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Abstract. Process mining techniques attempt to extract non-trivial
knowledge and interesting insights from event logs. Process mining pro-
vides a welcome extension of the repertoire of business process analysis
techniques and has been adopted in various commercial BPM systems
(BPM|one, Futura Reflect, ARIS PPM, Fujitsu, etc.). Unfortunately, tra-
ditional process discovery algorithms have problems dealing with less-
structured processes. The resulting models are difficult to comprehend
or even misleading. Therefore, we propose a new approach based on trace

alignment. The goal is to align traces in a way that event logs can be
explored easily. Trace alignment can be used in a preprocessing phase
where the event log is investigated or filtered and in later phases where
detailed questions need to be answered. Hence, it complements exist-
ing process mining techniques focusing on discovery and conformance
checking.

1 Introduction

Many of today’s information systems are recording an abundance of event logs.
Process mining techniques attempt to extract non-trivial knowledge and inter-
esting insights from these event logs and to exploit these for further analysis [1].
Process mining techniques aim at discovering process, control, data, organiza-
tional and social structures from event logs. The majority of research in process
mining so far has focussed on process discovery (both from a control-flow and
organizational perspective). One of the challenging topics in process mining is
process diagnostics. Process diagnostics encompasses process performance analy-
sis, anomaly detection, diagnosis, inspection of interesting patterns and the like.
Research so far in diagnosing processes is limited to exploring ways and means of
analyzing process models (such as conformance checking), projecting diagnostic
information on these models or in dashboard like approaches over some (per-
formance) metrics. Diagnostics of processes at the model level is cumbersome,
tedious and sometimes infeasible, especially when dealing with real-life and flex-
ible processes. We have applied process mining in more than 100 organizations
and our experiences show that processes tend to be less structured than ex-
pected. Traditional process mining algorithms have problems dealing with such
unstructured processes and generate spaghetti-like process models that are hard
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to comprehend. Such incomprehensible models are not amenable or are found
lacking to assist in process diagnostic efforts. When diagnosing processes, a busi-
ness analyst is confronted with lots of interesting questions. We list some of them
below:

1. What is the most common (likely) process behavior that is executed? Given
a bag of traces from a process, it would be interesting to know which pro-
cess components are essential/critical for this process. Such essential compo-
nents/functions form the backbone of the process and should be conserved.
Process re-design/improvement efforts should focus on improving such crit-
ical components.

2. Where do my process instances deviate and what do they have in common?:
In practice, there is often a significant gap between what is prescribed or sup-
posed to happen, and what actually happens. There is a need to augment
process diagnostics with techniques that can assist in finding deviations by
analyzing raw traces in the event logs. There are many domains/applications
where this requirement is felt. Fault diagnosis, anomaly detection, diagnosis
of fraudulent insurance claims are some of the applications. Given an event
log containing a mix of traces where the system process functioned nor-
mally and where it malfunctioned, analyzing these traces to find deviations
in malfunctioned/anomalous traces from normal traces would give cues in
understanding the cause of malfunction/anomaly.

3. Are there any common patterns of execution in my traces?: Analyzing logs
at the granularity of an individual event might not always be result yielding
as one often loses the context information during such analysis. An analyst
would be interested in knowing whether there are any interesting execution
(behavioral) patterns in the log. The absence or presence of such patterns
may indicate the cause of an anomaly (say for e.g., fraudulent insurance
claim) or a security violation or a malfunction.

4. What are the contexts in which an activity or a set of activities are executed
in my event log?: Dependencies exist between activities in a process and ac-
tivity executions are expected to happen within certain contexts. There can
be short-range and long-range dependencies between activities. Long-range
dependencies are difficult to discover. An analyst would be interested in un-
derstanding the contexts of execution of activities and/or activity sequences.

5. What are the process instances that share/capture a desired behavior either
exactly or approximately?: Often in diagnostics, an analyst would be inter-
ested in finding process instances that share/comply to a particular desired
behavior; The desired behavior can be represented as a manifestation of
some pattern of activity sequences or some complex form (combination) of
these patterns. Though temporal logic approaches can assist in addressing
this problem to a certain extent by discovering process instances that cap-
ture the desired behavior exactly, one might also be interested in discovering
process instances that share the desired behavior approximately.

