastowski-Wachtel 2003; Dumas et al. 2005] but also for the
orchestration of web services [Mecella et al. 2002]. Another example of procedu-
ral languages for modelling and verification of web services are Message Sequence
Charts (MSCs), which explicitly specify the ordering of message exchange between
services [Foster et al. 2003]. The procedural nature of such modelling languages is
an obstacle in developing choreographies of autonomous web services because pos-
sible orderings of message exchange between services must be explicitly included in
the model [Zaha et al. 2006]. The declarative flavor of DecSerFlow is more suitable
for modelling interactions of autonomous services because the possible execution
orderings of activities are implicitly derived from constraints, as all orderings that
satisfy these constraints. Furthermore, it is worth noting that even if process mod-
eling languages such as WS-BPEL and BPMN provide support for data, such a
perspective is often lost when they are translated to an underlying formal lan-
guage. The mapping of DecSerFlow to SCIFF presented in this work enables the
possibility of maintaining data-related and quantitative time aspects also at the
formal level. Even if the central focus is usually on the activities and their flow
dependencies, such additional perspectives are very important in settings like ser-
vice discovery and contracting. For example, quantitative time constraints could
be exploited by the user to express that she is looking for an e-shop able to deliver
the ordered items within a maximum time span; since SCIFF provides support for
reasoning about quantitative time constraints, such a requirement can be used to
select only the services whose behavioral interface respect it. The interested reader
may refer to [Alberti et al. 2007; Alberti et al. 2009] for the application of SCIFF
in the context of service discovery and contracting.

Beside DecSerFlow, many other declarative languages, where possible orderings
are implicitly derived from a set of constraints (i.e., rules), have been proposed in
order to solve this problem. In [Zaha et al. 2006], Zaha et al. propose a declar-
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 51

ative language called Let’s Dance for modeling interactions of web services. This
language uses Computation Tree Logic (CTL) for flexible modeling of message ex-
change between services. A straight-forward graphical notation is used to represent
patterns in message exchange, while π -calculus [Milner et al. 1992] captures the ex-
ecution semantics [Decker et al. 2006]. A restricted version of LTL is used in [Hallé
and Villemaire 2009] and translated into XQuery for monitoring of web services.
LTL is also used in [Deutsch et al. 2006] for verification of correctness properties
of service compositions. The SPIN model checker [Holzmann 2003] is used in [Fu
et al. 2005] to verify LTL properties of service conversations. DecSerFlow is also
a declarative language, which uses LTL and SCIFF mapping for formal specifica-
tion of service interactions. Moreover, to the best of our knowledge, DecSerFlow
is the only declarative language for modelling and monitoring of web services that
also enables verification, interoperability check, model learning and deadlock-free
execution.

The importance of monitoring web services has been raised by many researchers.
Moreover, monitoring is addressed with several approaches: business rules [Lazovik
et al. 2004], WS-BPEL [Baresi et al. 2004], event calculus [Mahbub and Spanoudakis
2004], WS-Agreement [Ludwig et al. 2004], etc. Advanced conformance checking
techniques described in [Rozinat and van der Aalst 2006] are used in [van der
Aalst et al. 2005] and implemented in the ProM framework [van der Aalst et al.
2007]; this approach has been applied to SOAP messages generated from Oracle
BPEL. The work presented in this paper differers from these approaches because
it presents one declarative language that can be used for monitoring, modelling,
design-time verification, deadlock-free execution, interoperability check and model
learning. In [Rouached et al. 2006] the authors use an extension of the Event
Calculus (EC) of Kowalski and Sergot ([Kowalski and Sergot 1986]) to declaratively
model event based requirements specifications. The choice of EC is motivated by
both practical and formal needs, that are shared by the SCIFF approach. In
particular, in contrast to pure state-transition representations, both the EC and
SCIFF representations include an explicit time structure and are very close to
most event-based specifications. However, SCIFF deals with explicit time by using
suitable CLP constraints on finite domains, while they use a temporal formalism
based on Event Calculus. We plan to deeply investigate the relations between
SCIFF and EC, and possibly to integrate the approaches in future work.

Besides for monitoring of web services (“run-time conformance checking”), we
also propose DecSerFlow for design-time conformance, i.e., detecting errors in mod-
els before enactment. Both mappings of DecSerFlow enable a simple mechanism
that checks at design-time the correcteness of a model and the compatibility of
different services. Inheritance notions [van der Aalst and Basten 2002] are ex-
plored in the context of workflow management and implemented in Woflan [Verbeek
et al. 2001]. Petri nets are used for design-time conformance and compatibility in
[Martens 2005a; 2005b; Massuthe et al. 2005; Schlingloff et al. 2005]. For example,
[Martens 2005b] focuses on the problem of consistency between executable and ab-
stract processes while [Massuthe et al. 2005] presents an approach where for a given
composite service the required other services are generated. Also related is [Foster
et al. 2003], were Message Sequence Charts (MSCs) are compiled into the “Finite

ACM Transactions on the Web, Vol. V, No. N, May 2009.

52 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

State Process” notation to describe and reason about web service compositions. To
the best of our knowledge, the work presented in this article is the first attempt
to automatically verify declarative service models. Automatic service composition
has been addressed in OWL-S [OWL Services Coalition 2003] which looks how
atomic services interact with the real world, the Roman model approach [Berardi
et al. 2005] that uses finite state machines, and Mealy machine [Bultan et al. 2003]
that focuses on message exchange between services. Compatibility of synchronous
communication via message exchange in web services is investigated in [Bordeaux
et al. 2004; Beyer et al. 2005; Benatallah et al. 2006; Ponnekanti and Fox 2004],
while DecSerFlow allows asynchronous communication and focuses on the process
perspective, rather than message exchange. DecSerFlow contributes to this area
are with the verification techniques described in section 6, which make it possible
to easily discover errors and incompatibility in declarative models. However, while
the cited approaches focus on automatic composition of services (i.e., automatic
choreography generation from participating services), DecSerFlow assumes that all
relevant process models of the composition are available and then verifies their
interoperability.

In the research literature it is possible to find several definitions of interoperabil-
ity, and there is not a complete agreement about its exactly meaning. For example,
in [Baldoni et al. 2005b] the authors state that interoperability aims to check if a
service, described by its behavioural interface, can play a given role within a chore-
ography. In their approach however, both choreography and behavioural interface
are described from a procedural viewpoint, and a complete specification of all the
allowed interactions is given. SCIFF has been used to address this type of inter-
operability in [Alberti et al. 2006]. A different notion of interoperability is given in
[Chopra and Singh 2006], where the authors represent global choreographies and
local services in terms of state transition systems (and their conjunction as the
product of the two transition systems). They define a notion of interoperability as
a set of feature that the resulting transition system should guarantee. Although
their idea of interoperability is in some sense “broader” that the one given in [Bal-
doni et al. 2005b; Alberti et al. 2006], it is still related to the procedural aspects
of the interaction between the services. The interoperability notion discussed in
this work instead is more related to assuring that declarative constraints specified
in terms of DecSerFlow are indeed satisfied, given the DecSerFlow representation
of both a global choreography and of a service. DecSerFlow in fact focus on the
declarative aspects and features of a global choreographies, leaving the interaction
unconstrained as much as possible.

