Parallel Computation of Reachable Dead States
In a Free-choice Petri Net

W.M.P. van der Adlst
Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands, telephone: -31 40 2474295, e-mail: wsinwa@win.tue.nl

Keywords:. Petri nets, Parallel algorithms, Free-choice Petri
nets, Analysisof Petri nets.

Abstract. Free-choice Petri nets are a prominent tool for
modeling and analyzing communication protocols, multi-
processor systems, parallel programs, flexible manufactur-
ing systemsand workflow scripts. Unfortunately, analysisis
often hampered by the state-explosion phenomenon. Even
for free-choice Petri nets, the reachability problem isknown
tobe EXPSPACE-hard. Inthispaper we discussatechnique
for the parallel computation of reachable dead states. This
technique is based on the partitioning of tokens instead of
the Petri net.

1 Introduction

Petri nets are used by both theoreticians and practitioners.
From a theoretical point of view, Petri nets provide a for-
mal model for concurrency with many elegant mathemati-
cal properties. From apractical point of view, Petri nets are
agraphical, easy to use, technique for the modeling of sys-
tems. A very important feature of Petri netsis the fact that
the Petri net representation can be used asastarting point for
variouskindsof analysis. The construction of the coverabil-
ity graph is awell-know tool for the analysis of Petri nets.
Inherently difficult problems can be tackled with this tool.
Unfortunately, algorithms for constructing the coverability
graph requirealot of computing power. For many Petri nets,
it is not possible to construct the coverability graphin rea-
sonable time on sequential computers. Consequently, the
use of parallelism to speed up the construction of the cov-
erability graph could be attractive.

In this paper we focus on the analysis of dead statesin free-
choice Petri nets. Free-choice Petri nets are a very interest-
ing class of Petri netsfor which strong theoretical resultsand
efficient analysis techniques exist. A state s is dead if no
transitionsare enabled in s, i.e. nothing can happen in state
s. From an analysis point of view, dead states are very im-
portant. Consider for example the situation shown in Fig-
ure 1. A production process can be represented by a free-
choice Petri net. The process transforms raw materials into

end-products. Given aninitia state, it isinteresting to know

the set of dead states reachable from the initial state. Based
on the set of reachable dead states, we are able to establish
the correctness of the production process. If we model an
administrative procedure in terms of afree-choice Petri net,

then the set of dead states reachable from some initial state
contains important information with regards to the correct-

ness of the administrative procedure. At the moment, the
construction of the coverability graph is the obviousway to

determine the set of reachable dead states. Even for free-
choice Petri nets the construction of the coverability graph

may beintractable. Therefore, an effectiveparallel construc-
tion of the coverability graph to obtain dead states is desir-

able.

production process

raw materials end-products

free-choice

Petri net

Figure 1: A production process modeled in terms of afree-
choice Petri net.

In the context of Generalized Stochastic Petri nets, some at-
tempts have been made to construct the Tangible Reacha-
bility Set (TRS) in parallel. In Casdlli, Conte, Bonardi &

Fontanesi (1994) and Caselli, Conte & Marenzoni (1995)
both SIMD and MIMD programming models are consid-
ered for the parallel construction of the TRS. In our opinion,
these approaches can al so be used for the construction of the
coverability graph. For an MIMD programming model, the
master-slave paradigm is the obvious approach to construct
the coverahility graph in parallel. The master manages the
set of nodes in the coverability graph computed so far and
distributes new nodes over the daves. The daves compute
new nodes, which are returned to the master. One of the
starting points for such a straightforward approach, is the
assumption that nodes (i.e. reachable states) are indivisible.

In this paper we present an approach which is entirely dif-
ferent. The reachable states represented by the nodesin the
coverability graph are no longer atomic, i.e. the calculation
of anew state may be distributed among several processors.
We are able to use this approach by exploiting the struc-
ture of the free-choice Petri net. In fact, we have ‘discov-
ered’ a new property (State-split property) with respect to
the dynamics of free-choice Petri nets. Based on this prop-
erty we have devel oped two algorithmsfor the parallel com-
putation of dead states. The algorithmsare named TIGRA-
| and TIGRA-II. In this paper, TIGRA-I is presented. For
TIGRA-II and the application of these algorithmsto larger
examples, the reader is refered to Aalst (1996).

