
Parallel Computation of Reachable Dead States
in a Free-choice Petri Net

W.M.P. van der Aalst
Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,

NL-5600 MB, Eindhoven, The Netherlands, telephone: -31 40 2474295, e-mail: wsinwa@win.tue.nl

Keywords: Petri nets, Parallel algorithms, Free-choice Petri
nets, Analysis of Petri nets.

Abstract. Free-choice Petri nets are a prominent tool for
modeling and analyzing communication protocols, multi-
processor systems, parallel programs, flexible manufactur-
ing systems and workflow scripts. Unfortunately, analysis is
often hampered by the state-explosion phenomenon. Even
for free-choice Petri nets, the reachability problem is known
to be EXPSPACE-hard. In this paper we discuss a technique
for the parallel computation of reachable dead states. This
technique is based on the partitioning of tokens instead of
the Petri net.

1 Introduction

Petri nets are used by both theoreticians and practitioners.
From a theoretical point of view, Petri nets provide a for-
mal model for concurrency with many elegant mathemati-
cal properties. From a practical point of view, Petri nets are
a graphical, easy to use, technique for the modeling of sys-
tems. A very important feature of Petri nets is the fact that
the Petri net representation can be used as a starting point for
various kinds of analysis. The construction of the coverabil-
ity graph is a well-know tool for the analysis of Petri nets.
Inherently difficult problems can be tackled with this tool.
Unfortunately, algorithms for constructing the coverability
graph require a lot of computingpower. For many Petri nets,
it is not possible to construct the coverability graph in rea-
sonable time on sequential computers. Consequently, the
use of parallelism to speed up the construction of the cov-
erability graph could be attractive.

In this paper we focus on the analysis of dead states in free-
choice Petri nets. Free-choice Petri nets are a very interest-
ing class of Petri nets for which strong theoretical results and
efficient analysis techniques exist. A state s is dead if no
transitions are enabled in s, i.e. nothing can happen in state
s. From an analysis point of view, dead states are very im-
portant. Consider for example the situation shown in Fig-
ure 1. A production process can be represented by a free-
choice Petri net. The process transforms raw materials into

end-products. Given an initial state, it is interesting to know
the set of dead states reachable from the initial state. Based
on the set of reachable dead states, we are able to establish
the correctness of the production process. If we model an
administrative procedure in terms of a free-choice Petri net,
then the set of dead states reachable from some initial state
contains important information with regards to the correct-
ness of the administrative procedure. At the moment, the
construction of the coverability graph is the obvious way to
determine the set of reachable dead states. Even for free-
choice Petri nets the construction of the coverability graph
may be intractable. Therefore, an effective parallel construc-
tion of the coverability graph to obtain dead states is desir-
able.

Petri net

free-choice

production process
raw materials end-products

Figure 1: A production process modeled in terms of a free-
choice Petri net.

In the context of Generalized Stochastic Petri nets, some at-
tempts have been made to construct the Tangible Reacha-
bility Set (TRS) in parallel. In Caselli, Conte, Bonardi &
Fontanesi (1994) and Caselli, Conte & Marenzoni (1995)
both SIMD and MIMD programming models are consid-
ered for the parallel construction of the TRS. In our opinion,
these approaches can also be used for the construction of the
coverability graph. For an MIMD programming model, the
master-slave paradigm is the obvious approach to construct
the coverability graph in parallel. The master manages the
set of nodes in the coverability graph computed so far and
distributes new nodes over the slaves. The slaves compute
new nodes, which are returned to the master. One of the
starting points for such a straightforward approach, is the
assumption that nodes (i.e. reachable states) are indivisible.

In this paper we present an approach which is entirely dif-
ferent. The reachable states represented by the nodes in the
coverability graph are no longer atomic, i.e. the calculation
of a new state may be distributed among several processors.
We are able to use this approach by exploiting the struc-
ture of the free-choice Petri net. In fact, we have ‘discov-
ered’ a new property (State-split property) with respect to
the dynamics of free-choice Petri nets. Based on this prop-
erty we have developed two algorithms for the parallel com-
putation of dead states. The algorithms are named TIGRA-
I and TIGRA-II. In this paper, TIGRA-I is presented. For
TIGRA-II and the application of these algorithms to larger
examples, the reader is refered to Aalst (1996).