Another issue tackled in this work is the problem of mining DecSerFlow models
starting from a set of service execution traces. Process mining [van der Aalst
and Weijters 2004; van der Aalst et al. 2003] extracts knowledge from event logs
(e.g., process models [van der Aalst et al. 2004; Agrawal et al. 1998; Cook and Wolf
1998; Gaaloul et al. 2004; Gaaloul and Godart 2005; Herbst 2000] or social networks
[van der Aalst and Song 2004]). In particular, Agrawal et al. [1998] introduced the
idea of applying process mining to workflow management. The authors propose
an approach for inducing a process representation in the form of a directed graph
encoding the precedence relationships. van der Aalst et al. [2004] presents the α-
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 53

algorithm for mining Petri nets from data and identifies for which class of models the
approach is guaranteed to work. The α-algorithm is based on the discovery of binary
relations in the log, such as the “follows” relation. In [van Dongen and van der Aalst
2004] the authors describe an algorithm which derives causal dependencies between
activities and use them for constructing instance graphs, presented in terms of
Event-driven Process Chains (EPCs). A recent work of Greco et al. [2006] describe
a mining technique where a process model is induced in the form of a disjunction
of special graphs called workflow schemas. The SCIFF-based approach sketched
in Section 6.2.4 differs from all of these works. First, SCIFF uses a declarative
representation, which can be rendered as a DecSerFlow diagram by applying an
inverse mapping. Moreover, SCIFF learns from both compliant and non compliant
traces (rather than from compliant traces only), and is able to model and reason
upon data, by exploiting either the underlying Constraints Solver or the Prolog
inference engine. Various levels of web services mining (web service operations,
interactions, and workflows) are proposed in [Gombotz and Dustdar 2005; Dustdar
et al. 2004]. Our approach fits in their framework and shows that web-services
mining is indeed possible.

As pointed out in [Baldoni et al. 2005a], Service oriented architectures and Multi
Agent Systems share many issues and features, and the problem of representing
global interactions and of verifying them has been tackled also in the MAS field.
In particular, it is possible to find in the literature two complementary approaches,
as in the case of choreographies: approaches with aim to exactly specify how the
interaction protocol should be executed by the interacting agents (such as for ex-
ample AUML [Bauer et al. 2001]), and approaches which consider MAS as open
societies and model interaction protocols by declaratively constraining the possi-
ble interactions. For example, in [Fornara and Colombetti 2002] the semantics of
communicative acts is defined by means of transitions on a finite state automaton
which describes the concept of commitment; in [Yolum and Singh 2002], the au-
thors adopts a variant of Event Calculus to commitment-based protocols, where
commitments evolve in relation to events and fluents and the semantics of mes-
sages is given in terms of predicates on such events and fluents (to describe how
messages affect commitments). Recently, Singh et al. have applied the concept of
commitment-based protocols in the context of the Service Oriented Architecture
and Business Process Management, by addressing the problem of business process
adaptability [Desai et al. 2006] and of protocols composition [Mallya et al. 2005].
SCIFF was originally thought for dealing with social interaction in open MAS, and
the mapping proposed in this work further attests that the MAS and SOC settings
are closely related and can benefit from each other.

9. CONCLUSIONS AND FUTURE WORKS

In this work, we have made a first step towards a framework capable to tackle
both specification and verification of service choreographies. By claiming that a
choreography is inherently declarative, we have presented the DecSerFlow graphi-
cal language for modeling service choreographies. DecSerFlow adopts an open and
declarative approach, specifying choreographies by means of the minimal set of con-
straints which should be satisfied by the interacting entities to correctly collaborate.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

54 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

Thus, the approach respects the autonomous nature of participating services and
does not lead to over-specifying nor over-constraining them.

Furthermore, we have concretely shown how the DecSerFlow concepts can be
mapped onto different underlying logic-based formalisms, namely LTL and SCIFF
(a framework based on abductive logic programming). After having introduced the
complete mapping onto both settings, we have described how the related model-
checking and proof-theoretic techniques can be fruitfully applied in order to enact
DecSerFlow models and to perform a variety of different verification tasks, such as
conformance checking, static verification of conflicts and dead activities, interoper-
ability between global and local models, mining of DecSerFlow models from a set
of compliant and non compliant histories.

We have also motivated the feasibility of the approach by briefly reviewing the
DecSerFlow language in terms of some Cognitive Dimensions, and by quantitatively
evaluating performances and scalability of the verification techniques (especially
for what concerns static verification, which is the most difficult one for SCIFF).
Obviously, the empirical evaluation by using the Cognitive Dimensions is only a first
step towards the assessment of DecSerFlow’s usability; we will therefore extend such
an evaluation by conducting a comprehensive user study covering both the use of
DecSerFlow to specify choreographies and the exploitation of the toolset to validate
them.

The possibility of carrying out a suitable user study is conditioned by the presence
of a stable prototypical implementation integrating the various related tool (and re-
lying on ProM and DECLARE as glue environments). For the time being, the two
underlying DecSerFlow formalisms are used independently; we are currently inves-
tigating their relationships, to the aim of really exploiting their advantages and of
realizing a unified framework for choreographies specification and verification. Such
an investigation will also be helpful to understand some theoretical relationships
between LTL and SCIFF.

Even if DecSerFlow is proposed as complementary w.r.t. classical procedural ap-
proaches, an interesting open issue concerns how these different approaches could
benefit from each other. Relevant research issues arise when trying to shift from one
proposal to another. From one side (from procedural languages to DecSerFlow),
such a shift would enable the possibility to abstract procedural models by focusing
on their core constraints and, even more important, to make the different verifi-
cation techniques described in this paper applicable also to procedural models 14.
From the other side (from DecSerFlow to procedural languages), DecSerFlow mod-
els could be used as core of a top-down methodology aimed at deriving executable
procedural specifications from declarative constraints; this methodology could be
applied, for instance, to derive skeletons of WS-BPEL behavioural interfaces start-
ing from a declarative choreography specified in DecSerFlow. Another choice would
be to opt for an integration between declarative and procedural approaches, to the
aim of obtaining semi-open specification which suitably mediate between the two.
A first investigation in this direction has been made in [Pesic 2008], where a lay-

14A possible solution to this problem could be to simulate and collect in a MXML log different
positive and negative executions of the procedural model, and then try to mine a DecSerFlow
model from the generated traces.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 55

ered approach is proposed, in which non-atomic activities belonging to a declarative
model can be specified in terms of a YAWL15 process and vice-versa. An hybrid
approach, in which declarative and procedural specifications co-exist at the same
level, will be matter of future research. It is worth noting that, in this case, the
integration poses foundational issues, because a clear semantics must be defined
to specify how a closed approach and an open approach (equipped with negative
constraints) affect each other, how possible conflicts should be resolved, and so on.

