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Summary. The growing complexity of processes in many organizations
stimulates the adoption of business process management (BPM) tech-
niques. Process models typically lie at the basis of these techniques and
generally, the assumption is made that the operational business processes
as they are taking place in practice conform to these models. However,
recent experience has shown that this often isn’t the case. Therefore, the
problem of checking to what extent the operational process conforms to
the process model is increasingly important.

In this paper, we present a robust approach to get insights into the
conformance of an operational process to a given process model. We use
logs that carry information about which activities have being performed,
in which order and we compare these logs to an abstract model. We do
not only provide several different conformance metrics, but we show an
efficient implementation for the calculation of these metrics.

Our approach has been implemented in the ProM framework1, evaluated
using simulated event logs and compared against an existing conformance
technique based on Petri nets.
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1 Introduction

The growing complexity of business processes has triggered a wide usage of pro-
cess models. The emergence of many systems that base their functions around
process models such as BPM (Business Process Management), BAM (Business
Activity Monitoring), and BPI (Business Process Intelligence) shows how im-
portant process models are to organizations. Models are not only used as in-
struments to describe existing processes. They have become an integral part of
process optimization, monitoring, and even auditing [14].

Unfortunately, process models do not always conform to reality. Even in au-
tomated processes, deviations can occur [10]. In some other cases, it is desirable
to have models that allow for flexibility [8]. Hence, before performing any sort
of process analysis based on process models, it is important to know in advance
to what extent the models conform to reality.
1 see http://www.processmining.org



Conformance checking techniques evaluate the relation between process mod-
els and reality presented in form of event logs. Given a process model and an event
log, the following orthogonal dimensions of conformance can be measured [11]:

Fitness: is the observed behavior captured by the model?
Precision: does the model only allow for behavior that happens in reality?
Generalization: does the model allow for more behavior than encountered in

reality?
Structure: does the model have a minimal structure to describe its behavior?

Many existing conformance checking techniques require process models in the
form of Petri nets (e.g. [2,7,11]). Given a Petri net and an event log, various con-
formance metrics are calculated by replaying the log in the net. However, there
are at least two drawbacks of Petri net-based conformance checking techniques.
First, their metrics are often based on notions that only exist in Petri nets such
as tokens and “invisible” transitions and second, Petri-net-based conformance
checking techniques may produce “false negative” results. Thus, without in depth
knowledge about the language and the algorithm used, it is difficult to utilize
the metrics for further analysis.

In Figure 1, we show the result of applying conformance checking technique
in [11] to a Petri net and an event log. The event log was obtained by simulating
the net, hence it conforms fully to the model. The positive number in each
place indicates the number of remaining tokens after replay and negative number
indicates missing tokens. The existence of missing and remaining tokens leads to
a fitness value less than 100%, although it should be 100% [9]. In this case, the
false negative is caused by the invisible transitions that model an OR-split [9].

In [3], problems of Petri-net-based conformance checking are solved by using
fuzzy models that have very relaxed semantics. For these fuzzy models, confor-
mance calculations are again made by replaying the log in the model. However,
the problem with this conformance is that it is difficult to perform further anal-
ysis given a conformance value, because the semantics of fuzzy models are too
relaxed.

In this paper, we propose a new way of looking at conformance in the context
of event logs. In Section 2, we introduce a model with semantics, such that these
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Fig. 1. False negative fitness indication in Petri-net based conformance checker
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Process Models

Event Logs

Replay
- Conformance
- Diagnostics

e.g., dedicated formats such as IBM’s 
Common Event Infrastructure (CEI) and 

MXML or proprietary formats stored in flat 
files or database tables.

e.g. process models represented in BPMN, 
BPEL, EPCs, Petri nets, UML AD, etc. 

Fig. 2. Common approach to analyze conformance of process models to logs

semantics are more relaxed than Petri net semantics, but stricter than fuzzy-
model semantics. Then, in Section 3, we show how several conformance metrics
can be defined for these models. Section 4 shows, for one of these metrics, how
to compute one of the metrics for a given log and model and in Section 5, we
show some experiments. Section 6 concludes the paper.