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce some of the basics for free-choice Petri
nets. Section 3 deals with the construction of the coverabil-
ity graph to obtain all dead states. In Section 4 we present
the State-split theorem. This theorem serves as the basis for
the TIGRA algorithm presented in Section 5.

2 Free-choice Petri nets

The classical Petri net is a directed bipartite graph with two
node types called places and transitions. The nodes are con-
nected via directed arcs. Connections between two nodes of
the same type are not allowed. Places are represented by cir-
cles and transitions by rectangles.

Definition 1 (Petri net) A Petri net is a triplet (P, T, F):

- P is a finite set of places,

- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P×T)∪(T × P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there
exists a directed arc from p to t . Place p is called an output
place of transition t iff there exists a directed arc from t to
p. We use •t to denote the set of input places for a transition
t . The notations t•, •p and p• have similar meanings, e.g.
p• is the set of transitions sharing p as an input place.

Places may contain zero or more tokens, drawn as black dots.
The state, often referred to as marking, is the distribution
of tokens over places. We will represent a state as follows:
1p1+ 2p2 + 1p3 + 0p4 is the state with one token in place
p1, two tokens in p2, one token in p3 and no tokens in p4.
We can also represent this state as follows: p1 + 2p2+ p3.

The number of tokens may change during the execution of
the net. Transitions are the active components in a Petri net:

they change the state of the net according to the following
firing rule:

(1) A transition t is said to be enabled iff each input place
p of t contains at least one token.

(2) An enabled transition may fire. If transition t fires,
then t consumes one token from each input place p
of t and produces one token for each output place p
of t .

Given a Petri net (P, T, F) and an initial state M1, we have
the following notations:

- M1
t→ M2: transition t is enabled in state M1 and

firing t in M1 results in state M2

- M1 → M2: there is a transition t such that M1
t→ M2

- M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1

leads from state M1 to state Mn , i.e. M1
t1→ M2

t2→
...

tn−1→ Mn

- M1
∗→ Mn: there is a firing sequence which leads

from M1 to Mn

A state Mn is called reachable from M1 iff M1
∗→ Mn . A

state M is a dead state iff no transition is enabled in M. For
a state M and a place p, we use M(p) to denote the number
of tokens in p in state M. For two states M and N , M ≤ N
iff for each place p: M(p) ≤ N(p). A Petri net (PN , M)

is bounded iff for each place p there is a natural number n
such that for every reachable state the number of tokens in
p is less than n.

In this paper we focus on a restricted class of Petri nets. The
results presented in this paper apply to Petri nets satisfying
the so-called free-choice property.

Definition 2 (Free-choice) A Petri net is a free-choice Petri
net iff, for every two places p1 and p2 either (p1 • ∩ p2•) =
∅ or p1• = p2•.
Figure 2 shows two Petri nets. Petri net (a) is a free-choice
Petri net. Petri net (b) is not a free-choice Petri net, since
t2 and t3 share the input place p2 and t3 is the only output
transition of p3.
Free-choice Petri nets have been studied extensively (Desel
& Esparza, 1995; Esparza, 1990) because they seem to be
a good compromise between expressive power and analyz-
ability. It is a class of Petri nets for which strong theoretical
results and efficient analysis techniques exist.
One of the fundamental properties of a free-choice Petri net
is the fact that it can be partitioned into clusters.

(a) (b)

t1 t3

p3

t2

p1

p2

t1 t3

p3

t2

p1

p2

Figure 2: Petri net (a) is a free-choice Petri net, (b) is not a
free-choice Petri net.

Definition 3 (Cluster) Let t be a transition in a free-choice
Petri net. The cluster of t , denoted by [t], is the set •t ∪ {t ′ ∈
T | • t ′ = •t}. The cluster of a place p, also denoted by [p],
is the set p • ∪ {p′ ∈ P | (p′ • ∩ p•) �= ∅}.
Note that a place p and a transition t belong to the same clus-
ter (i.e. [p] = [t]) iff p ∈ •t . For free-choice Petri nets, we
have the following property. If transition t is enabled, then
every transition in [t] is enabled. A cluster c is called en-
abled iff the transitions in c are enabled.

