
Proclets in Healthcare

R.S. Mansa,b,∗, N.C. Russella, W.M.P. van der Aalsta, P.J.M. Bakkerb, A.J.
Molemanb, M.W.M. Jaspersc

aDepartment of Information Systems, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands

bAcademic Medical Center, University of Amsterdam, Department of Quality Assurance
and Process Innovation, Amsterdam, The Netherlands

cDepartment of Medical Informatics, Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

∗Corresponding Author. Information for sending proofs: email-address:r.s.mans@tue.nl,
Address: Eindhoven University of Technology, School of Industrial Engineering, Subdepart-
ment of Information Systems (IS), Paviljoen K0.03, De Lismortel 2, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands, fax: +31 40 243 2612

Email addresses: r.s.mans@tue.nl (R.S. Mans), n.c.russell@tue.nl (N.C. Russell),
w.m.p.v.d.aalst@tue.nl (W.M.P. van der Aalst), p.j.bakker@amc.uva.nl (P.J.M. Bakker),
a.j.moleman@amc.uva.nl (A.J. Moleman), m.w.jaspers@amc.uva.nl (M.W.M. Jaspers)

Preprint submitted to Journal of Biomedical Informatics March 5, 2010

Abstract

Healthcare processes can be characterized as weakly-connected interacting

light-weight workflows coping with different levels of granularity. Classical work-

flow notations fall short in supporting these kind of processes. Although these

notations are able to describe the life-cycle of individual cases and allow for

hierarchical decomposition, they primarily support monolithic processes. How-

ever, they are less suitable for healthcare processes. The Proclets framework

is one formalism that provides a solution to this problem. Based on a large

case study, describing the diagnostic process of the gynecological oncology care

process at the Academic Medical Center (AMC), we identify the limitations of

“monolithic workflows”. Moreover, by using the same case study, we investi-

gate whether healthcare processes can be described effectively using Proclets. In

this way, we provide a comparison between the Proclet framework and existing

workflow languages and identify research challenges.

Key words: Healthcare, Workflow Execution, Business Process

1. Introduction

In healthcare organizations, such as hospitals, many complex, non-trivial

processes are performed which are lengthy in duration. These processes are

diverse, flexible and often involve several medical disciplines in diagnosis and

treatment. For a group of patients with the same condition, a number of different

examinations and treatments may be required and the order in which they are

conducted can vary greatly.

For these healthcare processes, information technology offers new possibili-

ties for quality improvement [1]. However, in order to be able to provide this

support, a distinction needs to be made between two kinds of processes. First of

all, organizational processes capture the organizational knowledge which is nec-

essary to coordinate interoperating healthcare professionals and organizational

units (e.g. reporting of results or preparations for surgery) [1]. Based on process

definitions, Workflow Management Systems (WfMSs) are able to manage the

2

flow of work in these processes such that individual workitems are done at the

right time by the proper person [2–5].

Conversely, medical treatment processes capture the diagnostic and thera-

peutic procedures to be carried out for a particular patient [1]. In this context,

Computer Interpretable Guidelines (CIGs) are used which can be considered

to be frameworks for specifying these kinds of processes and for standardizing

them [6]. Languages for capturing CIGs facilitate clinical decision-making and

have (often complex) features for standardizing medical concepts, expressing

decision criteria and linking with electronic health records (see e.g. [7–11]).

Computer-interpretable Task-Network Models (TNMs) define a network of

tasks that unfold over time [7, 12]. Most languages for modeling CIGs are

TNMs [7, 13]. Moreover, most languages for WfMSs may also be considered as

a kind of TNM [14]. However, there are important differences. A CIG language

is a TNM for a clinical care process that realizes a clinical/medical goal, for

example increasing doctor’s adherence to an evidence-based medical guideline

to optimize decisions concerning disease management. These CIG languages

thus contain medical knowledge and evidence, and are decision oriented. In

that way, their primary goal is to provide doctors with a patient-specific advice

concerning diagnostic and therapeutic decisions [1, 6, 15–18]. Such computer-

based guideline systems have been developed for a myriad of clinical issues,

including management of heart disease [17], hypertension [18], acute myocardial

infarction [19], and mechanical ventilation of patients [20]. So, such a model

should be seen from the viewpoint of a physician dealing with a patient that

needs to be treated for a certain illness [6]. In contrast, a workflow model is a

TNM for a business process that realizes a business objective, for example the

tuning of healthcare (logistic) processes with the aim with the aim of improving

the efficiency and quality of the described process. So, such a model should be

seen from the viewpoint of a manager or an analyst [6]. Moreover, a workflow

model specifies all allowable process paths and all decision points. However, the

decision points themselves need to be realized using dedicated software (e.g.,

expert systems based on CIGs) or medical professionals. Or, in other words,

3

a workflow model is concerned with the logistics of work processes, not with

the contents of individual tasks. Clearly, no support is provided with regard to

the selection of process paths unless routing can be done on the basis of data

elements. This is in contrast to guidelines where patient related data is used in

order to make the right clinical decision. In order to provide optimal support for

healthcare processes, we believe that effective support for both organizational

and medical treatment processes is necessary and that both areas can and should

complement each other.

In this paper, we focus on the support of organizational processes by WfMSs.

WfMSs have been widely and successfully applied in various industries to stream-

line process execution, lower cycle times, and to monitor task completion [21–

25]. Although these advantages make the application of this kind of technology

in the healthcare domain interesting, its ’widespread’ adoption and dissemina-

tion is the exception rather than the rule [1, 26, 27]. This is probably related to

the fact that contemporary WfMSs have difficulties dealing with the dynamic

nature of processes [28]. One of the main problems is that they require that the

complete workflow is described as one monolithic overarching workflow. This

assumes that a workflow process can be modeled by specifying the life-cycle of

a single case in isolation. For real-life healthcare processes this assumption can

not be made. As a result, the control-flow of several cases need to be artificially

squeezed into a single model where essential parts of the control-flow are ulti-

mately hidden inside custom-made application software or are not taken into

account at all. As will be demonstrated in this paper, if a complex healthcare

process is described in this way, this results in an unreadable process definition.

This can be illustrated when considering a typical healthcare process for the

diagnosis of patients. In general for a patient this consists of multiple visits to

a hospital in order to meet with doctors and undergo diagnostic tests (e.g. a

lab test). However, there also steps in which several medical specialists meet

in order to discuss the status of patients. Clearly, some tasks may operate at

the level of a single patient, whereas other tasks operate at the level of a group

of patients. So, processes may rely on information that is at different levels of

4

aggregation. Note that this is very different from the classical notion of hierarchy

in workflows as aggregation cuts across multiple cases.

The process of diagnosing a patient typically consists of the execution of

a number of smaller processes that run in conjunction with each other. Flex-

ibility in healthcare processes is needed because these small processes can be

instantiated and synchronized at any point in time. For example, at any point

in the process of diagnosing a patient, a doctor may order a lab test. However,

although these process fragments execute independently from each other, a cer-

tain “magnetic force” exists between them. Such process fragments can best be

characterized as weakly-connected interacting lightweight workflows.

To date, contemporary WfMSs do not offer support for weakly-connected

interacting lightweight workflows which can deal with information that is at

varying levels of aggregation. An interesting means of solving this issue is pro-

vided by Proclets [28, 29]. Proclets are a framework modeling and enacting

lightweight workflow processes. Together with performatives and channels it

is possible to describe how these Proclets interact with each other. Moreover,

the interaction between these Proclets is modeled explicitly using structured

messages, called performatives, which are exchanged via channels.

Proclets provide an interesting means of modeling and executing a health-

care process in WfMSs, and can assist in realizing the promised benefits of

applying WfMSs. In this paper we investigate whether organizational health-

care processes can indeed be modeled using this technique and how this compares

to existing workflow approaches. In order to do so, we take the following ap-

proach. We focus on the gynecological oncology workflow as it is performed at

the Academic Medical Center (AMC) in Amsterdam, a large academic hospital

in the Netherlands, which is considered to be representative of other health-

care processes. The selected healthcare process describes the diagnostic process

for patients visiting the gynecological oncology outpatient clinic and is a large

process consisting of around 325 activities. In earlier work, this healthcare pro-

cess has already been modeled in full using the workflow languages, YAWL and

FLOWer, and has been partially modeled using the Declare and ADEPT1 work-

5

flow languages [30]. This allows us to investigate the problems existing workflow

approaches face when modeling this type of process. We discuss in detail how the

healthcare process has been modeled using the YAWL workflow language. For

FLOWer, ADEPT1, and Declare, we summarize the issues encountered. This

leads on to a discussion of how the same healthcare process can be modeled us-

ing Proclets and how the identified issues can be addressed. It is worth noting

that the reason for implementing a hospital process in the four workflow systems

mentioned above was to identify the requirements that need to be fulfilled by

workflow systems in order to be successfully applied in a hospital environment.

These requirements have been discussed in [31].

This paper is structured as follows: Section 2 introduces the Proclets ap-

proach. In Section 3, we introduce the gynecological oncology healthcare process

and discuss how it is modeled using YAWL, FLOWer, Declare, and ADEPT1.

In Section 4, we discuss the modeling of the healthcare process using Proclets

and elaborate on how the limitations, mentioned in Section 3, are addressed.

Related work is outlined in Section 5. Section 6 discusses the experiences asso-

ciated with modeling healthcare processes using Proclets. Finally, the paper is

concluded in Section 7.

2. Introduction to Proclets

In this section, we discuss how Proclets provide a framework for modeling

workflows. The concepts of the framework have already been introduced in

[28, 29]. In this section, we give an introduction to this framework in order to

assist the reader in better understanding the Proclet models that will be shown

in the remainder of this document. For complete details we refer the reader to

[28, 29]. At the end of this section, the use and operation of Proclets will be

illustrated by a small healthcare example.

In Figure 1, a graphical representation of the concepts, which underpin the

framework, is shown. As can be seen, there are five main concepts each of which

will be discussed below.

6

1,1

1,1

port

naming
service

channel
proclet

task

performative

Figure 1: Graphical representation of the Proclet framework.

The framework is centered around a Proclet . There is a distinction between

a Proclet class and a Proclet instance. A Proclet class can best be seen as a

process definition which describes which tasks need to be executed and in which

order. For a Proclet class, instances can be created and destroyed. One instance

is called a Proclet instance. For the definition of a Proclet class, a selection can

be made between multiple graphical languages. In this paper, we use a graphical

language based on the YAWL language [32]. However, other languages, such

as Petri Nets [33] or EPCs [34], can also be used. With regard to the selection

of a graphical language, some limitations apply. First of all, Proclet instances

need to have a state and they need to support the notion of a task. Second, a

Proclet class needs to be sound [35].

With regard to the communication and collaboration among Proclets, so

called channels, ports, and performatives are important. First of all, Proclets

interact with each other via channels. A channel can be used to send a per-

formative to an individual Proclet or to a group of Proclets. A performative

7

is a specific kind of message with several attributes which is exchanged between

one or more Proclets. A performative has the following attributes:

• Time: the moment the performative was created/received.

• Channel : the medium used to exchange the performative.

• Sender : the identifier of the Proclet creating the performative.

• Set of receivers: the identifiers of the Proclets receiving the performative,

i.e. a list of recipients.

• Action: the type of the performative.

• Content : the actual information that is being exchanged.

The role of the action attribute deserves some special attention. This at-

tribute can be used to specify the illocutionary point of the performative. The

five illocutionary points identified by Searle [36] (assertive, directive, commis-

sive, declarative, expressive) can be used to specify the intent of the perfor-

mative. Examples of typed performatives identified by Winograd and Flores

are request, offer, acknowledge, promise, decline, counter-offer, and commit-to-

commit [37] which each represents a change in the state of a conversation. In

the model no restriction is made to any single classification of performatives (i.e.

a fixed set of types). It is important to use the experience and results reported

by researchers working on the language/action perspective [37] as these give an

insight into the broader requirements in this area.

