
Causal Nets: A Modeling Language Tailored
Towards Process Discovery

W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands.

{W.M.P.v.d.Aalst,A.Adriansyah,B.F.v.Dongen}@tue.nl

Abstract. Process discovery—discovering a process model from exam-
ple behavior recorded in an event log—is one of the most challenging
tasks in process mining. The primary reason is that conventional model-
ing languages (e.g., Petri nets, BPMN, EPCs, and ULM ADs) have dif-
ficulties representing the observed behavior properly and/or succinctly.
Moreover, discovered process models tend to have deadlocks and live-
locks. Therefore, we advocate a new representation more suitable for
process discovery: causal nets. Causal nets are related to the representa-
tions used by several process discovery techniques (e.g., heuristic mining,
fuzzy mining, and genetic mining). However, unlike existing approaches,
we provide declarative semantics more suitable for process mining. To
clarify these semantics and to illustrate the non-local nature of this new
representation, we relate causal nets to Petri nets.

1 Motivation

In this paper, we advocate the use of Causal-nets (C-nets) in process mining.
C-nets were introduced in [2] and, in our view, provide a better representational
bias for process discovery than conventional design-oriented languages such as
Petri nets, BPMN, BPEL, EPCs, YAWL, and UML activity diagrams.

Figure 1 shows a C-net modeling the booking of a trip. After activity a (start
booking) there are three possible activities: b (book flight), c (book car), and d
(book hotel). The process ends with activity e (complete booking). Each activity
has sets of potential input and output bindings (indicated by the black dots).
Every connected set of dots on the output arcs of an activity is an output bind-
ing. For example, a has four output bindings modeling that a may be followed
by (1) just b, (2) just c, (3) b and d, or (4) b, c, and d. Hence, it is not possible
to book just a hotel or a hotel and a car. Activity c has two input bindings
modeling that it is preceded by (1) just a or (2) a and b. This construct is used
to model that when both a flight and a car are booked, the flight is booked first.
Output bindings create obligations whereas input bindings remove obligations.
For example, the occurrence of a with output binding {b, d} creates two obliga-
tions: both b and d need to be executed while referring to the obligations created
by a.

a

start

booking

c e

complete

booking
book car

d

book hotel

b
book flight

Fig. 1. Causal net Ctravel

In a C-net there is one start activity (a in Fig. 1) and one end activity (e
in Fig. 1). A valid binding sequence models an execution path starting with
a and ending with e while removing all obligations created during execution.
The behavior of a C-net is restricted to valid binding sequences. Hence, unlike
conventional modeling languages, the semantics are non-local. Section 2 explains
the semantics of C-nets in more detail and provides additional examples.

C-nets address important limitations of conventional languages in the context
of process mining [2]. Process mining is an emerging research discipline focusing
on the interplay between event logs (observed behavior) and process models.
Process discovery is the process mining task that aims to learn process models
based on example behavior recorded in events logs, e.g., based on a multi-set
of activity sequences (process instances) a Petri net that models the observed
behavior is discovered. Conformance checking is the process mining task that
compares the example behavior in a events log with the modeled behavior. Based
on such a comparison it is possible to highlight and quantify commonalities and
differences.

In the last decade dozens of new process discovery techniques have been
proposed, typically aiming at the creation of a conventional process model (e.g.,
a Petri net or EPC). This means that the search space that is implied by such
a design-oriented language—often referred to as the “representational bias”—
is not tailored towards process mining. This creates various problems. In this
paper, we focus on two of them:

– The discovered process model is unable to represent the underlying process
well, e.g., a significant proportion of the behavior seen in the log is not pos-
sible in the model (non-fitting model), the model allows for behavior not
related to the event log (underfitting), the model is overfitting (no general-
ization), or the model is overly complex because all kinds of model elements
need to be introduced without a direct relation to the event log (e.g., places,
gateways, and events).