2 Preliminaries

Conformance is measured by replaying event logs in process models (see Figure
2). With the existence of various process modeling languages, each with its own
semantics, replaying event logs is a unique problem for each process modeling
language. Hence, rather than developing a replay algorithm for each existing pro-
cess modeling language, we use a modeling language that provides an abstraction
of existing languages, while maintaining some notion of semantics.

Based on existing process modeling languages (e.g. BPMN2, EPC [13], YAWL
[5], Heuristic nest [16], Fuzzy models [3], and Petri nets), we propose an exten-
sion of flexible models [9] to be a process modeling language that captures the
essential aspects of existing languages in the control-flow dimension by focusing
on activities and their synchronization and/or enabling alternatives.

Before introducing our flexible model, we first introduce some basic graph
notation for directed graphs.

Definition 2.1. (Successor/Predecessor nodes in a directed graph) Let
G = (N,E) with E ⊆ N ×N be a directed graph. For n ∈ N , we say successor
nodes of node n as n

G•= {n′ ∈ N | (n, n′) ∈ E} and predecessor nodes of node
n as G• n = {n′ ∈ N | (n′, n) ∈ E}. We omit the superscript G if the context is
clear.

Definition 2.2. (Path in a directed graph) Let G = (N,E) be a directed
graph. For n, n′ ∈ N , there exists a path from n to n′ if and only if there is
a sequence of edges 〈(n1, n2), (n2, n3), ..., (nx−1, nx)〉 with x > 1 where n1 =
n ∧ nx = n′ ∧ ∀1≤i<x (ni, ni+1) ∈ E holds. By n Ã n′ we denote that a path
from n to n′ exists.
2 Business Process Model and Notation http://www.bpmn.org/
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Fig. 3. Petri nets with invisible transitions labeled tau (left) and their possible flexible
model counterparts (right)

Definition 2.3. (Acyclic graph) Let G = (N, E) be a directed graph. We say
that G is an acyclic graph if ∀n∈N @ n Ã n holds

2.1 Flexible Models

A flexible model is a (potentially cyclic) directed graph consisting of tasks and
edges. A task represents an activity in a process. For each task, possible sets
of predecessors tasks (indicated by i or ι), and sets of successors tasks (o) are
enumerated. An activity in the business process may be represented by more
than one task (i.e. duplicate tasks are permitted). Using input and output sets
of tasks, flexible models can express either strict or relaxed semantics.

The idea of our work is to model processes as flexible models and measure the
conformance of an event log and the flexible model. In Figure 3, we illustrate how
a flexible model can express patterns that are often needed to model processes in
reality, using Petri net as its counterpart. Note that the often-needed OR-split
construct can be modeled using flexible model in a straightforward way.

The formal definition of Flexible Model is given as follows:

Definition 2.4. (Flexible Model)
Let A be a set of activities. A flexible model MA over A is a tuple (T, F, ι, o, β),
where:

– T is a finite set of tasks,
– F ⊆ (T × T ) is a set of directed edges connecting tasks,
– ι : T → P(P(T )) is a function, such that for t ∈ T and s ∈ ι(t), s is a

synchronization alternative for t. We require that ι(t) 6= ∅ and
⋃

s∈ι(t) = •t.
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– o : T → P(P(T )) is a function, such that for t ∈ T and s ∈ o(t), s is an
enabling alternative of t. We require that o(t) 6= ∅ and

⋃
s∈o(t) = t•.

– β : T → A is a surjective function mapping tasks to activities, i.e. each activity
appears as at least one task in the model.

It is important to realize that flexible models can be obtained using several
approaches, e.g. by discovering them directly from event log, by converting ex-
isting process models, or by modeling them manually. In this paper, we assume
that such model already exists for a given event log.

Flexible models are intended to be models with a formal semantics. However,
we do not provide execution semantics. Instead, we later provide semantics only
in the context of a case, i.e. for a given sequence of task executions, we can
say whether or not this sequence is a (partial) execution of a flexible model.
Therefore, we formally introduce the notion of a partial and full instance of a
flexible model.