Of course, it is possible to add more attributes to a performative. Note that

a channel may have different properties which affect the sending and receiving

of performatives, e.g. push/pull or synchronous/asynchronous. In order for

Proclets to be able to find each other there is a naming service which keeps

track of existing Proclets. A Proclet class and instances of it are defined in the

following way:

• A Proclet class has a unique name. In the same way, an instance of a

Proclet class has an unique identifier.

8

• A Proclet class has ports. Performatives are sent and received via these

ports in order for a Proclet to be able to interact with other Proclets. Ev-

ery port, either incoming or outgoing, is connected to one task. Moreover,

a port has two attributes.

First, the cardinality specifies the number of recipients of performatives

exchanged via the port. An ∗ denotes an arbitrary number of recipients,

+ at least one recipient, 1 precisely one recipient, and ? denotes no or just

one recipient. Note that by definition an input port has cardinality 1.

Second, the multiplicity specifies the number of performatives exchanged

via the port during the lifetime of an instance of the class. In a similar

fashion to the cardinality, an ∗ denotes that an arbitrary number of per-

formatives are exchanged, + at least one, 1 precisely one, and ? denotes

that either one or no performatives are exchanged. Note that by definition

an input port has a multiplicity of 1 or ?.

• A Proclet instance has its own knowledge base. Knowledge in the knowl-

edge base can be used to make routing decisions. This knowledge can range

from simple data to beliefs about other Proclets. Building a good knowl-

edge base is not a trivial task. First of all, there has to be an ontology to

characterize the intended meaning of terms and concepts. Then, the scope

and knowledge acquisition process have to be identified. When defining

the knowledge base, well known notions from the medical domain can be

used. For example, notions from the Open Knowledge Base Connectivity

(OKBC) knowledge model can be used [38].

Here, we use a more restrictive definition of a knowledge base (unlike

the original definition in [28, 29]). Each Proclet instance has its own

knowledge base for storing performatives that are received and sent. Parts

of the knowledge base can be public or private. The public part is identical

for all instances of the class, i.e. this part resides at the class level even

though it holds information about instances. The private part resides

exclusively at the instance level.

9

*,1

1,*

1,1

1,1

1,?

1,?

1,?

*,1

*,1

Lab visit Lab test

1,*

Order system

HIS

(a) Two proclet classes connected through two channels

Lab visit

Lab test

(b) Class diagram containing
the two proclet classes

1..1

1..*

requires

(c) Example of a performative

Time Channel Sender Receivers Action Content Scope Direction
11:00 Order

system
Lab
visit -
John

Lab test –
HGB
John

Create Can you
perform a HGB
test for John?

Private OUT

Order
entry

Take
blood

sample

Receive
result

Judge
results

Everythin
g fine Do tests

again

Receive
updated

result

Send
report

Perform
test

Make
report

Finish
lab test

Perform
test

again

Provide
updated
report

doctor chemical
analyst

lab
assistant chemical

analyst

chemical
analyst

chemical
analyst

lab
assistant

lab
assistant

Figure 2: Example of two Proclet classes.

• The knowledge base can be queried by tasks. A task may have a precondi-

tion based on the information that can be found in the knowledge base. A

task can only fire if (1) the task in the net itself is enabled, (2) each input

port contains a performative, and (3) the precondition evaluates to true.

Note that for the YAWL language, as can be seen in Figure 2, multiple

ports can be connected to an input condition. In this case, an instance is

created on the receival of each performative.

• A task connected to an output port may have a postcondition. The post-

condition specifies for the output ports, the number of performatives gen-

erated and their content. The postcondition may also depend upon infor-

mation that can be found in the knowledge base.

In order to illustrate the framework, we use the small healthcare-related

10

example shown in Figure 2(a). The example shows an organizational process

which deals with the process in which a doctor orders a selection of lab tests

for a patient. Afterwards, the patient visits the lab where a blood sample is

taken. For the sample, several lab tests are performed and the final outcomes

of the tests are reconciled in a report. There are two Proclet classes. The

Proclet class “lab visit” is instantiated for every patient who visits the lab for

whom a blood sample is taken. Proclet class “lab test” is instantiated for every

lab test that needs to be performed on the blood sample. Hence, there is an

one-to-many relationship between “lab visit” and “lab test” as shown by the

relationship requires in the class diagram in Figure 2(b). Note that the white

colored tasks are executed by a human resource and the grey colored tasks are

executed automatically. For the white colored tasks it is indicated which role is

required when performing the task.

For the “lab visit” Proclet, first a doctor orders a lab examination for a

patient and indicates which tests are required (“Order entry” task). When a

patient visits the lab, a blood sample is taken by a lab assistant (“Take blood

sample” task). Upon completion of the task, a trigger for each required lab test

is initiated, so that for every lab test a single instance of the Proclet class “Lab

test” is created. Consequently, the cardinality of the outgoing port of the “Take

blood sample” is ∗. Moreover, the multiplicity is 1 which means that during

the lifetime of an instance of the class “Lab visit” exactly one performative is

sent via this port. The creation performative is sent via the lab order system,

which explains why the name of the channel is “Order system”. The input port

connected to the input port of the “Lab test” Proclet class has cardinality 1 and

multiplicity 1 as an instance can only be created once. Figure 2(b) shows an

example of a performative that is sent by a “Lab visit” Proclet to a “Lab test”

Proclet. From the figure, we can see that at 11 ’o clock a performative is sent

by the “Lab visit” Proclet for patient John in order to create an instance of the

“Lab test” Proclet called “Lab test - HGB John”. More specifically, an instance

of a “Lab test” Proclet class is created so that a hemoglobin (HGB) blood test

can be performed. The performative is stored in the private knowledge base of

11

the “Lab visit” Proclet.

After an instance of the “Lab test” Proclet class has been created, a chemical

analyst performs a test on the blood sample (“Perform test” task) followed by

the creation of a report which contains the result of the test (“Make report”).

Note that the performance for a specific lab test could be, for example, based

on a link to a code from a controlled medical terminology. As a consequence

of performing the “Make report” task, a performative is sent to the instance of

the initiating Proclet class “Lab visit”. Note that each instance of “Lab test”

sends performatives via the Hospital Information System (HIS). The results of

the individual lab tests are received by the “Receive result” task. The input

port of task “Receive result” has cardinality 1 and multiplicity ∗, indicating

that reports of multiple tests may be received. Each performative received is

stored in a knowledge base. The “lab visit” Proclet inspects this knowledge

base continuously to determine whether a report for each initiated lab test has

been received so that the “Judge results” task can be performed. This means

that for this task a precondition has been defined which evaluates to true once

a report has been received for each lab test that was initiated.

Based on the reports received, a lab assistant decides whether any of the lab

tests need to be performed again or that everything is fine (i.e. were valid results

obtained or did any exceptions occur). If the tests do not need to be done again,

the “Everything fine” task is performed after which all instances of the “Lab

test” Proclet class are destroyed via the “Finish lab test” task. In the situation

where the tests need to be done again, a performative is sent via the “Do tests

again” task to the “Perform test again” task to all “Lab test” Proclet instances

to indicate that the lab test needs to be redone. Note that the cardinality of

the output port of both the “Do tests again” and “Everything fine” tasks is ∗,

i.e., in a single step all “lab test” Proclets are informed whether the tests need

to be redone or not. Moreover, the ports connected to the “Perform test again”

task and “Finish lab test” task both have cardinality 1 (i.e. one recipient)

and multiplicity ? (one performative is sent via one of the two ports). After

that a chemical analyst performs the test again, the “Provide updated report”

12

task is performed which sends the updated report to the “Lab visit” Proclet

instance where all of the results are collected via the “Receive updated result”

task. Finally, the doctor, who requested the lab examination, is informed via

the “Send report” task after which the “Lab visit” Proclet instance is destroyed.

The example in Figure 2 is rather simplistic and hides many details. For

example, the two Proclet classes are not general enough in the sense that they

do not handle the problems that may relate to the results of tests. However,

it compactly illustrates the main features of Proclets. For full details on the

formalism we refer the reader to [28, 29]. Note that as the example shows

an organizational process, it does not contain any logic / data for making a

clinical decision. So, for the “Order entry” and “Judge results” tasks there is

respectively no guidance in the selection of lab tests and whether to do the tests

again or not. However, we foresee that CIGs could provide guidance in such a

decision process.

3. Limitations of Monolithic Workflows

In this section, we identify the problems that existing monolithic workflow

approaches are facing when dealing with the dynamic nature of processes. In

order to do this, we take the following approach. First, we examine the gyne-

cological oncology workflow as it is performed at the Academic Medical Center

(AMC) in Amsterdam which is considered to be representative of other health-

care processes. In previous work this process has been modeled in full using

two workflow languages, YAWL and FLOWer [30], and has been partially mod-

eled using the Declare and ADEPT1 workflow languages [30]. We discuss the

selected healthcare process in detail by elaborating on how it has been modeled

using the YAWL workflow language and identify the issues that arose when

doing so. For FLOWer, ADEPT1, and Declare, we also discuss the issues that

arose when implementing the process although we do not elaborate on specific

implementation details. In doing so, we exemplify the problems existing work-

flow approaches are facing. Subsequently, in Section 4, we discuss how the same

13

healthcare process is modeled using Proclets and how the issues identified can

be addressed using our approach.

The gynecological oncology workflow is a large process, consisting of over 325

activities, and is performed at the gynecological oncology outpatient department

at the AMC hospital. The AMC is the most prominent medical research center

in the Netherlands and one of the largest hospitals in the country. The health-

care process deals with the diagnosis of patients suffering from cancer once they

are referred to the AMC hospital for treatment. The care process can be con-

sidered to be non-trivial and illustrative of other healthcare processes, both at

the AMC and in other hospitals.

The healthcare process under consideration consists of two distinct parts.

The first is depicted in Figure 3 and shows the top page of the YAWL model.

The process describes all of the steps that may be taken with a patient up to the

point where they are diagnosed. The process starts with the “referral patient

and preparations for first visit” composite activity. This subprocess deals with

the steps that need to be taken for the first visit of the patient to the outpatient

clinic. The next step in the process is the “visit outpatient clinic” composite

activity where the patient visits the outpatient clinic for a consultation with

a doctor. Such a consultation can also be done by telephone (“consultation

by telephone” composite activity). During a visit or consultation, the patient

discusses their medical status with the doctor and it is decided whether any

further steps need to be taken, e.g., diagnostic tests.

The execution of the tests that may be needed are modeled by the “exami-

nations” multiple instance task which allows for the concurrent instantiation of

a number of different tests for a patient. However, for each patient there are also

other steps that may be taken. These are modeled by the “ask for gynecology

data”, “ask for radiology data”, and “examination under anesthetic” composite

tasks and the “ask for pathology slides” and “take tissue sample” tasks. For

example, the “ask for pathology slides” and “take tissue sample” tasks model

the situation where a pathology examination is required after which the refer-

ring hospital is requested to send their pathology slides to the AMC or a tissue

14

Figure 3: General overview of the gynecological oncology healthcare process.

sample is taken at the AMC.

Looking at the overall process we see that while the patient is visiting the

outpatient clinic (shown in the top part of Figure 3) it is possible for a series of

subprocesses to run concurrently (as shown in the lower part of the figure). As

the execution of these subprocesses can be complex and time consuming, there is

no guarantee that all of them will be finished before the start of the next patient

consultation, e.g. the result of a certain test might be delayed. Consequently,

these subprocesses should be seen as separate inter-twined life-cycles running

15

Figure 4: Visit of the patient to the outpatient clinic.

at different speeds rather than as one workflow covering different but related

cases. However, if we want to denote that there is in fact a connection between

these related cases, we need to model them in one monolithic workflow. For the

FLOWer, Declare, and ADEPT1 workflow languages, these observations also

apply. Therefore, we can conclude that for existing workflow approaches cases

need to be straightjacketed into a monolithic workflow despite the fact that it is

more natural to view processes as inter-twined loosely-coupled object life-cycles.

In Figure 4, the subprocess underlying the “Visit outpatient clinic” compos-

ite task is shown which describes the visit of a patient to the outpatient clinic.