Other ongoing works concern the extension of the DecSerFlow expressiveness.
Currently, DecSerFlow templates can relate only to service activities while SCIFF
and the ProM LTL Checker deal also with conformance checking against proper-
ties related to activities, time and data. This limitation of DecSerFlow can be
eliminated by extending the language with such concepts.

Extension with time perspective would enable DecSerFlow to offer templates
that involve deadlines. For example, as introduced in Section 5.4, the “response”
template can be extended to specify the rule that activity “B” has to be executed no
later that 5 days after activity “A”. To be able to support the semantics of deadlines,
LTL can be replaced by the real-time temporal logic - a logic that can be translated
into timed automata [Bouajjani et al. 1996]. Further on, timed automata can be
used for execution and verification of models containing time perspective. Thanks
to the possibility of exploiting the underlying CLP solver to adopt a temporal point
algebra, SCIFF is instead directly able to capture such an extension. An ongoing
issue concerns the use of SCIFF as an enactment module for extended models; the
basic idea is to exploit the detection of dead activities but by considering also a
partial execution trace (which represents the already executed activities inside the
process instance): in this way, SCIFF can be used to discover, step-by-step, which
activities cannot be executed without undermining model’s consistency.

Data elements would enrich DecSerFlow and allow for specifying more complex
templates. Consider, for example, the photo service described in Section 3. Al-
though it is generally possible to deliver ordered products to a home address or
to the shop, one can imagine that large format posters can only be picked up per-
sonally. In this case, a special constraint would specify that if the size of a poster
is “large” then type of delivery cannot be “home”. However, incorporating data
perspective in DecSerFlow is a complex task. Data elements introduce many issues
that need to be solved: are templates divided into ones that involve activities and
ones that involve data, or can templates be mixed (one template involving activities
and data)? How do we deal with the data scope (e.g., data has certain value before,
after or between events, etc.)? Another complex issue is to find the right graphical
representation of such templates dealing with data.

Investigating the possibility to extend DecSerFlow with time and data will add
much to the semantics of DecSerFlow and make better use of SCIFF and its ca-
pability to express both perspectives. By adopting the implicit DecSerFlow for-
malization shown in Section 5.6, information about content data and the involved
knowledge could be seamlessly expressed inside the specific knowledge base of the
formalized model.

Finally, an extended formalization capable to deal also with non-atomic activities

15http://www.yawl-system.com/newYAWL

ACM Transactions on the Web, Vol. V, No. N, May 2009.

56 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

and more complex relationships, taking into account also exceptions and compen-
sation issues, will be matter of future works.

ACKNOWLEDGMENT

This work has been partially supported by the PRIN 2005 project “Specification
and Verification of Agent Interaction Protocols” and by the FIRB project “TO-
CAI.IT”. We would like to thank Marco Gavanelli, Evelina Lamma, Marco Alberti,
Paolo Torroni, Fabrizio Riguzzi and all colleagues that took part to the SOCS
project. We also thank the anonymous reviewers for their valuable suggestions and
helpful comments which helped to improve this work.

REFERENCES

Agrawal, R., Gunopulos, D., and Leymann, F. 1998. Mining Process Models from Workflow
Logs. In Sixth International Conference on Extending Database Technology. 469–483.

Alberti, M., Cattafi, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.,
and Torroni, P. 2009. Integrating abductive logic programming and description logics in a
dynamic contracting architecture. In Proceedings of the IEEE 7th International Conference on
Web Services (ICWS 2009).

Alberti, M., Chesani, F., Gavanelli, M., and Lamma, E. 2005. The chr-based implementation
of a system for generation and confirmation of hypotheses. In 19th Workshop on (Constraint)
Logic Programming, Ulm, Germany, February 21-23, 2005, A. Wolf, T. W. Frühwirth, and
M. Meister, Eds. Ulmer Informatik-Berichte, vol. 2005-01. Universität Ulm, Germany, 111–122.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., and Torroni,
P. 2007. Web Service contracting: Specification and Reasoning with SCIFF. In Proceedings of
the 4th European Semantic Web Conference (ESWC’07), E. Franconi, M. Kifer, and W. May,
Eds. Lecture Notes in Artificial Intelligence, vol. 4519. Springer Verlag, 68–83.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. 2005.
Security Protocols Verification in Abductive Logic Programming: A Case Study. In Proc. of
ESAW’05. LNCS, vol. 3963. Springer, 106–124.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. 2006.
Compliance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence 20, 2-4, 133–157.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. 2008.
Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logic 9, 4, 1–43.

Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., and Montali, M. 2006. An
abductive framework for a-priori verification of web services. In Proceedings of the 8th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
July 10-12, 2006, Venice, Italy, A. Bossi and M. J. Maher, Eds. ACM, 39–50.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S. 2003. Business
Process Execution Language for Web Services, Version 1.1. Standards proposal by BEA Sys-
tems, International Business Machines Corporation, and Microsoft Corporation.

Baldoni, M., Baroglio, C., Martelli, A., and Patti, V. 2006. A priori conformance verifica-
tion for guaranteeing interoperability in open environments. In Service-Oriented Computing -
ICSOC 2006, 4th International Conference, Chicago, IL, USA, December 4-7, 2006, Proceed-
ings, A. Dan and W. Lamersdorf, Eds. Lecture Notes in Computer Science, vol. 4294. Springer,
339–351.

Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C. 2005a. Verifying
the conformance of web services to global interaction protocols: A first step. In International
Workshop on Web Services and Formal Methods, WS-FM 2005, Versailles, France, Septem-

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 57

ber 1-3, 2005, Proceedings, M. Bravetti, L. Kloul, and G. Zavattaro, Eds. Lecture Notes in
Computer Science, vol. 3670. Springer, 257–271.

Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C. 2005b. Verifying the
conformance of web services to global interaction protocols: A first step. In EPEW/WS-FM,
M. Bravetti, L. Kloul, and G. Zavattaro, Eds. Formal Techniques for Computer Systems and
Business Processes, European Performance Engineering Workshop, EPEW 2005 and Inter-
national Workshop on Web Services and Formal Methods, WS-FM 2005, Versailles, France,
September 1-3, 2005, Proceedings 3670.

Baresi, L., Ghezzi, C., and Guinea, S. 2004. Smart Monitors for Composed Services. In ICSOC
’04: Proceedings of the 2nd International Conference on Service Oriented Computing. ACM
Press, New York, NY, USA, 193–202.

Barros, A., Dumas, M., and Oaks, P. 2005. A critical overview of the web services choreography
description language (WS-CDL). BPTrends.

Bauer, B., Müller, J. P., and Odell, J. 2001. Agent uml: a formalism for specifying multiagent
software systems. In First international workshop, AOSE 2000 on Agent-oriented software
engineering. Springer-Verlag, 91–103.

Belwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y. L.,
Januszewski, K., Lee, S., McKee, B., Munter, J., and von Riegen, C. 2000. UDDI Version
3.0. http://uddi.org/pubs/uddi v3.htm.

Benatallah, B., Casati, F., and Toumani, F. 2006. Representing, analysing and managing web
service protocols. Data Knowl. Eng. 58, 3, 327–357.

Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., and Mecella, M. 2005. Auto-
matic service composition based on behavioral descriptions. International Journal of Cooper-
ative Information Systems 14, 4, 333–376.

Beyer, D., Chakrabarti, A., and Henzinger, T. 2005. Web service interfaces. In Proceedings
of the 14th international conference on World Wide Web. 148–159.

Bordeaux, L., Salaün, G., Berardi, D., and Mecella, M. 2004. When are two web services
compatible? In Proceedings of the 5th international workshop on Technologies for E-Services
(TES 2004), M. Shan, U. Dayal, and M. Hsu, Eds. 15–28.

Bouajjani, A., Lakhnech, Y., and Yovine, S. 1996. Model-checking for extended timed tem-
poral logics. In FTRTFT ’96: Proceedings of the 4th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems. Springer-Verlag, London, UK, 306–326.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.,
Thatte, S., and Winer, D. 2000. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap.

Bultan, T., Fu, X., Hull, R., and Su, J. 2003. Conversation specification: a new approach to de-
sign and analysis of e-service composition. In WWW ’03: Proceedings of the 12th international
conference on World Wide Web. ACM Press, New York, NY, USA, 403–410.

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., and Storari, S. 2009. Exploiting
inductive logic programming techniques for declarative process mining. LNCS Transactions on
Petri Nets and Other Models of Concurrency (ToPNoC), Special Issue on Concurrency in
Process-Aware Information Systems.

Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., and Storari, S. 2008.
Checking compliance of execution traces to business rules: an approach based on logic program-
ming. In 4th Workshop on Business Process Intelligence (BPI 2008), M. Castellanos, A. K. A.
de Medeiros, J. Mendling, and B. Weber, Eds. LNBIP. Springer Verlag. To appear.

Chesani, F., Montali, M., Mello, P., and Storari, S. 2007. Testing careflow process execution
conformance by translating a graphical language to computational logic. In Proceedings of the
11th Conference on Artificial Intelligence in Medicine (AIME 07), A. Abu-Hanna, R. Bellazzi,
and J. Hunter, Eds. LNAI, vol. To appear. Springer-Verlag.

Chopra, A. K. and Singh, M. P. 2006. Producing compliant interactions: Conformance, cover-
age, and interoperability. In Declarative Agent Languages and Technologies IV, 4th Interna-
tional Workshop, DALT 2006, Hakodate, Japan, May 8, 2006, Selected, Revised and Invited
Papers. Lecture Notes in Computer Science, vol. 4327. Springer, 1–15.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

58 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. 2001. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

Chrzastowski-Wachtel, P. 2003. A Top-down Petri Net Based Approach for Dynamic Work-
flow Modeling. In International Conference on Business Process Management (BPM 2003),
W. van der Aalst, A. ter Hofstede, and M. Weske, Eds. Vol. 2678. 336–353.

Clarke, E., Grumberg, O., and Peled, D. 1999. Model Checking. The MIT Press, Cambridge,
Massachusetts and London, UK.

Cook, J. and Wolf, A. 1998. Discovering Models of Software Processes from Event-Based Data.
ACM Transactions on Software Engineering and Methodology 7, 3, 215–249.

De Raedt, L. and Van Laer, W. 1995. Inductive constraint logic. In Proceedings of the 6th
Conference on Algorithmic Learning Theory. LNAI, vol. 997. Springer Verlag.

Decker, G., Zaha, J., and Dumas, M. 2006. Execution Semantics for Service Choreographies.
In Proceedings of the 3rd Workshop on Web Services and Formal Method (WS-FM 2006),
M. Bravetti, M. Núñez, and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 4184.
Springer-Verlag, 163–177.

Demri, S., Laroussinie, F., and Schnoebelen, P. 2006. A Parametric Analysis of the State-
Explosion Problem in Model Checking. Journal of Computer and System Sciences 72, 4,
547–575.

Demri, S. and Schnoebelen, P. 1998. The Complexity of Propositional Linear Temporal Logics
in Simple Cases. In Proceedings of 15th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 98), G. Goos, J. Hartmanis, and J. Leeuwen, Eds. Lecture Notes in Computer
Science, vol. 1373/1998. Springer-Verlag, Paris, France, 61–72.

Denecker, M. and Schreye, D. D. 1998. SLDNFA: an abductive procedure for abductive logic
programs. Journal of Logic Programming 34, 2, 111–167.

Desai, N., Chopra, A. K., and Singh, M. P. 2006. Business process adaptations via protocols.
In 2006 IEEE International Conference on Services Computing (SCC 2006), 18-22 September
2006, Chicago, Illinois, USA. IEEE Computer Society, 103–110.

Deutsch, A., Sui, L., Vianu, V., and Zhou, D. 2006. Verification of Communicating Data-Driven
Web Services. In PODS ’06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, New York, NY, USA, 90–99.

Dumas, M., van der Aalst, W., and ter Hofstede, A. 2005. Process-Aware Information
Systems: Bridging People and Software through Process Technology.

Dustdar, S., Gombotz, R., and Baina, K. 2004. Web Services Interaction Mining. Technical
Report TUV-1841-2004-16, Information Systems Institute, Vienna University of Technology,
Wien, Austria.

Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag.

Fornara, N. and Colombetti, M. 2002. Operational specification of a commitment-based agent
communication language. C. Castelfranchi and W. Lewis Johnson, Eds. Bologna, Italy, 535–542.

Foster, H., Uchitel, S., Magee, J., and Kramer, J. 2003. Model-based Verification of Web
Service Composition. In Proceedings of 18th IEEE International Conference on Automated
Software Engineering (ASE). Montreal, Canada, 152–161.

Fu, X., Bultan, T., and Su, J. 2005. Synchronizability of conversations among web services.
IEEE Transactions on Software Engineering 31, 12, 1042–1055. Member-Tevfik Bultan and
Senior Member-Jianwen Su.

Fung, T. H. and Kowalski, R. A. 1997. The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33, 2 (Nov.), 151–165.

Gaaloul, W., Bhiri, S., and Godart, C. 2004. Discovering Workflow Transactional Behavior
from Event-Based Log. In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2004, R. Meersman, Z. Tari, W. Aalst, C. Bussler, and A. G. et al., Eds. Vol. 3290. 3–18.

Gaaloul, W. and Godart, C. 2005. Mining Workflow Recovery from Event Based Logs. In Busi-
ness Process Management (BPM 2005), W. Aalst, B. Benatallah, F. Casati, and F. Curbera,
Eds. Vol. 3649. 169–185.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 59

Georgakopoulos, D., Hornick, M., and Sheth, A. 1995. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases 3, 119–153.

