
Enacting Declarative Languages using LTL:

Avoiding Errors and Improving Performance

Maja Pešić1, Dragan Bošnački2, and Wil M.P. van der Aalst1

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, The Netherlands
{m.pesic,w.m.p.v.d.aalst}@tue.nl

2 Department of Biomedical Engineering,
Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, The Netherlands
dragan@win.tue.nl

Abstract. In our earlier work we have proposed using the declarative
language DecSerFlow for modeling, analysis and enactment of web ser-
vice processes. DecSerFlow uses constraints, which are formally specified
as Linear Temporal Logic (LTL) formulas, to implicitly define possible
executions of a model: any execution that satisfies all constraints is pos-
sible. A finite representation of all possible executions is retrieved as an
automaton generated from LTL-based constraints. Standard algorithms
for creating Büchi automata from LTL formulas cause errors when be
applied to DecSerFlow due to important semantical differences. On the
one hand, LTL handles infinite traces where each element of the trace
can refer to zero or more propositions. On the other hand, executions
of DecSerFlow models are finite sequences of single events. In this pa-
per we describe how both LTL and automata generation algorithms can
be adjusted to fit two properties of DecSerFlow. Since adjustments for
finite traces have already been proposed by other researchers, this pa-
per focuses on the modifications needed to handle occurrences of single
events. Besides eliminating errors caused by the described mismatch, the
proposed adjustments also improve the performance of the model check-
ing algorithms dramatically. This is important as for the enactment of
declarative languages like DecSerFlow new problems related to model
checking techniques are generated after each step in the process.

1 Introduction

In our previous work [1] we have proposed using DecSerFlow for specification,
verification, monitoring and orchestration (i.e., execution) of web services in the
context of business processes. DecSerFlow uses constraints to implicitly specify
in which order tasks can be executed. Constraints are rules specified on two
levels. First, there is a graphical representation which is similar to other graphical
process modeling approaches: tasks are represented as rectangles and constraints
as special lines between tasks. Second, Linear Temporal Logic (LTL) [5] is used

C

A B

response

response

[] (Bc -> (<> Ac))[] (Ac -> (<> Bc))

Fig. 1. A DecSerFlow model

for the formal specification of the semantics of these constraints. The graphical
representation of a DecSerFlow model improves the readability of models, while
(often complex and unreadable) LTL expressions enable verification, monitoring
and deadlock-free execution.

Figure 1 shows an illustrative example of a DecSerFlow model. This model
contains tasks A, B and C, and two response constraints. The first constraint
specifies that each successfully completed execution of task A must eventually
be followed by at least one successfully completed execution of task B, which is
formally defined with the LTL formula 2(Ac ⇒ 3Bc). The second constraint
specifies that each successfully completed execution of task B must eventually
be followed by at least one successfully completed execution of task A, which is
formally defined by the LTL formula 2(Bc ⇒ 3Ac). Note that DecSerFlow uses
the notion of events related to execution of a task: scheduling, starting, complet-
ing, canceling, delegating, etc. For example, starting, canceling and completing
the execution of some task T is denoted by Ts , Tx and Tc , respectively.

The DecSerFlow language is supported by the DECLARE system, which
enables modeling, verification and enactment of LTL-based models, e.g., Dec-
SerFlow models. Note that this system cannot directly be used to enact web
services. Instead it can be used for manual execution of declarative models,
where the user manually executes each step in the process. DECLARE is an
open source system and it can be downloaded from http://declare.sf.net.

Using LTL for formalization of constraints makes DecSerFlow a truly declar-
ative process modeling language, which increases flexibility [1]. On the one hand,
procedural process models lack flexibility because they explicitly specify all pos-
sible executions (i.e., orderings of tasks). On the other hand, DecSerFlow models
are more flexible because all possible executions are specified implicitly, as all
executions that satisfy all constraints in the model. A finite representation of
all possible executions is obtained from LTL specifications of DecSerFlow con-
straints: by means of generating an automata for LTL formulas. Algorithms for
generating automata that represent exactly all traces that satisfy an LTL for-
mula have been developed in the field of model checking [5]. In DecSerFlow, we
use automata generated from LTL specifications of constraints for model verifi-
cation, execution monitoring and ensuring deadlock-free execution of models of
web services [13].

Typically, LTL and model checking techniques are used to verify properties
of a given model. DecSerFlow uses LTL to define possible executions, as se-

2

P1P1P2P1P2P2 P1 . . .

(a) a standard LTL trace

e1 e5e4e3e2 e6 e7

(b) a DecSerFlow execution trace

Fig. 2. LTL for DecSerFlow

quences of executed events. For example, one possible execution of the model
shown in Figure 1 is executing task C three times, which is specified as σ =
Cs ,Cc ,Cs ,Cc,Cs ,Cc . There are two important differences between the ‘stan-
dard’ LTL and the LTL applied to DecSerFlow models, as illustrated in Figure 2.