6. Are there particular patterns (e.g., milestones, concurrent activities etc.) in
my process?: Workflow patterns refer to recurring forms/structures address-
ing business requirements. For example, milestones indicate specific execu-
tion points in the process model and provide a mechanism for supporting the
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conditional execution of a task or sub-process. An analyst would be inter-
ested in discovering the presence of, and in analyzing milestone patterns in
the process event log. Discovery of process models with concurrency is one
of the challenging problems in process mining. The presence of concurrent
activities creates different permutations of activities in the event log that
adds to the complexity of discovery algorithms. Detection of the presence of
concurrent activities might also help in pre-processing the logs.

In this paper, taking inspiration from biological sequence alignment [2], we pro-
pose a novel approach, called trace alignment, of aligning traces in an event log
and show the promise of such an approach in process diagnostics addressing
some of the questions enumerated above. Multiple sequence alignment is a topic
of extensive research of over three decades in computational biology and still
remains intriguing due to the intricate challenges it poses. There are significant
challenges in adopting them to trace alignment. We highlight some of the chal-
lenges in this paper and believe that this will open a new area of research within
process mining. Figure 1 illustrates the traditional dotted chart analysis and the
proposed trace alignment1. It is apparent that the proposed approach of trace
alignment uncovers common execution patterns and deviations in the log yield-
ing better insights for analysis.

Fig. 1. Comparison of Dotted Chart Analysis and Trace Alignment

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the notations used in the paper. Section 3 introduces the concept of trace
alignment and discusses the techniques for finding alignments. In Section 4, we
propose a framework for finding alignments over a set of traces. In Section 5,
we present and discuss the results of trace alignment on a synthetic log and a
real-life log and show how trace alignment can assist in gaining better insights
for process diagnostics. We discuss related work in Section 6. Finally, Section 7
concludes the paper.

2 Notations

– Let Σ denote the set of activities. |Σ| is the number of activities.

1 In the dotted chart, a dot represents an activity and the x-axis represents time. In
trace alignment, the x-axis represents the alignment position. y-axis represents trace
indices for both the dotted chart and trace alignment.
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– Σ+ is the set of all non-empty finite sequences of activities from Σ. T ∈ Σ+

is a trace over Σ. |T | denotes the length of trace T .
– The set of all n-length sequences over the alphabet Σ is denoted by Σn. A

trace of length n is denoted as T n i.e., T n ∈ Σn, and |T n| = n.
– The ordered sequence of activities in T n is denoted as T (1)T (2)T (3) . . . T (n)

where T (k) represents the kth activity in the trace.
– T n−1 denotes the n− 1 length prefix of T n. In other words T n = T n−1T (n).
– An event log, L, corresponds to a multi-set (or bag) of traces from Σ+.

3 Trace Alignment

In this section, we formally define what trace alignment is and discuss techniques
for finding optimal alignments.

Definition 1. Trace alignment over a set of traces T = {T1, T2, . . . , Tn} is
defined as a mapping of the set of traces in T to another set of traces T =
{T1, T2, . . . , Tn} where each Ti ∈ (Σ ∪ {−})+ for 1 ≤ i ≤ n and

• |T1| = |T2| = . . . = |Tn| = m,

• Ti by removing all “−” gap symbols is equal to Ti,

• ∄k, 1 ≤ k ≤ m such that ∀1≤i≤n, Ti(k) = −
m in the definition above is the length of the alignment. An alignment over a
set of traces can be represented by a rectangular matrix A = {aij}(1 ≤ i ≤
n, 1 ≤ j ≤ m) over Σ′ = Σ ∪ {−} where − denotes a gap. The third condition
in the definition above implies that no column in A contains only gaps (−). It
is imperative to note that there can be many possible alignments for a given set
of traces and that the length of the alignment, m, satisfies the relation lmax ≤
m ≤ lsum where lmax is the maximum length of the traces in T and lsum is the
sum of lengths of all traces in T.

3.1 Pairwise Trace Alignment

Before we get into the details of aligning a set of traces, let us first consider a
special case of trace alignment, where the number of traces to align is 2. Align-
ing a pair of traces is referred to as pair-wise trace alignment. Let us consider
the example of aligning the two traces T1 = abcac and T2 = acacad. Figure 2
depicts three variants of aligning the two traces. In fact, the number of possible
alignments for two traces of length l is ≈ (1 +

√
2)2l+1l−1/2 [2], e.g., for two

traces of length 100, the number of possible alignments is approximately 1077.
Therefore, it is infeasible to enumerate all possible alignments even for moderate
values of l. Moreover, not all of these alignments would be interesting. In order
to compute “best” alignments, we need a means of associating a score to an
alignment.