– Most of the process models in the search space determined by conventional
languages are internally inconsistent (deadlocks, livelocks, etc.), i.e., there
are more inconsistent models than consistent ones. Process discovery tech-

niques need to “guess” the underlying model based on example behavior.
If almost all of these guesses result in models that are obviously incorrect
(even without considering the event log), then the results are of little value.

Consider for example an algorithm producing a Petri net (e.g., the various region-
based approaches [11] and variants of the α-algorithm [2]). The behavior in a
Petri net can be restricted by adding places. However, places have no direct
meaning in terms of the behavior seen in the event log. Moreover, the addition
or removal of places may introduce deadlocks, livelocks, etc.

This is the reason why the more useful process discovery techniques use al-
ternative representations: fuzzy models [7], heuristic nets [9], flexible heuristic
nets [10], causal matrices [8], etc. Also for conformance checking one can find
similar representations, e.g., flexible models [4]. On the one hand, these repre-
sentations are similar to C-nets (i.e., activities can model XOR/OR/AND-splits
and joins without introducing separate model elements). On the other hand, the
semantics of such models are very different from the semantics we use for C-nets.
The distinguishing feature is that we limit the possible behavior to valid binding
sequences, thus excluding a variety of anomalies.

This paper introduces C-nets while focusing on their semantics (Sect. 2).
We believe that our formalization sheds new light on the representations used
in [4,7,8,9,10]. We also provide two mappings: one from C-nets to Petri nets
and one from Petri nets to C-nets (Sect. 3). These mappings help to clarify
the semantics and highlight the distinguishing features of C-nets. Moreover, to
illustrate the practical relevance of C-nets, we describe how the ProM framework
is supporting/using C-nets (Sect. 4).

2 Causal Nets

This section introduces causal nets – a representation tailored towards process
mining – and their semantics.

2.1 Definition

A Causal-net (C-net) is a graph where nodes represent activities and arcs repre-
sent causal dependencies. Each activity has a set of possible input bindings and a
set of possible output bindings. Consider, for example, the C-net shown in Fig. 2.
Activity a has only an empty input binding as this is the start activity. There
are two possible output bindings: {b, d} and {c, d}. This means that a is followed
by either b and d, or c and d. Activity e has two possible input bindings ({b, d}
and {c, d}) and three possible output bindings ({g}, {h}, and {f}). Hence, e
is preceded by either b and d, or c and d, and is succeeded by just g, h or f .
Activity z is the end activity having two input bindings and one output binding
(the empty binding). This activity has been added to create a unique end point.
All executions commence with start activity a and finish with end activity z.
Note that unlike, Petri nets, there are no places in the C-net; the routing logic
is solely represented by the possible input and output bindings.

a

register

request

b

examine
thoroughly

c

examine
casually

d

check
ticket

decide

pay
compensation

reject
request

e

g

h

f

end

reinitiate
request

z

XOR-split AND-split OR-split

XOR-join AND-join OR-join

Fig. 2. C-net Crfc modeling a “Request For Compensation” (RFC) process

Definition 1 (Causal net [2]). A Causal net (C-net) is a tuple C = (A, ai, ao,
D, I,O) where:

– A is a finite set of activities;
– ai ∈ A is the start activity;
– ao ∈ A is the end activity;
– D ⊆ A×A is the dependency relation,
– AS = {X ⊆ P(A) | X = {∅} ∨ ∅ 6∈ X};1
– I ∈ A→ AS defines the set of possible input bindings per activity; and
– O ∈ A→ AS defines the set of possible output bindings per activity,

such that

– D = {(a1, a2) ∈ A×A | a1 ∈
⋃

as∈I(a2)
as};

– D = {(a1, a2) ∈ A×A | a2 ∈
⋃

as∈O(a1)
as};

– {ai} = {a ∈ A | I(a) = {∅}};
– {ao} = {a ∈ A | O(a) = {∅}}; and
– all activities in the graph (A,D) are on a path from ai to ao.