Gerth, R., Peled, D., Vardi, M., and Wolper, P. 1996. Simple On-The-Fly Automatic Veri-
fication of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification XV. Chapman & Hall, Ltd.,
London, UK, 3–18.

Giannakopoulou, D. and Havelund, K. 2001. Automata-based verification of temporal proper-
ties on running programs. In ASE ’01: Proceedings of the 16th IEEE international conference
on Automated software engineering. IEEE Computer Society, Washington, DC, USA, 412.

Gombotz, R. and Dustdar, S. 2005. On Web Services Mining. In First International Workshop
on Business Process Intelligence (BPI’05), M. Castellanos and T. Weijters, Eds. Nancy, France,
58–70.

Greco, G., Guzzo, A., Pontieri, L., and Saccà, D. 2006. Discovering expressive process models
by clustering log traces. IEEE Transactions on Knowledge and Data Engineering 18, 8, 1010–
1027.

Green, T. R. G. 1989. Cognitive dimensions of notations. People and Computers V , 443–460.

Green, T. R. G. and Petre, M. 1996. Usability analysis of visual programming environments:
a ’cognitive dimensions’ framework. Journal of Visual Languages and Computing 7, 131–174.

Hallé, S. and Villemaire, R. 2009. Runtime Monitoring of Web Service Choreographies Using
Streaming XML. In (to appear in) Procedings of to the 24th Annual ACM Symposium on
Applied Computing (ACM SAC 2009).

Herbst, J. 2000. A Machine Learning Approach to Workflow Management. In Proceedings 11th
European Conference on Machine Learning. Vol. 1810. 183–194.

Holzmann, G. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston, Massachusetts, USA.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: a survey. Journal of Logic
Programming 19-20, 503–582.

Kakas, A. C., Kowalski, R. A., and Toni, F. 1993. Abductive Logic Programming. Journal of
Logic and Computation 2, 6, 719–770.

Kakas, A. C. and Mancarella, P. 1990. On the relation between Truth Maintenance and
Abduction. In Proceedings of the 1st Pacific Rim International Conference on Artificial Intel-
ligence, PRICAI-90, Nagoya, Japan, T. Fukumura, Ed. 438–443.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., and Lafon, Y. 2004. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04.

Kowalski, R. A. and Sergot, M. 1986. A logic-based calculus of events. New Gen. Comput. 4, 1,
67–95.

Lamma, E., Mello, P., Montali, M., Riguzzi, F., and Storari, S. 2007. Inducing declarative
logic-based models from labeled traces. In Proceedings of the 5th International Conference on
Business Process Management (BPM 2007), G. Alonso, P. Dadam, and M. Rosemann, Eds.
LNCS, vol. 4714. Springer, 344–359.

Lamma, E., Mello, P., Riguzzi, F., and Storari, S. 2007. Applying inductive logic programming
to process mining. In Proceedings of the 17th International Conference on Inductive Logic
Programming. Springer.

Latvala, T. 2003. Efficient Model Checking of Safety Properties. In Proceedings of the 10th
SPIN Workshop on Model Checking of Software. Lecture Notes in Computer Science, vol.
2648. Springer Verlag, Berlin, 74–88.

Lazovik, A., Aiello, M., and Papazoglou, M. 2004. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing. ACM Press, New York, NY, USA, 94–104.

Lloyd, J. W. 1987. Foundations of Logic Programming, 2nd extended ed.

Ludwig, H., Dan, A., and Kearney, R. 2004. Crona: An Architecture and Library for Cre-
ation and Monitoring of WS-agreements. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing. ACM Press, New York, NY, USA, 65–74.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

60 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

Mahbub, K. and Spanoudakis, G. 2004. A Framework for Requirents Monitoring of Service
Based Systems. In ICSOC ’04: Proceedings of the 2nd International Conference on Service
Oriented Computing. ACM Press, New York, NY, USA, 84–93.

Mallya, A. U., Desai, N., Chopra, A. K., and Singh, M. P. 2005. Owl-p: Owl for protocol
and processes. In 4rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The Netherlands, F. Dignum, V. Dignum,
S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, Eds. ACM, 139–140.

Martens, A. 2005a. Analyzing Web Service Based Business Processes. In Proceedings of the 8th
International Conference on Fundamental Approaches to Software Engineering (FASE 2005),
M. Cerioli, Ed. Vol. 3442. 19–33.

Martens, A. 2005b. Consistency between executable and abstract processes. In Proceedings
of International IEEE Conference on e-Technology, e-Commerce, and e-Services (EEE’05).
IEEE Computer Society Press, 60–67.

Massuthe, P., Reisig, W., and Schmidt, K. 2005. An Operating Guideline Approach to the
SOA. In Proceedings of the 2nd South-East European Workshop on Formal Methods 2005
(SEEFM05). Ohrid, Republic of Macedonia.

Mecella, M., Parisi-Presicce, F., and Pernici, B. 2002. Modeling E-service Orchestration
through Petri Nets. In Proceedings of the Third International Workshop on Technologies for
E-Services. Vol. 2644. 38–47.

Milner, R., Parrow, J., and Walker, D. 1992. A Calculus of Mobile Processes. Information
and Computation 100, 1, 1–40.

Montali, M., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni,
P. 2008. Verification from declarative specifications using Logic Programming. In 24th Inter-
national Conference on Logic Programming (ICLP), M. G. D. L. Banda and E. Pontelli, Eds.
Number 5366 in Lecture Notes in Computer Science. Springer Verlag, Udine, Italy, 440–454.

Muggleton, S. and De Raedt, L. 1994. Inductive logic programming: Theory and methods. J.
Logic Program. 19/20, 629–679.

OWL Services Coalition. 2003. OWL-S: Semantic markup for web services.

Pesic, M. 2008. Constraint-based workflow management systems: Shifting controls to users.
Ph.D. thesis, Beta Research School for Operations Management and Logistics, Eindhoven.

Pesic, M., Schonenberg, H., and van der Aalst, W. 2007. Declare: Full support for loosely-
structured processes. In 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), 15-19 October 2007, Annapolis, Maryland, USA. IEEE Computer
Society, 287–300.

Ponnekanti, S. and Fox, A. 2004. Interoperability among independently evolving web services.
In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international conference on
Middleware. Springer-Verlag New York, Inc., New York, NY, USA, 331–351.

Reisig, W. and Rozenberg, G., Eds. 1998. Lectures on Petri Nets I: Basic Models. Vol. 1491.

Rouached, M., Perrin, O., and Godart, C. 2006. Towards formal verification of web service
composition. In 4th International Conference on Business Process Management. LNCS, vol.
4102. Springer, 257–273.

Rozinat, A. and van der Aalst, W. 2006. Conformance Testing: Measuring the Fit and Ap-
propriateness of Event Logs and Process Models. In BPM 2005 Workshops (Workshop on
Business Process Intelligence), C. Bussler et al., Ed. Vol. 3812. 163–176.