Alignment between a pair of traces, T1 and T2 can be considered as a trans-
formation of the trace T1 to T2 or viceversa through a set of editing operations
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T
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T
1

T
2

T
1

a b c a c −

a c a c a d T
2

T
1

a b c a c − −

a − c a c a d

(i) (ii) (iii)

a b c a c − − − − − −

− − − − − a c a c a d

Fig. 2. An Example of Pair-wise Trace Alignments

applied to one of the traces iteratively. The traces are said to be aligned after the
transformation, and can be represented as a rectangular matrix as mentioned
earlier. Assuming that T1 is written over T2 in the alignment (as in Figure 2),
the following edit operations are defined for any column j in the alignment:

• the activity pair (a, b), a, b ∈ Σ, denotes a substitution of activity a in T1

with activity b in T2,
• the activity pair (a,−) denotes the deletion of activity a in T1, and
• the activity pair (−, b) denotes the insertion of activity b in T1.

It is important to note that insertion and deletion operations are complementary
in that an insertion in one trace can be considered as a deletion in another trace.
Henceforth, we refer to insertion and deletion operations as indel operation.
indels should be sensitive to the context in which the operations are performed.
For example, it is ok to have an activity fread after fopen but not after fclose.
Hence, we consider the indel operation as indelRightGivenLeftwhich indicates
the insertion of an activity to the right of another activity. A score function needs
to be defined for the substitution and indel operations. The substitution score
is a function S : Σ × Σ → ℜ where S(a, b) denotes the score for substitution
of activity a with activity b for all a, b ∈ Σ. The indelRightGivenLeft score
is a function Il : Σ ∪ {−} × Σ ∪ {−} → ℜ where Il(a, b) denotes the score for
inserting activity a given that the left activity is b for all a, b ∈ Σ. Il(a,−) =
Il(−, a) = Il(−,−) = 0 for all a ∈ Σ. Given S and Il, the score of a pair-wise
alignment can be defined as the sum of the scores of the edit operations across
all columns in the alignment. In other words, if T1 and T2 are the aligned traces
of T1 and T2, and the alignment is of length m, then:

Score(T1, T2) =

m
∑

j=1

ej

where

ej =











S(a, b) if T1(j) = a and T2(j) = b

Il(a, b)

{

if T1(j) = a, T1(j − 1) = b and T2(j) = − or

if T1(j) = −, T2(j) = a and T2(j − 1) = b

T1(0) = T2(0) = −. Assuming a simple scoring function where a substitution
of activity pair (a, b) is associated with a score of 1 if a = b and a score of
−1 otherwise, and an indel scoring function, Il(a, b) = −1, for all a, b ∈ Σ, the
alignments enumerated in Figure 2 have the scores 1, −4 and −9 respectively. A
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“best” alignment can be considered to be the one with the maximum score. It is
imperative to note that the best scoring alignment is sensitive to the substitution
and indel score functions.

How to Compute Alignments. Needleman and Wunsch [3] have proposed a
dynamic programming algorithm for finding the optimal alignment between two
amino acid sequences. The basic idea is to build up an optimal alignment using
previous solutions for optimal alignments of smaller subsequences. Let T1 and
T2 be two traces. A matrix F indexed by i and j, is constructed where the value
F (i, j) is the score of the best alignment between the prefix T i

1 of T1 and the

prefix T j
2 of T2. F (i, j) is constructed recursively by initializing F (0, 0) = 0 and

then proceeding to fill the matrix from top left to bottom right. It is possible
to calculate F (i, j) if F (i − 1, j − 1), F (i − 1, j) and F (i, j − 1) are known.
There are three possible ways that the best score F (i, j) of an alignment up

to T i
1 and T j

2 could be obtained: T1(i) could be aligned to T2(j), in which case
F (i, j) = F (i − 1, j − 1) + S(T1(i), T2(j)); or T1(i) is aligned to a gap, in which
case F (i, j) = F (i − 1, j) + Il(T1(i), T1(i − 1)); or T2(j) is aligned to a gap, in
which case F (i, j) = F (i, j − 1)+ Il(T2(j), T2(j − 1)). The best score up to (i, j)
will be the largest of these three options. In other words, we have

F (i, j) = max







F (i − 1, j − 1) + S(T1(i), T2(j)),
F (i − 1, j) + Il(T1(i), T1(i − 1)),
F (i, j − 1) + Il(T2(j), T2(j − 1)).