The C-net of Fig. 2 can be described as follows. A = {a, b, c, d, e, f, g, h, z}
is the set of activities, a = ai is the unique start activity, and z = ao is the
unique end activity. The arcs shown in Fig. 2 visualize the dependency relation
D = {(a, b), (a, c), (a, d), (b, e), . . . , (g, z), (h, z)}. Functions I and O describe the

1 P(A) = {A′ | A′ ⊆ A} is the powerset of A. Hence, elements of AS are sets of sets
of activities.

sets of possible input and output bindings. I(a) = {∅} is the set of possible
input bindings of a, i.e., the only input binding is the empty set of activities.
O(a) = {{b, d}, {c, d}} is the set of possible output bindings of a, i.e., activity
a is followed by d and either b or c. I(b) = {{a}, {f}}, O(b) = {{e}}, . . . ,
I(z) = {{g}, {h}}, O(z) = {∅}. Note that any element of AS is a set of sets
of activities, e.g., {{b, d}, {c, d}} ∈ AS . If one of the elements is the empty set,
then there cannot be any other elements, i.e., for any any X ∈ AS : X = {∅} or
∅ 6∈ X. This implies that only the unique start activity ai has the empty binding
as (only) possible input binding. Similarly, only the unique end activity ao has
the empty binding as (only) possible output binding.

An activity binding is a tuple (a, asI , asO) denoting the occurrence of activity
a with input binding asI and output binding asO. For example, (e, {b, d}, {f})
denotes the occurrence of activity e in Fig. 2 while being preceded by b and d,
and succeeded by f .

Definition 2 (Binding). Let C = (A, ai, ao, D, I,O) be a C-net. B = {(a, asI ,
asO) ∈ A × P(A) × P(A) | asI ∈ I(a) ∧ asO ∈ O(a)} is the set of activity
bindings. A binding sequence σ is a sequence of activity bindings, i.e., σ ∈ B∗.

Note that sequences are denoted using angle brackets, e.g., 〈 〉 denotes the
empty sequence. B∗ is the set of all sequences over B (including 〈 〉). A possible
binding sequence for the C-net of Fig. 2 is σex = 〈(a, ∅, {b, d}), (b, {a}, {e}),
(d, {a}, {e}), (e, {b, d}, {g}), (g, {e}, {z}), (z, {g}, ∅)〉.

Function α ∈ B∗ → A∗ projects binding sequences onto activity sequences,
i.e., the input and output bindings are abstracted from and only the activity
names are retained. For instance, α(σex) = 〈a, b, d, e, g, z〉.

Consider C-net Ctravel shown in Figure 1. The possible input and output
bindings of Ctravel are defined as follows:O(a) = I(e) = {{b}, {c}, {b, d}, {b, c, d}},
I(a) = O(e) = {∅}, I(b) = I(d) = {{a}}, O(c) = O(d) = {{e}}, I(c) =
{{a}, {a, b}}, and O(b) = {{e}, {c, e}}. A possible binding sequence for the C-net
shown in Fig. 1 is σ = 〈(a, ∅, {b, c, d}), (d, {a}, {e}), (b, {a}, {c, e}), (c, {a, b}, {e}),
(e, {b, c, d}, ∅)〉, i.e., the scenario in which a hotel, a flight, and a car are booked.
α(σ) = 〈a, d, b, c, e〉 is the corresponding activity sequence. Note that in Fig. 1 a
hotel can only be booked if a flight is booked. Moreover, when both a car and a
flight are booked, then first the flight needs to be booked.

2.2 Valid Sequences

A binding sequence is valid if a predecessor activity and successor activity
always “agree” on their bindings. For a predecessor activity x and successor
activity y we need to see the following “pattern”: 〈. . . , (x, {. . .}, {y, . . .}), . . . ,
(y, {x, . . .}, {. . . }), . . .〉, i.e., an occurrence of activity x with y in its output
binding needs to be followed by an occurrence of activity y, and an occurrence
of activity y with x in its input binding needs to be preceded by an occurrence
of activity x. To formalize the notion of a valid sequence, we first define the
notion of state. States are represented by multi-sets of obligations, e.g., state

[(a, b)2, (a, c)] denotes the state where there are two pending activations of b by
a and there is one pending activation of c by a. This means that b needs to
happen twice while having a in its input binding and c needs to happen once
while having a in its input binding.