Definition 2.5. (Partial instance of flexible model) Let A be a set of
activities and MA = (T, F, ι, o, β) be a flexible model over A. Let I = (N,R, λ)
be a tuple where N is a set of unique task instances, R ⊆ N×N is a set of edges
such that (N, R) is an acyclic graph, and λ : N → T is a function mapping the
elements of N to their corresponding tasks. We say I is a partial instance of MA

if and only if the following holds:

– ∀(n,n′)∈R (λ(n), λ(n′)) ∈ F ,
– ∀n∈N∀n1,n2∈n• n1 6= n2 =⇒ λ(n1) 6= λ(n2)
– ∀n∈N∀n1,n2∈•n n1 6= n2 =⇒ λ(n1) 6= λ(n2)
– ∀n∈N ∃s∈o(λ(n))λ(n•) ⊆ s, and
– ∀n∈N ∃s∈ι(λ(n))λ(•n) ⊆ s

A partial instance of a flexible model is a partial order of task instances,
such that the edges respect the existence of edges in the original flexible model.
Furthermore, the input and output sets as defined in the flexible model are
partly respected. Once all input and output sets are fully respected, we say that
an instance is complete.

Definition 2.6. (Complete instance of flexible model) Let A be a set of
activities and MA = (T, F, ι, o, β) be a flexible model over A. Let I = (N,R, λ)
be a partial instance of MA. We say I is a complete instance of MA if and only
if the following holds:

– ∀n∈N ∃s∈o(λ(n))λ(n•) = s, and
– ∀n∈N ∃s∈ι(λ(n))λ(•n) = s

2.2 Event Logs

As described in Figure 2, we also need event logs in order to check for confor-
mance. An event log records which activities have been performed in a business
process. Hence, we formalize log-related terms as follows:
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Definition 2.7. (Event logs)
Let A be a set of activities. An event log over A is defined as LA = (E, C, α, γ,Â),
where:

– E is a finite set of events,
– C is a finite set of cases,
– α : E → A is a function relating each event to an activity,
– γ : E → C is a surjective function relating each event to a case.
– Â⊆ E×E imposes a total ordering on the events in E. The ordering is typically

based on timestamps of events.

Definition 2.8. (Case events)
Let A be a set of activities and LA = (E, C, α, γ,Â) be an event log over A.
Let c ∈ C be a case identifier. With Ec, we denote the events of case c, i.e.
Ec = {e ∈ E | γ(e) = c}. As Â imposes a total ordering on E, it also imposes a
total ordering on Ec.

In the following section, we show how several conformance metrics can be
defined for the combination of an event log and a flexible model.

3 Conformance in Flexible Model

A flexible model as defined in Definition 2.4 is not executable. Given a task in
a flexible model, we cannot provide insights into which tasks can be executed
next such that in the end, a complete instance of this flexible model will be
constructed. However, this is not the goal of flexible models. Instead, we aim at
deciding if and to what extent a given event log can be replayed in a flexible
model, i.e. for a given execution, we need to say whether or not this execution
conforms to the flexible model.

In this paper, we focus on conformance between a model and a log that refer
to the same set of activities. Through standard filtering techniques, a log can
always be pre-processed to meet this requirement for a flexible model.

For a log and a flexible model, we need to define a match between a partial
instance and a case, i.e. for a given case, we need to define a class of partial
instances that this case can correspond to. At this point, we do not provide
insights into constructing instances. However, in Section 4, we show how to
obtain an element of the class of partial instances that matches a case and
minimizes a specific conformance metric.

Definition 3.1. (Matching case and flexible model instance)
Let A be a set of activities, let LA = (E, C, α, γ,Â) be an event log over A and
let MA = (T, F, ι, o, β) be a flexible model over A. Let c ∈ C be a case and let
I = (N, R, λ) be a partial instance of MA.

We say that c and I match if and only if:

– Ec = N , i.e. each event is a node in the partial instance,
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– ∀e,e′∈EC
(e Â e′) ⇒ (e 6Ã e′), i.e. the ordering of events in the log is respected

in the instance, and
– ∀e∈Ec

λ(e) ∈ {t ∈ T | β(t) = α(e)}, i.e. each event is mapped to a task that
corresponds to the activity represented by this event.