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce some of the basics for free-choice Petri
nets. Section 3 deals with the construction of the coverabil-
ity graph to obtain all dead states. In Section 4 we present
the State-split theorem. Thistheorem serves asthe basisfor
the TIGRA agorithm presented in Section 5.

2 Free-choicePetri nets

The classical Petri net is a directed bipartite graph with two
nodetypescalled placesand transitions. The nodesare con-
nected viadirected arcs. Connectionsbetween two nodes of
thesametypearenot allowed. Places are represented by cir-
cles and transitions by rectangles.

Definition 1 (Petri net) A Petri netisatriplet (P, T, F):
- P isafinite set of places,
- T isafiniteset of transitions(P N T =),
- F C(PxT)U(T x P) isaset of arcs (flow relation)

A place piscalled an input place of atransitiont iff there
existsadirected arc from ptot. Place piscalled an output
place of transition t iff there exists a directed arc fromt to
p. We use ot to denotethe set of input placesfor atransition
t. The notationste, e p and pe have similar meanings, e.g.
pe isthe set of transitionssharing p as an input place.

Places may contain zero or more tokens, drawn as black dots.
The state, often referred to as marking, is the distribution
of tokens over places. We will represent a state as follows:
1p1+ 2p2 + 1ps + Op4 isthe state with one token in place
p1, two tokensin p,, one tokenin pz and no tokensin py.
We can also represent this state asfollows: p; + 2p, + ps.

The number of tokens may change during the execution of
thenet. Transitionsare the active componentsin a Petri net:

they change the state of the net according to the following
firing rule:

(1) Atransitiont issaidto beenabled iff each input place
p of t contains at least one token.

(2) An enabled transition may fire. If transitiont fires,
then t consumes one token from each input place p
of t and produces one token for each output place p
of t.

Given aPetri net (P, T, F) and an initial state M4, we have
the following notations:

- My B M,: transitiont is enabled in state M1 and
firingt in My resultsin state M,

- M1 — My: thereisatransitiont such that M4 B M,

- M1 > M, thefiring sequence o = titats. ..t 1
leads from state M; to state My, i.e. My LY M, LY

th1
.5 My

- My 5 My thereis a firing sequence which leads
from M1 to M,

A state M, is called reachable from M; iff M; = M,. A
state M isadead stateiff no transitionisenabledin M. For
astate M and aplace p, we use M (p) to denote the number
of tokensin p in state M. Fortwo statesM and N, M < N
iff for each place p: M(p) < N(p). A Petri net (PN, M)
is bounded iff for each place p there is a natural number n
such that for every reachable state the number of tokensin
pislessthann.

Inthis paper we focus on arestricted class of Petri nets. The
results presented in this paper apply to Petri nets satisfying
the so-called free-choice property.

Definition 2 (Free-choice) APetri netisafree-choice Petri
net iff, for every two places py and p; either (pre N pre) =
@ or pre = pge.

Figure 2 shows two Petri nets. Petri net (a) is afree-choice
Petri net. Petri net (b) is not a free-choice Petri net, since
t2 and t3 share the input place p2 and t3 is the only output

transition of p3.

Free-choice Petri nets have been studied extensively (Desel

& Esparza, 1995; Esparza, 1990) because they seem to be
a good compromise between expressive power and analyz-
ability. Itisaclassof Petri netsfor which strong theoretical

results and efficient analysis techniques exist.

One of the fundamental properties of afree-choice Petri net
isthe fact that it can be partitioned into clusters.

79y 7O E
@% @S0

(b)

Figure 2: Petri net (8) isa free-choice Petri net, (b) isnot a
free-choice Petri net.

Definition 3 (Cluster) Lett beatransitioninafree-choice
Petri net. Thecluster of t, denoted by [t], istheset ot U {t’ €
T | ot’ = ot}. Thecluster of aplace p, also denoted by [p],
istheset pe U{p € P | (p e N pe) #£ @}.