During such a consultation, the medical status of the patient is discussed and a

decision is made about the next steps to be taken (“Make diagnosis” task). At

different stages during the process, several administrative tasks, such as handing

out brochures (task “Additional information with brochures”), and producing

a patient card (task “Make patient card”) may be necessary. As a result of the

execution of the “Make diagnosis” task, subsequent steps in the process need to

be triggered, such as further diagnostic tests or a pathology examination. These

subsequent steps are depicted in the top page of the YAWL model (see Figure 3).

As a consequence, they can only be enabled when the process modeled in Figure

16

4 is already finished. It would be more natural if these kind of processes were

instantiated at the moment that it is known that they need to be created, i.e.

immediately after execution of the “Make diagnosis” task. In general, for each

of the subprocesses modeled in Figure 3, no direct interaction can take place

during their execution. This is due to the fact that in YAWL there is no way of

modeling interactions between (sub)processes. The same observation holds for

FLOWer, ADEPT1, and Declare as well. Consequently, facilitating interactions

between (sub)processes is far from trivial. Where these need to be supported,

they are typically hidden in application logic or in custom built applications or

even not taken into account at all. Another option would be to model the whole

process in one diagram (so, no hierarchical decomposition) with the necessary

interactions being modeled via case data. However, this would result in a large

unreadable process model which does still not show the interactions between

(sub)processes.

Note that business process notations exist which support interactions be-

tween processes. For example, the Business Process Modeling Notation (BPMN)

allows the flow of messages between two entities to be shown via the message

flow construct [39]. In general, we can conclude that as most workflow languages

do not provide support for interaction between (sub)processes, it is difficult to

model interactions between processes.

In Figure 5, the second part of the gynecological oncology healthcare process

is shown. This involves meetings between gynecological oncology doctors and

other medical specialists. First, the participants from the different medical

disciplines prepare themselves for these meetings (“prepare radiology, pathology,

and MDO meeting” composite task). During the radiology meeting (composite

task “radiology meeting”), the doctors from gynecological oncology discuss with

a radiologist the results of the radiology tests that have been performed for

various patients during last week. The same holds for the “pathology meeting”

composite task for the pathology examinations that have been performed during

the last week. Finally, during the MDO meeting (“MDO meeting”) the medical

status of patients is discussed and a decision is made about their final diagnosis

17

Figure 5: Meetings which are held on Monday afternoons to discuss the medical status of

patients.

before the treatment phase is started. Finally, as a result of these meetings,

several subsequent steps may need to be initiated for individual patients. These

steps are modeled at the right-hand side of Figure 5. For example, for some

patients, existing tissue may need to be re-examined whereas for others, the

referring hospital may need to be asked to send their pathology material to the

AMC for investigation (“ask for tissue” task).

However, most importantly, compared to the two models discussed earlier,

we are dealing with a group of patients instead of a single patient. Obviously,

compared to the two previous models, we are dealing with a different level

of granularity and one instance aggregates information about several other in-

stances. Due to this difference, the workflows executed for a single patient,

shown in Figure 3, and the workflow executed for a group of patients, shown

in Figure 5, are modeled separately. Consequently, the two models are com-

pletely disconnected whereas in reality (examinations for) patients need to be

registered for these meetings, which can be initiated from different places in

the process described in Figure 3. For example, a patient can be registered

during the initial phases of the process and also during a visit to the outpatient

clinic. Should these workflows, operating at different levels of aggregation, need

to be described in a single model, a decision needs to be made about what is

18

considered to be the unit of modeling. So, is the “case” a service executed for

a single patient, the illness a patient is suffering from, or a group of patients

suffering from a certain illness. All of these are at different levels of granularity.

The selection of a particular type of case at one of the aggregation levels causes

problems because the process cannot be “straightjacketed” into a single case

concept.

For the modeling of the healthcare process using the FLOWer, ADEPT1,

and Declare workflow languages, the same problem applies. We are not aware

of any workflow language which is able to deal with different levels of granularity.

Consequently, models often need to be artificially flattened as they are unable

to account for the mix of different granularities that co-exist. Note that the

different units of modeling which are possible when modeling a workflow do not

necessarily need to be aggregations of each other. Proclets can be in a “parent-

child” (“one-to-many”) relationship, but also in more complex relationships

like “brother-sister”, “many-to-many”. Therefore, we use the term granularity

instead of aggregation.

Furthermore, the fact that multiple patients can be registered for the afore

mentioned meetings (even from different points in the process) indicates that

one-to-many relationships may exist between entities in a workflow. For ex-

ample, during a visit to the outpatient clinic, a patient can be registered for

discussion during an MDO meeting. This means that a one-to-many relation-

ship exists between the entity “MDO meeting” and the “visit outpatient clinic”

entity. However, as models are unable to account for different granularities

that co-exist in a workflow this also means that it is impossible to capture one-

to-many and many-to-many relationships that may exist between entities in a

workflow. Although, it is impossible to capture the fact that one-to-many and

many-to-many relationships exist between entities in a workflow, such relation-

ships are common as can be seen in any data/object model.

We have discussed problems that we are faced with when modeling the gy-

necological oncology healthcare process using the YAWL, FLOWer, ADEPT1,

and Declare workflow languages. In summary, we may conclude that existing

19

workflow approaches currently exhibit the following problems:

• Issue 1: Models need to be artificially flattened and are unable to account

for the mix of granularities that co-exist in real-life processes.

• Issue 2: Cases need to be straightjacketed into a monolithic workflow even

though it is more natural to see processes as inter-twined loosely-coupled

object life-cycles.

• Issue 3: It is impossible to capture the fact that one-to-many and many-

to-many relationships exist between entities in a workflow, yet such rela-

tionships are common as can be seen in any data/object model.

• Issue 4: It is difficult to model interactions between processes, i.e., inter-

action is not a first-class citizen in most process notations.

Proclets, as introduced earlier, have been developed to specifically address

these problems.

4. Realization of the Gynecological Oncology Workflow using Pro-

clets

In this section, we elaborate on how the gynecological oncology healthcare

process is modeled using Proclets. First, in Section 4.1, we discuss which entities

can be identified in the workflow and how they relate to each other. In Section

4.2, a selection of Proclet classes will be discussed, illustrating how the entire

healthcare process is modeled using Proclets. However, most importantly, it will

be explained how the issues identified in Section 3 are addressed using Proclets.

4.1. Overview

The class diagram in Figure 6 gives an overview of the entities that exist

within the healthcare process and the relationships between them. The dark-

grey colored classes correspond to concrete Proclet classes. The inheritance

relations show which Proclet classes have common features, i.e., the light-grey

20

Input: additional
information, MDM, tests
Output: visit, additional

information, MDMs,
tests

Input: tests
Output: visit,
MDMs, tests,

pathology

Visit

Input: request
Output: result

 Input: request,
conclusion

Output: preliminary
result, final result

Additional
information

Input: request,
additional

information,
Output: conclusion,

additional info,
MDMs, final result

 Input: request, test,
additional information,

Output: conclusion,
tests, additional

information,
MDMs, final result

Multi-disciplinary
meeting
(MDM)

 Input: request,
MDMs, tests

Output: MDMs, tests,
additional information,

final result

Input: request
Output: preliminary

result,
final result

Input: request
Output: final result

Input: request,
conclusion

Output: preliminary
result

Input: request
Output: final result

External: tests

Test

Visit outpatient
clinic

Examination under
anesthetic

Obtain gynecology
data Radiology revision Pathology

Radiology meeting MDO meetingPathology meeting

Pre-assessmentLabECG
CT

MRI

X-ray

follows_8
0..*

follows_1
preceding_1

1..1

0..*
0..*

1..1

follows_2
preceding_2

0..*
0..*

0..1
0..1

Tests
follows_3

preceding_3

0..*0..*

0..1
0..1

follows_5

preceding_5
0..*
0..*

0..1
0..1

follows_4
preceding_40..*

0..1
0..1

follows_6

preceding_6

0..*

0..*

0..*

0..*

follows_7
0..10..1

T1 T2 T3 T4

A1 A2

M1 M2 M3

Initial phase

Input:
Output: visit,

additional
information,
MDMs, tests

0..*

0..1

preceding_8

preceding_7

Figure 6: Class diagram outlining the concepts that exist within the healthcare process and

their relationships.

and white colored classes can be seen as abstract classes used to group and

structure Proclets. The associations show the relationships that exist between

Proclet classes together with their multiplicity.

Starting with the white colored classes, we see that four main entities exist

within the healthcare process. These different entities have been identified by

looking from a high level viewpoint at the gynecological oncology healthcare

process. By taking this viewpoint, four different kinds of (sub)processes can be

identified which together constitute the entire gynecological oncology healthcare

21

process. More specifically, for the (sub)processes that belong to a main entity,

process related similarities can be identified. These similarities relate to the

general purpose for which these (sub)processes are executed (e.g. a test for

a single patient or a meeting to discuss a group of patients). Moreover, these

similarities also related to the medical departments that are responsible for these

(sub)processes and whether the presence of the patient is necessary. Below, these

four main entities will be discussed together with an explanation of the rationale

for defining them.

• Visit: A patient can visit a hospital multiple times to see a doctor. The

gynecological oncology department is responsible for the complete process

of such a visit. A visit can either be at the outpatient clinic where the doc-

tor examines the patient (“Visit outpatient clinic” class), or an examina-

tion under anesthetic (“Examination under anesthetic” class). Moreover,

also related to a visit are the initial stages of the process (“Initial phase”)

in order to prepare for the first visit of the patient to the outpatient clinic.

• Test: A gynecological oncology doctor can select multiple diagnostic tests

that need to be conducted for a patient. These tests are performed at var-

ious medical departments (other than the gynecological oncology depart-

ment). The tests that can be chosen range from medical imaging (“MRI”,

“CT”, and “X-ray” classes) to a lab test (“Lab” class), an ECG (“ECG”

class), and a pre-assessment (“Pre-assessment” class). For all of these,

the presence of the patient is required. Note that in principle many more

diagnostic tests can be selected by a doctor. In the class diagram we only

model the tests that are selected most frequently.

• Additional information: A gynecological oncology doctor might require

additional information in order to come to a final diagnosis. This may

involve requesting the hospital, that referred their patient to the AMC

for treatment, to send their data to the AMC hospital so that it can

be reviewed. They can be requested to send patient files (class “Obtain

22

gynecology data”), to send pathology slices (“Pathology” class), or to send

radiology data (“Radiology revision” class). However, the “Pathology”

Proclet class also involves (re)examining patient tissue which has been

collected at the AMC. For all of these processes, the patient does not

need to be present.

• Multi-disciplinary meeting: Every Monday afternoon multiple meet-

ings are organized for discussing the status of patients and/or the outcome

of examinations. For each of these meetings, the gynecological oncology

department is involved. In addition, these meetings involve the depart-

ments of radiology (“Radiology meeting” class), pathology (“Pathology

meeting” class) and a multidisciplinary meeting (“MDO meeting” class)

involving the departments of radiotherapy, and internal medicine (in order

to give chemotherapy). For these meetings, the patient does not need to

be present.

The entity types mentioned above are very general. In principle, they gener-

alize very well to other healthcare processes in which these entities may apply.

For the four main entity types, Proclets are instantiated a variable number

of times and interact in different ways with each other. For these interactions

between Proclets, a single Proclet might require multiple inputs and outputs

from other existing Proclets. For example, a lab test can be triggered during a

visit to the outpatient clinic and also during the initial phases of the process or

during an MDO meeting.

To make these interaction related commonalities explicit, the light-grey col-

ored classes in Figure 6, outline these interaction characteristics in terms of

inputs and outputs. The items depicted in bold italics indicate that an inter-

action is optional whereas an item written in normal text indicates that an

interaction is mandatory. In this way, the light-grey colored classes explicitly

identify (at a high level) the interface that exists for a specific (group of) Pro-

clet(s). Note that not all Proclet classes have the same level of aggregation.

The multi-disciplinary meeting related Proclet classes all deal with a group of

23

patients whereas the other Proclet classes are related to a single patient.

