
Correctness Ensuring Process Configuration:
An Approach Based on Partner Synthesis

Wil van der Aalst1,3, Niels Lohmann1,2, Marcello La Rosa3, and Jingxin Xu3

1 Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tue.nl

2 Universität Rostock, Germany
niels.lohmann@uni-rostock.de

3 Queensland University of Technology, Australia
m.larosa@qut.edu.au,jingxin.xu@connect.qut.edu.au

Abstract. A configurable process model describes a family of similar process
models in a given domain. Such a model can be configured to obtain a specific
process model that is subsequently used to handle individual cases, for instance,
to process customer orders. Process configuration is notoriously difficult as there
may be all kinds of interdependencies between configuration decisions. In fact, an
incorrect configuration may lead to behavioral issues such as deadlocks and live-
locks. To address this problem, we present a novel verification approach inspired
by the “operating guidelines” used for partner synthesis. We view the configuration
process as an external service, and compute a characterization of all such services
which meet particular requirements using the notion of configuration guideline.
As a result, we can characterize all feasible configurations (i. e., configurations
without behavioral problems) at design time, instead of repeatedly checking each
individual configuration while configuring a process model.

Key words: Configurable process model, operating guideline, Petri nets

1 Introduction and Background

Although large organizations support their processes using a wide variety of process-
aware information systems, the majority of business processes are still not directly
driven by process models. Despite the success of Business Process Management (BPM)
thinking in organizations, Workflow Management (WfM) systems — today often referred
to as BPM systems — are not widely used. One of the main problems of BPM technology
is the “lack of content”, that is, providing just a generic infrastructure to build process-
aware information systems is insufficient as organizations need to support specific
processes. Organizations want to have “out-of-the-box” support for standard processes
and are only willing to design and develop system support for organization-specific
processes. Yet most BPM systems expect users to model basic processes from scratch.
Enterprise Resource Planning (ERP) systems such as SAP and Oracle, on the other
hand, focus on the support of these common processes. Although all ERP systems have
workflow engines comparable to the engines of BPM systems, the majority of processes
are not supported by software which is driven by models. For example, most of SAP’s

functionality is not grounded in their workflow component, but hard-coded in application
software. ERP vendors try to capture “best practices” in dedicated applications designed
for a particular purpose. Such systems can be configured by setting parameters. System
configuration can be a time consuming and complex process. Moreover, configuration
parameters are exposed as “switches in the application software”, thus making it difficult
to see the intricate dependencies among certain settings.

A model-driven process-oriented approach toward supporting business processes
has all kinds of benefits ranging from improved analysis possibilities (verification,
simulation, etc.) and better insights, to maintainability and ability to rapidly develop
organization-specific solutions. Although obvious, this approach has not been adopted
thus far, because BPM vendors have failed to provide content and ERP vendors suffer
from the “Law of the handicap of a head start”. ERP vendors manage to effectively build
data-centric solutions to support particular tasks. However, the complexity and large
installed base of their products makes it impossible to refactor their software and make
it process-centric.

Based on the limitations of existing BPM and ERP systems, we propose to use
configurable process models. A configurable process model represents a family of process
models, that is, a model that through configuration can be customized for a particular
setting. Configuration is achieved by hiding (i. e., bypassing) or blocking (i. e., inhibiting)
certain fragments of the configurable process model [12]. In this way, the desired
behavior is selected. From the viewpoint of generic BPM software, configurable process
models can be seen as a mechanism to add content to these systems. By developing
comprehensive collections of configurable models, particular domains can be supported.
From the viewpoint of ERP software, configurable process models can be seen as a
means to make these systems more process-centric, although in the latter case quite some
refactoring is needed as processes are hidden in table structures and application code.

Various configurable languages have been proposed as extensions of existing lan-
guages (e. g., C-EPCs [22], C-iEPCs [17], C-WF-nets [3], C-SAP, C-BPEL) but few are
actually supported by enactment software (e. g., C-YAWL [13]). In this paper, we are
interested in models in the latter class of languages, which, unlike traditional reference
models [9,8,11], are executable after they have been configured. Specifically, we focus
on the verification of configurable executable process models. In fact, because of hiding
and/or blocking selected fragments, the instances of a configured model may suffer from
behavioral anomalies such as deadlocks and livelocks. This problem is exacerbated by
the total number of possible configurations a model may have, and by the complex do-
main dependencies which may exist between various configuration options. For example,
the configurable process model we constructed from the VICS documentation — an
industry standard for logistics and supply chain management — comprises 50 activities.
Each of these activities may be “blocked”, “hidden”, or “allowed”, depending on the
configuration requirements. This results in 350 ≈ 7.18e+23 possible configurations.
Clearly, checking the feasibility of each single configuration can be time consuming as
this would typically require to perform state-space analysis. Moreover, characterizing
the “family of correct models” for a particular configurable process model is even more
difficult and time-consuming as a naive approach would require to solve an exponential
number of state-space problems.