The first difference between standard LTL and DecSerFlow LTL is the length
of execution traces (i.e., words). On the one hand, standard LTL considers infi-
nite traces, as shown in Figure 2(a). On the other hand, Figure 2(b) shows that
the execution of a web service process eventually terminates. Hence, the infinite
semantics of standard LTL [5] cannot be applied to DecSerFlow models. In order
to apply LTL to finite traces, we adopt a simple and efficient approach originally
proposed by Giannakopoulou et al. [7].

The second difference between standard LTL and the DecSerFlow LTL is the
semantics of elements in a trace. Standard LTL assumes that one element of
the trace can refer to more than one proposition. For example, it is possible to
monitor two properties: (P1) the motor temperature is higher than 80 degrees
and (P2) the speed of the turbine is higher than 150 km/h. As Figure 2(a) shows,
each element of the trace could then refer to: (1) none of the two properties, i.e.,
neither P1 nor P2 hold, (2) only property P1 holds, (3) only property P2 holds, or
(4) properties P1 and P2 both hold. In the case of execution traces of DecSerFlow
models we assume that only one property holds at one moment, i.e., each of the
elements of the trace refers to exactly one event, as shown in Figure 2(b).

Due to these differences, using standard LTL and automata generation algo-
rithm may cause errors when it comes to verification, monitoring and deadlock-
free execution of DecSerFlow models. In this paper we show how the semantics
of standard LTL and the automata generation can be adjusted for declarative
languages like DecSerFlow. Besides for elimination of errors, the proposed ad-
justments improve the performance of the algorithm, both with respect to the
size of the automata and the processing time. We will use the model shown in
Figure 1 as a running example.

The remainder of this paper is organized as follows. We start by describing
how LTL and automata generated from LTL are used in DecSerFlow(sections 2
and 3). In Section 4 we sketch how the finite trace semantics can be applied to
LTL and generated automata, by using the approach described in [7]. Section 5
describes how the LTL semantics and the algorithm for generating automata
must be changed in order to be applicable to sequences of single events. The re-
sults of experiments testing the performance of proposed changes are presented
in Section 6. Finally, related work is discussed in Section 7 and Section 8 con-
cludes the paper.

3

2 LTL and DecSerFlow

DecSerFlow uses LTL to formally specify constraints. A well-formed LTL formula
can use standard logical operators (!, ∧ and ∨) and several additional temporal
operators: © (next), U (until), W (weak until), V (release), 2 (always) and 3

(eventually).
Given a finite set of atomic propositions P , every p ∈ P is a well-formed LTL

formula. If Φ and Ψ are well-formed LTL formulas, then true, false, !Φ, Φ∧Ψ ,
Φ ∨ Ψ , 2Φ, 3Φ, ©Φ, ΦUΨ , ΦV Ψ and ΦWΨ are also well-formed LTL formulas.
An interpretation of an LTL formula is a set of infinite traces σ = σ1, σ2, . . . over
2P (sets of propositions). We write σi→ for the suffix of σ starting at position i,
i.e., σi→ = σi, σi+1, The semantics of LTL is defined as follows:

• σ � p iff p ∈ σ1, for p ∈ P • σ � Φ ∨ Ψ iff (σ � Φ) ∨ (σ � Ψ)
• σ �!Φ iff σ 2 Φ • σ � ©Φ iff σ2→

� Φ
• σ � Φ ∧ Ψ iff (σ � Φ) ∧ (σ � Ψ)
• σ � ΦUΨ iff (∃1≤i : (σi→

� Ψ ∧ (∀1≤j <i : σj→
� Φ)))

Also, abbreviations are used:
• Φ⇒ Ψ for !Φ ∨ Ψ • 3Φ for trueUΦ • ΦWΨ for (ΦUΨ) ∨ (2Φ)
• true for Φ∨!Φ • 2Φ for !3!Φ • ΦV Ψ for !(!ΦU !Ψ)
• false for !true

DecSerFlow does not directly use LTL for constraint specification. Instead,
constraints are created from constraint templates. Each template has a unique
name and graphical representation and its semantics is formalized by an LTL
formula. DecSerFlow has more than twenty constraint templates, which are used
to create constraints in models. However, new templates can be easily added to
the language. Hence, any LTL formula can be used in DecSerFlow. For the de-
tailed description of the full list of DecSerFlow templates we refer the reader
to [1]. A constraint in a DecSerFlow model inherits the name, graphical repre-
sentation and LTL formula from its template such that the template’s formal
parameters are replaced by real tasks from the model. For example, parameters
X and Y from the response template are replaced by tasks A and B for one,
and tasks B and A for the other response constraint in the sDecSerFlow model
shown in Figure 1.

Note that in the DECLARE tool it is possible to edit the language by adding,
modifying and removig templats. Moreover, DECLARE supports multiple LTL-
based languages (DecSerFlow, CigDec, ConDec, etc) [13].