We will now elaborate on the four main types of Proclet classes that have

been identified and examine their interaction with other Proclet classes. First,

we focus on the “Test” and “Additional information” entities in isolation. Then,

we focus on the “Visit” and the “Multi-disciplinary meeting (MDM)” entities

and elaborate on the associations with other entities. In general, an association

with the name “follows” indicates that, seen from the viewpoint of the “Visit”

and the “Multi-disciplinary meeting (MDM)” entities, an action is initiated

(e.g. a lab test). Similarly, an association with name “preceding” indicates

that a specific action serves as input to either the “Visit” or “Multi-disciplinary

meeting (MDM)” entity (e.g. the result of a lab test is required for a visit to

the outpatient clinic).

As indicated before, in the class diagram, we only modeled the tests that are

selected most frequently. For each of these selected tests, the patient is required

to be present. Next, for them three different ways can be distinguished in which

a test is requested and ultimately the result is communicated. Note that a

result is always communicated although a test might fail or that no results are

obtained.

One possibility is that a test is requested and the outcome of the test is

immediately reported (“T1”), Another possibility is that a test is requested,

a preliminary result is communicated, followed by a final result (“T2”) at a

later time. The third alternative is that a test is requested and a preliminary

result is communicated to either the requester or a nominated group of medical

specialists. They in turn decide whether an amendment is needed (“T3”). A

somewhat special case is “T4” which is similar to “T1”. In addition to “T1”,

Proclet classes of this type may also request additional diagnostic tests for a

patient in order to come to a decision. For example, for a pre-assessment test,

the anesthetist might require that a lung function test is completed or a con-

sultation with an internist. The act of requesting additional tests in order to

come to a final decision are also modeled by the “follows 1” and “preceding 1”

associations. These associations indicate that during a pre-assessment multiple

24

tests can be triggered, i.e. the multiplicity is 0..∗, but also that results of mul-

tiple tests may be required as input for an examination, i.e. the multiplicity is

0..∗. Note that the requester only initiates an examination and might not be

aware of the fact that additional tests need to be performed in order to arrive

at an outcome.

A doctor might decide that additional information is required to reach the

final diagnosis for a patient. Two different ways can be distinguished in which a

request for additional information can be made and the result is delivered to the

requester. These are: (1) additional information is requested and the requested

information is immediately communicated (“A1”), (2) additional information is

requested and a preliminary result is communicated to either the requester or a

group of medical specialists. They in turn advise whether further investigation is

required (“A2”). Note that the way in which additional information is requested,

and the result communicated, is very similar to the way tests are requested and

the result communicated.

During a visit to the hospital, the patient is examined either at the outpa-

tient clinic or during a procedure under anesthetic. For a visit of the patient

at the outpatient clinic (which can also be a consultation by telephone), several

inputs might be required. These can be the results of preceding tests, i.e. the

multiplicity attached to the “Test” class of association “previous 2” is 0..∗, or

additional information that needs to be available, i.e. the multiplicity attached

to the “Visit” class of association “previous 4” is 0..∗. Note that the results of

tests and additional information may also be required as input to a multidis-

ciplinary meeting. Therefore, the multiplicity attached to the “Visit” class of

associations “previous 2” and “previous 4” is 0..1. Moreover, as the status of a

patient might be discussed during the MDO multi-disciplinary meeting (“MDO

meeting”), the patient may be informed about the discussion afterwards, i.e.

the multiplicity attached to “Visit outpatient clinic” and “MDO meeting” of

association “previous 6” is 0..∗ and 0..1, respectively.

During a visit by a patient to the hospital, a doctor might require a sub-

sequent visit, i.e. the multiplicity of associations “follows 7” is 0..1, or that a

25

patient needs to be registered for one or more multidisciplinary meetings, i.e.

the multiplicity attached to the “Multi-disciplinary meeting (MDM)” class of

association “follows 6” is 0..∗.

Moreover, a doctor might also request additional information, i.e. the multi-

plicity attached to the “Additional information” class of association “follows 4”

is 0..∗, or that tests are triggered for a patient, i.e. the multiplicity attached to

the “Test” class of association “follows 2” is 0..∗. Note that tests and additional

information may also be triggered for a patient during a multidisciplinary meet-

ing. Therefore, the multiplicity attached to the “Visit” class for associations

“follows 4” and “follows 2” is 0..1.

Finally, there are the multidisciplinary meetings to discuss the status of

multiple patients, to review the outcome of selected diagnostic tests, and to ex-

amine additional information that has been requested. Although for a certain

meeting distinct inputs and outputs might exist, several commonalities can be

identified. As inputs to a meeting, additional information (“previous 5”), tests

(“previous 3”), and the outcome of other multidisciplinary meetings (“previ-

ous 8”) might be required for multiple patients. Furthermore, as outputs, it

might be necessary to request additional information (“follows 5”), order fur-

ther tests for a patient (“follows 3”), or to initiate a multidisciplinary meeting

(“follows 8”). This is done for multiple patients. Note that for the above men-

tioned associations, the reasoning for the multiplicities is similar to those for

the “Visit” class.

As already indicated earlier, the dark-grey colored classes in Figure 6 corre-

spond to concrete Proclet classes. Note that there is a strong correspondence

between classes in a class diagram and Proclets carrying the same name. A class

in a class diagram outlines the data a Proclet class carries with it and its rela-

tionship with other Proclets. Through the use of Object Constraint Language

(OCL) expressions [40] it is possible to access data of different Proclets.

Note that the class diagram presented in Figure 6 is one possible solution

to group and structure Proclets. Depending on the context in which the to-

be modeled process is executed, a different (and perhaps more advanced) class

26

diagram can be constructed (e.g. based on the HL7 Reference Information

Model (RIM)) [41].

4.2. Proclets

As already indicated earlier, the dark-grey colored classes in Figure 6 corre-

spond to concrete Proclet classes. In total 15 Proclet classes have been identified

for the gynecological oncology workflow.

The 15 Proclet classes identified are connected to other Proclet classes via

the port and channel concepts. Figure 7 shows a high-level view of the inter-

connection structure together with the cardinality and multiplicity of the ports.

In total, there are 86 possible interactions between the Proclet classes which

illustrates the complexity of the process.

By using Proclets the relationships between different entities can be de-

scribed in their own process definition. So, it is more natural to define processes

as intertwined loosely-coupled object life-cycles. As can be seen in Section 3,

when using existing workflow languages, it is necessary to flatten this structure

into a monolithic workflow model, which is potentially very difficult or even in-

tractable in practice. By using Proclets, the second issue mentioned in Section

3 can be solved.

Of the 15 Proclet classes, we discuss the “Visit outpatient clinic”, “Pathol-

ogy”, and “Pathology meeting” Proclet classes in detail. The other Proclet

classes are discussed in detail in [42]. When discussing the Proclets, we will show

how the limitations of monolithic workflows can be addressed by using a Proclets

approach. Furthermore, we elaborate on the interaction of an individual Proclet

with other Proclets, i.e. the interface of a Proclet. As can be seen in Figure 7,

there can be many interactions between Proclets and even multiple interactions

between the same Proclets. In order to show the kind of interactions between

two Proclets, the following naming strategy is chosen for a port, consisting

of several distinct parts: sending proclet.task name sending proclet.[name].S/R.

“sending proclet” refers to the Proclet class which sends the performative, task

name sending proclet refers to the specific task (or composite task) in the Pro-

27

Examination
under

anesthetic

Obtain
gynecology

data

Radiology
revision

Pathology

Radiology meeting MDO meetingPathology meeting

Pre-
assessment

Lab

ECG

CT

MRI

X-ray

Initial phase

Visit outpatient
clinic

1,?

1,?

1,1

1,?

1,?

1,?
1,?

1,?

1,1

1,1

1,?

1,?

1,
?

1,?1,1

1,?

1,
?

1,
1

1,
?

1,?
1,?

1,1

1,?
1,?

1,1

1,?

1,?

1,?

1,?

1,1

1,1

1,?
1,?

1,?

1,?

1,?

1,1

1,1

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?

1,?

1,?
1,?
1,?

1,?

1,?
1,?

*,
1

1,
*

*,
1

*,
1

*,
1

1,
*

1,
*

1,
*

1,
*

1,
*

1,
1

*,
1

1,
*

1,
*

1,
*

1,
*

*,
1

*,
1

*,
1

*,
1

1,
*

1,
*

*,
1

*,
1

*,
1

*,
1

1,
1

1,
*

1,
*

1,?
1,?
1,?

1,
?

1,?
1,?
1,?
1,?
1,?

1,
?

1,
?

1,
?

1,
?

1,?
1,?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,?

1,?

1,
?

1,
?

1,
?

1,?

1,?

1,?

1,
?

1,?
1,?
1,?

1,?

1,
?

1,
?

1,
? 1,?

1,?
1,?
1,?
1,?
1,?
1,?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,?
1,?

1,*
*,

1

1,
*

*,
1

1,
*

*,1
*,1
*,1
*,1
*,1
*,1

*,
1

*,
1

*,
1

*,
1

*,
1

1,
1

1,
1

1,*
1,*

1,
*

1,
*

1,?

1,?

*,1

Figure 7: The Proclet classes that are defined for the healthcare process and all of the possible

interactions between them.

clet class that sends the performative, “S/R” indicates whether a performative

is sent via the port or is received via the port. “[name]” refers to a specific

(optional) identifier that is added when the naming chosen for the other parts

does not lead to a unique name. Note that by using this naming strategy each

port will have a unique name. Moreover, each port can only send a performative

to one other port and each port can only receive one performative from another

port.

The healthcare process involves multiple medical departments, such as ra-

diology and pathology. In order to clearly identify the resource perspective for

each task in a Proclet class, it is indicated for each task which department

28

Gynecological oncology
(GO) Radiology Pathology Anesthesia

Nurse

Doctor

Fellow

Radiologist

Radiology assistant

Pathologist Anesthesiologist

Administrative staff

organizational diagram

Figure 8: The organizational model for the healthcare process.

and which role is required. The corresponding organizational model is shown

in Figure 8. For example, we can see that for the “gynecological oncology de-

partment”, the roles “doctor” and “nurse” have been defined, and that for the

“radiology” department the roles “radiologist” and “radiology assistant” have

been defined.

Note that the Proclet classes discussed below are somewhat simplified in

comparison to the models produced for the YAWL, FLOWer, ADEPT1, and

Declare systems. First of all, the Proclet classes do not model all of the tasks

that are relevant for a specific workflow. Clearly, our main motivation for defin-

ing the Proclet classes are to show the interactions between these Proclets as

this is the core focus of the Proclet approach. Obviously, by modeling these

interactions, information is included which is typically not present in a single

monolithic workflow.

4.2.1. Visit Outpatient Clinic

We now analyze in detail the “Visit outpatient clinic” Proclet class that

can be seen in Figure 9. This Proclet class deals with a visit by a patient to

the outpatient clinic of gynecological oncology in order to see a doctor. The

contents of this subprocess has already been discussed in detail in Section 3.

A visit of a patient can be requested at different parts of the process con-

sequently triggering the creation of the respective Proclet. This is indicated by

29

Meet with
patient

sync
Give

information
and brochures

Inform patient
about tests

Register
patient

Check patient
data and make

card

GO,nurse
GO,

administrative staff GO,doctor
GO,nurse

GO,nurse

visit OC gynecological oncology

visit_outpatient_clinic.
output_vists.
visit_OC.R

examination_under
_anesthetic.
output_visits.
visit_OC.R

MDO_meeting.
output_visits.
visit_OC.R

initial_phase.
output_visits.
visit_OC.R

GO_data.
finish_GO_data.

visit OC.R

ECG.
finish_ECG.
visit_OC.R

pre_assessment.
send_report.
visit_OC.R

lab.
preliminary_

result.
visit_OC.R

lab.
finish_lab.
visit_OC.R

MDO_meeting.
output_tests.visit_OC.R

visit_OC.
output_additional_information.

GO_data.S

visit_OC.output_additional
information.radiology

revision.S

visit_OC.output_additional
_information.pathology.

tissue_taken_of.S

visit_OC.
output_visits.

examination_under_
anesthetic.S

visit_OC.
output_visits.

visit_OC.S

visit_OC.
output_tests.

ECG.S

visit_OC.
output_tests.

Lab.S

visit_OC.
output_tests.