As far as we know, our earlier approach [3] is the only one focusing on the verifi-
cation of configurable process models which takes into account behavioral correctness
and avoids the state-space explosion problem. Other approaches either only discuss
syntactical correctness related to configuration [22,10,8], or deal with behavioral correct-
ness but run into the state-space problem [14]. In this paper, we propose a completely
novel verification approach where we consider the configuration process as an “external
service” and then synthesize a “most permissive partner” using the approach described
by Wolf [24] and implemented in the tool Wendy [21]. This most permissive partner
is closely linked to the notion of operating guidelines for service behavior [20]. In
this paper, we define for any configurable model a so-called configuration guideline to
characterize all correct process configurations. This approach provides the following
advantages over our previous approach [3]:

– We provide a complete characterization of all possible configurations at design time,
that is, the configuration guideline.

– Computation time is moved from configuration time to design time and results can
be reused more easily.

– No restrictions are put on the class of models which can be analyzed. The previous
approach [3] was limited to sound free-choice WF-nets. Our new approach can be
applied to models which do not need to be sound, which can have complex (non-free
choice) dependencies, and which can have multiple end states.

To prove the practical feasibility of this new approach, we have implemented it as a
component of the toolset supporting C-YAWL.

The remainder of this paper is organized as follows. Section 2 introduces basic
concepts such as open nets and weak termination. These concepts are used in Section 3
to formalize the notion of process configuration. Section 4 presents the solution approach
for correctness ensuring configuration. Section 5 discusses tool support and Section 6
concludes the paper.

2 Business Process Models

For the formalization of the problem we use Petri nets which offer a formal model of
concurrent systems. However, the same ideas can be applied to other languages (e. g.,
C-YAWL, C-BPEL).

Definition 1 (Petri net). A marked Petri net is a tuple N = (P,T, F,m0) such that: P and
T (P∩T = ∅) are finite sets of places and transitions, respectively, F ⊆ (P×T)∪ (T ×P)
is a flow relation, and m0 : P→ IN is an initial marking.

A Petri net is a directed graph with two types of nodes: places and transitions, which
are be connected by arcs as specified in the flow relation. If p ∈ P, t ∈ T , and (p, t) ∈ F,
then place p is an input place of t. Similarly, (t, p) ∈ F means that p is an output place
of t.

The marking of a Petri net describes the distribution of tokens over places and is
represented by a multiset of places. For example, the marking m = [a2, b, c4] indicates

p2

p3

p5

p8

t3

t1 t2

t4

t6

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7
Check & Update
Travel Form
(Employee)

Arrange
travel
insurance
(Employee)

p4

t5

p6

p7

t9t8

p1

XOR-join

XOR-split

AND-join

AND-split

Flow

Place

Transition

Token

Fig. 1. The open net for travel request approval (Ω = {[p8]}).

that there are two tokens in place a, one token in b, and four tokens in c. Formally m is a
function such that m(a) = 2, m(b) = 1, and m(c) = 4. We use ⊕ to compose multisets;
for instance, [a2, b, c4] ⊕ [a2, b, d2, e] = [a4, b2, c4, d2, e].

A transition is enabled and can fire if all its input places contain at least one token.
Firing is atomic and consumes one token from each of the input places and produces one
token on each of the output places. m0

t
−→ m means that t is enabled in marking m0 and

the firing of t in m0 results in marking m. We use m0
∗
−→ m to denote that m is reachable

from m0, that is, there exists a (possibly empty) sequence of enabled transitions leading
from m0 to m.

For our configuration approach, we use open nets. Open nets extend classical Petri
nets with the identification of final markings Ω and a labeling function `.

Definition 2 (Open net). A tuple N = (P,T, F,m0, Ω, L, `) is an open net if
– (P,T, F,m0) is a marked Petri net (called the inner net of N),
– Ω ⊂ P→ IN is a finite set of final markings,
– L is a finite set of labels,
– τ < L is a label representing invisible (also called silent) steps, and
– ` : T → L ∪ {τ} is a labeling function.

We use transition labels to represent the activity corresponding to the execution of a
particular transition. Moreover, if an activity appears multiple times in a model, we use
the same label to identify all the occurrences of that activity. The special label τ refers
to an invisible step, sometimes referred to as “silent”. Invisible transitions are typically
used to represent internal actions which do not mean anything at the business level (cf.
the “inheritance of dynamic behavior” framework [2,7]). We use visible labels to denote
activities that may be configured while in Section 4 we use these labels to synchronize
two open nets.

Figure 1 shows an example open net which models a typical travel request approval.
The process starts with the preparation of the travel form. This can either be done by an

employee or be delegated to a secretary. In both cases, the employee personally needs
to arrange the travel insurance. If the travel form has been prepared by the secretary,
the employee needs to check it before submitting it for approval. An administrator can
then approve or reject the request, or make a request for change. Now, the employee can
update the form according to the administrator’s suggestions and resubmit it. In Fig. 1
all transitions bear a visible label, except for t5 which bears a τ-label as it has only been
added for routing purposes.

Unlike our previous approach [3] based on WF-nets [1] and hence limited to a single
final place, we allow for multiple final markings here. Good runs of an open net end in a
marking in set Ω. Therefore, an open net is considered to be erroneous if it can reach
a marking from which no final marking can be reached any more. An open net weakly
terminates if a final marking is reachable from every reachable marking.