3 Automata and DecSerFlow

A widely exploited property of LTL is the fact that for every LTL formula a Büchi
automaton can be generated, such that the language (i.e., all accepted traces)
of this automaton exactly represents all traces that satisfy the formula. In the
field of model-checking, various algorithms are proposed for generating automata
from LTL formulas. Some examples of these algorithms can be found in [5, 8, 3,
4]. These algorithms are based on expanding a graph node into a set of nodes,

4

which will eventually become states of the automaton [5]. Each node has several
fields [5]. Field ID is a unique identification for the node; Field INCOMING
contains the set of nodes that lead to this node; Field NEW contains the set of
formulas that must hold in the current node but have not yet been processed, i.e.,
this node must make these formulas true; Field OLD contains the set of formulas
that have already been processed; Field NEXT contains the set of formulas that
must hold at all immediate successors of this node.

In this paper we will not describe the algorithm in detail. For detailed de-
scriptions of available algorithms we refer the interested reader to the existing
literature, e.g., [5, 8]. Various algorithms for creating a Büchi automaton from
an LTL formula are built on the same idea [5], but apply various optimization
features. In the remainder of this paper we will use the algorithm presented in
[8] as the representative of these algorithms, and we will refer to this algorithm
as to the BASIC algorithm. The BASIC algorithm consists of several basic steps:

1. The original LTL formula is rewritten to a normal form.
2. A graph of nodes is created by the recursive method expand, which is briefly

sketched in Algorithm 3.1. Formulas from the field NEW are processed one
by one (line 14), by breaking down the formulas to the level of propositions.
Formulas aUb, aV b and a∨b are broken down by creating two new nodes (fol-
lowing special rules) and expanding them further (lines 24-27) and formula
a∧ b by adding a and b to the field NEW and further expanding the current
node (lines 29-31). While processing a literal f (lines 16-23), a conflict oc-
curs and the current node is discarded if the field OLD of the current node
already contains !f (lines 17 and 18). When there is no conflict, f is added
to the field OLD and the current node is further expanded (lines 20 and 21).
Expanding a specific node finishes when all formulas have been processed,
i.e., the NEW field is empty (lines 2-12). If an equal node is already in the
GRAPH, then this (equal) node is updated with data for the current node
(lines 3-6). Otherwise, the current node is added to the GRAPH, a new node
is created and expanded with the current NODE in the field INCOMING
and all formulas from the field NEXT of the current node in the field NEW
of the created node(lines 7-11).

3. A generalized Büchi automaton automaton is created in the following man-
ner: (1) created nodes become states in the automaton, (2) automaton edges
are defined by the INCOMING field, (3) labels on edges are defined by liter-
als stored in the field OLD, and (4) infinite acceptance of states is imposed,
ensuring that, whenever a node contains pUq, some successor node will con-
tain q.

4. The generalized Büchi automaton is converted (i.e., de-generalized) into a
Büchi automaton, which can be further used for model-checking.

A finite representation of all possible executions of a DecSerFlow model (i.e.,
all executions that satisfy all constraints in the model) is obtained by generat-
ing the model automaton from the model formula. The model formula F for a
model with n constraints with LTL formulas f1, f2, . . . , fn is a conjunction of
LTL formulas for all constraints from the model, i.e., F = f1 ∧ f2 ∧ . . .∧ fn. For

5

Algorithm 3.1 BASIC algorithm: expanding the graph of nodes

1: function expand(NODE, GRAPH)
2: if NODE.NEW = ∅ then {*finished processing node*}
3: if ∃A ∈ GRAPH : equal(NODE, A) then {*equivalent node already pro-

cessed*}
4: update existing(NODE,A); {*just update the existing node*}
5: return GRAPH;
6: else

7: GRAPH ⇐ GRAPH ∪ {NODE}; {*add NODE to GRAPH*}
8: NEWNODE ⇐ createNewNode(); {*create NEWNODE*}
9: NEWNODE.INCOMING ⇐ {NODE};

10: NEWNODE.NEW ⇐ NODE.NEXT ;
11: return expand(NEWNODE,GRAPH); {*expand NEWNODE*}
12: end if

13: else

14: f ⇐ getFormula(NODE.NEW); {*get the next formula for processing*}
15: NODE.NEW ⇐ NODE.NEW \ {f};
16: if (f ∈ P∨!f ∈ P) ∨ (f = true ∨ f = false) then {*f is a literal*}
17: if (f = false) ∨ (!f ∈ NODE.OLD) then {*a contradiction in NODE*}
18: return GRAPH {*discard current NODE*}
19: else

20: NODE.OLD ⇐ NODE.OLD ∪ {f}
21: return expand(NODE,GRAPH)
22: end if

23: end if

24: if f = aUb, aV b, or a ∨ b then

25: NODE1 ⇐ create1(f,NODE); {*depending the current operator in f*}
26: NODE2 ⇐ create2(f,NODE); {*depending the current operator in f*}
27: return expand(NODE2,expand(NODE1, GRAPH));
28: end if

29: if f = a ∧ b then

30: NODE.NEW ⇐ NODE.NEW ∪ {a, b};
31: return expand(NODE,GRAPH);
32: end if

33: end if

34: end expand;

example, the model formula for the DecSerFlow model shown in Figure 1 is a
conjunction of formulas for the two response constraints, as shown in Figure 3(a).
Figure 3(b) shows the Büchi automaton generated by the BASIC algorithm for
this model formula. Hence, the language (i.e., all accepted traces) of this automa-
ton represents all possible executions of the DecSerFlow model from Figure 1.
Automaton states are represented by ovals such that a single border marks a
non-accepting and a double border accepting state. Transitions are represented
as directed labeled arcs between states. The arc without a source state marks
the initial state.