X_ray.S

visit_OC.
output_tests.

MRI.S

visit_OC.
output_tests.

CT.S

visit_OC.
output_tests.

pre_
assessment.S

visit_OC.
output_MDMs.

pathology_
meeting.S

visit_OC.
output_MDMs.

radiology_
meeting.S

visit_OC.
output_MDMs.

MDO_
meeting.S

visit_OC.output_additional
_information.pathology.

receive_fax.S

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,
? 1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

End visit

Create visit
outpatient clinic

Receive
gynecology

data

Receive MDO
meeting result

1,
?

Receive report
ECG

Receive pre-
assessment

result

Receive final
lab result

Receive
preliminary lab

result

Request
registration for

pathology
meeting

Request
registration for
MDO meeting

Request
registration for

radiology
meeting

Initiate visit to
outpatient clinic

Initiate
examination

under anesthetic

Request
gynecology

data

Request
radiology
revision

Request
pathology

examination

Request
pathology slices
referring hospital

Request ECG

Request lab
test Request x-ray Request MRI Request CT

Request pre-
assessment

GO,doctor GO,doctor GO,doctor

GO,doctor

GO,doctor GO,doctor GO,doctor GO,doctor

GO,doctor

GO,doctorGO,doctorGO,doctorGO,doctorGO,doctorGO,doctor

Figure 9: The “Visit outpatient clinic” Proclet class.

the cardinality 1 and multiplicity ? of the ports connected to the input condi-

tion. For example, a visit is requested during the initial stages of the healthcare

process and also during a visit itself or during the MDO meeting. The next few

tasks in the Proclet class deal with the meeting of the patient with the doc-

tor (“Meet with patient” task). Directly related to such a meeting is the fact

that the results of multiple tests (“Receive preliminary lab result”, “Receive

final lab result”, “Receive report ECG” tasks, “Receive pre-assessment result”

tasks), additional information (“Receive gynecology data” task), and the result

of a MDO meeting (“Receive MDO meeting result” task) might be required as

inputs. The fact that only a selection of them might be required is indicated

by the cardinality 1 and multiplicity ? of the associated ports. For example, as

input, the outcome of an MRI and lab test might be necessary along with the

data received from the referring hospital.

Note that the tasks, required for the receipt of all the necessary inputs for

a patient meeting, are modeled using a loop. Each performative received is

stored in a knowledge base. The Proclet continuously inspects this knowledge

base and continues with the next step (“Register patient” task) if all required

performatives have been received.

During a visit to the doctor, it may be decided that several subsequent

30

steps need to be taken in order to diagnose the patient. In general, a doc-

tor can request that additional information is required (“Request gynecology

data”, “Request radiology revision”, “Request pathology examination”, “Re-

quest pathology slices referring hospital” tasks), that tests need to be undergone

by a patient (“Request ECG”, “Request lab test”, “Request x-ray”, “Request

MRI”, “Request CT”, “Request pre-assessment” tasks), and that the patient

needs to be discussed during a multidisciplinary meeting (“Request registration

for pathology meeting”, “Request registration for radiology meeting”, “Request

registration for MDO meeting” tasks). Moreover, a subsequent visit by the

patient might be necessary (“Initiate visit to outpatient clinic”, “Initiate exam-

ination under anesthetic” tasks). A doctor makes a selection of each of these

steps as necessary. So, either a step is selected once or not at all. This is also

indicated by cardinality 1 and multiplicity ? of the associated ports. Note that

during the selection of the subsequent steps, it can be that a given Proclet needs

to receive information about the different inputs that need to be received by the

respective Proclet. For example, during a visit of the patient to the outpatient

clinic, a doctor may decide that for the next visit of the patient an MRI and

X-ray are required. In this way, when creating a new instance of a “Visit Out-

patient Clinic” Proclet the content of the performative needs to indicate that

for the next visit the result of both an MRI and X-ray is required.

Note that in this Proclet, the communication with other Proclets is made

explicit, i.e. communication is a first-class citizen. In comparison to Figure

4, interaction with other processes is possible. For example, after the meeting

with the doctor, subsequent steps can immediately be triggered (e.g. a lab test),

whereas in Figure 4, the subprocess first needs to finish. Furthermore, in Figure

4, subprocess dependencies are hidden in the data perspective. For example,

in Figure 4 it is not visible that during the performance of task “Meet with

patient”, data fields are set, which after the completion of the subprocess, cause

any subsequent subprocesses to be triggered. In this way, by using Proclets, the

fourth issue mentioned in Section 3 can be resolved.

Note that at run-time information held by Proclets might need to be updated

31

or may need to be canceled. For example, as input to a meeting with a doctor,

the result of a lab test might be necessary. However, the result of the lab test

may not be available at the moment the meeting should take place. An option

is to either cancel the whole Proclet involving the lab test or to “relink” the

result of the lab test to the next meeting with the patient. At the moment, the

models do not cater for the fact that Proclets can be updated or even canceled.

4.2.2. Pathology

The “Pathology” Proclet class, shown in Figure 10, describes the process in

which (1) patient tissue needs to be investigated by a pathologist, (2) a request

is made to review pathology material from another hospital, or (3) a request is

made to reinvestigate pathology material. Analysis shows that a Proclet class

can be used to represent a workflow process which can handle multiple types of

cases. The resulting model reuses as much of the existing process as possible,

i.e. no duplication of process parts is necessary or creation of separate Proclet

classes.

For each type of case, specific ports are connected to the input condition in

the net. For example, ports with names ending “tissue taken of” are used to

create a Proclet instance where patient tissue needs to be investigated. Directly

connected to the input condition is the light-grey colored, automatic, “Addi-

tional investigation / receive fax / tissue taken of” task. Depending on the

performative received, the correct path is taken for each type of case. Note that

as a different path needs to be taken on the basis of the performative received,

this illustrates the need for a knowledge base.

In the situation where a request is raised asking another hospital to send

its pathology material for investigation, the “Send fax” task is performed which

requires a fax to be sent. After this, either the material is received (“Receive

material” task) or the other hospital needs to be reminded to send the rele-

vant material to the AMC (“Reminder” task). When the material is received,

it can be investigated by a pathologist (“Investigate” task) who prepares a

report (“Make report” task) that is discussed during the relevant pathology

32

Send fax Receive
material

Receive tissue

Put on other pa
meetingReminder

Investigate

Make report

Make
amendment

Pathology,
administrative staff

Pathology,
administrative staff

Pathology,
administrative staffPathology,

administrative staff

Pathology, pathologist

Pathology, pathologist

Pathology, pathologist

Pathology,
administrative staff

pathology

visit_OC.output_
additional_information.

pathology.
receive_fax.R

initial_phase.
output_

additional_information.
pathology.

receive_fax.R

MDO_meeting.
output_additional_information.

pathology.
additional_investigation.R

pathology.
send_report.

pathology_meeting.S

pathology_meeting.
output_make_conclusion.

pathology.S

pathology_meeting.
output_additional_

information.
pathology.

receive_fax.R

MDO_meeting.
output_additional_

information.
pathology.

receive_fax.R

visit_OC.output_
additional_information.

pathology.
tissue_taken_of.R

examination_under_
anesthetic..

output_additional_
information.

tissue_taken_of.R

pathology_meeting.
output_additional_information.

pathology.
additional_investigation.R

1,?

1,?

1,?

1,?

1,?

1,?

1,1 1,
1

1,
?

1,
?

Send report Receive
conclusion

Additional
investigation /
receive fax /

tissue taken of

Pathology, pathologist

Figure 10: The “Pathology” Proclet class.

meeting (“Send report” task). After discussion at this meeting, a performa-

tive is returned (“receive conclusion” task) which indicates whether any final

amendments need to be made (“Make amendment”) or not.

An alternate situation involves a request where a tissue sample taken at the

AMC needs to be investigated. After receipt of the tissue (“Receive tissue”),

the process follows the same course as in the previous situation, starting from

the “Investigate” task.

Finally, another possible alternative involves a request where existing sam-

ples need to be reinvestigated, e.g. additional colorings might be necessary.

After the request is received, the same steps are taken as for the two previous

situations, starting from the “Investigate” task.

33

Prepare pathology
meeting Pathology meeting

Pathology,
administrative staff

Pathology,
pathologist GO, doctor

pathology meeting

visit_OC.
output_MDMs.

pathology_meeting.R

initial_phase.
output_MDMs.

pathology_meeting.R

MDO_meeting.
output_MDMs.

pathology_meeting.R

pathology_meeting.
output_MDMs.

radiology_meeting.R

examination_
under_

anesthetic.
output_MDMs.

pathology_meeting.R

pathology.send_report.pathology_
meeting.S

pathology_meeting.
output_make_conclusion.

pathology.S

pathology_meeting.
output_additional_

information.
pathology.

receive_fax.S

pathology_meeting.
output_additional_information.

pathology.
additional_investigation.S

pathology_meeting.
output_MDMs.

pathology_
meeting.S

pathology_meeting.
end_pathology_

meeting.
MDO_meeting.S

1,*

1,*

1,*

1,*

1,*

1,
*

*,
1

*,1

*,1

*,1

1,
1

Create pathology
meeting

Receive pathology
report

Register for meeting
(via ex. under

anesthetic proclet)

Register for meeting
(via visit outpatient

clinic proclet)

Register for meeting
(via initial phase

proclet)

Register for meeting
(via MDO meeting

proclet)

Register for meeting
(via radiology

meeting proclet)

End pathology
meeting

Make conclusion

Request registration
for pathology

meeting

Request pathology
slides

Request additional
colorings

GO, doctorGO, doctor GO, doctor

Figure 11: The “pathology meeting” Proclet class.

4.2.3. Pathology Meeting

The “Pathology meeting” Proclet class, shown in Figure 11, describes the

weekly meeting in which the gynecological oncology doctors and a pathologist

discuss the samples that have been examined by a pathologist and need further

review. During this meeting, samples from multiple patients are discussed. For

each weekly meeting, a separate Proclet is created (“Create pathology meeting”

task). In order to discuss a patient sample, it first needs to be registered (tasks

starting with “Register for meeting”). This can be done at different points in

the process which explains why there are multiple tasks starting with “Register

for meeting” each connected to a single port. However, as is indicated by the

cardinality 1 and multiplicity * of the associated ports, multiple patients can be

registered using the same port. Furthermore, as a consequence of the registra-

tion for the “Pathology meeting” Proclet, a separate instance of the “Pathology”

Proclet is created so that the sample can be investigated by a pathologist. The

result of this Proclet is received via the “Receive pathology report” task. Conse-

quently, there exists a tight coupling between one “Pathology meeting” Proclet

and multiple “Pathology” Proclets.

Note that both the tasks for the registration for the meeting and the cor-

34

responding receipt of the results are modeled using a loop. By using a loop,

multiple performatives can be received, one at a time, as indicated by cardi-

nality 1 and multiplicity * of the associated ports. The “Pathology meeting”

Proclet constantly inspects this knowledge base in order to decide whether all

necessary performatives have been received and the process may continue, i.e.

the “Prepare pathology meeting” task may be performed in which a pathologist

prepares themselves for the pathology meeting that is held afterwards (“Pathol-

ogy meeting” task).

During this meeting, it might be decided that several subsequent steps need

to be taken. For each of the samples that are discussed during the pathology

meeting, the corresponding “Pathology” Proclet needs to be informed whether

an amendment is required or not. This involves sending a performative to each

corresponding “Pathology” Proclet (“Make diagnosis”) as is indicated by the

cardinality * of the accompanying port. Moreover, new pathology examinations

might be required (“Request Pathology slides”, “Request additional colorings”

tasks) which subsequently need to be discussed at a later pathology meeting

(“Request registration for pathology meeting” task). Here also performatives

need to be sent to multiple Proclets as indicated by the cardinality * of the

accompanying ports. Finally, before destroying the instance, the results of the

discussion are transferred to the MDO meeting so that the patient can be dis-

cussed during this meeting (“End pathology meeting” task).