Definition 3 (Weak termination). An open net N = (P,T, F,m0, Ω, L, `) weakly termi-
nates if and only if (iff) for any marking m with m0

∗
−→ m there exists a final marking

m f ∈ Ω such that m
∗
−→ m f .

The net in Fig. 1 is weakly terminating. Weak termination is a weaker notion than
soundness, as it does not require transitions to be quasi-live [1]. This correctness notion
is more suitable as parts of a correctly configured net may be left dead intentionally.

3 Process Model Configuration

We use open nets to model configurable process models. An open net can be configured
by blocking or hiding transitions which bear a visible label. Blocking a transition means
that the corresponding activity is no longer available and none of the paths with that
transition cannot be taken any more. Hiding a transition means that the corresponding
activity is bypassed, but paths with that transition can still be taken. If a transition
is neither blocked nor hidden, we say it is allowed, meaning it remains in the model.
Configuration is achieved by setting visible labels to allow, hide or block.

Definition 4 (Open net configuration). Let N be an open net with label set L. A map-
ping CN : L → {allow, hide, block} is a configuration for N. We define: AC

N = {t ∈ T |
`(t) , τ ∧ CN(`(t)) = allow}, HC

N = {t ∈ T | `(t) = τ ∨ CN(`(t)) = hide}, and
BC

N = {t ∈ T | `(t) , τ ∧ CN(`(t)) = block}.

An open net configuration implicitly defines an open net, called configured net,
where the blocked transitions are removed and the hidden transitions are given a τ-label.

Definition 5 (Configured net). Let N = (P,T, F,m0, Ω, L, `) be an open net and CN a
configuration of N. The resulting configured net βC

N = (P,TC , FC ,m0, Ω, L, `C) is defined
as follows: TC = T \ (BC

N), FC = F ∩ ((P ∪ TC) × (P ∪ TC)), and `C(t) = `(t) for t ∈ AC
N

and `C(t) = τ for t ∈ HC
N .

As an example, Fig. 2(a) shows the configured net derived from the open net in
Fig. 1 and the configuration CN(Prepare Travel Form (Secretary)) = block (to allow only

p2

p3

p5

p8

t3

t2

t4

t6

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7
Check & Update
Travel Form
(Employee)

p4

t5

p6

p7

t9t8

p2

p3

p5

p8

t3

t2

t6

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7

p4

t5

p6

p7

t9t8

(a) A weakly terminating configured net

p1 p1

(b) An incorrectly configured net

Fig. 2. Two possible configured nets based on the model in Fig. 1.

employees to prepare travel forms), CN(Arrange Travel Insurance (Employee)) = hide
(to skip arranging the travel insurance), and CN(x) = allow for all other labels x.

Typically, configurable process models cannot be freely configured, because the use
of hiding and blocking has to comply with the application domain in which the model
has been constructed. For instance, in the travel request example we cannot hide the
labels of both t1 and t2, because all the other activities depend on the preparation of the
travel form, nor block the label of t8, because there must be an option to approve the
travel request. The link between configurable process models and domain decisions was
explored in [18] and can be incorporated easily (see Sect. 6)

A configured net may have disconnected nodes and some parts may be dead (i. e.,
can never become active). Such parts can easily be removed. However, as we impose no
requirements on the structure of configurable models, these disconnected or dead parts
are irrelevant with respect to weak termination. For example, if we block the label of t2
in Fig. 1, transition t5 becomes dead as it cannot be enabled any more, and hence can also
be removed without causing any behavioral issues. Nonetheless, not every configuration
of an open net results in a weakly terminating configured net. For example, by blocking
the label of t4 in the configured net of Fig. 2(a), we obtain the configured net in Fig. 2(b).
This net is not weakly terminating because after firing t7 tokens will get stuck in p3 (as
this place does not have any successor) and in p5 (as t5 can no longer fire).

Blocking can cause behavioral anomalies such as the deadlock in Fig. 2(b). However,
hiding cannot cause such issues, because it merely changes the labels of an open net.
Hence, we shall focus on blocking rather than hiding. In this paper we are interested
in all configurations which yield weakly terminating configured nets. We use the term
feasibility to refer to such configured nets.

Definition 6 (Feasible configuration). Let N be an open net and CN a configuration of
N. CN is feasible iff the configured net βC

N weakly terminates.

Given a configurable process model N, we are interested in the following two
questions: i) Is a particular configuration CN feasible? ii) How to characterize the set of
all feasible configurations?

The remainder of this paper is devoted to a new verification approach answering
these questions. This approach extends the work in [3] in two directions: (i) it imposes
no unnecessary requirements on the configurable process model (allowing for non-free-
choice nets and nets with multiple end places/markings), and (ii) it checks a weaker
correctness notion (i. e., weak termination instead of soundness). For instance, the net
in Fig. 1 is not free-choice because t4 and t5 share an input place, but their sets of input
places are not identical. The non-free-choice construct is needed to model that after
firing t1 or t7, t5 cannot be fired, and similarly, after firing t2, t4 cannot be fired.