We use Ic to denote an arbitrary instance I matching c and we use =c to denote
the (possibly infinite) set of all instances matching c.

In order to reason about matching instances for a case, we show that at least
one matching instance always exists, i.e. =c 6= ∅.
Lemma 3.2. (Matching partial instance exists for any case)
Let A be a set of activities, let LA = (E, C, α, γ,Â) be an event log over A and
let MA = (T, F, ι, o, β) be a flexible model over A. Let c ∈ C be a case and let
I = (Ec, ∅, λ) be a partial instance of MA. We show that I matches c (i.e. I ∈ =c

for any λ that satisfies ∀e∈Ec
λ(e) ∈ {t ∈ T | β(t) = α(e)}.

Proof. It is trivial to see that I follows definition 2.6. Furthermore, since there
are no edges, we know that for all e, e′ ∈ Ec holds that e 6Ã e′. Since N = Ec

and ∀e∈Ec
λ(e) ∈ {t ∈ T | β(t) = α(e)}, we know that I is a matching partial

flexible model instance, hence I ∈ =c. ¤
As stated before, in a partial instance of a flexible model, there can be in-

stances of tasks for which the input conditions are not completely satisfied. If
such an instance matches a case, then there are events in the log that correspond
to these task instances. We call these events unsatisfied.

Definition 3.3. (Unsatisfied events) Let A be a set of activities, let LA =
(E, C, α, γ,Â) be an event log over A and let MA = (T, F, ι, o, β) be a flexible
model over A. Let c ∈ C be a case and let Ic = (Ec, R, λ) be a partial instance
of MA matching c.

We say that e ∈ Ec is an unsatisfied event if and only if λ(Ic• e) 6∈ ι(λ(e)). We
denote the set of unsatisfied events by Eus

Ic
.

Similar to unsatisfied events, we define unhandled events.

Definition 3.4. (Unhandled events) Let A be a set of activities, let LA =
(E, C, α, γ,Â) be an event log over A and let MA = (T, F, ι, o, β) be a flexible
model over A. Let c ∈ C be a case and let Ic = (Ec, R, λ) be a partial instance
of MA matching c.

We say that e ∈ Ec is an unhandled event if and only if λ(eIc• ) 6∈ o(λ(e)). We
denote the set of unhandled events by Euh

Ic
.

Using the notion of unhandled and unsatisfied events, we define several con-
formance metrics.

3.1 Conformance Metrics

Given a flexible model and a log, we can always obtain a matching instance for
each case in the model. In this section, we define several metrics to express the
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conformance between a case and a matching instance. In Section 4, we use these
metrics to construct a matching instance that maximizes conformance for each
case.

Definition 3.5. (Single case fitness metrics) Let A be a set of activities,
let LA = (E, C, α, γ,Â) be an event log over A and let MA = (T, F, ι, o, β) be
a flexible model over A. Let c ∈ C be a case. We define two fitness metrics for
matching instances as follow:

Case absolute fitness , fabs
c : =c → {0, 1}, is a function that returns 1 only if

there are no unsatisfied events in the case.

fabs
c (Ic) =

{
0 if |Eus

Ic
| > 0 holds, else

1 if previous condition doesn’t hold
Task ratio fitness , frat

c (Ic) : =c → [0, 1], is a function that indicate the ratio
between unsatisfied events and total number of events in a case.
frat

c (Ic) = 1− |Eus
Ic
|

|Ec|

The absolute fitness metric states that a case is only fitting a flexible model
instance if this instance does not have unsatisfied events. On the other hand, task
ratio fitness provides the percentage of events that are unsatisfied. We extend
these two fitness metrics to the level of flexible models as follows.

Definition 3.6. (Fitness metrics) Let A be a set of activities, let LA =
(E, C, α, γ,Â) be an event log over A and let MA = (T, F, ι, o, β) be a flexible
model over A.