3 Computing dead states

For bounded Petri nets it is possible to construct the so-called
reachability graph. This graph contains a node for each state
reachable from the initial state. Two nodes in the reachabil-
ity graph M and N are connected by a directed arc if and
only if there is a transitionenabled in M whose firing results
in state N . If we are able to construct the reachability graph,
then it is easy to find all dead states reachable from the ini-
tial state. A node in the reachability graph corresponds to a
reachable dead state if and only if it has no outgoing arcs.
Unfortunately, it is not possible to use the reachability graph
for an unbounded Petri net. If we try to construct the reacha-
bility graph for an unbounded net, then this graph will grow
infinitely large. This is the reason we resort to the use of the
so-called coverability graph. For any Petri net having an ar-
bitrary initial state, the corresponding coverability graph is
finite. To obtain the coverability graph, the symbol ω is in-
troduced. This symbol can be thoughtof as ‘infinity’ and for
any integer n the following properties hold: ω > n, ω+n =
ω, ω−n = ω and ω ≤ ω. For a more detailed description of
the algorithm to construct the coverability graph the reader
is referred to Peterson (1981) or Murata (1989).
For complex Petri-net models the construction of the cover-
ability graph may be very time consuming. The complexity
of the algorithm to construct the coverability graph can be
worse than primitive recursive space. For free-choice Petri
nets the reachability problem is known to be EXPSPACE-
hard (Cheng, Esparza & Palsberg, 1993). Moreover, even
for bounded free-choice Petri nets the problem of finding

all dead states is NP-hard. Therefore, it is interesting to in-
vestigate whether a parallel computer can be used to find all
dead states in a free-choice Petri net. In the remainder of this
paper we present a parallel algorithm for the calculation of
dead states in a free-choice Petri net. The algorithm exploits
the structure of a free-choice Petri net. We will show that
in most situations a significant speedup is possible. Even if
we execute the algorithm on a single processor, a significant
speedup (compared to the standard algorithm for the con-
struction of the coverability graph) is possible.

4 State-split theorem

The algorithm for the calculation of dead states presented
in this paper exploits the structure of a free-choice Petri net.
For this purpose we present a new result for free-choice Petri
nets. This result is embedded in a theorem called the State-
split theorem. This theorem shows that it is possible to dis-
tribute the construction of the coverability graph of a free-
choice Petri net if we are only interested in the reachable
dead states. The State-split theorem is the core of this pa-
per. We need this theorem to prove the correctness of the
parallel algorithm presented in this paper. In order to prove
the State-split theorem we need some preliminary results.

The first preliminary result we present is the Advance lemma.
This lemma shows that given a firing sequence it is possible
to advance the firing of certain transitions.

Lemma 1 (Advance lemma) Let σ = t1t2 . . . tk be a firing
sequence of a free-choice Petri net such that σ leads from
state M to state M ′, i.e. M

σ→ M ′. If a cluster c is enabled
in state M and ti is the first transition in σ such that t i ∈ c,

then M
σ ′→ M ′ with σ ′ = ti t1t2 . . . ti−1ti+1 . . . tk.

Proof.
In state M each of the transitions in c is enabled, i.e. ti is
enabled in state M. The transitions t j with 1 ≤ j < i
are not disabled by the advanced firing of ti , because they
belong to different clusters. Therefore, the firing sequence
σ ′ = ti t1t2 . . . ti−1ti+1 . . . tk is possible. Since σ ′ is a permu-

tation of σ , we deduce that M
σ ′→ M ′. 2

We use the Advance lemma to prove the Substate-ordering
lemma. The Substate-ordering lemma captures the essence
of the State-split theorem. The Substate-ordering lemma is
illustrated in Figure 3.

Lemma 2 (Substate-ordering lemma) Let PN be a free-
choice Petri net and N and N ′ states of PN such that N

∗→
N ′ and N ′ is dead. For any substate M of N (i.e. M ≤ N),

N

N’

M

M’

M’+(N-M)

Figure 3: The Substate-ordering lemma.

there is a dead state M ′ such that M
∗→ M ′ and M ′ + (N −

M)
∗→ N ′.