(1)

The values along the top row (when i = 0) and left column (when j = 0) need
to be handled as follows. The values F (i, 0) represent alignments of a prefix
of T1 to all gaps in T2. So, we can define F (1, 0) = 0 and for i > 1, F (i, 0) =
F (i−1, 0)+Il(T1(i), T1(i−1)). Similarly, we can define F (0, j). The value in the
bottom right cell of the matrix, F (|T1|, |T2|), is the best score for an alignment of
T1 and T2. To find the alignment itself, we must find the path of choices from (1)
that led to this best score, i.e., we move from the current cell (i, j) to one of the
cells (i− 1, j− 1), (i− 1, j) or (i, j − 1) from which the value F (i, j) was derived.
While doing so, we add a pair of symbols onto the front of the alignment: T1(i)
and T2(j) if the step was to (i−1, j−1), T1(i) and the gap symbol ‘−’ if the step
was to (i− 1, j), or ‘−’ and T2(j) if the step was to (i, j − 1). At the end we will
reach the start of the matrix, i = j = 0. The above procedure, called traceback,
will retrieve only one of the alignments that gives the best score; there can be
cases where multiple options of (1) are equal. In these cases, an arbitrary choice
is made. The set of all possible alignments for the best score can be enumerated
by using graph traversal techniques.

3.2 Multiple Trace Alignment

Having discussed the alignment of two traces, let us move on to the alignment
of a set of traces. One of the most popular scoring mechanisms for multiple
sequence alignment of genomic sequences is the sum-of-pairs (SP) method. We
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adopt the sum-of-pairs method for trace alignment as well. Let Tj and Tk be two
distinct rows extracted from a multiple trace alignment A (over a set of set of
n traces), and let Score(Tj , Tk) be the alignment score calculated in the same
way as ordinary pairwise alignment of Tj and Tk, then the SP score of a multiple
trace alignment A is defined as

ScoreSP (A) =
∑

1≤j≤k≤n

Score(Tj , Tk)

It is possible to generalize the pairwise dynamic programming alignment ap-
proach to the alignment of n traces. However, it is impractical for more than a
few traces. Assuming that the traces are all of roughly the same length l, the
space complexity of the multidimensional dynamic programming algorithm is
O(ln) and the time complexity is O(2nln) [4]. Multiple sequence alignment that
maximizes the SP score was shown to be NP-complete [5].

We adopted the progressive alignment approach for trace alignment. The basic
idea of progressive alignment is to iteratively construct a succession of pairwise
alignments. Alignment is allowed between a pair of traces, a trace and an align-
ment and between alignments. The selection of traces for alignment at each
iteration is based on their similarity. Traces that are most similar to each other
are aligned first. Once similar traces have been aligned, align the resulting clus-
ters of traces against each other. A guide tree is built to assist this process.
We use the agglomerative hierarchical clustering algorithm (AHC) for generat-
ing this tree. We can use either distance metrics such as Euclidean distance or
similarity measures for clustering. The choice of AHC is due to the fact that it
produces the tree naturally as a dendrogram while the tree has to be constructed
subsequently if other clustering algorithms such as k-means is used.

Figure 3 illustrates an example of the progressive alignment strategy. In this
example, we consider 5 traces. A guide tree is generated using AHC. Based
on the guide tree, the traces T2 and T3 would first be aligned using pairwise
trace alignment. Next traces T4 and T5 would be aligned using pairwise trace
alignment. Subsequently, trace T1 is aligned with the alignment obtained from
T2 and T3. Finally the two alignments obtained from the set of traces {T1, T2, T3}
and {T4, T5} are aligned.

While aligning an alignment A, with another alignment B, (1) is modified as

F (i, j) = max







F (i − 1, j − 1) + S(Ci
A, Cj

B),

F (i − 1, j) + Il(C
i
A, Ci−1

A ),

F (i, j − 1) + Il(C
j
B, Cj−1

B ).