4 Correctness Ensuring Configuration

To address the two main questions posed in the previous section, we could use a direct
approach by enumerating all possible configurations and simply checking whether each
of the configured nets βC

N weakly terminates. As indicated before, the number of possible
configurations is exponential in the number of configurable activities. Moreover, most
techniques for checking weak termination typically require the construction of the state
space. Hence, traditional approaches are computationally expensive and do not yield a
useful characterization of the set of all feasible configuration. Consequently, we propose
a completely different approach using the synthesis technique described in [24]. The
core idea is to see the configuration as an “external service” and then synthesize a

“most permissive partner”. This most permissive partner represents all possible “external
configuration services” which yield a feasible configuration. The idea is closely linked
to the notion of operating guidelines for service behavior [20]. An operating guideline
is a finite representation of all possible partners. Similarly, our configuration guideline
characterizes all feasible process configurations. This configuration guideline can also
be used to efficiently check the feasibility of a particular configuration without exploring
the state space of the configured net. Our approach consists of three steps:

1. Transform the configurable process model N into a configuration interface NCI .
2. Synthesize the “most permissive partner” (our configuration guideline) QCN for the

configuration interface NCI .
3. Study the composition of NCI with QCN .

We first introduce the notion of composition. Open nets can be composed by syn-
chronizing transitions according to their visible labels. In the resulting net, all transitions
bear a τ-label and labeled transitions without counterpart in the other net disappear.

Definition 7 (Composition). For i ∈ {1, 2}, let Ni = (Pi,Ti, Fi,m0i , Ωi, Li, `i) be open
nets. N1 and N2 are composable iff the inner nets of N1 and N2 are pairwise disjoint. The
composition of two composable open nets is the open net N1 ⊕ N2 = (P,T, F,m0, Ω, L, `)
with:

– P = P1 ∪ P2,
– T = {t ∈ T1 ∪ T2 | `(t) = τ} ∪ {(t1, t2) ∈ T1 × T2 | `(t1) = `(t2) , τ},

– F = (F1 ∪ F2) ∩ ((P × T) ∪ (T × P)) ∪ {(p, (t1, t2)) ∈ P × T | (p, t1) ∈ F1 ∨ (p, t2) ∈
F2} ∪ {((t1, t2), p) ∈ T × P | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2},

– m0 = m01 ⊕ m02 , Ω = {m1 ⊕ m2 | m1 ∈ Ω1 ∧ m2 ∈ Ω2},
– L = ∅, and `(t) = τ for t ∈ T.

Composition can limit the behavior of each original net; for instance, transitions may
no longer be available or may be blocked by one of the two original nets. Hence, it is
possible that N1 and N2 are weakly terminating, but N1 ⊕ N2 is not. Similarly, N1 ⊕ N2
may be weakly terminating, but N1 and N2 are not. The labels of the two open nets
in Def. 7 serve now a different purpose: they are not used for configuration, but to
synchronize the two nets as described in [24].

With the notions of composition and weak termination, we define the concept of
controllability, which we need to reason about the existence of feasible configurations.

Definition 8 (Controllability). An open net N is controllable iff there exists an open
net N′ (called partner) such that N ⊕ N′ is weakly terminating.

In [24], Wolf presents an algorithm to check controllability: if an open net is control-
lable, this algorithm can synthesize a partner.

After these preliminaries, we define the notion of a configuration interface. One of
the objectives of this paper was to characterize the set of all feasible configurations by
synthesizing a “most permissive partner”. To do this, we transform a configurable process
model (i. e., an open net N) into an open net NCI , called the configuration interface,
which can communicate with services which configure the original model. In fact, we
shall provide two configuration interfaces: one where everything is allowed by default
and the external configuration service can block labels, and the other where everything
is blocked by default and the external configuration service can allow labels. These
two interfaces allow us to configure both nets where all transitions are initially allowed
(and configuration is done by blocking transitions) and nets where all transitions are
initially blocked (and configuration is done by allowing transitions). In either case, the
resulting open net NCI is controllable iff there exists a feasible configuration CN of N.
Without loss of generality, we assume a 1-safe initial marking, that is, m0(p) > 0 implies
m0(p) = 1. This assumption helps to simplify the configuration interface.

Definition 9 (Configuration interface – allow by default). Let N = (P,T, F, m0, Ω,
L, `) be an open net. We define the open net with configuration interface NCI

a =

(PC ,TC , FC ,mC
0 , Ω

C , LC , `C) with:

– T V = {t ∈ T | `(t) , τ},
– PC = P ∪ {pstart} ∪ {pa

t | t ∈ T V }, TC = T ∪ {tstart} ∪ {bx | x ∈ L},
– FC = F∪{(pstart, tstart)}∪{(tstart, p) | p ∈ P∧m0(p) = 1}∪{(t, pa

t) | t ∈ T V }∪{(pa
t , t) |

t ∈ T V } ∪ {(bx, pstart) | x ∈ L} ∪ {(pstart, bx) | x ∈ L} ∪ {(pa
t , b`(t)) | t ∈ T V },

– mC
0 = [p1 | p ∈ {pstart} ∪ {pa

t | t ∈ T V }],
– ΩC = {m ⊕

⊕
t∈T m∗t | m ∈ Ω ∧ ∀t∈T m∗t ∈ {[], [pa

t]} },
– LC = {start} ∪ {blockx | x ∈ L}
– `C(tstart) = start, `C(bx) = blockx for x ∈ L, and `C(t) = τ for t ∈ T.

p1

p2 p3

p4

t1

t2

t3

t4

x y

τx

(a) Open net N
(Ω = {[p4]})

p1

p2 p3

p4

t1

t2

t3

t4

start
tstart

blockx blockybx by

pa
t1

pa
t2

pa
t3

ττ

τ τ

pstart

(b) Configurable interface NCI
a

(allow by default)

p1

p2 p3

p4

start
tstart

pa
t1

pa
t2

allowx allowy

pb
x pb

y

ay

pa
t3

ax

t1

t2

t3

t4ττ

τ τ

pstart

(c) Configurable interface NCI
b

(block by default)

Fig. 3. An example open net (a) and its two configuration interfaces (b,c).