Our fitness metrics are defined as follow:

Absolute fitness fabs ∈ [0, 1] indicates the average maximal absolute fitness.

fabs =
∑

c∈C maxIc∈=c fabs
c (Ic)

|C| ,
Task ratio fitness frat ∈ [0, 1] indicates the average maximal task ratio fit-

ness.
frat =

∑
c∈C maxIc∈=c frat

c (Ic)

|C| ,
Event fitness fevt ∈ [0, 1] indicates the maximal ratio of events in the log that

can be satisfied by some instance.
f evt =

∑
c∈C maxIc∈=c frat

c (Ic)·|Ec|
|E|

So far, we defined several fitness metrics that can be computed only when for
each case in the log, we can obtain a matching (partial) instance of the flexible
model that maximizes any of our two case-based fitness functions. Therefore, in
the following section, we present an algorithm that constructs a partial model
instance that maximizes the fitness metrics we defined.

4 Constructing Matching Partial Model Instance

Given a flexible model and an event log over a set of activities, our fitness values
depend on a matching (partial) model instance for each case in the log. From
Definition 3.6, it is clear that for each case, we need to construct a partial model
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Let A = {X,Y,Z} be a set of activities and let 
LA = (E,C,α,γ,>) be an event log over A where E 
= {x,y,z},C = {c}. Each event is mapped to case 
c by γ and mapped to its uppercase activity by 
α. Let MA be a flexible model over A.

x y z

Flexible Model  MA

x y z

instance Ic(3) : frat(Ic(3)) =  1/3

x y z
instance Ic

(1) : frat(Ic
(1)) =  1   

x y z

instance Ic(2) : frat(Ic(2))= 2/3

i(z)={{y}}
o(z)={∅}

i(y)={{x}}
o(y)={{z}}

i(x)={∅}
o(x) = {{y}}

Fig. 4. Matching partial instances given a case and a flexible model

instance that maximizes the value of the case based fitness metrics defined in
Definition 3.5. In this section, we introduce an algorithm that achieves this.

As an illustration, consider the flexible model and events of a case as shown
in Figure 4. More than one matching partial model instance can be generated
from the model, each of which has a different fitness value for the task ratio
fitness frat. Since the model can capture the behavior of the case as shown by
instance 1, the fitness value should be 1. Hence, an instance with task ratio
fitness 1 should be selected as the basis for fitness calculation.

From Definition 3.5, it can easily be concluded that maximum fitness will be
achieved if the number of unsatisfied events of a case in an instance is minimal.
According to Definition 2.5, all predecessor/successor relations between task in-
stances should honor the same relation between tasks in the original model.
However, from Definition 3.3, we can see that only the predecessor relation mat-
ters for the fitness metrics we defined. Therefore, the selection of predecessors
of task instances is important to minimize the number of unsatisfied events.

Given a case in an event log and a flexible model, we have shown that the set
of matching partial instances for that case is non-empty (Lemma 4). Furthermore
it is easy to see that the number of matching partial instances is finite (in fact,
it is at most exponential in the number of events in the case). Although in
theory this implies that we could iterate all instances to find one maximizing
fitness, this would be infeasible for real-life event logs. Therefore, we introduce
a search algorithm, based on the A* algorithm [4], that guarantees us to find an
instance that minimizes the number of unsatisfied events and hence maximizes
the case-based fitness metric.

The A* algorithm was developed to find the shortest path from a source node
to a target node in a weighted directed graph. Given a directed graph G = (N,E)
where N is a set of nodes and E : N ×N is a set of directed arcs, A* heuristic
relies on cost function f(n) = g(n) + h(n), where n ∈ N is a node in the graph.
Function g(n) returns the total cost so far to reach n from a source node nsrc,
and heuristic function h(n) returns estimation cost from node n to target node
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ntrg. Function h should not return a value that overestimates the cost to reach
the goal, and cost function f should exhibit incremental monotonicity [12]. If
functions with such properties are used, the algorithm has been proven to be
complete and optimal (i.e. return path from nsrc to ntrg with the minimum
value of f(n)) [1, 12].