Proof.
Let σ = t1t2 . . . tk be an arbitrary firing sequence leading
from N to N ′ (N

σ→ N ′). We use induction upon the length
k of σ .
If k = 0, then N = N ′. Since N is dead (N = N ′) and
M ≤ N , M is also dead. Hence, M′ = M is a dead state
such that M

∗→ M ′ and M ′ + (N − M)
∗→ N ′.

Assume k > 0. If M is dead, then for M′ = M the lemma
holds. Therefore, we may assume that M is not dead. Let
ti be the first transition in σ which is enabled in M, i.e. ti

is enabled in M and for all 1 ≤ j < i: t j is not enabled
in M. Note that such a transition exists, because M ≤ N ,
M is not dead and N ′ is dead. The cluster [ti] is enabled
in N and ti is the first transition in σ which belongs to [t i].

We can use lemma 1 to prove that N
σ ′→ N ′ with σ ′ =

ti t1t2 . . . ti−1ti+1 . . . tk . Let N1 and M1 be states such that

N
ti→ N1 and M

ti→ M1. By the induction hypothesis we
can show that there is a dead state M′ such that M1

∗→ M ′

and M ′ +(N1−M1)
∗→ N ′. By the definition of N1 and M1

we conclude that M
∗→ M ′ and M ′ + (N − M)

∗→ N ′. 2

We use the Substate-ordering lemma to prove the State-split
theorem illustrated in Figure 4.

Theorem 1 (State-split theorem) LetPN = (P, T, F) be
a free-choice Petri net and let M and and M ′ be two states
such that M

∗→ M ′ and M ′ is dead. If we split M up in n
substates M1, M2, . . . Mn (i.e. M = M1+M2+ . . .+ Mn),
then there exist n dead states M ′1, M ′2, . . . M ′n such that for

any i (1 ≤ i ≤ n) Mi
∗→ M ′i and M ′1+M ′2+ . . . M ′n

∗→ M ′.

Proof.
Let M1, M2, . . . Mn , M and M ′ be states of PN such that
M = M1+M2+ . . .+Mn and M

∗→ M ′. We need to prove
that there exist n dead states M ′1, M ′2, . . . M ′n such that for

any i (1 ≤ i ≤ n) Mi
∗→ M ′i and M ′1+M ′2+ . . . M ′n

∗→ M ′.
Since (M1 + M2 + . . . Mn−1) + Mn

∗→ M ′, we can use

1

M’2

M1 M M

M’

M

M’

2 3

3

n

n

MM

M’

.....

...
..

M’ + M’ +2 3 ... + M’nM’ +

M’1

Figure 4: The State-split theorem.

Lemma 2 to deduce that there is a dead state M′n such that

Mn
∗→ M ′n and M ′n + (M1 + M2 + . . . Mn−1)

∗→ M ′. If
n > 1, then we can repeat this step. Since (M′n+M1+M2+
. . . Mn−2) + Mn−1

∗→ M ′, we can use Lemma 2 to deduce
that there is a dead state M′n−1 such that Mn−1

∗→ M ′n−1 and

M ′n−1 + (M ′n + M1+ M2+ . . . Mn−2)
∗→ M ′. This process

can be repeated until all Mi have been removed, i.e. there are
dead states M′1, M ′2, . . . M ′n such that for any i (1 ≤ i ≤ n)

Mi
∗→ M ′i and M ′1 + M ′2 + . . . M ′n

∗→ M ′. 2

The State-split theorem shows that any firing sequence which
leads to a dead state, can be composed of n + 1 firing se-
quences which are relatively independent. In fact the first n
firing sequences can be calculated in parallel. This property
is used to define the parallel algorithm for the calculation of
dead states.
To conclude this section we focus attention on the following
lemma which holds for any Petri net.

Lemma 3 Let M be the initial state of a Petri net PN =
(P, T, F). If we split M up in n substates M1, M2, . . . Mn

(i.e. M = M1 + M2 + . . . + Mn), then any state M ′ =
M ′1+M ′2+. . . M ′n such that for any i (1 ≤ i ≤ n) Mi

∗→ M ′i
is reachable from M (i.e. M

∗→ M ′).

Lemma 3 is a well-known result, therefore the proof of this
lemma has been omited.