Notethat aplace p and atransitiont belongtothe same clus-
ter (i.e. [p] = [t]) iff p € ot. For free-choice Petri nets, we
have the following property. If transitiont is enabled, then
every transition in [t] is enabled. A cluster c is called en-
abled iff the transitionsin c are enabled.

3 Computing dead states

For bounded Petri netsitis possibleto construct the so-called
reachability graph. Thisgraph containsanodefor each state
reachable from the initial state. Two nodes in the reachabil-
ity graph M and N are connected by a directed arc if and
only if thereisatransitionenabled in M whosefiring results
instate N. If we are ableto construct the reachability graph,
then it iseasy to find all dead states reachable from the ini-
tial state. A nodein the reachability graph correspondsto a
reachable dead state if and only if it has no outgoing arcs.
Unfortunately, itisnot possibleto use the reachability graph
for an unbounded Petri net. If wetry to construct thereacha-
bility graph for an unbounded net, then thisgraph will grow
infinitely large. Thisisthereason weresort to the use of the
so-called coverability graph. For any Petri net having an ar-
bitrary initial state, the corresponding coverability graph is
finite. To obtain the coverability graph, the symbol w isin-
troduced. Thissymbol can bethought of as‘infinity’ and for
any integer n thefollowing propertieshold: @ > n,w+n =
w,o—n = wandw < w. Foramore detailed description of
the algorithm to construct the coverability graph the reader
isreferred to Peterson (1981) or Murata (1989).

For complex Petri-net models the construction of the cover-
ability graph may be very time consuming. The complexity
of the algorithm to construct the coverability graph can be
worse than primitive recursive space. For free-choice Petri
nets the reachability problem is known to be EXPSPACE-
hard (Cheng, Esparza & Palsberg, 1993). Moreover, even
for bounded free-choice Petri nets the problem of finding

all dead statesis NP-hard. Therefore, it isinteresting to in-
vestigate whether a parallel computer can be used to find all
dead statesin afree-choice Petri net. Intheremainder of this
paper we present a parallel algorithm for the calculation of
dead states in afree-choice Petri net. Thealgorithm exploits
the structure of a free-choice Petri net. We will show that
in most situationsa significant speedup is possible. Even if
we execute the al gorithm on a single processor, a significant
speedup (compared to the standard algorithm for the con-
struction of the coverability graph) is possible.

4 State-split theorem

The algorithm for the calculation of dead states presented
inthispaper exploitsthe structure of afree-choice Petri net.
For thispurposewe present anew result for free-choice Petri
nets. Thisresult isembedded in atheorem called the Sate-
split theorem. Thistheorem showsthat it is possible to dis-
tribute the construction of the coverability graph of afree-
choice Petri net if we are only interested in the reachable
dead states. The State-split theorem is the core of this pa-
per. We need this theorem to prove the correctness of the
parallel algorithm presented in this paper. In order to prove
the State-split theorem we need some preliminary results.

Thefirst preliminary result we present isthe Advance lemma.
Thislemma shows that given afiring sequence itispossible
to advance the firing of certain transitions.

Lemmal (Advancelemma) Leto = tit5. ..tk beafiring
sequence of a free-choice Petri net such that o leads from
state M tostate M/, i.e. M > M’. If a cluster ¢ is enabled
in state M and t; isthefirst transitionin o such thatt; € c,

then M % M’ witho' = titsto. .. ti_1tis1.. . t.

Proof.

In state M each of the transitionsin c is enabled, i.e. t is
enabled in state M. The transitionst; with1 < j < i
are not disabled by the advanced firing of t;, because they
belong to different clusters. Therefore, the firing sequence
o' =titato. .. ti_gtiy1 ... tkispossible. Since s’ isapermu-

tation of o, we deduce that M LA M’.]

We use the Advance lemma to prove the Substate-ordering
lemma. The Substate-ordering lemma captures the essence
of the State-split theorem. The Substate-ordering lemmais
illustrated in Figure 3.