The A* algorithm can be used in the construction of matching partial in-
stances which maximize a case’s fitness value. The sketch of the approach is
given as follows. We start our search from the matching partial instance that
always exists, i.e. a matching partial instance that contains no edges, but only
the events as nodes. Then, we consider all events one by one, in the order pro-
vided by the log. For each event, we try to satisfy one of the synchronization
alternatives defined in the flexible model (i.e. we need to consider all tasks in the
flexible model that refer to the same activity as the event). In order to satisfy
a synchronization alternative, we add edges from earlier events to the event un-
der investigation, while maintaining the restrictions on the enabling alternatives
provided by the flexible model. If no synchronization alternative can be satisfied,
we do not add any edges.

Obviously the algorithm sketched above could be used to generate all match-
ing partial instances. However, we use the A* algorithm to limit our search in
the following way. First, we define the target function f as the number of events
in the case plus the number of unsatisfied events so far. As the number of events
in the case is fixed, minimizing this will also minimize the number of unsatis-
fied events. Furthermore, function g represents the number of events considered
so-far (the depth of the search tree) plus the number of unsatisfied events so far
and h provides the number of events still to consider.

During our search, no edges are ever added to an earlier event. Therefore,
once an event was unsatisfied, it will never be satisfied later. Hence, function f
is strictly increasing as the search progresses and the A* algorithm is guaranteed
to find a matching partial instance with minimal number of unsatisfied events.

5 Experiments

We implemented our calculation approach with A* heuristic in the ProM frame-
work. In addition to conformance values such as the fitness metrics presented
in this paper, other useful information obtained from replaying the log in the
model is projected onto the original flexible model [15].

Using our implementation, we compared the results of our approach to an
existing Petri net based approach proposed in [11] that is also the basis for [7].
The goal of this experiment is to show that our approach returns the right fitness
values, where Petri net based approach does not.

To perform our experiment, five event logs were generated from various Petri
nets, each with OR-split or OR-join constructs, duplicate transitions, or loop
constructs. For modeling the nets and generating logs, we used CPN Tools [6].
The conformance of each log is measured against both the original Petri net and
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Table 1. Experiment results

Log ID # Case # Evts fabs frat fevt Petri net based.

OrSJn1 5000 18556 1 1 1 0.77
OrSJn2 10000 37153 1 1 1 0.77
OrS1 5000 26323 1 1 1 0.89
OrS2 10000 52762 1 1 1 0.89
Loop 10000 115384 1 1 1 0.89

a flexible model that is the counterpart of that Petri net. Each log has a size
reasonable for simulating real-life data (≥ 5000 cases).

The experiments results are shown in Table 1. As shown in the table (columns
4,5 and 6), our conformance metrics return 1 for all logs. This is expected, as the
models were used to generate the log. When the same logs are checked against
the Petri nets the fitness is less than 1, due to the inability of existing algorithms
to handle the chosen constructs (e.g. it detects false negatives).

6 Conclusion and Future Work

In this paper, we provide a robust method for calculating conformance between
a log and a process model. First, we introduced flexible models that provide an
abstraction of many languages and allow for the modeling of complex control
flow constructs, such as OR-split/joins and multiple tasks that represent the
same activity. We provided semantics for these models, but without specifying
how to execute them. Instead, we showed that in the context of a case that
has been recorded in the log, we can construct instances of the model that
maximize certain conformance metrics. Finally, using experiments on simulated
data (comparable in size to real-life data sets), we have shown that our approach
calculates fitness correctly in the presence of complex constructs, where existing
approaches do not.

The work presented in this paper provides a solid basis for robust confor-
mance checking. Since our flexible models do not have executable semantics,
we do not rely on state-space exploration (which is required in Petri-net based
conformance checking).

In the future, we plan to extend this work by defining metrics that do not
only capture the unsatisfied events, but also the unhandled events. Furthermore,
we aim at developing metrics related to other aspects of conformance, such as
appropriateness. Next to that, there is also a need to identify the “skipping” of
activities, i.e. by identifying which tasks were executed but not logged.

Finally, to make our work applicable in real-life settings, we aim to inves-
tigate possible approaches to obtain flexible models, both using mining and by
conversion from other models.
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