Definition 3 (State). Let C = (A, ai, ao, D, I,O) be a C-net. S = IB(A × A)
is the state space of C. s ∈ S is a state, i.e., a multi-set of pending obliga-
tions. Function ψ ∈ B∗ → S is defined inductively: ψ(〈 〉) = [] and ψ(σ ⊕
(a, asI , asO)) = (ψ(σ) \ (asI × {a}))] ({a} × asO) for any binding sequence
σ ⊕ (a, asI , asO) ∈ B∗.2 ψ(σ) is the state after executing binding sequence σ.

Consider C-net Crfc shown in Fig. 2. Initially there are no pending “obliga-
tions”, i.e., no output bindings have been enacted without having corresponding
input bindings. If activity binding (a, ∅, {b, d}) occurs, then ψ(〈(a, ∅, {b, d})〉) =
ψ(〈 〉) \ (∅× {a})] ({a}× {b, d}) = ([] \ [])] [(a, b), (a, d)] = [(a, b), (a, d)]. State
[(a, b), (a, d)] denotes the obligation to execute both b and d using input bindings
involving a. Input bindings remove pending obligations whereas output bindings
create new obligations.

A valid sequence is a binding sequence that (1) starts with start activity
ai, (2) ends with end activity ao, (3) only removes obligations that are pend-
ing, and (4) ends without any pending obligations. Consider, for example, the
valid sequence σ = 〈(a, ∅, {b, d}), (d, {a}, {e}), (b, {a}, {e}), (e, {b, d}, ∅)〉 for C-
net Ctravel in Fig. 1:

ψ(〈 〉) = []

ψ(〈(a, ∅, {b, d})〉) = [(a, b), (a, d)]

ψ(〈(a, ∅, {b, d}), (d, {a}, {e})〉) = [(a, b), (d, e)]

ψ(〈(a, ∅, {b, d}), (d, {a}, {e}), (b, {a}, {e})〉) = [(b, e), (d, e)]

ψ(〈(a, ∅, {b, d}), (d, {a}, {e}), (b, {a}, {e}), (e, {b, d}, ∅)〉) = []

Sequence σ indeed starts with start activity a, ends with end activity e, only
removes obligations that are pending (i.e., for every input binding there was an
earlier output binding), and ends without any pending obligations: ψ(σ) = [].

Definition 4 (Valid). Let C = (A, ai, ao, D, I,O) be a C-net and σ = 〈(a1, asI1,
asO1), (a2, asI2, asO2), . . . , (an, asIn, asOn)〉 ∈ B∗ be a binding sequence. σ is a valid
sequence of C if and only if:

– a1 = ai, an = ao, and ak ∈ A \ {ai, ao} for 1 < k < n;
– ψ(σ) = []; and
– for any non-empty prefix σ′ = 〈(a1, asI1, asO1), . . . , (ak, asIk, asOk)〉 (1 ≤ k ≤
n): (asIk×{ak}) ≤ ψ(σ′′) with σ′′ = 〈(a1, asI1, asO1), . . . , (ak−1, asIk−1, asOk−1)〉

VCN (C) is the set of all valid sequences of C.

2 ⊕ is used to concatenate an element to the end of a sequence, e.g., 〈a, b, c〉 ⊕ d =
〈a, b, c, d〉. X]Y is the union of two multi-sets. X \Y removes Y from X (difference
of two multi-sets). Ordinary sets will be used as multi-sets throughout this paper.

The first requirement states that valid sequences start with ai and end with
ao (ai and ao cannot appear in the middle of valid sequence). The second require-
ment states that at the end there should not be any pending obligations. (One
can think of this as the constraint that no tokens left in the net.) The last require-
ment considers all non-empty prefixes of σ: 〈(a1, asI1, asO1), . . . , (ak, asIk, asOk)〉.
The last activity binding of the prefix (i.e., (ak, asIk, asOk)) should only remove
pending obligations, i.e., (asIk × {ak}) ≤ ψ(σ′′) where asIk × {ak} are the obli-
gations to be removed and ψ(σ′′) are the pending obligations just before the
occurrence of the k-th binding. (One can think of this as the constraint that one
cannot consume tokens that have not been produced.)