Figure 3 illustrates the two configuration interfaces for a simple open net N. In
both interfaces, the original net N consisting of places {p1, p2, p3, p4} and transitions
{t1, t2, t3, t4} is retained, but all transition labels are set to τ. Let us focus on the configu-
ration interface where all activities are allowed by default (Fig. 3(b)). Here transitions bx

and by are added to model the blocking of labels x and y, respectively. Places pa
t1 , pa

t2 ,
and pa

t3 are also added to connect the new transitions to the existing ones, and are initially
marked as all configurable transitions are allowed by default. Firing bx will block t1 and
t2 by removing the tokens from pa

t1 and pa
t2 . These two transitions are blocked at the same

time as both bear the same label x in N. Firing by will block t3. Transitions bx and by are
labeled respectively blockx and blocky. This means that in the composition with a partner
they can only fire if a corresponding transition in the partner can fire. Transition start has
been added to ensure configuration actions take place before the original net is activated.
In this way, we avoid “configuration on the fly”. Figure 3(c) shows the construction of
the configuration interface where all activities are blocked and is discussed later.

Consider now a configuration service represented as an open net Q. NCI
a ⊕ Q is the

composition of the original open net (N) extended with a configuration interface (NCI
a),

and the configuration service Q. First, blocking transitions such as bx and by can fire
(apart from unlabeled transitions in Q). Next, transition start fires after which blocking
transitions such as bx and by can no longer fire. Hence, only the original transitions in
NCI

a can fire in the composition after firing start. The configuration service Q may still
execute transitions, but these cannot influence NCI

a any more. Hence, Q represents a
feasible configuration iff NCI

a can reach one of its final markings from any reachable
marking in the composition. So Q corresponds to a feasible configuration iff NCI

a ⊕ Q is
weakly terminating, that is, Q is a partner of NCI

a .
To illustrate the basic idea, we introduce the notion of a canonical configuration

partner, that is, the representation of a configuration CN : L → {allow, hide, block}
in terms of an open net which synchronizes with the original model extended with a
configuration interface.

Definition 10 (Canonical configuration partner – allow by default). Let N be an
open net and let CN : L → {allow, hide, block} be a configuration for N. QCN

a =

(P,T, F,m0, Ω, LQ, `) is the canonical configuration partner with:

– B = {x ∈ L | CN(x) = block} is the set of blocked labels,
– P = {p0

x | x ∈ B} ∪ {pωx | x ∈ B}, T = {tx | x ∈ B} ∪ {tstart},
– F = {(p0

x, tx) | x ∈ B} ∪ {(tx, pωx) | x ∈ B} ∪ {(pωx , tstart) | x ∈ B},
– m0 = [(p0

x)1 | x ∈ B], Ω = { [] },4

– LQ = {blockx | x ∈ B} ∪ {start}, and `(tx) = blockx for x ∈ B, `(tstart) = start.

The set of labels which need to be blocked to mimic configuration CN is denoted
by B. The canonical configuration partner QCN

a has a transition for each of these labels.
These transitions may fire in any order after which the transition with label start fires.
We observe that in the composition NCI

a ⊕ QCN
a first all transitions with a label in

{blockx | x ∈ B} fire in a synchronous manner, followed by the transition with label start
(in both nets). After this, the net is configured and QCN

a plays no role in the composition
NCI

a ⊕ QCN
a any more.

The following lemma formalizes the relation between the composition NCI
a ⊕ QCN

a
and feasibility.

Lemma 1. Let N be an open net and let CN be a configuration for N. CN is a feasible
configuration iff NCI

a ⊕ QCN
a is weakly terminating.

Proof. (⇒) Let CN be a feasible configuration for N and let NCI
a be as defined in Def. 9.

Consider the composition NCI
a ⊕QCN

a after the synchronization via label start has occurred.
By construction, (1) NCI

a ⊕ QCN
a reached the marking m = m0 ⊕ m1 ⊕ m2 such that m0 is

the initial marking of N, m1 marks all places pa
t of transitions t ∈ AC

N ∪ HC
N , and m2 is

the empty marking of QCN . Furthermore, (2) all transitions which bear a synchronization
label (i. e., tstart and all bx transitions) and all t ∈ BC

N are dead in m and cannot become
enabled any more. From NCI

a , construct the net N∗ by removing these transitions and
their adjacent arcs, as well as the places pstart and pa

t for all t ∈ T V . The resulting net N∗

coincides with βC
N (modulo renaming). Hence, NCI

a ⊕ QCN
a weakly terminates.