(2)

where S(Ci
A, Cj

B) denotes the score of substituting column i of alignment A with
column j of alignment B and is defined as

S(Ci
A, Cj

B) =
∑

∀a,b∈Σ

ni
A(a).nj

B(b).S(a, b) (3)
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T : j g c l e b d f i

T : j g c l e b d f 

T : j g c l f e b d

T : j g c l e f b d i

T : j g c f l e b d1

2

3

4

5

T1 T2 T3 T4 T5

j g c f l e b d − −

j g c − l e b d f −

j g c − l e b d f i  

j g c l − f e b d −

j g c l e f − b d i  

T1 T2 T3 T4 T5

j g c − l − − e b d f i  

j g c − l − − e b d f −

j g c f l − − e b d − −

j g c − l − f e b d − −

j g c − l e f − b d − i  

j g c l e b d f i  

j g c l e b d f −

Fig. 3. Example of Progressive Alignment Approach for Multiple Trace Alignment

where ni
X (a) denotes the frequency (count) of activity a in column i of alignment

X . Il(C
i
A, Ci−1

A ) denotes the score of inserting column i in alignment A given
that its left column is i − 1 and is defined as

Il(C
i
A, Ci−1

A ) =
∑

∀a,b∈Σ

f i
A(a, b).Il(a, b) (4)

where f i
A(a, b) is the frequency of activity a in column i of alignment A given

that its neighboring activity is b in column i − 1. The procedure for finding
the “best” alignment is similar to that of pairwise alignment. Note that the
guide tree enables the visualization of alignments for different subsets of the
traces. The alignment at the root of the tree corresponds to the alignment of
all the traces in the event log whereas an alignment at any internal node of the
guide tree depicts the alignment corresponding to the traces constituting the
leaves of the sub-tree at the node. It is often the case that event logs contain
traces capturing different execution behavior of a process and clustering assists
in grouping together a coherent set of traces.

4 Framework for Trace Alignment

We propose the framework depicted in Figure 4 for trace alignment. The frame-
work identifies the following parts:

Event Log
Build

Guide 

Tree

Preprocessing Processed

Log

Interactive

Visualization
Alignment

Compute

Progressive Alignment

Estimate

Quality

and

Realignment

Matrices

Compute

Scoring

Pruning 

Fig. 4. Framework for Multiple Trace Alignment
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– Preprocessing: Preprocessing involves steps such as removal of outliers, re-
moval of loop-constructs, and encoding of log into character streams. The
detection and removal of outliers is critical for obtaining interesting align-
ments.

– Compute Scoring Matrices: As discussed in Section 3, alignments are sen-
sitive to the substitution and indel score functions, S and Il respectively.
We use the approach presented in [6] for deriving the substitution and indel
score functions from the event log.

– Build Guide Tree: A guide tree assists in progressive alignment of multiple
traces as illustrated in Figure 3. We use the agglomerative hierarchical clus-
tering (AHC) for building the guide tree. However, other approaches such
as neighbor joining [7] can be used.

– Estimate the Quality of Alignment: Progressive alignment being a heuristics-
based approach, the alignment that is obtained need not be optimal. Further
any error in alignment done in early stages of progressive alignment cannot
be undone. Hence it is essential to estimate the quality of an alignment. In
this work, we adopt a metric based on the information score as a means for
assessing the quality of an alignment. The information score of a column in an
alignment is defined as 1−E/Emax, where E is the entropy of activities in the
column2 and Emax is the maximum entropy which is equal to log2(|Σ|+ 1).

– Pruning and Realignment: Construction of multiple trace alignment is a very
complex problem, and most heuristic algorithms usually fail to generate an
optimal alignment. Disturbances in an alignment can creep in from many
sources thereby making the final alignment far from optimal. Disturbances
here refer to the misplacement of gaps in an alignment. Efficient techniques
for pruning and realigning alignments need to be supported. We will discuss
more about this later in this section.

– Interactive Visualization: Apart from just pictorially depicting the align-
ment it is desirable to have additional interactive features for the analysts
to explore into the patterns and the alignments uncovered. Features such
as editing an alignment, sorting and/or filtering alignment columns based
on activities of interest would all lead to gaining further insights into the
execution of processes.

Though the definition of what constitutes an outlier is left open, in the cur-
rent exploration, we have adopted one simple definition of outliers based on the
length of the traces. It could be the case that in an event log there are certain
process instances whose lengths deviate a lot from the average trace length in
the log, e.g., one of the real life event logs that we analyzed had an average
trace length of 47 activities (across 223 traces) while there were 5 traces with
lengths above 250. Since an alignment is at least as long as the maximum trace
length, such outlier traces in the log can lead to an alignment with too many gap
symbols. Hence the removal of such traces is important. Note that the definition
of outliers can change based on the perspective of analysis. If we are interested
in finding common execution patterns or the backbone sequence of a process,

2 The entropy of a column is defined as E =
∑

a∈Σ∪{−}−pa log
2
(pa) where pa is the

probability of occurrence of a in the column.
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the above definition of outliers may work fine. However, if we are interested in
finding non-conforming traces or deviations in anomalous traces from normal
traces, then the above definition might not always be appropriate.