6

F = (2(Ac ⇒ 3Bc))∧(2(Bc ⇒ 3Ac))
(a) model formula

S1

S3

Ac /\ Bc
 Bc

-

-

S2Ac

Ac /\ Bc

S0

Bc!Ac

Bc

Ac /\ Bc

Ac /\ Bc

 -

-

!Ac /\ !Bc

(b) model automaton generated using
the BASIC algorithm

Fig. 3. Retrieving a finite representation of all possible executions of the model shown
in Figure 1

Automata generated from DecSerFlow models can be used for multiple pur-
poses [1, 11]. For example, the model automaton and automata generated for
each constraint can be used to monitor the state of a model instance (we refer to
one execution of a model as to one instance of the model) and constraints during
execution. This is done by checking if the trace satisfies the model, i.e., if the
automaton accepts the trace. Naturally, when processing the instance state the
model automaton is used, and when processing states of constraints automata
generated from LTL specifications are used. Note that the generated automata
are non-deterministic, and we say that an automaton accepts a trace if the trace
can be ‘replayed’ on the automaton in such a way that an accepting state is
reached [1]. Given the current execution trace of an instance, the instance or
constraint state is determined as follows:

– If the trace is accepted by the automaton, then the instance/constraint is
satisfied.

– The instance/constraint is temporarily violated if the current trace is not
accepted but it is a prefix of a trace accepted by the automaton. In other
traces, the instance/constraint is temporarily violated if the current trace
can be ‘replayed’ on the automaton, but all possible replay scenarios lead to
non-accepting state.

– If the trace is neither accepted by the automaton nor it is a prefix of an
accepted trace, then the instance/constraint is (permanently) violated. In
other cases, the instance/constraint is violated if the current trace can not
be ‘replayed’ on the automaton at all.

Consider, for example, the situation when the DecSerFlow model shown in
Figure 1 is executed by executing task A, i.e., the execution trace is

σ = As ,Ac. (1)

7

The model automaton shown in Figure 3(b) suggests that σ satisfies the
model because it brings the model automaton to the accepting state S2 by

triggering transitions ‘!Ac ’ and ‘Ac’: S0
As−−−→

(!Ac)
S1

Ac−−−→
(Ac)

S2 .

In addition to state monitoring, the model automaton can be used to ensure
a deadlock-free execution and to verify service models. On the one hand, if the
service execution would be driven by the model automaton, deadlocks would be
eliminated. On the other hand, we have developed a verification procedures that
can detect two types of errors based on model automata. First, a dead task is a
model task that can never be executed because its completion is never allowed
by transition labels. Second, a model has a conflict if the generated automaton
is empty, i.e., it has no states and its language is empty. The DECLARE system
used the above described procedures for model verification, monitoring states of
instances and constraints and ensuring the deadlock-free execution [13].

4 Applying the Finite Traces Semantics

As explained in Section 1, an execution trace of a web service is a finite sequence,
i.e., σ = p1, p2, . . . pn. Using automata generated for infinite traces can create
problems if used for finite executions of DecSerFlow models. For example, if the
finite semantics of the until (U) operator is considered, trace σ given in (1) does
not satisfy the model formula shown in Figure 3(a). This is because event Ac

is not followed by event Bc by the end of the trace (note that this is required
by constraint response(A,B)). Hence, trace σ does not satisfy the model shown
in Figure 1. However, as explained in Section 3, the model automaton shown in
Figure 3(b) suggests otherwise: trace σ satisfies the model because it brings the
model automaton to the accepting state S2.

To avoid this type of errors, the algorithm for automata generation must be
adjusted to finite traces, as described in [7]. The infinite semantics of LTL is
reflected in the fact that i does not have an upper bound in the definition of the
until (U) operator: ∃1≤i : . . . (cf. Section 2). The manner in which the infinite
acceptance is imposed in the standard algorithm is described in Section 3. As
described in [7], finite semantics must be reflected in the upper bound n of i in
the until operator: σ � ϕUψ if and only if (∃1≤i≤n : (σi

� q ∧ (∀1≤j<i : σj
� p)).