(⇐) Assume NCI
a ⊕ QCN

a weakly terminates. From QCN
a , we can straightforwardly derive

a configuration C for N in which all labels are blocked which occur in NCI
a ⊕ QCN

a .
With the same observation as before, we can conclude that βC

N coincides with the net
N∗ constructed from NCI

a after the removal the described nodes. Hence, βC
N weakly

terminates and C is a feasible configuration for N. ut

Lemma 1 states that checking the feasibility of a particular configuration can be
reduced to checking for weak termination of the composition. However, the reason for
modeling configurations as partners is that we can synthesize partners and test for the
existence of feasible configurations.

Theorem 1 (Feasibility coincides with controllability). Let N be an open net. NCI
a is

controllable iff there exists a feasible configuration CN of N.
4 [xk | x ∈ X] denotes the multiset where each element of X appears k times. [] denotes the empty

multiset.

#block_x #block_y

#start

#start

#start

(a) CGa Allow by default

#allow_x #allow_y

#allow_y

#start #allow_x

#start

#start

(b) CGb Block by default

Fig. 4. Two configuration guidelines characterizing all possible configurations.

Proof. (⇒) If NCI
a is controllable, then there exists a partner N′ of NCI

a such that NCI
a ⊕N′

is weakly terminating. Consider a marking m of the composition reached by a run σ
from the initial marking of NCI

a ⊕ N′ to the synchronization via label start. Using the
construction from the proof of Lemma 1, we can derive a net N∗ from NCI

a which
coincides with a configured net βC

N for a configuration CN . As NCI
a ⊕ N′ is weakly

terminating, CN is feasible.
(⇐) If CN is a feasible configuration of N, then by Lemma 1, NCI

a ⊕ QCN
a weakly

terminates and by Def. 8, NCI
a is controllable. ut

As shown in [24], it is possible to synthesize a partner which is most-permissive.
This partner simulates any other partner and thus characterizes all possible feasible
configurations. In previous papers on partner synthesis in the context of service oriented
computing, the notion of an operating guideline was used to create a finite representation
capturing all possible partners [20]. Consequently, we use the term Configuration Guide-
line (CG) to denote the most-permissive partner of a configuration interface. Fig. 4(a)
shows the configuration guideline CGa for the configurable model in Fig. 3(a), computed
from the configuration interface NCI

a in Fig. 3(b).
A configuration guideline is an automaton with one start state and one or more final

states. Any path in the configuration guideline starting in the initial state and ending
in a final state corresponds to a feasible configuration. The initial state in Fig. 4(a) is
denoted by a small arrow and the final states are denoted by double circles. The leftmost
path in Fig. 4(a) (i. e., 〈blockx, start〉), corresponds to the configuration which blocks
label x. Path 〈blocky, start〉 corresponds to the configuration which blocks label y. The
rightmost path (i. e., 〈start〉) does not block any label. The three paths capture all three
feasible configurations. For example, blocking both labels is not feasible. Figure 4(a) is
trivial because there are only two labels and three feasible configurations.

Thus far, we used a configuration interface that allows all configurable activities by
default, that is, blocking is an explicit action of the partner. It is also possible to use a
completely different starting point and initially block all activities. As this “block by
default” strategy is analogous to the “allow by default” approach we discussed before, we
refer to [5] for formal definitions and proofs. Figure 3(c) depicts the “block by default”
configuration interface for the net N1 (Fig. 3(a)) and Fig. 4(b) shows the respective
configuration guideline.

p1

p2

p3 p4

p5

p6

v w

x

y z

t1 t2

t3

t4 t5

(a) N1

p1

p2

p3 p4

p5

p6

x

x y

y

τ

t1 t2

t3

t4 t5

(b) N2

p1

p2

p3 p4

p5

p6

τ

x y

y x

t1 t2

t3

t4 t5

(c) N3

Fig. 5. Three open nets (Ω = {[p6]}).

(a) CGa
1 (b) CGa

2 (c) CGa
3

Fig. 6. The configuration guidelines (allow by default) for N1 (a), N2 (b) and N3 (c).

Let us now consider a more elaborated example to see how configuration guidelines
can be used to rule out unfeasible configurations. Figure 5 shows three open nets. The
structures are identical, only the labels are different. For example, blocking x in N2
corresponds to removing both t1 and t4 as both transitions bear the same label, while
blocking x in N3 corresponds to removing t1 and t5. For these three nets, we can construct
the configuration interfaces using Def. 9 and then synthesize the configuration guidelines,
as shown in Fig. 6.

Figure 6(a) reveals all feasible configurations for N1 in Fig. 5(a). From the initial
state in the configuration guideline CGa

1, we can immediately reach a final state by
following the rightmost path 〈start〉. This indicates that all configurations which block
nothing (i. e., only allow or hide activities) are feasible. It is possible to just block
v (cf. path 〈blockv, start〉) or block both v and y (cf. paths 〈blockv, blocky, start〉 and
〈blocky, blockv, start〉). However, it is not allowed to block y only, otherwise a token
would deadlock in p3. For the same reasons, one can block w only or w and z, but not
z only. Moreover, it is not possible to combine the blocking of w and/or z on the one
hand and v and/or y on the other hand, otherwise no final marking can be reached. Also
x can never be blocked, otherwise both v and w would also need to be blocked (to avoid
a token to deadlock in p2) which is not possible. There are 35 = 243 configurations for
N1. If we abstract from hiding as this does not influence feasibility, there remain 25 = 32
possible configurations. Of these only 5 are feasible configurations which correspond to

the final states in Fig. 6(a). This illustrates that the configuration guideline can indeed
represent all feasible configurations in an intuitive manner.