Realigning alignments. Variation in the lengths of the traces (mostly due to
recurring patterns and loops), the choice of scoring matrices used, the method
and parameter choices used in the generation of guide tree, strategies used in
resolving conflicts during traceback can all lead to disturbances in the alignment.
Furthermore, disturbances in earlier stages of progressive alignment strategy per-
colate to later stages. Detecting such disturbances and realigning them might
vastly improve the quality of the final alignment. Figure 5 depicts an example of
an alignment before and after realignment. For the original alignment, the infor-
mation score for the columns 4 and 6 is 0.66 whereas the information score for
the same columns after realignment is 0.73. More than the improvement in score,
what is important it that the conserved activity sequence ahbd is preserved after
realignment.

a h b − f d k a − h b d i

a h b d f − k a − h b d i

a h b d f − k a − h b d −

a h b − − d k a f h b d i

a h b − f d k a − h b d i

a h b d f − k a − h b d i

a h b d f − k a − h b d −

a h b d − − k a f h b d i

Realignment

Fig. 5. Example of Realignment

The alignment procedure described in Section 3 is also called as global trace
alignment. Depending on the scoring functions, global trace alignment can some-
times penalize gaps at the beginning and/or end of the traces in the alignment.
In order to allow gaps to be inserted at the beginning/end of any trace in an
alignment, a variant of the global trace alignment called the semi-global trace
alignment can be considered. Here the best score of the alignment is defined to
be the one that is the maximum in the last row or last column of the F matrix
defined in Section 3. Traceback procedure starts from that cell and proceeds
until it stops at the first position it reaches in the top row or left column. Gaps
can then be inserted in the appropriate trace in the positions subsequent to the
maximum value cell in the last row/column and prior to the position it reached
in the top row or left column. Figure 6 depicts the difference between global
trace alignment and semi-global trace alignment of two traces aligned using the
same scoring functions. It is easy to see that the alignment obtained using semi-
global alignment is preferable to the one obtained using global-alignment. We
recommend to consider semi-global trace alignment (at any iteration of progres-
sive alignment) in scenarios where the traces to be aligned differ in their lengths
vastly (for example, due to the manifestation of loop constructs).

T
2

T
1

j g c − a h b − − − − f d

j g c f a h b d k a h b d T
2

T
1

Global Trace Alignment Semi−global Trace Alignment

j g c f a h b − d k a h b d 

j g c − a h b f d − − − − − 

Fig. 6. Example of global trace alignment and semi-global trace alignment



Trace Alignment in Process Mining: Opportunities for Process Diagnostics 237

5 Experimental Results and Discussion

Based on the techniques and framework presented in sections 3 and 4, we built
a trace alignment plug-in in ProM3. We present the results of applying trace
alignment on two event logs in the subsequent sections.

5.1 Telephone Repair Log

The telephone repair event log [8] is defined over 12 event classes and consists
of 1104 traces, of which only 77 traces are distinct when represented as activity
sequences. Since duplicate traces add to the complexity of alignment without
yielding any additional benefits, we applied the trace alignment on these 77
traces (but at the same time maintain the fact that there exists identical traces
in the log). The log consists of cases where the repair can be classified as a
simple or complex one. For our discussion here, we further distinguish two types
of cases based on the difficulty level of repair viz., cases where the telephone
repair was easy and cases where it was difficult (in both simple and complex
types). Difficult cases required multiple tries of the repair diagnosis for failing
the quality assessment test.

As mentioned earlier, the guide tree inherently captures the notion of clus-
tering. We have split the event log into four clusters for the example log and
Figure 7 depicts the trace alignment for one of the four clusters. This cluster
corresponds to traces where the repair type was easy and a complex repair pro-
cedure was done to fix the problem. The length of the alignment is 14 for this
cluster. The left panel depicts the process instance identifier (as in the log) and
identifiers with a grey background indicate traces that have identical duplicates.
For example there are traces identical to process instance 1018 (corresponding to
activity sequence jgcflebd in the event log) while there are no identical traces
for the process instance 1127. The top panel depicts a sorting component where
the traces involved in the alignment can be sorted based on the activities in a
column and the number in the column indicates the priority of sorting. For ex-
ample in Figure 7, the traces are sorted based on activity f (which indicates the
inform user activity) with traces having f in column 4 having first priority and
then with those having f in column 7 and finally with those having f in column
11. The bottom panel depicts the information score metric for each column as
well as a consensus sequence for the alignment. The consensus sequence captures
the major activity in each column and can be considered as a back-bone sequence
for the process. Columns with an information score of 1.0 indicate well con-
served patterns. For example in this alignment, the columns 1− 3 depicting the
encoded activity sequence jgc (corresponding to activities Register-complete,
Analyze (Defect)-start and Analyze (Defect)-complete) is well conserved
and appears in all the traces as the beginning subsequence. It is obvious to
see that the encoded activity f corresponding to Inform User - complete