The main change in the algorithm is the way accepting conditions are imposed:
a finite trace is accepting only if it satisfies all required eventualities (i.e., untils).
Formulas that still need to be satisfied are stored in the field NEXT. Therefore,
only if the NEXT field of a node does not contain any until (U) formulas, the
automaton state generated from this node is accepting [7]. In the remainder of
this paper we will use BASIC

FIN to denote the algorithm presented in [8] and
modified for finite traces as described in [7]. We will refer to the automaton gener-
ated by the BASICFIN algorithm as to the BASICFIN automaton. Figure 4 shows
the BASIC

FIN automaton generated for the model formula given in Figure 3(a).
Indeed, this automaton suggests that trace σ does not satisfy the model from

8

S1
Ac /\ Bc

Ac /\ Bc

S0

-

!Ac /\ !Bc

-

Fig. 4. The BASIC
F IN model automaton for model shown in Figure 1

Figure 1, because this trace brings the automaton to the non-accepting state S1:

S0
As−−−−−−→

(!Ac∧!Bc)
S0

Ac−−→
(−)

S1.

5 Applying the ‘Single Event’ Semantics

In standard LTL, traces are defined over 2P , which means that σ is a sequence of
sets of propositions (∀1≤ i : σi ⊆ P). Hence, each element σi of a trace is a set of
propositions. The fact that one element of a trace can refer to multiple properties
in standard LTL is semantically expressed in the way the proposition is defined:
σ � p if and only if p ∈ σ1 (cf. Section 2). As explained in Section 1, execution
trace of a web service is a sequence of single events/propositions: ∀1≤i≤n : σi ∈ P .
In order to adjust the semantics of LTL to traces where each element refers to
exactly one event, i.e. proposition, we must check if the proposition is the first
element of the trace: σ � p if and only if p = σ1.

Automata that consider traces containing sets of propositions can create
problems in DecSerFlow. For example, consider the BASICFIN model automaton
shown in Figure 4 and an instance of the model (cf. Figure 1 on page 2) with the
execution trace σ given in (1). As explained in Section 4, this automaton suggests
that the instance is not satisfied because trace σ brings the automaton to the
non-accepting state S1. Moreover, because an accepting state is reachable (i.e.,
accepting state S0 is reachable from S1 via transition Ac ∧Bc), this automaton
suggests that the instance is temporarily violated. However, because events are
triggered one by one, transition Ac ∧Bc can never be taken. Hence, the state of
this instance is actually permanently violated because an accepting state can no
longer be reached.

In order to eliminate this error, we must adjust the algorithm to consider
sequences of single events in the following way. The most important change is
strengthening the contradiction test in Algorithm 3.1 (lines 16-18). As described
in Section 2, literals that belong to the field OLD will become labels on the
transitions in the generated automaton. Therefore, if the processed formula f is
a literal, contradiction occurs and the current node is discarded if negation of f
(!f) is already in the field OLD (lines 13 and 14).

Algorithm 5.1 shows how contradiction requirements must be strengthened
in order to reflect the single event property. The additional requirement is: if we
are processing a proposition f and another proposition l 6= f is already in the

9

Algorithm 5.1 Detecting a contradiction in the ‘single events’ algorithm

1: function expand(NODE, GRAPH)
2: . . .
3: if (f ∈ P∨!f ∈ P) ∨ (f = true ∨ f = false) then

4: if (f = false) ∨ (!f ∈ node.OLD) ∨ (l ∈ P ∧ f 6= l ∧ l ∈ node.OLD) then

5: return GRAPH
6: else

7: NODE.OLD ⇐ NODE.OLD ∪ f

8: return expand(NODE,GRAPH)
9: end if

10: end if

11: . . .
12: end expand;

field OLD, then this is also a contradiction (line 3). Further, the handling of con-
tradictions and regular situations stays the same: the current node is discarded
when a contradiction is detected. Otherwise, further expansion of the current
node in the graph is continued.

In addition to strengthening the contradiction requirement, labels on tran-
sitions can be displayed in a more concise way. If a label contains one positive
proposition and an arbitrary number of negative proposition (e.g., Ac∧!Bc∧!Cc),
it can be replaced by a shorter label containing only the positive proposition (e.g.,
Ac). This is because the latter is implied by the former. Note that making labels
shorter is not necessary from the semantical and correctness perspective, but it
significantly improves the readability.

Figure 5 shows the BASIC
FIN
SE automata generated for the model formula

given in Figure 3(a). This automaton correctly indicates that an instance with
trace σ is permanently violated because σ is neither accepted by the automaton,
nor it is a prefix of a trace accepted by this automaton. Moreover, tasks A and
B can never be executed (i.e., these are dead tasks) because the language of this
automaton does not accept traces that contain Ac or Bc . This is because, as
soon as either A or B would be executed, no finite execution would be able to
satisfy both response constraints from the model shown in Figure 1.

!Ac /\ !Bc

S0

Fig. 5. The BASIC
F IN

SE model automaton for model shown in Figure 1

10

5.1 Correctness Arguments

In this section we give only a brief discussion of the correctness of the single
event Algorithm 5.1, for brevity denoted also as A2. Algorithm 3.1 (in the sequel
denoted as A1) can also be used to generate automata that accept only single-
event traces that satisfy a given model formula F . To this end we need to add a
restrictive conjunct to F . Thus, to rule out all multiple-event traces, we run A1

on the formula R∧F , where a1, a2, . . . , an ∈ P are the events that appear in F ,
and R = 2

∧
i,j !(ai ∧ aj) where 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j.