Schlingloff, B., Martens, A., and Schmidt, K. 2005. Modeling and model checking web
services. Electronic Notes in Theoretical Computer Science: Issue on Logic and Communication
in Multi-Agent Systems 126, 3–26.

Shen, Y.-D., You, J.-H., Yuan, L.-Y., Shen, S. S. P., and Yang, Q. 2003. A dynamic approach
to characterizing termination of general logic programs. ACM Transactions on Computational
Logic 4, 4, 417–430.

Singh, M. P. 2000. A social semantics for agent communication languages. In Issues in Agent
Communication, F. Dignum and M. Greaves, Eds. Lecture Notes in Computer Science, vol.
1916. Springer, 31–45.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 61

van der Aalst, W. and Basten, T. 2002. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science 270, 1-2, 125–203.

van der Aalst, W., de Beer, H., and van Dongen, B. 2005. Process Mining and Verification
of Properties: An Approach based on Temporal Logic. In On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2005, R. Meersman and Z. T. et al., Eds. Vol. 3760. 130–147.

van der Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., and Verbeek, H. 2005. Choreogra-
phy Conformance Checking: An Approach based on BPEL and Petri Nets (extended version).
BPM Center Report BPM-05-25, BPMcenter.org, To appear in ACM Transactions on Internet
Technology, Special Issue on Middleware for Service-Oriented Architectures.

van der Aalst, W., Dumas, M., and ter Hofstede, A. 2003. Web Service Composition Lan-
guages: Old Wine in New Bottles? In Proceeding of the 29th EUROMICRO Conference: New
Waves in System Architecture, G. Chroust and C. Hofer, Eds. IEEE Computer Society, Los
Alamitos, CA, 298–305.

van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N., Verbeek, H. M. W., and
Wohed, P. 2005. Life after BPEL? In International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, M. Bravetti,
L. Kloul, and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 3670. Springer,
35–50.

van der Aalst, W. and Song, M. 2004. Mining Social Networks: Uncovering Interaction Patterns
in Business Processes. In International Conference on Business Process Management (BPM
2004), J. Desel, B. Pernici, and M. Weske, Eds. Vol. 3080. 244–260.

van der Aalst, W., van Dongen, B., Günther, C., Mans, R., de Medeiros, A. A., Rozinat,
A., Rubin, V., Song, M., Verbeek, H., and Weijters, A. 2007. ProM 4.0: Comprehensive
Support for Real Process Analysis. In Application and Theory of Petri Nets and Other Models
of Concurrency (ICATPN 2007), J. Kleijn and A. Yakovlev, Eds. Vol. 4546. 484–494.

van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., and Weijters,
A. 2003. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engi-
neering 47, 2, 237–267.

van der Aalst, W. and van Hee, K. 2002. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA.

van der Aalst, W. and Weijters, A., Eds. 2004. Process Mining. Special Issue of Computers
in Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam.

van der Aalst, W., Weijters, A., and Maruster, L. 2004. Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16, 9,
1128–1142.

van der Aalst, W. M. P. and Pesic, M. 2006. Decserflow: Towards a truly declarative service
flow language. In Web Services and Formal Methods, Third International Workshop, WS-
FM 2006 Vienna, Austria, September 8-9, 2006, Proceedings, M. Bravetti, M. Núñez, and
G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 4184. Springer, 1–23.

van Dongen, B. and van der Aalst, W. 2005. A Meta Model for Process Mining Data. In Pro-
ceedings of the CAiSE’05 Workshops (EMOI-INTEROP Workshop), J. Casto and E. Teniente,
Eds. Vol. 2. FEUP, Porto, Portugal, 309–320.

van Dongen, B. F. and van der Aalst, W. M. P. 2004. Multi-phase process mining: Build-
ing instance graphs. In Conceptual Modeling - ER 2004, 23rd International Conference on
Conceptual Modeling. LNCS, vol. 3288. Springer, 362–376.

Verbeek, H., Basten, T., and van der Aalst, W. 2001. Diagnosing Workflow Processes using
Woflan. The Computer Journal 44, 4, 246–279.

Vilain, M., Kautz, H., and van Beek, P. 1990. Constraint propagation algorithms for temporal
reasoning: a revised report. 373–381.

White, S. A. 2006. Business process modeling notation specification 1.0. Tech. rep., OMG.

Yolum, P. and Singh, M. 2002. Flexible protocol specification and execution: applying event
calculus planning using commitments. In The First International Joint Conference on Au-

ACM Transactions on the Web, Vol. V, No. N, May 2009.

62 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

tonomous Agents & Multiagent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy,
Proceedings. 527–534.

Zaha, J., Barros, A., Dumas, M., and Hofstede, A. 2006. Let’s Dance: A Language for
Service Behavior Modeling. In Proceedings of the 14th International Conference on Cooperative
Information Systems (CoopIS 2006), R. Meersman and Z. Tari, Eds. Lecture Notes in Computer
Science, vol. 4275. Springer-Verlag, 145–162.

Zaha, J., Barros, A., Dumas, M., and ter Hofstede, A. 2006. Let’s dance: A language for
service behavior modeling. QUT ePrints 4468, Faculty of Information Technology, Queensland
University of Technology.

Zaha, J., Dumas, M., Hofstede, A., Barros, A., and Dekker, G. 2006. Service Interaction
Modeling: Bridging Global and Local Views. QUT ePrints 4032, Faculty of Information Tech-
nology, Queensland University of Technology.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 63

A. DECSERFLOW TEMPLATES AND MAPPINGS ONTO LTL AND SCIFF

DecSerFlow is proposed as a language containing more than twenty initial tem-
plates. Note that templates can be easily changed, added or removed in/from
DecSerFlow. The remainder of this section is organized as follows. In Section A.1
we present DecSerFlow templates. Sections A.2 and A.3 DecSerFlow show the
mappings onto LTL and onto SCIFF, respectively.

A.1 DecSerFlow Templates

DecSerFlow templates currently involve only activities, i.e., templates specify re-
lations between service activities. Templates can involve an arbitrary number of
activities, but for the sake of simplicity we present only unary and binary tem-
plates. Unary templates are presented in Table XIII. These templates specify the
possible number of executions of an activity and are graphically represented as a
cardinality constraint above the activity. The first group of templates (i.e., the “ex-
istence N” templates) specify the minimal number of executions of an activity. The
second group of templates (i.e., the “absence N” templates) specifies the maximal
number of executions of an activity. Finally, the third group of templates (i.e., the
“exactly N” templates) specifies the exact number of executions of an activity.