3 ProM is an extensible framework that provides a comprehensive set of
tools/plugins for the discovery and analysis of process models from event logs. See
http://www.processmining.org for more information and to download ProM.
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is a concurrent activity. Concurrent activity manifests in mutually exclusive
traces across different columns in the alignment. The encoded activities l, e,
b, d and i correspond to Repair Complex-start, Repair Complex-complete,
Test Repair-start, Test Repair-complete and Archive Repair-complete

respectively. Annotating the traces with additional information such as perfor-
mance metrics, customer feedback etc over the alignment might give further
insights. For example, let us assume that the customer was not happy for the
cases 1 and 1009, it is obvious to see that these traces differ from the rest in that
the activity f appears quite late in these traces. It could be inferred that these
customers were not timely informed about the status of their complaint and thus
were not satisfied. The rest of the 3 clusters for this event log corresponded to
the following difficulty level and repair type categories: easy and simple, difficult
and complex and difficult and simple/complex where the last cluster pertained
to cases where a simple repair procedure was first tried and finally a complex
repair procedure was done.

Fig. 7. Trace alignment of traces in telephone repair log for one of the clusters

5.2 Rental Agency Log

We applied trace alignment on a real life log of a rental agency where the cases
corresponded to cancellation of a current rental agreement and subsequent reg-
istration of a new rental agreement. This log was provided by a large Dutch
agency that rents houses and apartments (the organization has approximately
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1000 employees and handles 80, 000 houses). There were 74 event classes, one
event type, 210 traces and 6100 events in this log. As we can see, this log is suf-
ficiently complex in terms of the size of the alphabet and the number of cases.
The traces are first encoded into activity sequences where each activity is en-
coded as a two character sequence. Figure 8 depicts the alignment for one of the
four clusters of this log. Since the whole alignment is not legible4, we highlight
the interesting patterns/activities (that we refer to for our further discussion)
at the top and the bottom of the figure. The length of the alignment is 88. At
the outset, we can see certain patterns in the form of well conserved regions
(columns) in the alignment. Deviations and exceptional behavior are captured in
regions that are sparsely filled i.e., regions with lot of gap symbols (−). We will
present the results of analysis of some of these deviations. It could be seen that
only one of the traces (third trace in the alignment) has the activity subsequence
b4a8b0 in columns 9 − 11. Activity b0 in column 8 corresponds to the check,
is first inspection done? and the activity subsequence b4a8b0 corresponds
to the scenario where the result of the check was negative due to the fact that
the tenant was not at home. b4 corresponds to the activity of sending a letter to
the tenant and a8 corresponds to the activity of rescheduling the first inspection.

Fig. 8. Trace alignment for one of the clusters of rental agency log

The activity sequence h1g9 corresponding to the checks is final inspection

done? (h1), and are there new/repaired defects? (g9) is well conserved
across all but one of the traces . We see an exceptional activity sequence d1d0

corresponding to the offering of a flat in one of the traces (first trace) before
the activity sequence h1g9. It is strange that a flat was offered before the final
inspection was done as in all the other traces where the flat was offered, it hap-
pened subsequent to the final inspection. Upon further inspection, we observed

4 The actual alignment can be inspected at
www.win.tue.nl/~jcbose/AlignmentAnaysis3a.png
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that though the flat was offered, the actual registration/check of the candidate
corresponding to activity d6 happened subsequent to the final inspection. Fur-
thermore, in all the cases where the flat was offered and the candidate registered,
the activity sequence d1d0d6 was well conserved except for the first trace. Trace
alignment helps us uncover such anomalies and deviations. Similarly, we notice
that in only one of traces (second trace) there was a need for second inspection
(activity b5 corresponds to the planning of second inspection and e5 corresponds
to the check, is second inspection done?).