For the correctness of the standard algorithm A1 we rely on [5, 8]. Hence, we
can establish the correctness of the single-event algorithm A2 by showing the
following: for each run R2 of the algorithm A2 applied to a given model formula
F , there exists a run R1 of algorithm A1 applied to the formula R ∧ F , such
that the automata produced by R2 and R1 are equivalent, i.e., they accept the
same language. Moreover, to each state of the automaton generated by A2 there
corresponds an equivalence class of states in the automaton generated by A1.

To show this, we construct a run R1 of algorithm A1 as we trace the run R2

of algorithm A2. In A2 run R2 is applied to F ′, which is the normal form of F .
Run R1 simulates R2 in a “stuttering” manner, i.e., multiple steps of R1 can
correspond to a single step of R2. Algorithm A1 is actually applied on the normal
form of R∧F , where F is rewritten to its normal form F ′ an R is rewritten into
R′ = false V

∧
i,j(!ai∨!aj) such that 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j. In R1

we process R′ before F ′. It is straightforward to check that a sequence of node
transformations as a result of the processing of R′ in R1 leads to insertion of
n − 1 literals of the form !ai in the field OLD of each generated node [5]. This
ensures that at most one positive proposition ak can be added to the OLD field
of each node, such that !ak /∈ OLD. Adding the second positive proposition al

(l 6= k) will automatically invoke a contradiction in the original sense because
the OLD filed already contains the negation !al.

At each point one can prove that the following invariant holds for the parallel
execution of R1 and R2. Let run R2 discard its current node n2, because field
OLD contains proposition l (lines 4-5 in A2) different from the currently pro-
cessed formula/proposition f . Then field OLD of node n1, currently considered
by run R1, contains !f . As a consequence, R1 also discards the node (because
of contradiction) and in this way rules out a possible multiple event transition
in the automaton.

Besides that, one can show that for each action by R2 that adds a new node
n1 to the set of nodes (lines 7-11), there exists an action of R2 that adds a
corresponding node n2. Both n1 and n2 contain in OLD only one literal without
negation and this literal is the same in both nodes. Nodes n1 and n2 will be
transformed into equivalent states in the resulting automata. Vice versa, each
node added by R2 corresponds to an equivalent node added by R1.

11

6 Experiments

We have performed experiments to measure the effects of the ‘single events’
adjustments on the performance of the BASIC and BASIC

FIN algorithms. We have
used the testing method based on randomly generated LTL formulas presented
in [3, 8]. Each test set consists of F randomly generated LTL formulas of length
L with N propositional variables. Temporal operators U and V are generated
with the probability P. A formula of length L is generated in the following way:

L = 1 Randomly generate a propositional variable using a uniform distribution.
L = 2 Randomly generate a unary operator from the set {!,©}. Apply the gen-

erated unary operator to a random formula of L = 1.
L > 2 Randomly generate an operator from the set {!,©,∨,∧, U, V }. The proba-

bility to generate either U or V is P
2 and 1−P

4 to generate the other operators.
If the chosen operator is unary, it is applied to a random formula of L = 1.
If the chosen operator is binary, it is applied to two random formulas: (1)
one of length S and the other of length L− S − 1. S is generated randomly
using a uniform distribution between 1 and L − 2 inclusive.

We have performed tests on ten sets containing F = 100 randomly generated
formulas of varying lengths with 5 propositional variables (N = 5) and the
probability of 1

2 to select operators U and V . In each test set, formulas had
different lengths: L ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. For each formula we
have generated three automata and used them for two types of tests:

– In order to measure the total effects on the DecSerFlow performance, we
have compared automata generated by the BASICFIN

SE and BASIC algorithms.
Although we are aware that BASICFIN

SE and BASIC produce different results,
such a comparison is still interesting. This is because we want to show that
using special DecSerFlow LTL results in a better performance than what
one would expect from standard LTL.

– In order to measure the effect of single events adjustments on the BASIC al-
gorithm, we have compared automata generated by the BASICSE and BASIC

algorithms. Although the BASICSE algorithm can not be used for DecSerFlow
because it uses infinite traces, which can introduce errors (cf. Section 4), ad-
justing the BASIC algorithm to the single event could improve performance
if it is applied to other application domains where propositions also hold
one-by-one. Note that it might seem more appropriate to compare BASICSE

with the BASIC algorithm applied to the restricted formula like described in
Section 5.1. However, this version has even worse performance that the orig-
inal BASIC algorithm because of the increased complexity of the processed
formula, which consists of the restrictive addition R and the original LTL
formula (cf. Section 5.1).

When evaluating algorithms for generating automata from LTL formulas,
it is a common practice to consider the size of the automaton (i.e., number of
states and transitions) and the total time needed to generate the automata [3,

12

8]. In addition to measuring the automata size and processing time, we have
measured the number of times the procedure for expanding a node was invoked.
This is because strengthening the contradiction requirements with the single
event property causes the algorithm to abandon more expansion paths in the
graph. Hence, the expand procedure is typically invoked fewer times.