The C-net in Fig. 1 has seven valid sequences: only b is executed (〈(a, ∅, {b}),
(b, {a}, {e}), (e, {b}, ∅)〉), only c is executed (besides a and e), b and d are exe-
cuted (two possibilities), and b, c and d are executed (3 possibilities because b
needs to occur before c). The C-net in Fig. 2 has infinitely many valid sequences
because of the loop construct involving f .

For the semantics of a C-net we only consider valid sequences, i.e., invalid
sequences are not part of the behavior described by the C-net. This means that
C-nets do not use plain “token-game semantics” as employed in conventional
languages like BPMN, Petri nets, EPCs, and YAWL. The semantics of C-nets
are more declarative as they are defined over complete sequences rather than a
local firing rule. Note that the semantics abstract from the moment of choice;
pending obligations are not exposed to the environment and are not fixed during
execution (i.e., all valid interpretations remain open).

2.3 Soundness

The notion of soundness has been defined for a variety of workflow and business
process modeling notations (e.g., workflow nets as shown in Sect. 3.1). A process
model is sound if it is free of deadlocks, livelocks, and other obvious anomalies.
A similar notion can be defined for C-nets.

Definition 5 (Soundness of C-nets [2]). A C-net C = (A, ai, ao, D, I,O)
is sound if (1) for all a ∈ A and asI ∈ I(a) there exists a σ ∈ VCN (C) and
asO ⊆ A such that (a, asI , asO) ∈ σ, and (2) for all a ∈ A and asO ∈ O(a) there
exists a σ ∈ VCN (C) and asI ⊆ A such that (a, asI , asO) ∈ σ.

Since the semantics of C-nets already enforce “proper completion” and the
“option to complete”, we only need to make sure that there are valid sequences
and that all parts of the C-net can potentially be activated by such a valid
sequence. The C-nets Ctravel and Crfc in Figs. 1 and 2 are sound. Figure 3
shows two C-nets that are not sound. In Fig. 3(a), there are no valid sequences
because none of output bindings of a matches any of the input bindings of
e. For example, consider the binding sequence σ = 〈(a, ∅, {b}), (b, {a}, {e})〉.
Sequence σ cannot be extended into a valid sequence because ψ(σ) = [(b, e)] and
{b} 6∈ I(e), i.e., the input bindings of e do not allow for just booking a flight
whereas the output bindings of a do. In Fig. 3(b), there are valid sequences,

e.g., 〈(a, ∅, {c}), (c, {a}, {e}), (e, {c}, ∅)〉. However, not all bindings appear in one
or more valid sequences. For example, the output binding {b} ∈ O(a) does not
appear in any valid sequence, i.e., after selecting just a flight the sequence cannot
be completed properly. The input binding {c, d} ∈ I(e) also does not appear in
any valid sequence, i.e., the C-net suggests that only a car and hotel can be
booked but there is no corresponding valid sequence.

a

start

booking

c e

complete

booking

book

car

d

book

hotel

b

book

flight

a

start

booking

c e

complete

booking

book

car

d

book

hotel

b

book

flight

(a) unsound because there are no valid sequences (b) unsound although there exist valid sequences

Fig. 3. Two C-nets that are not sound. The first net (a) does not allow for any valid
sequence, i.e., VCN (C) = ∅. The second net (b) has valid sequences but also shows
input/output bindings that are not realizable (indicated in red)