The activity c9 corresponds to the determination of a candidate tenant and
the activities a5 and e0 correspond to registration of lease and signing of con-
tract respectively. It could also be observed from the alignment that there is
an exceptional behavior in one of the cases where we see a manifestation of the
activity subsequence c9g4e8d9a5e0f0c9 (the activity c9 appears twice). This
indicates the fact that for this case, there was a need for determining the can-
didate tenant twice. The determination of the second candidate tenant followed
the activity f0 which corresponds to the termination of provisional lease. In
this fashion trace alignment assists the analyst in getting diagnostic insights by
uncovering interesting patterns and deviations.

Finding good quality alignments is intriguingly challenging. Efficient prepro-
cessing techniques for transforming the log with abstractions might help in finding
better alignments. One can try to find alignments in a multi-phase approach, with
abstractions defined over conserved patterns in each iteration of the alignment.
Alternatively, one can also adopt our abstraction techniques proposed in [9].

6 Related Work

Song and Aalst [10] have proposed the dotted chart analysis to analyze process
performance by depicting process events in a graphical way. The dotted chart
analysis (analogous to Gantt charts) primarily focuses on the time dimension
of events and presents a “helicopter view” of the event log along with some
metrics for performance such as the minimum, maximum and average interval
between events. The business analyst need to manually investigate the dotted
chart to identify any potential performance issues. For logs with medium to
large number of activities (of the order of a few tens to hundreds), the manual
inspection and comprehension of the dotted chart becomes cumbersome and
often infeasible to identify interesting patterns. Trace alignment alleviates this
problem, by finding those patterns automatically and depicting it to the user.
In the parlance of dotted chart analysis, trace alignment considers the logical
relative time perspective of the event log. Furthermore, it would be simple and
a natural extension to project the performance metrics proposed in [10] onto the
aligned traces.

Conformance checking compares an apriori model with the observed behavior
as recorded in the log and aims at detecting inconsistencies/deviations between
a process model and its corresponding execution log [11]. Conformance checking
has inherent limitations in its applicability especially for diagnostic purposes.
Firstly, it assumes the existence of a process model (the current realization of
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the conformance checker plugin in ProM requires the process to be modeled as
Petrinet). However, in reality, process models are either not present or if present
are incorrect or outdated (their quality typically leaves much to be desired). One
can argue that process models can be discovered from the event logs and con-
formance checking be applied on the discovered models. However, this approach
is not suitable for the analysis of highly complex and/or flexible processes, the
class of models which most of the real-life logs fall into and where the discovered
models are “spaghetti-like”. Even in cases where the process models are available
as Petrinets, it is difficult to look inside of the processes to identify and locate
problems especially with models that are large. Trace alignment analyzes the
raw event traces and highlights the deviations.

Multiple sequence alignment (MSA) is an active area of research in bioin-
formatics. Heuristic methods such as progressive alignment [12,13] and itera-
tive alignment [14] have been proposed for MSA. However there are challenges
in adapting these techniques for trace alignment. Alignment of biological se-
quences typically happens over sequences with less variation in length. However,
traces in an event log in process mining can be of different lengths. Variation in
lengths can occur due to variation in execution paths of the instances and due
to manifestation of process model constructs such as choice/loop constructs. In
biological sequence alignment, there are standard scoring matrices for substitu-
tion that are derived based on physio-chemical properties of the amino acids.
Insertion/deletion operations are primarily considered either with a constant
gap-score (or penalty) or as an affine function. Scoring matrices for trace align-
ment need to be derived automatically from the event log or provided by the
domain experts. Biological sequences deal with an alphabet size of either 4 (for
four nucleic acids) or 20 (for amino acids). However, the number of distinct ac-
tivities (event classes) in a typical process mining log can be of the order of a
few hundreds. This adds to the complexity of deriving good scoring matrices
and aligning traces. We took inspiration from MSA techniques [12,13,15] and
adapted them for trace alignment.

7 Conclusions

In this paper, we proposed a novel approach of aligning traces and showed that
this approach uncovers interesting patterns and assists in getting better insights
on process executions. We have listed some of the interesting questions in process
diagnostics and showed how trace alignment can help in diagnostic efforts. Due to
the computational complexity of multiple trace alignment, automatic generation
of high-quality alignments is still challenging. Traces that are outliers (noise) in
the log might mislead the alignment procedure and thereby result in a low quality
alignment. Better techniques to identify and discard outliers during alignment
are required. Metrics and realignment strategies in the perspective of process
modeling constructs and their manifestation in traces is highly desirable and is
an open area of research.
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