As becomes clear from this analysis, in this Proclet class we are dealing

with a different level of aggregation (i.e. a group of patients) than the previous

Proclet classes, and performatives are received from Proclet classes which are

at a lower level of aggregation (a specific service delivered for a patient). Us-

ing Proclets we can easily handle these differences in the level of aggregation

whereas most workflow management systems force one to depict the process

at an arbitrarily chosen level and to describe them in terms of one monolithic

workflow. Obviously, issue number one, mentioned in Section 3, can be solved

using Proclets.

Moreover, for this Proclet several one-to-many relationships exist within the

35

“Pathology” Proclet. For example, using task “Request additional colorings”,

it can be requested that existing samples be reinvestigated for multiple patients.

The output port of this task has cardinality ∗, indicating that the performative

is sent to potentially multiple recipients. In the class diagram of Figure 6,

this relationship is also indicated by the “follows 5” association. Clearly, using

Proclets it can easily be captured that there are one-to-many and many-to-many

relationships between entities in a workflow, whereas this is impossible to capture

using existing workflow approaches. So, issue number three, identified in Section

3, can be addressed.

5. Related Work

The first WfMSs were developed in the early 1970’s. See for example the

OfficeTalk system of Skip Ellis [43], an office automation system based on Petri

Nets. However, only in the late nineties did these systems became more mature

and more widely used in practice. Currently, there are several hundred WfMSs

and workflow technology has become an integral part of numerous products,

including Enterprise Resource Planning (ERP) (e.g. SAP/R3), Product Data

Management (PDM), and Customer Relationship Management (CRM) systems.

Currently, administrative processes, which tend to be rather rigid, can be

well supported by WfMSs. However, as indicated in [26, 44], so called “careflow

systems”, systems used for supporting care processes in hospitals, have special

demands with regard to workflow technology. Successful implementations of

workflow systems in healthcare do exist [1, 16, 25, 45, 46], for example, [25]

describes how workflow technology can support the execution of recurrent tasks

in a medical department. Furthermore, Zai et al. [46] recently reported on a

combined workflow-informatics system for diabetes management providing each

healthcare team member with just in time knowledge so that they could perform

their specific tasks.

Currently, the focus of research in the field of healthcare is shifting towards

describing and modeling workflow in order to design healthcare technology that

36

provides improved support for the management of diseases. Nevertheless, the

healthcare domain is still behind in adopting WfMSs for tuning healthcare or-

ganizational processes. In that way, “widespread” adoption and dissemination

of workflow technology is the exception rather than the rule [27]. One of the

problems that must be dealt with in order to effectively support healthcare pro-

cesses using WfMSs is that more process flexibility needs to be provided by the

system [47, 48]. Unfortunately, current workflow systems fall short in this area,

an observation often reported in the literature [49–52].

One of the problems related to flexibility is that for a given patient a num-

ber of concurrent processes need to run in conjunction with each other [1, 53].

When complex care needs to be delivered, co-operation between various clin-

icians across different medical specialties and departments is needed [54], e.g.

by having multidisciplinary meeting in which doctors from several medical dis-

ciplines discuss the status of a patient. In this paper, these processes can be

characterized by weakly-connected interacting lightweight workflows in which

communication and collaboration between instances of these processes is of par-

ticular importance.

Contemporary languages and systems provide limited support for the execu-

tion of lightweight interacting workflows. Instead, one is forced to squeeze real-

life processes into a single “monolithic overarching workflow” which describes

how an individual case is handled in isolation. In doing this, the modeler looses

the overview, the natural structure of work is lost, and the required flexibility

cannot be offered to the medical professionals. This issue has been recognized

in literature [28, 29, 55–57] and is not limited to the healthcare domain. It

also applies in other areas, e.g. the automotive domain [57], or when reviewing

papers for a conference [29].

When applied to lightweight interacting workflows, the Proclet approach

supports the following considerations: (1) different processes interacting with

each other, (2) processes operating at different levels of aggregation, and (3)

batch-oriented tasks. There are a limited range of alternate approaches to deal

with some of these issues [56].

37

The Corepro framework [57, 58] allows for automatic generation and coordi-

nation of individual processes, operating at different levels of aggregation, based

on their underlying data structure. The initial number of process instances cre-

ated is decided at run-time. However, the creation of new instances at runtime

is possible, but requires an ad-hoc change to the related data structures. For

the Proclet approach, the number of process instances created is based on post-

conditions, evaluated at runtime.

In [59–61], a two-tier, goal-driven model for workflow processes in the health-

care domain is presented. A goal-ontology, presented as a directed acyclic graph,

is utilized to represent the business model at the upper level and is decomposed

into an extended Petri-net model for the lower level workflow schema. A map-

ping is defined from the goal-graph to (sub)processes and activities such that

each of the (sub)processes is designed in a way that achieves one of the upper

level goals. This approach leads to a hierarchy of process models with a number

of the top-level goals being implemented through subprocesses. However, there

is no interaction between subprocesses in contrast to the classical way in which

hierarchical processes communicate with each other in a top-down fashion.

In [55, 62, 63], the concept of artifacts is used to distinguish different levels

of aggregation. However, the content of one or more artifacts can only be

changed by the execution of an activity. Consequently, aggregation issues are

only addressed at the activity level instead of at the process level.

Batch-oriented tasks are tasks that are based on groupings of lower aggre-

gation elements. The concept of a batch-oriented task was already introduced

in [64] in order to allow for a task that is executed for multiple instances at the

same time. In [65], the problem is defined and deliberations are provided on the

technology support required to deal with the issue.

Finally, in [66, 67], worklets are presented which can be seen as micro work-

flows. Specific activities in a process are linked to a repertoire of possible actions.

Based on the properties of the case and other context information, the required

action is chosen. The selection process is based on a set of rules. During en-

actment it is also possible to add new actions to the repertoire. However, in

38

contrast to the Proclets Framework, these actions can only be enacted at spe-

cific parts of the process which needs to be decided at design-time. Moreover,

no interactions between these worklets are possible.

6. Discussion

In this paper, we have studied the gynecological oncology healthcare process

and how it can be modeled more effectively by using the Proclet framework.

Due to the increased emphasis on interaction-related aspects of workflows, it is

possible to model interactions between processes which otherwise would have

been hidden in application logic or not been taken into account at all. At run-

time, once it is known that interactions have to take place, this can be monitored

leading to an improved quality of the processes that are ultimately executed. In

the healthcare domain where resources are scarce and limited and often work

is handed over from one resource to another, this is of the utmost importance.

Currently it might be the case that a participant in a certain process is not

aware of the fact that a participant in another process is waiting for input. For

example, a pathologist does not start working on a report which is needed by a

medical specialist a day later, but rather is working on a report which is needed

two weeks later.

For the gynecological oncology healthcare process, once supported by the

Proclet framework, several benefits can potentially be realized. Currently, for

the radiology and pathology meetings, patients that need to be discussed must

be registered for the respective meeting. However, in practice, for both meet-

ings it happens that around 10% of the patients can not be discussed because

preparatory work in the corresponding radiology and pathology processes has

not taken place. Moreover, for scheduled meetings where a patient sees a doctor

it is sometimes the case that a doctor finds out during the actual appointment

that some results from required diagnostic tests are missing. Consequently,

this leads to inefficiencies as a new appointment needs to be scheduled. In the

Proclet models defined for the gynecological oncology healthcare process these

39

interactions have been captured. Once these are monitored, these issues can be

avoided.

For the Proclet classes described, there is also a link with our calendar-based

scheduling support described in [68]. Today’s WfMSs offer work-items to users

through specific work-lists in which participants select the work-items they will

perform. However, no calendar-based scheduling is offered for these work-items.

In [68] it is investigated how a WfMS can be augmented with scheduling facili-

ties such that appointments can be scheduled for these kinds of tasks. Moreover,

these appointments are scheduled in the calendars of the participants involved

in the actual performance of the task in order to ensure that they occur at a

precise pre-agreed time suitable for all of the participants involved. Clearly, in

several Proclet classes, we can also find tasks for which a concrete appointment

involving specific resources needs to be made. For example, the “Meet with

patient” task in the “Visit outpatient clinic” Proclet class is a task which needs

to be scheduled for both a doctor and a patient. Furthermore, the “Pathology

meeting” task in the “Pathology meeting” Proclet class is also a task which

needs to be scheduled as a pathologist and several gynecological oncology doc-

tors need to be available at the same time. When linking the Proclets framework

with the work described in [68], also these scheduling aspects can be taken into

consideration leading to better scheduling and organization of resources.

Although the Proclets framework offers various advantages, several chal-

lenges in regard to the design and implementation of the Proclet framework

still remain. These challenges are discussed below.

In this paper, we only focus on the support of organizational processes by

the Proclets framework. However, as mentioned in Section 1, for healthcare pro-

cesses a distinction can be made between organizational processes and medical

treatment processes. For the optimal support of medical treatment processes

by IT, flexibility needs to be offered by CIG languages in order to effectively

model CIGs [7, 26, 69, 70]. As flexibility is offered by the Proclets framework,

we believe that the framework provides benefits in the modeling and execution

40

of CIGs as well. In addition to this, until now not many studies have been

devoted to the integration of CIGs and workflow languages [7, 14]. Future work

can investigate the usage of the Proclets framework for providing such an inte-

grated solution. In this way, optimal support for healthcare processes can be

provided.

A limitation of our approach is that we only refer to a specific healthcare

process from the gynecological oncology department within one institution, the

AMC, as a test bed for the Proclets. Other healthcare processes, in particular

those concerning the management of chronically ill patients, may differ in their

complexity, include many more diagnostic or treatment subprocesses and more

healthcare team members as part of the patient care process over a long period

of time. However we consider the gynecological oncology healthcare process to

be representative of other healthcare processes as it deals with the diagnosis of

patients suffering from cancer, an area in which the AMC serves as a reference

center. As such, we are dealing with complex diagnosis and treatment processes

where multiple (sub)processes may run in conjunction with each other.

Another related aspect is that within the Proclets Framework, interaction

is considered to be a first-class citizen. Consequently, when discussing the ad-

vantages, our main focus is on interaction-related aspects rather than on or-

ganizational aspects. Nevertheless, it should be noted that in healthcare the

allocation of responsibilities to resources is much more dynamic than in other

fields. With this in mind, future work should ensure that the dynamic and

volatile nature of roles and the organization in these processes is fully taken

into account. A significant achievement in this context is the work done on the

so-called workflow resource patterns [71]. Independent from specific workflow

technologies and modeling languages, the various ways in which resources are

utilized in workflows are delineated and described in detail.

By promoting interaction to a first-class citizen, the Proclets framework,

allows for modeling complex workflows in a more natural manner. However,

this increased emphasis on the interaction side of workflows requires a different

modeling approach, and, hence modelers trained in this new style of modeling.

41

Most existing modeling approaches require that a process is captured in terms

of one or more complex models. By increasing the emphasis on interaction-

related aspects of workflows, the Proclet framework supports the division of

complex entangled processes into simple fragments. This can be achieved by

first constructing a class diagram which models the concepts that exist within

a process and their relationships (e.g. as in Figure 6). Afterwards, the different

Proclet models and their interactions can be modeled based on the concepts

identified in the class diagram and the relationships between them. Obviously

this approach allows for a separation of concerns. In this way, we believe that

less modeling errors are made.

Note that in regard to avoiding modeling errors, several methods are avail-

able for verification, given the modeling language that is used. For example,

for the YAWL language, which is used for the Proclet models in this paper,

dedicated techniques are available for verifying syntactic correctness [72]. How-

ever, this verification abstracts away from interactions and will not discover

deadlocks due to inter-process communication. Hence, to adequately support

Proclet-based verification, additional research is needed.

Another issue associated with promoting interactions to first-class citizens is

that it is difficult to see how a series of Proclets unfolds over time. This might

raise issues in communicating them to domain experts and in validating them.

In order to alleviate this problem, we believe that one should first start with

communicating the single Proclet models. There are several methods available

which ease the communication of process models to domain experts and their

validation. For example, in [30, 73, 74], a process model is validated by domain

experts by means of animation. While the model is executed, the animation is

updated. Another approach is discussed in [75] in which semi-formal models are

used in order to elicit requirements for a socio-technical system to be built.