Figure 6(b) shows the three feasible configurations for N2 in Fig. 5(b). Again all
final states correspond to feasible configurations. Here one can block the two leftmost
transitions (labeled x) or the two rightmost transitions (labeled y), but not both.

The configuration guideline in Fig. 6(c) shows that nothing can be blocked for N3
(Fig. 5(c)). Blocking x or y will yield an unfeasible configuration as a token will get
stuck in p4 (when blocking x) or p3 (when blocking y). If both labels are blocked, none
of the transitions can fire and thus no final marking can be reached.

5 Tool Support

To prove the feasibility of our approach, we applied it to the configuration of C-YAWL
models [13] and extended the YAWL system accordingly. YAWL is based on the well-
know workflow patterns [4] and is one of the most widely used open source workflow
systems [15]. For configuration we restrict ourselves to the basic control-flow patterns
and do not use YAWL’s cancelation sets, multiple instance tasks and OR-joins.

A C-YAWL model is a YAWL model where some tasks are annotated as configurable.
Configuration is achieved by restricting the routing behavior of configurable tasks via
the notion of ports. A configurable task’s joining behavior is identified by one or more
inflow ports, whereas its splitting behavior is identified by one or more outflow ports.
The number of ports for a configurable task depends on the task’s routing behavior. For
example, an AND-split/join and an OR-join are each identified by a single port, whereas
an XOR-split/join is identified by one port for each outgoing/incoming flow. An OR-split
is identified by a port for each combination of outgoing flows. To restrict a configurable
task’s routing behavior, inflow ports can be hidden (thus the corresponding task will be
skipped) or blocked (no control will be passed to the corresponding task via that port),
whereas outflow ports can only be blocked (the outgoing paths from that task via that
port are disabled). For instance, Fig. 7 shows the C-YAWL model for the travel request
approval in the YAWL Editor, where configurable tasks are marked with a ticker border.

The new YAWL Editor can be downloaded from www.yawlfoundation.org. It
provides a graphical interface to conveniently configure and check C-YAWL models
and subsequently generate configured models. The C-YAWL Correctness Checker [5]
which is embedded in the editor converts C-YAWL models into open nets and passes
these on to the tool Wendy [21] to produce configuration guidelines. Wendy implements
the algorithms to synthesize partners [24] and calculates operating guidelines [20]. The
complexity of the partner synthesis is exponential in the size of the Petri net with the
configuration interface (the reachability graph needs to be generated) and the size of the
interface. However, practical experiences show that Wendy is able to analyze industrial
models with up to 5 million states and to synthesize partners of about the same size [21].

At each configuration step, the Correctness Checker scans the set of outgoing edges
of the current state in the configuration guideline, and prevents users from blocking
those ports not included in this set. This is done by disabling the block button for those
ports. As users block a valid port, the Correctness Checker traverses the configuration
guideline through the corresponding edge and updates the current state. If this is not a

www.yawlfoundation.org

Fig. 7. The C-YAWL model for travel request approval.

consistent state, that is, a state with an outgoing edge labeled “start”, further ports need
to be blocked, because the current configuration is unfeasible. In this case the component
provides an “auto complete” option. This is achieved by traversing the shortest path
from the current state to a consistent state and automatically blocking all ports in that
path. After this, the component updates the current state and notifies the user with the
list of ports that have been automatically blocked. For example, Fig. 7 shows that after
blocking the input port of task Check and Update Travel Form, the component notifies
the user that the input port of task Prepare Travel Form for Approval (Secretary) and the
output port of task Submit Travel Form for Approval to task Request for Change have
also been blocked. Similarly, the component maintains a consistent state in case users
decide to allow a previously blocked port. In this case it traverses the shortest backward
path to a consistent state and allows all ports in that path. By traversing the shortest path
we ensure that the number of ports being automatically blocked or allowed is minimal.

The C-YAWL example of Fig. 7 comprises ten inflow ports and nine outflow ports.
In total more than 30 million configurations are potentially possible. If we abstract from
hiding we obtain 524,288 possible configurations, of which only 1,593 are feasible
according to the configuration guideline. Wendy took an average of 336 seconds (on a
2.4 GHz processor with 2GB of RAM) to generate this configuration guideline which
consumes 3.37 MB of disk space. Nonetheless, the shortest path computation is a simple
depth-first search which is linear on the number of nodes in the configuration guideline.
Thus, once the configuration guideline has been generated, the component’s response
time at each user interaction is instantaneous.