Table XIV presents binary templates for specifying relations between two activ-
ities (“A” and “B”). These templates are graphically represented as special lines
(type of the line, symbols and line edges, etc...) between the two activities. The
first two templates (i.e., “responded existence” and “coexistence”) do not take into
account the order in which “A” and “B” are executed. The second group of tem-
plates (i.e., “response”, “precedence” and “succession”) takes into account the or-
der in which the two activities are executed in the most general way. The third
group of templates (i.e., “alternate response”, “alternate precedence” and “alter-
nate succession”) takes the order of activities into account and impose interposition,
i.e., one activity has to be executed between each two executions of the other activ-
ity. The fourth group of templates (i.e., “chain response”, “chain precedence” and
“chain succession”) specifies the most strict ordering relations by requiring that the
two activities are executed immediately next to each other.

Binary templates that specify “negative” relations are presented in Table XV.
Each of these templates presents a negation of a unary template presented in Ta-
ble XIV. The graphical representation is similar to the one for the corresponding
template from Table XIV – it has an extra negation symbol in the middle of the
line. Note that there exists equivalence between some of the “negation” templates,
i.e., some templates have identical semantics. Template “responded absence” can
be omitted because it is equivalent to the “not coexistence” template. Templates
“neg response” and “neg precedence” can be omitted because they are equivalent
with the “neg succession” template. Similarly, templates “neg chain response” and
“neg chain precedence” are equivalent to the template “neg chain succession” and
they can, therefore, be omitted too.

A.2 DecSerFlow Templates: LTL Mapping

The semantics of DecSerFlow templates can easily be specified in LTL. This section
presents LTL mappings (i.e., LTL formulas) for each of the DecSerFlow templates

ACM Transactions on the Web, Vol. V, No. N, May 2009.

64 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

Table XIII. DecSerFlow existence templates.

name representation description

existence 1(A) A
1..*

A is executed at least once.

existence 2(A)
2..*

A A is executed at least two times.

existence 3(A)
3..*

A A is executed at least three times.

.

existence N(N, A)
N..*

A A is executed at leas N times.

absence(A)
0

A A is never executed.

absence 2(A)
0..1

A A is executed at most once.

absence 3(NA)
0..2

A A is executed at most two times.

.

absence N+1(A)
0..N

A A is executed at most N times.

exactly 1(A)
1

A A is executed exactly once.

exactly 2(A)
2

A A is executed exactly two times.

.

exactly N(A)
N

A A is executed exactly N times.

presented in Section A.1. Table XVI presents LTL specifications for (unary) exis-
tence templates form Table XIII. Tables XVII and XVIII present LTL specifications
for binary templates from Tables XIV and XV, respectively. Note that Tables XVII
and XVIII contain two additional formulas that do not appear in the Tables XIV
and XV. The “interposition” formula in Table XVII is used in in templates “al-
ternate response” and “alternate precedence” and it specifies that there is at least
one “B” between every two executions of “A”. Opposite to this, formula “nega-
tive interposition” from Table XVII specifies that there cannot be any B between
every two executions of A. The “negative interposition” formula is used in templates
“neg alternate response” and “neg alternate precedence”.

Table XVI show that new LTL formula has to be specified for each of the unary
templates, i.e., it is not possible to define general LTL formulas with a parameterized
number of executions of an activity.

A.3 DecSerFlow Templates: SCIFF Mapping

The semantics of DecSerFlow templates can also be specified in terms of SCIFF.
This section presents the SCIFF mapping for each of the DecSerFlow templates
presented in Section A.1. Table XIX presents SCIFF specifications for (unary)
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 65

Table XIV. DecSerFlow relation templates.
name representation description

responded existence(A,B) A B
If A is executed, then B has to be
executed before or after A.

coexistence(A,B) A B
If A is executed, then B has to be
executed before or after A and vice
versa.

response(A,B) A B
Every A is eventually followed by at
least one B.

precedence(A,B) A B
B can be executed only after A is
executed.

succession(A, B) A B
B is response of A and A is prece-
dence of B.

alternate response(A,B) A B
B is response of A and there has to
be at least one B between every two
As.

alternate precedence(A,B) BA
A is precedence of B and there has
to be at least one A between every
two Bs.

alternate succession(A, B) A B
B is alternate response of A and A
is alternate precedence of B.

chain response(A,B) A B
If A is executed then B is executed
next (immediately after A).

chain precedence(A,B) BA
B can be executed only if A was pre-
viously executed (immediately be-
fore B).

chain succession(A, B) A B
A and B are always executed next
to each other, i.e., first A and then
immediately B.

existence templates shown in Table XIII. Tables XX and XXI present the SCIFF
specifications for binary templates from Tables XIV and XV, respectively.

Unlike LTL, that requires a separate specification of each of the unary templates
(cf. Table XVI), the SCIFF formalism can specify these templates in a general
way (see section 5.6). Table XIX presents the SCIFF template specifications for
unary existence templates (cf. Table XIII) with two parameters: (1) parameter
“A” represents an activity and (2) parameter “N” the number of executions.
SCIFF specification of binary templates in Tables XIX contain parameters “A”

that represents an activity and an additional parameter to represent moments in
time “T ” when “A” is executed. Parameters “Ti” are “free”, i.e., they do not
have to be concretely specified but are required by the SCIFF formal specification
language to denote (and, eventually, explicitly constrain) the different execution
times. Note that, e.g., in the “existence N” template “Ti” is not an information
related to the template formula, but is used to specify that “A” is executed multiple
times (i.e., Ti > Ti−1 allows to differentiate the execution of two activities “A”).
SCIFF specification of binary templates in Tables XX and XXI contain param-

eters “A” and “B” that represent activities and additional parameters to represent
moments in time: (1) “TA” when “A” is executed and (2) “TB” when “B” is exe-

ACM Transactions on the Web, Vol. V, No. N, May 2009.

66 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

Table XV. DecSerFlow negation templates.
name representation description

responded absence(A,B) A B
If A is executed, then B can never
be executed.

not coexistence(A,B) A B
Either A or B are executed, but not
both.

neg response(A,B) A B B can never be executed after A.

neg precedence(A,B) A B
B cannot be executed if A is exe-
cuted before.

neg succession(A, B) A B
B is not response of A and A is
not precedence of B.

neg alt response(A,B) A B
There cannot be any B between ev-
ery two As.

neg alt precedence(A,B) BA
There cannot be any A between ev-
ery two Bs.

neg alt succession(A, B) A B
There cannot be any B between ev-
ery two As and there cannot be any
A between every two Bs.

neg chain response(A,B) A B
B cannot be the next (immediately)
after A.

neg chain precedence(A,B) BA
A cannot be previous (immedi-
ately) before B.

neg chain succession(A, B) A B
A and B cannot be executed in a
sequence.