Lemma 2 (Substate-orderinglemma) Let PN be a free-

choice Petri net and N and N’ statesof PN suchthat N =
N’ and N’ isdead. For any substate M of N (i.e. M < N),

N > M
TS0 M+H(N-M) JZ
EN
M
N’

Figure 3: The Substate-ordering lemma

thereisa dead state M’ such that M = M’ and M’ 4 (N —
M) 5 N’

Proof.

Let o = tyt,. ..tk be an arbitrary firing sequence leading
from N to N’ (N > N’). We use induction upon the length
kofo.

Ifk = 0,then N = N’. Since N isdead (N = N’) and
M < N, M isasodead. Hence, M = M isadead state
suchthat M > M’ and M’ 4+ (N — M) 5> N,

Assumek > 0. If M isdead, then for M’ = M thelemma
holds. Therefore, we may assume that M is not dead. Let
ti be the first transition in o which isenabled in M, i.e. t;
isenabledin M andforall 1 < j < i: t; isnot enabled
in M. Note that such a transition exists, because M < N,
M isnot dead and N’ is dead. The cluster [tj] is enabled
in N and t; isthefirst transitionin o which belongsto [t;].

We can use lemma 1 to prove that N % N witho' =
titito .. .ti_lti+1. Ltk Let Ng and M1 be states such that
N 5 N; and M BN M;. By the induction hypothesis we
can show that there is a dead state M’ such that My = M’
and M’ + (N; — My) = N’. By thedefinition of Ny and My
we concludethat M => M’ and M’ + (N — M) => N’. O

We usethe Substate-orderinglemmato prove the State-split
theoremiillustrated in Figure 4.

Theorem 1 (State-split theorem) Let PN = (P, T, F) be
a free-choice Petri net and let M and and M’ be two states
such that M = M’ and M’ is dead. If we split M upinn
substates My, My, ... My (i.e M = M1+ Ma+... 4+ Mp),
then there exist n dead states M7, My, ... M, such that for
anyi (L<i<n)M; > M and Mj+Mj+... M, > M’
Proof.

Let Mg, My, ... My, M and M’ be states of PN such that
M = M;+Mz+...+Myand M = M’. We need to prove
that there exist n dead states M;, M5, ... M;, such that for

*

anyi(L<i<n)M > M andM;+Mj+... M, > M’
Since (Mg + Mz + ... Mp_1) + My, = M’, we can use

S g
MM My
v
T M EML MY LM
12
v

Figure 4: The State-split theorem.

Lemma 2 to deduce that there is a dead state M), such that
Mn > M/ and M/ + (Mg + Mz + ... My_q1) = M. If
n > 1, then wecan repeat thisstep. Since (M;,+ M1+ Mx+
...Mn_2) + Mn_1 = M’, we can use Lemma 2 to deduce
that there is adead state M/,_, suchthat M, — M/ _, and
M/ + (M} 4+ M1+ Mz+... My_2) = M’. Thisprocess
can berepeated until all M; have beenremoved, i.e. thereare
dead states M;, M, ... M/ such that forany i (1 <i <n)
M; = M/ and Mj + Mj+... M} 5> M. O

The State-split theorem showsthat any firing sequence which
leads to a dead state, can be composed of n + 1 firing se-
guences which are relatively independent. Infact thefirstn
firing sequences can be calculated in parallel. This property
is used to define the parallel algorithm for the cal culation of
dead states.

To conclude this section we focus attention on the following
lemma which holds for any Petri net.

Lemma3 Let M be the initial state of a Petri net PN =
(P, T, F). If we split M up in n substates M1, My, ... M,
ieM = M+ Mz + ...+ M,), then any state M’ =
M;+Mj+... M/ suchthatforanyi (1 <i < n) M; > M/
isreachable from M (i.e. M > M’).

Lemma 3 isawell-known result, therefore the proof of this
lemma has been omited.

5 Parallel computation of dead states

In Section 3 we showed that the coverability graph can be
used to characterize all reachable dead states. If the num-
ber of dead states isfinite, then isis possible to construct a
coverability graph which contains all reachable dead states.
Unfortunately, only for small or very simple Petri nets the
construction of the coverability graph isfeasible. Based on
these observations, we started a quest for a parallel algo-
rithm to speed up the generation of dead states.