A Colored Petri Net (CPN) [76] model of the gynecological oncology health-

care process has been validated by means of animation as discussed in [30].

Based on these experiences we believe that animations are beneficial in commu-

nicating a process model to domain experts. Therefore, we propose to commu-

42

nicate Proclet models in a similar fashion which is perhaps even easier because

Proclet models are small process fragments.

Once the content of the Proclet models is clear to the domain experts, as a

second step the possible interactions between these models need to be commu-

nicated. For these interactions, we also propose the use animations for commu-

nicating these to domain experts. By splitting up the process of communicating

the Proclet models and their interactions into two explicit steps, a separation of

concerns is achieved and information overload is avoided. However, future work

is needed to discover how the possible interactions between Proclet models can

best be communicated or validated.

With regard to the execution of Proclets, it should be noted that currently

there does not exist an engine for the enactment of Proclets. However, given

the fact that Proclets have a clear semantics, such an engine can be designed

and built straightaway. A related issue in this context is that for the diagnosis

and treatment of a patient it can not be decided beforehand which Proclets and

how many will need to be instantiated for the patient and the way in which they

will interact with each other. This only becomes clear at run-time. In this way,

for Proclets to find each other, this requires the definition of complex knowledge

bases for them which is a far from trivial task. Next to building an engine for the

enactment of Proclets, future work needs to find more natural ways to “connect”

Proclets at run-time. It is important that a Proclet is aware of performatives

that it will receive. If these can not be handled efficiently, escalation actions

need to be taken (e.g. continue without waiting for the performative that needs

to be received or cancelation of a Proclet).

Finally, with regard to the successful usage of a WfMS in healthcare it is

essential that the medical professionals can enter for every task defined in a pro-

cess model, the inputs required for that task. To date, WfMSs provide a wealth

of advanced features for integration with existing software systems. So, the

tasks that need to be done by a WfMS can well be integrated with the applica-

tions that medical professionals already use in their usual work. By integrating

a WfMS in this way into the current work practices of medical practitioners,

43

there is the advantage that the acceptance of the system is increased.

Moreover, several other interesting issues have been identified. In the gy-

necological oncology healthcare process many different tests can be needed by

patients. These tests can be instantiated via different Proclets and the results

can be received by different Proclets. Clearly, for each distinct point that such a

test can be created or the result may be received a specific task with an outgoing

or incoming port is required. In the future new diagnostic tests might become

available which need to be included in the respective Proclets. Therefore, we

see an interesting link with the worklet approach described in the related work

section. Using the worklet approach, it may be possible to invoke tasks with

input or output ports dynamically in Proclets instead of needing to model them

explicitly.

Today’s information systems record many of the events relevant to a business

process. Obviously, there is an abundance of event data, and new and powerful

techniques such as process mining [77, 78] provide many opportunities to analyze

and improve business processes. In this context, for all process instances that are

related to a given case, events are logged. Future work should focus on collecting

and correlating information about tasks that were executed for different process

instances, but between which a certain relationship exists.

7. Conclusion

In this paper, we have studied the gynecological oncology healthcare process

and showed how it can be modeled using existing workflow languages, such as

YAWL, FLOWer, Declare, and ADEPT1. Moreover, we have examined how the

same process can be modeled using the Proclet framework. If we compare the

Proclet framework with existing workflow languages, the following differences

can be observed.

• Real-life healthcare care processes are often fragmented and composed

of separate but inter-twined life-cycles running at different speeds. These

44

processes can be effectively described using Proclets, with interaction con-

sidered as a first-class citizen, instead of straightjacketing them into one

monolithic workflow.

• Real-life healthcare processes often operate at different levels of granu-

larity. Existing workflow languages cannot take these differences into ac-

count, however, by using Proclets this is easily supported. Moreover,

one-to-many and many-to-many relationships that exist between entities

in a workflow, can be captured.

In healthcare, for a given patient, a lot of concurrent organizational processes

can run in conjunction with each other. These processes can be created at any

point in time and can also be terminated at any point in time. Moreover, these

processes interact in different ways with each other. We have characterized

these kinds of processes as weakly-connected interacting lightweight workflows.

Steps in such a process may either operate at the level of a single patient or at

the level of a group of patients. In other words, these processes may rely on

information that resides at different levels of aggregation.

In order to successfully apply Proclets in the healthcare domain, future work

related to the verification, validation, and enactment of Proclets is necessary.

However, once these issues are handled, we believe that the extension of existing

workflow technology with Proclet functionality can greatly assist in the modeling

and enactment of care processes.

[1] R. Lenz, M. Reichert, IT Support for Healthcare Processes - Premises,

Challenges, Perspectives, Data and Knowledge Engineering 61 (2007) 49–

58.

[2] W. van der Aalst, K. van Hee, Workflow Management: Models, Methods,

and Systems, MIT Press, Cambridge, MA, 2002.

[3] M. Dumas, W. van der Aalst, A. ter Hofstede, Process-Aware Information

Systems: Bridging People and Software through Process Technology, Wiley

& Sons, 2005.

45

[4] M. Weske, Business Process Management: Concepts, Languages, Architec-

tures, Springer-Verlag, Berlin, 2007.

[5] A. ter Hofstede, W. van der Aalst, M. Adams, N. Russell (Eds.), Mod-

ern Business Process Automation: YAWL and its Support Environment,

Springer-Verlag, 2010.

[6] P. Terenziani, A Hybrid Multi-Layered Approach to the Integration of

Workflow and Clinical Guideline Approaches, in: S. Rinderle-Ma, S. Sadiq,

F. Leymann (Eds.), BPM 2009 International Workshops, Ulm, Germany,

September 7-10, 2009, Revised Papers, 2009.

[7] N. Mulyar, W. van der Aalst, M. Peleg, A pattern-based analysis of clinical

computer-interpretable guideline modeling languages, JAMIA 14 (6) (2007)

781–787.

[8] P. de Clercq, J. Blom, H. Korsten, A. Hasman, Approaches for creating

computer-interpretable guidelines that facilitate decision support, Artificial

Intelligence in Medicine 31 (2004) 1–27.

[9] D. Wang, M. Peleg, S. Tu, A. Boxwala, R. Greenes, V. Patel, E. Shortliffe,

Representation primitives, process models and patient data in computer-

interpretable clinical practice guidelines: a literature review of guideline

representation models, International Journal of Medical Informatics 68

(2002) 59–70.

[10] K. Kaiser, S. Miksch, Modeling Treatment Processes Using Information Ex-

traction, in: H. Yoshida, A. Jain, A. Ichalkaranje, L. Jain, N. Ichalkaranje

(Eds.), Advanced Computational Intelligence Paradigms in Healthcare 1,

Vol. 48 of Studies in Computational Intelligence (SCI), Springer Berlin /

Heidelberg, 2007, pp. 189–224.

[11] K. Kaiser, S. Miksch, Modeling Computer-Supported Clinical Guidelines

and Protocols: A Survey, Vienna University of Technology, Rep. Asgaard-

TR-2005-2 (2005).

46

[12] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R. Greenes, R. Hall, P. John-

son, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang, E. Short-

liffe, M. Stefanelli, Comparing Computer-interpretable Guideline Models:

A Case-study Approach, Journal of the American Medical Informatics As-

sociation 10 (1) (2003) 52–68.

[13] P. de Clercq, K. Kaiser, A. Hasman, Computer-based Medical Guidelines

and Protocols: A Primer and Current Trends, Vol. 139 of Studies in Health

Technology and Informatics, IOS Press, 2008, Ch. Computer-interpretable

Guideline Formalisms, pp. 22–43.

[14] J. Fox, E. Black, I. Chronakis, R. Dunlop, V. Patkar, M. South, R. Thom-

son, Computer-based Medical Guidelines and Protocols: A Primer and

Current Trends, Vol. 139 of Studies in Health Technology and Informat-

ics, IOS Press, 2008, Ch. From Guidelines to Careflows: Modelling and

Supporting Complex Clinical Processes, pp. 44–62.

[15] M. Field, K. L. (Eds.), Institute of Medicine. Clinical Practice Guidelines:

Directions for a New Program, National Academy Press, Washington, DC,

1990.

[16] K. Unertl, M. Weinger, K. Johnson, N. Lorenzi, Describing and modelling

work flow and information flow in chronic disease care, Journal of the Amer-

ican Medical Informatics Association 16 (2009) 826–836.

[17] W. Tierney, J. Overhage, M. Murray, L. Harris, X.-H. Zhou, G. Eckert,

F. Smith, N. Nienaber, C. McDonald, F. Wolinski, Effects of computerized

guidelines for managing heart disease in primary care, Journal of General

Internal Medicine: A Randomized, Controlled Trial 18 (2003) 967–976.

[18] A. Montgomery, T. Fahey, T. Peters, C. Macintosh, D. Sharp, Evalua-

tion of computer based clinical decision support system and risk chart for

management of hypertension in primary care; randomized controlled trial,

Britisch Medical Journal 320 (686-690).

47

[19] A. Ozdas, T. Speroff, L. R. Waitman, J. Ozbolt, J. Butler, R. Miller,

Integrating “Best of Care” Protocols into Clinicians’ Workflow via Care

Provider Order Entry: Impact on quality-of-care for Acute Myocardial

Infarction, Journal of the American Medical Informatics Association 13

(2006) 188–196.

[20] T. East, L. Heermann, R. B. et al., Efficacy of computerized decision sup-

port for mechanical ventilation: results of a prospective multi-center ran-

domized trial, in: N. Lorenzi (Ed.), Proceedings AMIA Annual Symposium,

1999, pp. 251–255.

[21] N. Doherty, I. Perry, The uptake and application of work flow manage-

ment systems in the UK financial services sector, Journal of Information

Technology 14 (2) (1999) 149–160.

[22] J. Liu, S. Zhang, J. Hu, A case study of an inter-enterprise workflow-

supported supply chain management system, Information and Management

42 (3) (2005) 441–454.

[23] H. Reijers, S. Poelmans, Re-configuring workflow management systems to

facilitate a “smooth flow of work”, International Journal of Cooperative

Information Systems 16 (2) (2007) 155–175.

[24] H. Reijers, W. van der Aalst, The Effectiveness of Workflow Management

Systems: Predictions and Lessons Learned, International Journal of Infor-

mation Management 56 (5) (2005) 457–471.

[25] M. Reichert, P. Dadam, R. Mangold, R. Kreienberg, Computer-based sup-

port of clinical work processes - concepts, technologies, and their applica-

tion, Zentralbl Gynakol 122 (1) (2000) 56–70, in German.

[26] S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, S. Panzarasa, Flex-

ible Guideline-based Patient Careflow Systems, Artificial Intelligence in

Medicine 22 (1) (2001) 65–80.

48

[27] M. Murray, Strategies for the Successful Implementation of Workflow Sys-

tems within Healthcare: A Cross Case Comparison, in: R. Sprague (Ed.),

Proceedings of the 36th Annual Hawaii International Conference on Sys-

tem Sciences, IEEE Computer Society Press, Los Alamitos, CA, 2003, pp.

166–175.

[28] W. van der Aalst, P. Barthelmess, C. Ellis, J. Wainer, Workflow Modeling

using Proclets, in: O. Etzion, P. Scheuermann (Eds.), 7th International

Conference on Cooperative Information Systems (CoopIS 2000), Vol. 1901

of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2000, pp.

198–209.

[29] W. van der Aalst, P. Barthelmess, C. Ellis, J. Wainer, Proclets: A Frame-

work for Lightweight Interacting Workflow Processes, International Journal

of Cooperative Information Systems 10 (4) (2001) 443–482.

[30] R. Mans, W. van der Aalst, N. Russell, P. Bakker, A. Moleman, K. Lassen,

J. Jorgensen, Transactions on Petri Nets and Other Models of Concurrency

III, Vol. 5800 of Lecture Notes in Computer Science, Springer-Verlag Berlin

Heidelberg, 2009, Ch. From Requirements via Colored Workflow Nets to

an Implementation in Several Workflow Systems, pp. 25–49.