Figure 4 shows another C-net. One of the valid binding sequences for this
C-net is 〈(a, ∅, {b}), (b, {a}, {b, c}), (b, {b}, {c, d}), (c, {b}, {d}), (c, {b}, {d}), (d,
{b, c}, {d}), (d, {c, d}, {e}), (e, {d}, ∅)〉, i.e., the sequence 〈a, b, b, c, c, d, d, e〉. This
sequence covers all the bindings. Therefore, the C-net is sound. Examples of
other valid sequences are 〈a, b, c, d, e〉, 〈a, b, c, b, c, d, d, e〉, and 〈a, b, b, b, c, c, c, d,
d, d, e〉.

a

c

b d e

Fig. 4. A sound C-net for which there does not exist a WF-net having the same set of
activity sequences

C-nets are particularly suitable for process mining given their declarative
nature and expressiveness without introducing all kinds of additional model ele-
ments (places, conditions, events, gateways, etc.). Several process discovery use
similar representations [7,8,9,10]. However, these models tend to use rather in-
formal semantics; the model serves more like a “picture” showing dependencies
rather than an end-to-end process model.

3 Relating C-nets and Petri Nets

To better understand the semantics of C-nets, we relate C-nets to Petri nets. We
provide a mapping from WF-nets to C-nets and show that the resulting C-net
is behaviorally equivalent to the original WF-net. We also provide a mapping
from C-nets to WF-nets that over-approximates the behavior.

3.1 Petri Nets and WF-nets

We assume that the reader is familiar with Petri nets. Therefore, we just sum-
marize the basic concepts and notations relevant for the two mappings.

Definition 6 (Petri net). A Petri net is a triplet N = (P, T, F) where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅,
and F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation.
A marked Petri net is a pair (N,M), where N = (P, T, F) is a Petri net and
where M ∈ IB(P) is a multi-set over P denoting the marking of the net.

Petri nets are defined in the standard way. Markings, i.e., states of the net,
are denoted as multi-sets. For any x ∈ P ∪T , •x = {y | (y, x) ∈ F} (input nodes)
and x• = {y | (x, y) ∈ F} (output nodes). A transition t is enabled if each of its
input places •t contains at least one token. An enabled transition t may fire, i.e.,
one token is removed from each of the input places •t and one token is produced
for each of the input places t•. Formally: (M \ •t)] t• is the marking resulting
from firing enabled transition t in marking M .

A sequence σ ∈ T ∗ is called a firing sequence of (N,M0) if and only if, for
some n ∈ {0, 1, . . .}, there exist markings M1, . . . ,Mn and transitions t1, . . . , tn ∈
T such that σ = 〈t1 . . . tn〉 and, for all i with 0 ≤ i < n, ti+1 is enabled in Mi

and firing ti+1 results in marking Mi+1.
For business process modeling and process mining, often a restricted class

of Petri nets is used: Workflow nets (WF-nets) [1,3]. The reason is that process
instances have a clear starting and ending point. For example, a customer order,
a patient treatment, a request for a mortgage, etc. all have a life-cycle with a
well-defined start and end. Process instances are often referred to as cases. A
WF-net describes the life-cycle of such cases.

Definition 7 (Workflow net [1]). Petri net N = (P, T, F) is a workflow net
(WF-net) if and only if (1) P contains an input place pi (also called source place)
such that •pi = ∅, (2) P contains an output place po (also called sink place) such
that po• = ∅, and (3) every node is on a path from pi to po.

Cases start in the marking [pi] (one token in the unique source place) and
ideally end in the marking [po] (one token in the unique sink place). The WF-net
should ensure that it is always possible to reach the final marking [po]. Moreover,
a WF-net should not contain dead parts, i.e., parts that can never be activated.
These requirements result in the classical definition of soundness for WF-nets.

Definition 8 (Soundness [1,3]). Let N = (P, T, F) be a WF-net with input
place pi and output place po. N is sound if and only if (1) for any marking
reachable from [pi] it is possible to reach the marking [po] (option to complete),
and (2) (N, [pi]) contains no dead transitions (absence of dead parts, i.e., for
any t ∈ T , there is a firing sequence enabling t).