If we observe the coverability graph algorithm described in
Section 3, thenasimple parallel agorithmwhich uses awo-
rkpool containing nodes which should be examined seem
to be the obvious choice. In Caselli, Conte & Marenzoni
(1995) multipleworkpool sare used, i.e. each processor gen-
erates aprivate set of reachable states and periodic synchro-
nization points are used to distribute the union of al known
reachable states. It isalso possibleto use a single workpool
by adopting the master-slave paradigm. The master man-
ages a pool containing nodes which need to be examined.
These nodes are distributed over slaves, which return new
nodes to the master. In both cases nodes or states are indi-
visible, i.e. elementsin a workpool correspond to complete
nodes or states instead of parts of nodes or states.

We propose aless straightforward approach which exploits
the property recorded in the State-split theorem. Nodes in
the coverability graph are nolonger indivisible, i.e. multiple
processors may be working on the calculation of parts of a
state. Infact, we propose an approach where tokensinstead
of states are distributed over the processors.

The first parallel algorithm, named TIGRA, is quite simple.
Given aparallel system with n processorsand aninitial state
M, thetokensin M are partitioned over n substates M1, My,
... My. Each of the processors stores one of these substates
in its private memory, i.e. there is a one-to-one correspon-
dence between the processors and the substates My, Mo, . ..
Mp. For each of the substates a coverability graph is con-
structed and the set of dead states reachable from the corre-
sponding substate is recorded. This can be donein parallel,
without any need for intermediate synchronization. When
each of the processors has completed the construction of the
local set of dead states, all possible combinations of dead
states are stored in aworkpool. The states in the workpool
are distributed over the processors. For each state one of the
processors calculates the set of reachable dead states. The
program terminateswhen all statesintheworkpool have been
evaluated. The TIGRA agorithm can be sketched as fol-
lows.

TIGRA Algorithm

(1) Partitionthe set of tokensin state M into n states My,
My, ...Mp,i.ee M =M;+Mo+...4+ Mpg:

M1, Mg, ..., M, <= PARTITION(M)

(2) For each processor i compute the set of dead states
D S reachable from state M;:

DS <« CONSTRUCT_DEAD_STATES(M;)

(The set DS contains all dead states M, reachable
from M;.)

(3) Construct the set of states Swhich containsall possi-
ble combinations of dead states, i.e. S = {M;+ M, +
...+ M [fordli: M/ e DS}

S <« CONSTRUCT_ALL_COMBINATIONS
(M, Mj, ... M)
(4) Computethe set of dead states D Sreachablefrom any
statein S.
DS « CONSTRUCT_.DEAD_STATES(S)

(The states in the set S are distributed over the pro-
Cessors.)

The correctness of the TIGRA algorithm can easily be ver-
ified using the State-split theorem.

Theorem 2 Let PN = (P, T, F) beafree-choice Petri net
and let M betheinitial state. The set DS constructed us-
ing the TIGRA algorithmcontainsall dead states reachable
fromstate M.

Proof.

Let M’ be an arbitrary dead state reachable from the initial
state M. We have to prove that M’ isan element of DS.
The first step of the TIGRA agorithm partitions state M
into My, My, ...My suchthat M = My + My + ... +
My. By Theorem 1 we know that there exist n dead states
M;, Mj, ... M/ such that forany i (1 <i < n) M; = M/
and M; + M} + ... M/, > M’. These dead states are com-
puted in the second step of the algorithm. In the third step
al possible states of the form M7 + M; 4+ ... M;, are con-
structed. In the fourth step all dead states reachable from
these constructed states are calculated including state M’.
O

5.1 Performance of the TIGRA algorithm

Itisdifficultto evaluate the performance of the TIGRA algo-
rithm. First of al, the performance of the algorithm highly
dependson the partitioningin step (1) of thea gorithm. Sec-
ondly, the size of the Petri net is not a good measure for
the size of the corresponding coverability graph. Even for
moderate size Petri nets, the coverability graph may be very
large. Ontheother hand, there are large Petri netsfor which
the coverability graph is surprisingly small. In other words
the structure of the Petri net and the initial state may influ-
ence the size of the corresponding coverability graph dra-
matically. Finally, we are faced with the problem that the
‘best’ sequentia algorithmfor the computation of reachable
dead statesisnot known. Thismakesit difficultto determine
the speedup of the TIGRA algorithm. Nevertheless, we can
make some statements about the performance of the TIGRA
algorithm.