Table XVI. DecSerFlow existence templates in LTL.

name LTL formula
existence 1(A) "(A)
existence 2(A) "(A ∧ ©(existence(A)))
existence 3(A) "(A ∧ ©(existence(A)))

.
existence N(N, A) "(A ∧ ©(existenceN−(A)))

absence(A) ¬(existence1(A))
absence 2(A) ¬existence(A)
absence 3(A) ¬existence(A)

.
absence N+1(A) ¬existenceN+(A)

exactly 1(A) existence(A) ∧ absence(A)
exactly 2(A) existence(A) ∧ absence(A)

.
exactly N(A) existenceN(A) ∧ absenceN+(A)

cuted. Just like in Table XIX, parameters “TA” and “TB” are “free”, i.e., they do
not have to be concretely specified (they could be substitued by the classical Prolog
anonymous variable “ ”) . Note that, e.g., in the “responded existence” template
“TA” and “TB” are not used for the template semantics, while in the template
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 67

Table XVII. DecSerFlow relation templates in LTL.
name LTL formula

responded existence(A,B) "(A) ⇒ "(B)
coexistence(A,B) "(A) ⇔ "(B)

response(A,B) !(A ⇒ "(B))
precedence(A,B) "(B) ⇒ ((¬B) # A)
succession(A, B) response(A,B) ∧ precedence(A,B)

alternate response(A,B) response(A,B) ∧ !(A ⇒ ©(precedence(B,A)))
alternate precedence(A,B) precedence(A,B) ∧ !(B ⇒ ©(precedence(A,B)))
alternate succession(A, B) alternate response(A,B)∧

alternate precedence(A,B)
chain response(A,B) !(A ⇒ ©(B))

chain precedence(A,B) precedence(A,B) ∧ !(©(B) ⇒ A)
chain succession(A, B) chain response(A,B) ∧ chain precedence(A,B)

interposition(A, B) !(A → ©(precedence(B,A)

Table XVIII. DecSerFlow negation templates in LTL.
name LTL formula

responded absence(A,B) "(A) ⇒ ¬("(B))
not coexistence(A,B) neg existence response(A,B)∧

neg existence response(B,A)
neg response(A,B) !(A ⇒ ¬("(B)))

neg precedence(A,B) !("(B) ⇒ (¬A))
neg succession(A, B) neg response(A,B) ∧ neg precedence(A,B)

neg alt response(A,B) negative interposition(A, B)
neg alt precedence(A,B) negative interposition(B, A)
neg alt succession(A, B) neg alt response(A,B) ∧ neg alt precedence(A,B)

neg chain response(A,B) B!(A ⇒ ©(¬(B)))
neg chain precedence(A,B) !(©(B) ⇒ ¬(A))
neg chain succession(A, B) neg chain response(A,B)∧

neg chain precedence(A,B)
negative interposition(A,B) !(A → ©((¬B) # A)

Table XIX. DecSerFlow existence templates in SCIFF.

name SCIFF formula
absence(A) true → EN(performed(A), T)

existence N(N, A) true →
N̂

i=1

“
E(performed(A), Ti) ∧ Ti > Ti−1

”

absence N + 1(N, A)

N̂

i=1

“
H(performed(A), Ti) ∧ Ti > Ti−1

”

→EN(performed(A), T) ∧ T > TN

exactly N(N, A) existence N(N, A) ∧ absence N + 1(N, A)
We assume T0 = 0

ACM Transactions on the Web, Vol. V, No. N, May 2009.

68 · Montali, Pesic, van der Aalst, Chesani, Mello, Storari

“response” they are used to specify that “B” is executed after “A” (i.e., TB > TA).
Formulas “chain response” and “chain precedence” use the “next” predicate to

specify that two activities are executed immediately next to each other. This is for-
malized by stating that no activity should be performed between the two activities,
i.e. by formalizing the next concept as follows:

next(T2, T1) ←
EN(performed(X), TX) ∧ TX > T1 ∧ TX < T2.

Such a concept is part of the general knowledge base.

Table XX. DecSerFlow relation templates in SCIFF.
name SCIFF formula

responded existence(A,B)
H(performed(A), TA)

→E(performed(B), TB).

coexistence(A,B)
responded existence(A,B)

∧responded existence(B,A).

response(A,B)
H(performed(A), TA)

→E(performed(B), TB) ∧ TB > TA.

precedence(A,B)
H(performed(B), TB)

→E(performed(A), TA) ∧ TA < TB.

succession(A, B)
response(A,B)

∧precedence(A,B).

alternate response(A,B)
response(A,B)

∧interposition(A, B).

alternate precedence(A,B)
precedence(A,B)

∧interposition(B, A).

alternate succession(A, B)
alternate response(A,B)

∧alternate precedence(A,B).

chain response(A,B)

H(performed(A), TA)

→E(performed(B), TB) ∧ TB > TA

∧ next(TB, TA).

chain precedence(A,B)

H(performed(B), TB)

→E(performed(A), TA) ∧ TA < TB

∧ next(TB, TA).

chain succession(A, B)
chain response(A,B)

∧chain precedence(A,A).

interposition(A,B)

H(performed(A), TA)

∧ H(performed(A), TA2) ∧ TA2 > TA

→E(performed(B), TB)

∧ TB > TA ∧ TB < TA2.

Table XXI shows the SCIFF formalization of “negation” templates from Table
XV. For the sake of simplicity and reusability, in formulas “neg chain response”
ACM Transactions on the Web, Vol. V, No. N, May 2009.

Declarative Specification and Verification of Service Choreographies · 69

and “neg chain precedence”, we introduce a predicate to specify that if it is the
case that “A” is executed and “B” is executed after “A”, then the corresponding
execution times should not be next to each other. This is expressed by stating
that at least one activity should be performed between the two activities execution
times, i.e. by formalizing the not next concept as follows:

not next(T2, T1) ←
E(performed(X), TX) ∧ TX > T1 ∧ TX < T2.

Table XXI. DecSerFlow negation templates in SCIFF.
name SCIFF formula

responded absence(A,B)
H(performed(A), TA)

→EN(performed(B), TB).

not coexistence(A,B)
responded absence(A,B)

∧responded absence(B,A).

neg response(A,B)
H(performed(A), TA)

→EN(performed(B), TB) ∧ TB > TA.

neg precedence(A,B)
H(performed(B), TB)

→EN(performed(A), TA) ∧ TA < TB .

neg succession(A, B)
negation response(A,B)

∧negation precedence(A,B).
neg alt response(A,B) negative interposition(A,B).

neg alt precedence(A,B) negative interposition(B, A).

neg alt succession(A, B)
neg alt response(A,B)

∧neg alt precedence(A,B).

neg chain response(A,B)

H(performed(A), TA)

∧ H(performed(B), TB) ∧ TB > TA

→not next(TB, TA).

neg chain precedence(A,B)

H(performed(B), TB)

∧ H(performed(A), TA) ∧ TA < TB

→not next(TB, TA).

neg chain succession(A, B)
neg chain response(A,B)

∧neg chain precedence(A,B).

negative interposition(A, B)

H(performed(A), TA)

∧ H(performed(A), TA2) ∧ TA2 > TA

→EN(performed(B), TB)

∧ TB > TA ∧ TB < TA2.

ACM Transactions on the Web, Vol. V, No. N, May 2009.