We are interested in the set VPN (N) of all firing sequences that start in
marking [pi] and end in marking [po]. Note that in a sound WF-net, all full
firing sequences (i.e., firing sequences ending in a dead marking) are valid.

Definition 9 (Valid firing sequences). Let N = (P, T, F) be a WF-net.
VPN (N) ⊆ T ∗ is the set of all valid firing sequences, i.e., firing sequences start-
ing in marking [pi] and ending in marking [po].

At first sight, C-nets seem to be related to zero-safe nets [5]. The places
in a zero-safe net are partitioned into stable-places and zero-places. Observable
markings only mark stable-places, i.e., zero-places need to be empty. In-between
observable markings zero-places may be temporarily marked. However, zero-
places cannot be seen as bindings because the obligations between two activities
may be non-local, i.e., an output binding may create the obligation to execute
an activity occurring much later in the process.

3.2 Mapping WF-nets onto C-nets

Any sound WF-net can be transformed into an equivalent C-net by convert-
ing places into activities with XOR-join and XOR-split bindings. The idea is
sketched in Fig. 5 and can be formalized as follows.

Definition 10 (Mapping I). Let N = (P, T, F) be a WF-net with input place
pi and output place po. CN = (A, ai, ao, D, I,O) is the corresponding C-net with
A = T ∪ P , ai = pi, ao = po, D = F , I(t) = {•t} and O(t) = {t•} for t ∈ T ,
and I(p) = {{t} | t ∈ •p} and O(p) = {{t} | t ∈ p•} for p ∈ P .

To relate valid firing sequences in WF-nets to valid binding sequences in
C-nets, we define a generic projection operation. σ ↑ Y is the projection of
some sequence σ ∈ X∗ onto some subset Y ⊆ X, i.e., elements of σ not in
Y are removed. This operation can be generalized to sets of sequences, e.g.,
{〈a, b, c, a, b, c, d〉, 〈b, b, d, e〉} ↑ {a, b} = {〈a, b, a, b〉, 〈b, b〉}.

Theorem 1. Let N = (P, T, F) be a sound WF-net having CN as its corre-
sponding C-net.

– For any valid firing sequence σN ∈ VPN (N), there exists a valid binding
sequence σC ∈ VCN (CN) such that α(σC) ↑ T = σN .

– For any valid binding sequence σC ∈ VCN (CN), there exists a valid firing
sequence σN ∈ VPN (N) such that α(σC) ↑ T = σN .

t1

t3

p1

t4

t2

t5

t6

t7

p2

t1

t3

t4

t2

t5

t6

t7

p1

p2

(a) (b)

Fig. 5. Mapping a fragment of a WF-net (a) onto a C-net (b) using Definition 10

Proof. Let σN be a valid firing sequence of N . Replay σN on N while labeling
each token with the name of the transition that produced it. Suppose that t6
in Fig. 5 fires while consuming a token from p1 produced by t2 and a token
from p2 produced by t3. This occurrence of t6 corresponds to the subsequence
〈. . . , (p1, {t2}, {t6}), (p2, {t3}, {t6}), (t6, {p1, p2}, {. . .})〉. This way it is possible
to construct a valid binding sequence σC . Note that there may be multiple valid
binding sequences corresponding to σN .

Let σC be a valid binding sequence. It is easy to see that σC can be replayed
on the WF-net. In fact, one can simply abstract from “place activities” as these
correspond to routing decisions not relevant for WF-nets (only the presence of a
token matters not where the token came from). Therefore, each σC corresponds
to a single σN . ut

C-nets are at least as expressive as sound WF-nets because all valid firing se-
quences in N have a corresponding valid binding sequence in CN and vice-versa.
The reverse does not hold as is illustrated by Fig. 4. This model is unbounded
and has infinitely many binding sequences. Since sound WF-nets are bounded
[1,3], they can never mimic the behavior of the C-net in Fig. 4.

3.3 Mapping C-nets onto WF-nets

Figure 4 illustrates that WF-nets are not as expressive as C-net. Nevertheless,
it is interesting to construct WF-nets that over-approximate the behavior of
C-nets.