6 Conclusion

Configurable process models are a means to compactly represent families of process
models. However, the verification of such models is difficult as the number of possible
configurations grows exponentially in the number of configurable elements. Due to
concurrency and branching structures, configuration decisions may interfere with each
other and thus introduce deadlocks, livelocks and other anomalies. The verification of
configurable process models is challenging and only few researchers have worked on
this. Moreover, existing results impose restrictions on the structure of the configurable
process model and fail to provide insights into the complex dependencies among different
process model configuration decisions.

The main contribution of this paper is an innovative approach for ensuring correctness
during process configuration. Using partner synthesis we compute the configuration
guideline — a compact characterization of all feasible configurations, which allows us
to rule out configurations that lead to behavioral issues. The approach is highly generic
and imposes no constraints on the configurable process models that can be analyzed.
Moreover, all computations are done at design time and not at configuration time. Thus,
once the configuration guideline has been generated, the response time is instantaneous
thus stimulating the practical (re-)use of configurable process models. The approach is
implemented in a checker integrated in the YAWL Editor. This checker uses the Wendy
tool to ensure correctness while users configure C-YAWL models.

Several interesting extensions are possible. First, the partner synthesis could be
further refined using behavioral constraints [19] in order to rule out specific partners.
This could be used to encode knowledge about a process’ application domain [16] in the
configuration interface. For example, domain knowledge may state that two activities
cannot be blocked or allowed at the same time. Similarly, one could study techniques
to identify semantic inconsistencies between control-flow and data-flow that can arise
from configuration, and use behavioral constraints to encode these inconsistencies (e.g.,
extend the approach in [23]). Second, one could consider configuration at run-time,
that is, while instances are running, configurations can be set or modified. This can
be easily embedded in the current approach. Finally, one could devise more compact
representations of configuration guidelines (e.g. exploiting concurrency [6]).

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

3. W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede, M. La Rosa, and
J. Mendling. Preserving Correctness During Business Process Model Configuration. Formal
Aspects of Computing, 22(3):459–482, 2010.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

5. W.M.P. van der Aalst, N. Lohmann, M. La Rosa, and J. Xu. Correctness Ensuring Process
Configuration: An Approach Based on Partner Synthesis (extended version). BPM Center
Report BPM-10-02, BPMcenter.org, 2010.

6. E. Badouel and P. Darondeau. Theory of regions. In Advanced Course on Petri Nets, LNCS
1491, pages 529–586. Springer, 1996.

7. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

8. J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptation Techniques for Information Models. In Reference
Modeling: Efficient Information Systems Design Through Reuse of Information Models, pages
27–58. Physica-Verlag, Springer, 2007.

9. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business Process
Reference Model. Upper Saddle River, 1997.

10. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In GPCE 2005, pages 422–437. Springer, 2005.

11. P. Fettke and P. Loos. Classification of Reference Models - A Methodology and its Application.
Information Systems and e-Business Management, 1(1):35–53, 2003.

12. F. Gottschalk, W.M.P. van der Aalst, and H.M. Jansen-Vullers. Configurable Process Models:
A Foundational Approach. In Reference Modeling: Efficient Information Systems Design
Through Reuse of Information Models, pages 59–78. Physica-Verlag, Springer, 2007.

13. F. Gottschalk, W.M.P. van der Aalst, M.H Jansen-Vullers, and M. La Rosa. Configurable
Workflow Models. Int. J. Cooperative Inf. Syst., 17(2):177–221, 2008.

14. A. Hallerbach, T. Bauer, and M. Reichert. Guaranteeing Soundness of Configurable Process
Variants in Provop. In CEC, pages 98–105. IEEE, 2009.

15. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern Business
Process Automation: YAWL and its Support Environment. Springer, 2010.

16. M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Questionnaire-
based Variability Modeling for System Configuration. Software and Systems Modeling,
8(2):251–274, 2009.

17. M. La Rosa, M. Dumas, A.H.M. ter Hofstede, J. Mendling, and F. Gottschalk. Beyond
Control-Flow: Extending Business Process Configuration to Roles and Objects. In ER 2008,
volume 5231 of LNCS, pages 199–215. Springer, 2008.

18. M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A.H.M. ter Hofstede. Questionnaire-driven
Configuration of Reference Process Models. In CAiSE’07, volume 4495 of LNCS, pages
424–438. Springer, 2007.

19. N. Lohmann, P. Massuthe, and K. Wolf. Behavioral Constraints for Services. In BPM 2007,
volume 4546 of LNCS, pages 271–287. Springer, 2007.

20. N. Lohmann, P. Massuthe, and K. Wolf. Operating Guidelines for Finite-State Services. In
ICATPN 2007, volume 4546 of LNCS, pages 321–341. Springer, 2007.

21. N. Lohmann and D. Weinberg. Wendy: A tool to synthesize partners for services. In PETRI
NETS 2010, LNCS. Springer, 2010.

22. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Language.
Information Systems, 32(1):1–23, 2007.

23. N. Trcka, W.M.P. van der Aalst, and N. Sidorova. Data-Flow Anti-Patterns: Discovering Data-
Flow Errors in Workflows. In CAiSE’09, volume 5565 of LNCS, pages 425–439. Springer,
2009.

24. K. Wolf. Does my service have partners? LNCS T. Petri Nets and Other Models of Concur-
rency, 5460(2):152–171, 2009.