5 Parallel computation of dead states

In Section 3 we showed that the coverability graph can be
used to characterize all reachable dead states. If the num-
ber of dead states is finite, then is is possible to construct a
coverability graph which contains all reachable dead states.
Unfortunately, only for small or very simple Petri nets the
construction of the coverability graph is feasible. Based on
these observations, we started a quest for a parallel algo-
rithm to speed up the generation of dead states.

If we observe the coverability graph algorithm described in
Section 3, then a simple parallel algorithm which uses a wo-
rkpool containing nodes which should be examined seem
to be the obvious choice. In Caselli, Conte & Marenzoni
(1995) multiple workpoolsare used, i.e. each processor gen-
erates a private set of reachable states and periodic synchro-
nization points are used to distribute the union of all known
reachable states. It is also possible to use a single workpool
by adopting the master-slave paradigm. The master man-
ages a pool containing nodes which need to be examined.
These nodes are distributed over slaves, which return new
nodes to the master. In both cases nodes or states are indi-
visible, i.e. elements in a workpool correspond to complete
nodes or states instead of parts of nodes or states.

We propose a less straightforward approach which exploits
the property recorded in the State-split theorem. Nodes in
the coverability graph are no longer indivisible, i.e. multiple
processors may be working on the calculation of parts of a
state. In fact, we propose an approach where tokens instead
of states are distributed over the processors.

The first parallel algorithm, named TIGRA, is quite simple.
Given a parallel system with n processors and an initial state
M, the tokens in M are partitioned over n substates M1, M2,
. . . Mn. Each of the processors stores one of these substates
in its private memory, i.e. there is a one-to-one correspon-
dence between the processors and the substates M1, M2, . . .
Mn. For each of the substates a coverability graph is con-
structed and the set of dead states reachable from the corre-
sponding substate is recorded. This can be done in parallel,
without any need for intermediate synchronization. When
each of the processors has completed the construction of the
local set of dead states, all possible combinations of dead
states are stored in a workpool. The states in the workpool
are distributed over the processors. For each state one of the
processors calculates the set of reachable dead states. The
program terminates when all states in the workpoolhave been
evaluated. The TIGRA algorithm can be sketched as fol-
lows.

TIGRA Algorithm

(1) Partition the set of tokens in state M into n states M1,
M2, . . . Mn, i.e. M = M1 + M2 + . . .+ Mn:

M1, M2, . . . , Mn ← PARTITION(M)

(2) For each processor i compute the set of dead states
DSi reachable from state Mi :

DSi ← CONSTRUCT DEAD STATES(Mi)

(The set DSi contains all dead states M ′i reachable
from Mi .)

(3) Construct the set of states S which contains all possi-
ble combinations of dead states, i.e. S = {M′1+M ′2+
. . .+ M ′n | for all i : M ′i ∈ DSi}:

S← CONSTRUCT ALL COMBINATIONS
(M ′1, M ′2, . . . M ′n)

(4) Compute the set of dead states DS reachable from any
state in S.

DS← CONSTRUCT DEAD STATES(S)

(The states in the set S are distributed over the pro-
cessors.)

The correctness of the TIGRA algorithm can easily be ver-
ified using the State-split theorem.

Theorem 2 Let PN = (P, T, F) be a free-choice Petri net
and let M be the initial state. The set DS constructed us-
ing the TIGRA algorithm contains all dead states reachable
from state M.

Proof.
Let M ′ be an arbitrary dead state reachable from the initial
state M. We have to prove that M ′ is an element of DS.
The first step of the TIGRA algorithm partitions state M
into M1, M2, . . . Mn such that M = M1 + M2 + . . . +
Mn . By Theorem 1 we know that there exist n dead states
M ′1, M ′2, . . . M ′n such that for any i (1 ≤ i ≤ n) Mi

∗→ M ′i
and M ′1 + M ′2 + . . . M ′n

∗→ M ′. These dead states are com-
puted in the second step of the algorithm. In the third step
all possible states of the form M ′1 + M ′2 + . . . M ′n are con-
structed. In the fourth step all dead states reachable from
these constructed states are calculated including state M′.
2