Figure 6(a) shows the ratio between the results of the BASIC
FIN
SE algorithm

and the BASIC algorithm. Figure 6(b) shows the ratio between the results of the
BASICSE algorithm and the BASIC algorithm. The results show that imposing
either the DecSerFlow requirements (i.e., finite traces of single events) or only
the single events requirement significantly improves the performance by reducing
the processing time, automata size, and number of invocations of the expand
procedure. For example, only 10% of the original time is needed to process a
formula of length 25. A lower number of invocations of procedure expand results
in shorter processing times. The typical automata size is also reduced because
transitions referring to more than one property are eliminated.

0,5
0,6

0,7
0,8
0,9

1

0

0,1
0,2
0,3

0,4
0,5
0,6

0,7
0,8
0,9

1

5 10 15 20 25 30 35 40

time
states
transitions
expand

Length of formula (L)Length of formula (L)

(a)BASICF IN

SE vs. BASIC

0,5
0,6
0,7
0,8
0,9
1

0
0,1
0,2
0,3
0,4

0,5
0,6
0,7
0,8
0,9
1

5 10 15 20 25 30 35 40

time
states
transitions
expand

Length of formula (L)Length of formula (L)Length of formula (L)Length of formula (L)
(b) BASICSE vs. BASIC

Fig. 6. The ratio of number of states, number of transitions, number of node expansion
and generation time between various algorithms for F = 100 randomly generated
formulas of various lengths with N = 5 and P = 1

2

Figure 6 shows that effects become more significant as the length of the for-
mula rises up to the values L = 25 (for BASIC

FIN
SE) and L = 35 (for BASICSE).

As the length of formulas further rises, the effect begin to drop. Hence, in or-
der to investigate the effects of our changes on even longer formulas, we have
tested the formulas of length L = 45 and L = 50. Again, these two sets contain
F = 100 randomly generated formulas of lengths with 5 propositional variables
(N = 5) and the probability of 1

2 to select operators U and V . Table 1 shows our
results. On the one hand, for the set of formulas with length L = 45 the BASIC

algorithm failed due to the lack of memory, while the same algorithm did not
finish processing the set of formulas with length L = 50 within 20 hours (after
which we stopped the processing). On the other hand, the average processing

13

Table 1. Average processing time in milliseconds of various algorithms for F = 100
randomly generated formulas with N = 5 and P = 1

2

formula length BASIC BASICSE BASICF IN

SE

L = 45 out of memory 456.757 274.405

L = 50 > 72000000.000 4368.51 2131.766

time of formulas with length L = 45 was 456.757 miliseconds and 274.405 mil-
liseconds for the BASICSE and BASIC

FIN
SE algorithms, respectively. The BASICSE

algorithm processed formulas with length L = 50 in 4368.51 milliseconds and
The BASIC

FIN
SE algorithm in 2131.766 milliseconds, on average. Table 1 shows

that dramatic speedups are possible when using the modifications proposed in
this paper. Hence, these are now used in our DECLARE system.

The improved performance of the BASIC algorithm is important for enactment
of declarative models, because the model formula of a DecSerFlow model is
generated as a conjunction of all constraints and, hence, it can be much longer
than typical formulas used in model checking. If L(f) denotes length of LTL
formula f , then the length of model formula F = c1∧c2∧. . .∧cn of a DecSerFlow
model with n constraints specified with LTL formulas c1, c2, . . . , cn is L(F) =
n−1+

∑n

i=1 L(ci). For example, the length of model formula F (cf. Figure 3(a))

is L(F) = 2 − 1 +
∑2

i=1 5 = 11, because the length of each response constraint
in the model shown in Figure 1 is L(c) = 5.

7 Related Work

In our previous work, we have proposed using DecSerFlow for declarative speci-
fication of web service processes [1]. The SCIFF language is another declarative
language [2], which is based on abductive logic programming. While DecSerFlow
and SCIFF are similar with respect to their declarative approach to process mod-
eling, both languages have some specific advantages. SCIFF has more expressive
power and is more efficient while checking constraints on executed traces (i.e.,
a posteriori) [11]. However, SCIFF cannot ensure a deadlock-free execution at
run-time. Moreover, the adjustments proposed in this paper enable detection of
more sophisticated model errors and improves efficiency.

DecSerFlow uses LTL for formal specification of constraints and automata
generated from LTL formulas for retrieving the final representation of all possible
model executions as all executions that satisfy model constraints. LTL is exten-
sively used in the field of model checking and algorithms for automata generation
from LTL formulas based on [5] are proposed in this field. Moreover, improv-
ing the performance of these algorithms is an important topic in the field [3, 8,
4]. While these approaches improve the performance of the original algorithm,
which works with the standard LTL, changes proposed in this paper improve
the performance by limiting the LTL to sequences of single events.