[31] R. Mans, W. van der Aalst, N. Russell, P. Bakker, Flexibility Schemes for

Workflow Management Systems, in: Lecture Notes in Business Information

Processing, Vol. 17, 2009, pp. 361–372.

[32] W. van der Aalst, A. Hofstede, YAWL: Yet Another Workflow Language,

Information Systems 30 (4) (2005) 245–275.

[33] W. van der Aalst, Verification of Workflow Nets, in: P. Azéma, G. Balbo

(Eds.), Application and Theory of Petri Nets 1997, Vol. 1248 of Lecture

Notes in Computer Science, Springer-Verlag, Berlin, 1997, pp. 407–426.

[34] W. van der Aalst, Formalization and Verification of Event-driven Process

Chains, Information and Software Technology 41 (10) (1999) 639–650.

49

[35] W. van der Aalst, Business Process Management Demystified: A Tutorial

on Models, Systems and Standards for Workflow Management, in: J. Desel,

W. Reisig, G. Rozenberg (Eds.), Lectures on Concurrency and Petri Nets,

Vol. 3098 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,

2004, pp. 1–65.

[36] J. Searle, Speech Acts, Cambridge University Press, Cambridge, 1969.

[37] T. Winograd, F. Flores, Understanding Computers and Cognition: A New

Foundation for Design, Ablex, Norwood, 1986.

[38] V. Chaudhri, A. Farquhar, R. Fikes, P. Karp, Open knowledge base connec-

tivity 2.0, Technical Report KSL-09-06, Stanford University KSL (1998).

[39] S. White, Introduction to BPMN, BPTrends.

[40] O. M. G. (OMG), Ocl 2.0 specification, OMG document ptc/2005-06-06

(June 2005).

[41] HL7 Reference Information Model (RIM),

http://www.hl7.org/implement/standards/rim.cfm.

[42] R. Mans, N. Russell, W. van der Aalst, P. Bakker, A. Moleman, Proclets

in Healthcare, BPM Center Report BPM-09-05, BPMcenter.org (2009).

[43] C. Ellis, Information Control Nets: A Mathematical Model of Office Infor-

mation Flow, in: Proceedings of the Conference on Simulation, Measure-

ment and Modeling of Computer Systems, ACM Press, Boulder, Colorado,

1979, pp. 225–240.

[44] S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, C. Mossa,

Guideline-based Careflow Systems, Artificial Intelligence in Medicine 20 (1)

(2000) 5–22.

[45] K. Kuhn, J. Warren, T.-Y. Leong (Eds.), Improving compliance to guide-

lines through workflow technology:implementation and results in a Stroke

Unit, no. 129 in Studies in Health Technology and Informatics, 2007.

50

[46] A. Zai, R. Grant, G. Estey, W. Lester, C. Andrews, R. Yee, E. Mort,

H. Chueh, Lessons from implementing a combined workflowinformatics sys-

tem for diabetes management, Journal of the American Medical Informatics

Association 15 (2008) 524–533.

[47] L. Maruster, W. van der Aalst, A. Weijters, A. van den Bosch, W. Daele-

mans, Automated Discovery of Workflow Models from Hospital Data, in:

C. Dousson, F. Höppner, R. Quiniou (Eds.), Proceedings of the ECAI

Workshop on Knowledge Discovery and Spatial Data, 2002, pp. 32–36.

[48] M. Stefanelli, Knowledge and Process Management in Health Care Orga-

nizations, Methods Inf Med 43 (2004) 525–535.

[49] W. van der Aalst, S. Jablonski, Dealing with Workflow Change: Identifica-

tion of Issues and Solutions, International Journal of Computer Systems,

Science, and Engineering 15 (5) (2000) 267–276.

[50] W. van der Aalst, M. Weske, D. Grünbauer, Case Handling: A New

Paradigm for Business Process Support, Data and Knowledge Engineer-

ing 53 (2) (2005) 129–162.

[51] C. Ellis, K. Keddara, G. Rozenberg, Dynamic change within workflow

systems, in: N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, S. Kaplan

(Eds.), Proceedings of the Conference on Organizational Computing Sys-

tems, ACM SIGOIS, ACM Press, New York, Milpitas, California, 1995, pp.

10 – 21.

[52] M. Klein, C. Dellarocas, A. Bernstein (Eds.), Adaptive Workflow Systems,

Special Issue of Computer Supported Cooperative Work, 2000.

[53] P. Dadam, M. Reichert, K. Kuhn, Clinical Workflows - The Killer Ap-

plication for Process-oriented Information Systems?, in: W. Abramowicz,

M. Orlowska (Eds.), BIS2000 - Proc. of the 4th International Conference

on Business Information Systems, Springer-Verlag, Poznan, Poland, 2000,

pp. 36–59.

51

[54] R. Mans, W. van der Aalst, N. Russell, A. Moleman, P. Bakker, M. Jaspers,

Modern Business Process Automation: YAWL and its Support Environ-

ment, Springer Verlag, 20009, Ch. YAWL4Healthcare, pp. 543–566.

[55] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, J. Su, Towards Formal Anal-

ysis of Artifact-Centric Business Process Models, in: G. Alonso, P. Dadam,

M. Rosemann (Eds.), International Conference on Business Process Man-

agement (BPM 2007), Vol. 4714 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 2007, pp. 288–304.

[56] V. Künzle, M. Reichert, Towards Object-aware Process Management Sys-

tems: Issues, Challenges, Benefits, in: T. Halpin, J. Krogstie, S. Nurcan,

E. Proper, R. Schmidt, P. Soffer, R. Ukor (Eds.), Proc. 10th Int’l Workshop

on Business Process Modeling, Development, and Support (BPMDS’09),

Vol. 29 of Lecture Notes in Business Information Processing, Springer-

Verlag, Berlin, 2009, pp. 197–210.

[57] D. Müller, M. Reichert, J. Herbst, A New Paradigm for the Enactment and

Dynamic Adaptation of Data-Driven Process Structures, in: R. Meersman,

Z. Tari (Eds.), Advanced Information Systems Engineering, Vol. 5074 of

Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2008, pp. 48–

63.

[58] D. Müller, M. Reichert, J. Herbst, Data-Driven Modeling and Coordination

of Large Process Structures, in: Z. Bellahsène, M. Léonard (Eds.), On

the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE,

GADA, and IS, Vol. 4803 of Lecture Notes in Computer Science, Springer-

Verlag, Berlin, 2007, pp. 131–149.

[59] E. Browne, M. Schrefl, J. Warren, A Two Tier, Goal-Driven Workflow

Model for the Healthcare Domain, in: Proceedings of the 5th International

Conference on Enterprise Information Systems (ICEIS 2003), 2003, pp.

32–39.

52

[60] E. Browne, M. Schrefl, J. Warren, Activity Crediting in Distributed Work-

flow Environments, in: Proceedings of the 6th International Conference on

Enterprise Information Systems (ICEIS 2004), 2004.

[61] E. Browne, M. Schrefl, J. Warren, Goal-Focused Self-Modifying Workflow

in the Healthcare Domain, in: Proceedings of the 37th Annual Hawaii

International Conference on System Sciences (HICSS-37 2004) - Track 6,

IEEE Computer Society Press, 2004.

[62] K. Bhattacharya, N. Caswell, S. Kumaran, A. Nigam, F. Wu, Artifact-

centered operational modeling: Lessons from customer engagements, IBM

Systems Journal 46 (4) (2007) 703–721.

[63] A. Nigam, N. Caswell, Business artifacts: An approach to operational spec-

ification, IBM Systems Journal 42 (3) (2003) 428–445.

[64] P. Barthelmess, J. Wainer, Workflow systems: a few definitions and a few

suggestions, in: N. Comstock, C. Ellis (Eds.), Proceedings of the Con-

ference on Organizational Computing Systems - COOCS’95, ACM Press,

Milpitas, California, 1995, pp. 138–147.

[65] S. Sadiq, M. Orlowska, W. Sadiq, K. Schulz, When workflows will not

deliver: The case of contradicting work practice, in: W. Abramowicz (Ed.),

Proc. BIS’05, 2005.

[66] M. Adams, A. ter Hofstede, D. Edmond, W. van der Aalst, Facilitating

Flexibility and Dynamic Exception Handling in Workflows, in: O. Belo,

J. Eder, O. Pastor, J. Falcao e Cunha (Eds.), Proceedings of the CAiSE’05

Forum, FEUP, Porto, Portugal, 2005, pp. 45–50.

[67] M. Adams, A. ter Hofstede, D. Edmond, W. van der Aalst, Worklets: A

Service-Oriented Implementation of Dynamic Flexibility in Workflows, in:

R. Meersman, Z. Tari (Eds.), Proceedings the 14th International Confer-

ence on Cooperative Information Systems (CoopIS’06), Vol. 4275 of Lecture

Notes in Computer Science, Springer-Verlag, 2006, pp. 291–308.

53

[68] R. Mans, N. Russell, W. van der Aalst, A. Moleman, P. Bakker, Schedule-

Aware Workflow Management Systems, in: D. Moldt (Ed.), Proceedings

of the International Workshop on Petri Nets and Software Engineering

(PNSE09), 2009, pp. 81–96.

[69] K. Lyng, T. Hildebrandt, R. Mukkamala, From Paper Based Clinical Prac-

tice Guidelines to Declarative Workflow Management, in: D. Ardagna,

M. Mecella, J. Yang (Eds.), Business Process Management Workshops:

BPM 2008 International Workshops, Milano, Italy, September 1-4, 2008.

Revised Papers, Vol. 17 of Lecture Notes in Business Information Process-

ing, Springer-Verlag Berlin Heidelberg, 2009, pp. 336–347.

[70] N. Mulyar, M. Pesic, W. van der Aalst, M. Peleg, Declarative and Proce-

dural Approaches for Modelling Clinical Guidelines: Addressing Flexibility

Issues, in: A. ter Hofstede, B. Benatallah, H.-Y. Paik (Eds.), Business

Process Management Workshops: BPM 2007 International Workshops,

BPI, BPD, CBP, ProHealth, RefMod, semantics4ws, Brisbane, Australia,

September 24, 2007, Revised Selected Papers, Vol. 4928 of Lecture Notes in

Computer Science, Springer-Verlag Berlin Heidelberg, 2008, pp. 335–346.

[71] N. Russell, W. van der Aalst, A. ter Hofstede, D. Edmond, Workflow Re-

source Patterns: Identification, Representation and Tool Support, in: Ad-

vanced Information Systems Engineering, Vol. 3520 of Lecture Notes in

Computer Science, 2005, pp. 216–232.

[72] M. Wynn, H. Verbeek, W. van der Aalst, A. ter Hofstede, Business process

verification: Finally a reality!, Business Process Management Journal 15 (1)

(2009) 74–92.

[73] J. Jorgensen, S. Tjell, J. Fernandes, Formal requirements modelling with

executable use cases and coloured Petri nets, Innovations in Systems and

Software Engineering 5 (1) (2009) 13–25.

[74] J. Jorgensen, K. Lassen, W. van der Aalst, From task descriptions via

colored Petri nets towards an implementation of a new electronic patient

54

record workflow system, International Journal on Software Tools for Tech-

nology Transfer (STTT) 10 (1) (2008) 15–28.

[75] T. Herrmann, Handbook of Research on Socio-Technical Design and Social

Networking Systems, Idea Group Publishing, 2009, Ch. Systems Design

with the Socio-Technical Walkthrough., pp. 336–351.

[76] K. Jensen, L. Kristensen, Coloured Petri Nets: Modelling and Validation

of Concurrent Systems, Springer, 2009.

[77] W. van der Aalst, H. Reijers, A. Weijters, B. van Dongen, A. A.

de Medeiros, M. Song, H. Verbeek, Business Process Mining: An Industrial

Application, Information Systems 32 (5) (2007) 713–732.

[78] A. de Medeiros, W. van der Aalst, A. Weijters, Workflow Mining: Cur-

rent Status and Future Directions, in: R. Meersman, Z. Tari, D. Schmidt

(Eds.), On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE, Vol. 2888 of Lecture Notes in Computer Science, Springer-

Verlag, Berlin, 2003, pp. 389–406.

55