5.1 Performance of the TIGRA algorithm

It is difficult to evaluate the performance of the TIGRA algo-
rithm. First of all, the performance of the algorithm highly
depends on the partitioningin step (1) of the algorithm. Sec-
ondly, the size of the Petri net is not a good measure for
the size of the corresponding coverability graph. Even for
moderate size Petri nets, the coverability graph may be very
large. On the other hand, there are large Petri nets for which
the coverability graph is surprisingly small. In other words
the structure of the Petri net and the initial state may influ-
ence the size of the corresponding coverability graph dra-
matically. Finally, we are faced with the problem that the
‘best’ sequential algorithm for the computation of reachable
dead states is not known. This makes it difficult to determine
the speedup of the TIGRA algorithm. Nevertheless, we can
make some statements about the performance of the TIGRA
algorithm.

Let us assume that we have a free-choice Petri net PN and an
initial state M such that the number of reachable dead states
is finite. Moreover, we assume that the number of nodes in
the corresponding coverability graph is equal to T . T is a
good measure for the time required to construct the cover-
ability graph. Therefore, we define T to be the time required
to find all dead states using the traditional approach on a sin-
gle processor system.
For the free-choice Petri net PN with the initial state M we
define T ′n to be the sum of the number of nodes of the cov-
erability graphs constructed in step (2) and step (4) of the
TIGRA algorithm. The time required to process step (3) is
proportional to the time required to process step (2) and step
(4). Moreover, the time required to process step (3) is small
compared to the time required to process step (2) and step
(4). Therefore, T ′n is a good measure for the time required
to compute all reachable dead states on a single processor
system using the TIGRA algorithm. In other words T ′n is a
measure for the processing time if we emulate n processors
on a single processor system using the TIGRA algorithm.
Finally, we define Tn to be the maximum number of nodes
in one of the coverability graphs constructed in step (2) plus
the maximum number of nodes handled by one of the n pro-
cessors in step (4) of the TIGRA algorithm. Clearly, Tn is
a reasonable measure for the time required to compute all
reachable dead states using the TIGRA algorithm on an MI-
MD system with n processors.

Since the ‘best’ sequential algorithm is unknown, it is dif-
ficult to define a speedup measure to evaluate the improve-
ment in time performance of the TIGRA algorithm on a sys-
tem with n processors compared to single processor system.
Therefore we define two speedup measures. The first speedup
measure Sn compares the performance of the TIGRA algo-

rithm on a system with n processors with the standard tech-
nique based on one coverability graph: Sn = T

Tn
. The sec-

ond speedup measure S′n compares the performance of the
TIGRA algorithm on a system with n processors with the
performance of the TIGRA algorithm on a single processor
system: S′n = T ′n

Tn
. We will use both speedup measures to

characterize the time performance of the TIGRA algorithm.
If we use the measure Sn a superlinear speedup (i.e. Sn > n)
is possible. This is a result of the fact that we compare two
alternative algorithms. We also define two measures for the
efficiency of the TIGRA algorithm. The first measure of ef-
ficiency is based on Sn: En = T

nTn
. We can also define an

efficiency measure based on S′n: E ′n = T ′n
nTn

.

t1 t2

t3 t4 t5 t6

t7

p5 p6

p4p3p2p1

o

i n tokens

Figure 5: A free-choice Petri net with n tokens in place i.

To show the potential of the TIGRA algorithm, we will an-
alyze the Petri net shown in Figure 5. The number of to-
kens in place i is variable and equal to the number of pro-
cessors n. In step (1) of the TIGRA algorithm each token is
assigned to a private processor. The size of the coverability
graph for the Petri net shown in Figure 5 highly depends in
the initialnumber of tokens in place i. If place i contains just
one token, then the corresponding coverability graph con-
tains only 9 nodes. If place i contains just 10 token, then the
corresponding coverability graph contains 24815nodes. Ta-

ble 1 shows some results for the Petri net shown in Figure 5.
If the number of processors is equal to 8 and we start with
8 tokens in place i, then the speedup Sn is equal to 1027.10,
i.e. the TIGRA algorithm is more than 1000 times as fast as
the conventional algorithm based on the construction of one
coverability graph. This example shows that a superlinear
speedup is possible if we use the measure Sn. If we use the
measure S′n the speedup is linear, i.e., the speedup is equal
to the number of processors.