The problem of applying finite traces semantics to standard LTL has been
addressed by other researchers. Approach presented in [10] considers only safety

14

properties and generating finite-trace automata for monitoring running pro-
grams. Adjustments of the algorithm for automata generation to finite traces
is given in [7]. We use this approach because it does not limit the expressiveness
of DecSerFlow [7]

Standard LTL considers properties, rather than events, which means that
zero or more properties can hold at any point of time. Methods for model check-
ing for event-based systems use several approaches to LTL for sequences of single
events. In [12], an approach is proposed for specifying events indirectly in terms of
edges. Edges do not relate directly to occurrence of event, but capture changes of
truth/false values of atomic propositions. The Tracta model-checking approach
[6] for analysis of concurrent systems uses the special kind of LTL for sequences
of single actions: Action Linear Temporal Logic (ALTL). However, this approach
uses the Büchi automata following the standard automata-theoretic approach to
verification and focuses on solving issues related to hierarchical systems using
the Compositional Reachability Analysis (CRA) [6]. ALTL is extended for fluent
model checking in [9]. Here, instead of using each event occurrence, time inter-
vals between action initiation and termination are considered. A special model
checking procedure is proposed for fluent actions. This procedure uses Büchi
automata, but avoids the need for using the synchronous product operation [9].

8 Conclusions

Using standard LTL and Büchi automata for enacting DecSerFlow models can
cause errors and inefficiencies. This is because of two important differences be-
tween the standard model checking problem and the execution of web services
processes. This paper describes how the standard LTL and algorithm for au-
tomata generation can be adapted in order to fit two special properties of Dec-
SerFlow. Both the adjustments for finite traces described by Giannakopoulou et
al. in [7], and the adjustments for sequences for single events described in Sec-
tion 5 must be used in order to avoid errors. Because automata are generated
for the DecSerFlow model formula (which is a conjunction of formulas for all
constraints), the performance of the algorithm becomes a potential bottle neck.
For the special class of problems where properties hold one at a time, results of
our experiments show that the proposed adjustments also significantly decrease
the processing time and size of automata. Processing times of days are reduced
to seconds. Since the enactment of declarative languages like DecSerFlowrequire
the repeated execution of this procedure, this is highly relevant.

References

1. W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative
Service Flow Language. In M. Bravetti, M. Nunez, and G. Zavattaro, editors,
International Conference on Web Services and Formal Methods (WS-FM 2006),
volume 4184 of Lecture Notes in Computer Science, pages 1–23, Vienna, Austria,
2006. Springer-Verlag.

15

2. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, S. Storari,
and P. Torroni. Computational Logic for Run-Time Verification of Web Services
Choreographies: exploiting the SOCS-SI tool. In M. Bravetti and G. Zavattaro,
editors, Proceedings of the 3rd International Workshop on Web Services and Formal
Methods (WS-FM’06), number 4184 in Lecture Notes in Computer Science, pages
58–72, Heidelberg, Germany, 2006. Springer Verlag.

3. M. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved Automata Generation
for Linear Temporal Logic. In Proceedings of the 11th International Conference
on Computer Aided Verification (CAV ’99), pages 249–260, London, UK, 1999.
Springer-Verlag.

4. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In Proceedings
of the 13th International Conference on Computer Aided Verification (CAV ’01),
pages 53–65, London, UK, 2001. Springer-Verlag.

5. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic
Verification of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pages 3–18, London, UK, 1996. Chapman & Hall, Ltd.

6. D. Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD
Thesis, University of London, London, United Kingdom, January 1999.

7. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Tempo-
ral Properties on Running Programs. In ASE ’01: Proceedings of the 16th IEEE
international conference on Automated software engineering, pages 412–416, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

8. D. Giannakopoulou and F. Lerda. From States to Transitions: Improving Trans-
lation of LTL Formulae to Büchi Automata. In Proceedings of the 22nd IFIP
WG 6.1 International Conference Houston on Formal Techniques for Networked
and Distributed Systems (FORTE ’02), volume 2529 of Lecture Notes in Computer
Science, pages 308–326, London, UK, 2002. Springer-Verlag.

9. D. Giannakopoulou and J. Magee. Fluent Model Checking for Event-Based Sys-
tems. In Proceedings of the 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations of Soft-
ware Engineering (ESEC/FSE-11), pages 257–266, New York, NY, USA, 2003.
ACM.

10. T. Latvala. Efficient Model Checking of Safety Properties. In T. Ball and S.K.
Rajamani, editors, In Model Checking Software. 10th International SPIN Work-
shop, number 2648 in Lecture Notes in Computer Science, pages 74–88, Heidelberg,
Germany, 2003. Springer Verlag.

11. M. Montali, M. Pesic, W.M.P.van der Aalst, F. Chesani, P. Mello, and S. Storari.
Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on the Web. To appeaer.

12. D.O. Pbreveaun and M. Chechik. Events in Linear-Time Properties. In Proceedings
of the 4th IEEE International Symposium on Requirements Engineering (RE ’99),
pages 123–132, Washington, DC, USA, 1999. IEEE Computer Society.

13. M. Pesic. Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD Thesis, Eindhoven University of Technology, Eindhoven, The Nether-
lands, October 2008.

16