L et usassume that we have afree-choice Petri net PN and an
initial state M such that the number of reachable dead states
isfinite. Moreover, we assume that the number of nodesin
the corresponding coverability graphisequal to T. T isa
good measure for the time required to construct the cover-
ability graph. Therefore, we define T to bethetimerequired
tofind all dead states using thetraditional approach onasin-
gle processor system.

For the free-choice Petri net PN with the initial state M we
define T, to be the sum of the number of nodes of the cov-
erability graphs constructed in step (2) and step (4) of the
TIGRA agorithm. The time required to process step (3) is
proportional to the timerequired to process step (2) and step
(4). Moreover, thetime required to process step (3) issmall
compared to the time required to process step (2) and step
(4). Therefore, T is a good measure for the time required
to compute al reachable dead states on a single processor
system using the TIGRA algorithm. In other words T isa
measure for the processing time if we emulate n processors
on asingle processor system using the TIGRA agorithm.
Finally, we define T, to be the maximum number of nodes
in one of the coverability graphs constructedin step (2) plus
the maximum number of nodes handled by one of the n pro-
cessors in step (4) of the TIGRA agorithm. Clearly, T, is
a reasonable measure for the time required to compute al
reachable dead states using the TIGRA agorithmon an MI-
MD system with n processors.

Since the ‘best’ sequential agorithm is unknown, it is dif-
ficult to define a speedup measure to evaluate the improve-
ment in time performance of the TIGRA agorithmon asys-
tem with n processors compared to singleprocessor system.
Therefore we definetwo speedup measures. Thefirst speedup
measure S, compares the performance of the TIGRA algo-

rithm on a system with n processors with the standard tech-
nique based on one coverability graph: S, = Tl The sec-
ond speedup measure S, compares the performance of the
TIGRA dgorithm on a system with n processors with the
performance of the TIGRA agorithm on a single processor
system: §, = . We will use both speedup measures to
characterize the time performance of the TIGRA algorithm.

If we usethe measure S, asuperlinear speedup (i.e. § > n)

ispossible. Thisisaresult of the fact that we compare two
aternative algorithms. We also define two measures for the
efficiency of the TIGRA algorithm The first measure of ef-
ficiency ishased on §;: Ep = nT We can aso define an

efficiency measure based on §;: E; = nT

‘/@\; n tokens

e
QFB p4
:

\)ﬁ/

t7

l
(o

Figure 5: A free-choice Petri net with n tokensin placei.

\
Ow
:

|-—————

To show the potential of the TIGRA agorithm, we will an-
alyze the Petri net shown in Figure 5. The number of to-
kensin placei isvariable and equal to the number of pro-
cessors n. Instep (1) of the TIGRA a gorithm each tokenis
assigned to a private processor. The size of the coverability
graph for the Petri net shown in Figure 5 highly dependsin
theinitial number of tokensinplacei. If placei containsjust
one token, then the corresponding coverability graph con-
tainsonly 9 nodes. If placei containsjust 10 token, then the
corresponding coverability graph contains 24815 nodes. Ta

ble 1 shows some resultsfor the Petri net shownin Figure5.
If the number of processorsis equal to 8 and we start with
8tokensin placei, then the speedup S, isequal to 1027.10,
i.e. the TIGRA agorithmis more than 1000 times as fast as
the conventional agorithm based on the construction of one
coverability graph. This example shows that a superlinear
speedup ispossibleif we use the measure S,. If we use the
measure S, the speedup is linear, i.e., the speedup is equal
to the number of processors.

n T[T S = S| E
1 9l 9 100 | 100 | 100|100
2 45| 9 500 | 250 | 200 |1.00
3| 159| 9| 1767 | 589 | 300 | 100
41 450 | 9| 5000 | 1250 | 4.00 | 1.00
5| 1090 | 9| 12111 | 2422 | 500 | 1.00
6| 2354 | 9| 26155 | 4359 | 6.00 | 1.00
7| 4654 | 9| 51711 | 7387 | 7.00 | 1.00
8| 8579 | 9 |1027.10 | 12839 | 800 | 1.00
9 || 14939 | 9 | 1659.89 | 184.43 | 9.00 | 1.00
10 || 24815 | 9 | 2757.22 | 275.72 | 10.00 | 1.00

Table 1. Some results for the Petri net shown in Figure 5.