n T Tn Sn En S′n E ′n
1 9 9 1.00 1.00 1.00 1.00
2 45 9 5.00 2.50 2.00 1.00
3 159 9 17.67 5.89 3.00 1.00
4 450 9 50.00 12.50 4.00 1.00
5 1090 9 121.11 24.22 5.00 1.00
6 2354 9 261.55 43.59 6.00 1.00
7 4654 9 517.11 73.87 7.00 1.00
8 8579 9 1027.10 128.39 8.00 1.00
9 14939 9 1659.89 184.43 9.00 1.00

10 24815 9 2757.22 275.72 10.00 1.00

Table 1: Some results for the Petri net shown in Figure 5.

The Petri net shown in Figure 5 is just an example of a ‘prob-
lem instance’. It is difficult to estimate the speedup for an ar-
bitrary problem instance. Nevertheless, the following lemma
holds.

Lemma 4 For the TIGRA algorithm the following relation
holds: Tn ≤ T .

Proof.
By Lemma 3 we know that any state generated in step (2),
(3) or (4) of the TIGRA algorithm, is also present in the stan-
dard coverability graph. 2

Lemma 4 shows that 1 ≤ Sn, i.e. the effect of the TIGRA
algorithm is never negative if we abstract from overhead. By
the definitions of S ′n and Sn we also deduce that S′n ≤ n and
S′n ≤ Sn. For practical situations: T ′n ≤ T . This means that
in practise even for a single processor system the TIGRA
algorithm turns out to be fruitful.

6 Conclusion

The algorithm presented in this papers allows for the effi-
cient calculation of dead states in a free-choice Petri net.
The TIGRA algorithmallows for superlinear speedups com-
pared to the traditionalapproach. Unfortunately, the TIGRA
algorithm is not very robust. Therefore, we developed the

more robust TIGRA-II algorithm(Aalst, 1996). Experiments
show that tremendous speedups are possible. In fact, we can
also use the two algorithms on a single processor system
and obtain remarkable speedups compared to the traditional
technique of constructing one coverability graph. These re-
sults are possible by exploiting the fundamental property re-
tained in the State-split theorem.

References

AALST, W.M.P. VAN DER (1996), Parallel Computation
of Reachable Dead States in a Free-choice Petri
Net, Computing Science Reports 96/03, Eindhoven
University of Technology, Eindhoven.

CASELLI, S., G. CONTE, F. BONARDI, ET AL. (1994),
Experiences on SIMD Massively Parallel GSPN
Analysis, in: G. Haring and G. Kotsis (eds.),
Proceedings of the 7th International Conference of
Modelling Techniques and Tools for Computer Per-
formance Evaluation, Lecture Notes in Computer
Science 794, Springer-Verlag, Berlin, 265–283.

CASELLI, S., G. CONTE, AND P. MARENZONI (1995),
Parallel State Space Exploration for GSPN Models,
in: G. De Michelis and M. Diaz (eds.), Application
and Theory of Petri Nets 1995, Lecture Notes in
Computer Science 935, Springer-Verlag, Berlin,
181–200.

CHENG, A., J. ESPARZA, AND J. PALSBERG (1993),
Complexity results for 1-safe nets, in: R.K. Shya-
masundar (ed.), Foundations of software technology
and theoretical computer science, Lecture Notes
in Computer Science 761, Springer-Verlag, Berlin,
326–337.

DESEL, J. AND J. ESPARZA (1995), Free choice Petri nets,
Cambridge tracts in theoretical computer science 40,
Cambridge University Press, Cambridge.

ESPARZA, J. (1990), Synthesis rules for Petri nets, and
how they can lead to new results, in: J.C.M. Baeten
and J.W. Klop (eds.), Proceedings of CONCUR
1990, Lecture Notes in Computer Science 458,
Springer-Verlag, Berlin, 182–198.

HACK, M.H.T. (1972), Analysis production schemata by
Petri nets, Master’s thesis, Massachusetts Institute
of Technology, Cambridge, Mass.

MURATA, T. (1989), Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE 77, 541–580.

PETERSON, J.L. (1981), Petri net theory and the modeling
of systems, Prentice-Hall, Englewood Cliffs.