The Petri net showninFigure5isjust an example of a‘ prob-
leminstance’ . Itisdifficultto estimatethe speedup for anar-
bitrary probleminstance. Nevertheless, thefollowinglemma
holds.

Lemma4 For the TIGRA algorithmthe following relation
holds: T, < T.

Proof.

By Lemma 3 we know that any state generated in step (2),
(3) or (4) of the TIGRA agorithm, isalso present in the stan-
dard coverahility graph. O

Lemma 4 showsthat 1 < §,, i.e. the effect of the TIGRA
algorithmisnever negativeif we abstract from overhead. By
the definitionsof S, and S, we also deducethat §, < nand
S, < S, For practicd situations: T, < T. Thismeans that
in practise even for a single processor system the TIGRA
algorithm turns out to be fruitful.

6 Conclusion

The algorithm presented in this papers allows for the effi-
cient calculation of dead states in a free-choice Petri net.
The TIGRA algorithmallowsfor superlinear speedups com-
pared tothetraditional approach. Unfortunately, the TIGRA
algorithm is not very robust. Therefore, we developed the

morerobust TIGRA-II algorithm (Aalst, 1996). Experiments
show that tremendous speedups are possible. Infact, we can
also use the two algorithms on a single processor system
and obtain remarkabl e speedups compared to thetraditional
technique of constructing one coverability graph. Thesere-
sultsare possible by exploitingthefundamental property re-
tained in the State-split theorem.

References

AALST, W.M.P. VAN DER (1996), Paralel Computation
of Reachable Dead States in a Free-choice Petri
Net, Computing Science Reports 96/03, Eindhoven
University of Technology, Eindhoven.

CASELLI, S., G. CONTE, F. BONARDI, ET AL. (1994),
Experiences on SIMD Massively Parallel GSPN
Anaysis, in: G. Haring and G. Kotsis (eds.),
Proceedings of the 7th International Conference of
Modelling Techniques and Tools for Computer Per-
formance Evaluation, Lecture Notes in Computer
Science 794, Springer-Verlag, Berlin, 265-283.

CASELLI, S., G. CONTE, AND P. MARENZONI (1995),
Parallel State Space Exploration for GSPN Models,
in: G. De Michelisand M. Diaz (eds.), Application
and Theory of Petri Nets 1995, Lecture Notes in
Computer Science 935, Springer-Verlag, Berlin,
181-200.

CHENG, A., J. ESPARZA, AND J. PALSBERG (1993),
Complexity results for 1-safe nets, in: R.K. Shya-
masundar (ed.), Foundations of software technology
and theoretical computer science, Lecture Notes
in Computer Science 761, Springer-Verlag, Berlin,
326-337.

DESEL, J. AND J. ESPARZA (1995), Free choice Petri nets,
Cambridgetractsin theoretical computer science 40,
Cambridge University Press, Cambridge.

EsPARzA, J. (1990), Synthesis rules for Petri nets, and
how they can lead to new results, in: J.C.M. Bageten
and JW. Klop (eds), Proceedings of CONCUR
1990, Lecture Notes in Computer Science 458,
Springer-Verlag, Berlin, 182—198.

HACK, M.H.T. (1972), Analysis production schemata by
Petri nets, Master's thesis, Massachusetts I nstitute
of Technology, Cambridge, Mass.

MURATA, T. (1989), Petri Nets: Properties, Analysis and
Applications, Proceedings of the [EEE 77, 541-580.

PETERSON, J.L. (1981), Petri net theory and the modeling
of systems, Prentice-Hall, Englewood Cliffs.