Definition 11 (Mapping II). Let C = (A, ai, ao, D, I,O) be a C-net. NC =
(P, T, F) is the corresponding WF-net with P = {pIa | a ∈ A} ∪ {pOa | a ∈
A} ∪ {pD(a1,a2)

| (a1, a2) ∈ D}, T I = {aIX | a ∈ A ∧ X ∈ I(a) ∧ X 6= ∅},
TO = {aOX | a ∈ A ∧ X ∈ O(a) ∧ X 6= ∅}, T = A ∪ T I ∪ TO, F =
{(pIa, a) | a ∈ A} ∪ {(a, pOa) | a ∈ A} ∪ {(aIX , pIa) | aIX ∈ T I} ∪ {(pOa , aOX) | aOX ∈
TO}∪{(pD(a1,a)

, aIX) | aIX ∈ T I ∧ a1 ∈ X}∪{(aOX , pD(a,a2)
) | aOX ∈ TO ∧ a2 ∈ X}.

Figure 6 illustrates this construction. The black transitions correspond to
silent transitions (often referred to as τ transitions). Since there is a unique
start activity ai, there is one source place pi = pIai

. Moreover, there is one sink
place po = pOao

and all nodes are on a path from pi to po. Therefore, NC is indeed
a WF-net.

book

flight

a

start

booking

c

b

d

book

car

book

hotel

e

complete

booking

Fig. 6. A C-net transformed into a WF-net: every valid firing sequence of the WF-net
corresponds to a valid sequence of the C-net Ctravel shown in in Fig. 1 and vice versa

It is easy to see that Definition 11 is such that the WF-net can mimic any
valid binding sequence. However, the corresponding WF-net does not need to
be sound and may have a firing sequence that cannot be extended into a valid
firing sequence.

Theorem 2. Let C = (A, ai, ao, D, I,O) be a C-net having NC as its corre-
sponding WF-net.

– For any valid binding sequence σC ∈ VCN (C), there exists a valid firing
sequence σN ∈ VPN (NC) such that α(σC) = σN ↑ A.

– For any valid firing sequence σN ∈ VPN (NC), there exists a valid binding
sequence σC ∈ VCN (C) such that α(σC) = σN ↑ A.

Proof. It is easy to construct a valid firing sequence σN for any valid binding
sequence σC . An activity binding (a,X, Y) in σC corresponds to the firing sub-
sequence 〈aIX , a, aOY 〉 in σN . (For the start and end activity, aIX respectively aOY
are omitted.) The constructed sequence meets all requirements.

Let σN be a valid firing sequence. Consider the occurrence of a transition
a ∈ A in σN . Based on the structure of the WF-net it can be seen that a was
preceded by a corresponding transition in T I (unless a = ai) and will be followed
by a corresponding transition in TO (unless a = ao). The reason is that a has a
dedicated input place (no other transition can consume from it) and a dedicated
output place (no other transition can add tokens) and that after executing σN
only pOao

is marked. Hence, for every occurrence of some transition a ∈ A there

is a corresponding occurrence of a transition aIX ∈ T I and a corresponding
occurrence of a transition aOY ∈ TO. This information can be used to construct
σC ∈ VCN (C) such that α(σC) = σN ↑ A. ut

The theorem shows that the expressiveness of C-nets is due its declarative
semantics which considers only valid binding sequences (and not the notation
itself). If one restricts WF-nets to valid firing sequences (and allows for silent
transitions!), the same expressiveness is achieved.3 Note that this is related to
the notion of relaxed soundness [6]. In fact, a C-net C is sound if and only if
the corresponding WF-net NC is relaxed sound. In [6] it is shown that for some
relaxed sound WF-nets a corresponding sound WF-net can be constructed.

4 Application of C-Nets in ProM

In the previous sections we introduced C-nets and related them to Petri nets.
After these theoretical considerations, we briefly describe the way in which the
ProM framework supports C-nets. ProM is an open-source process analysis tool
with a pluggable architecture. Originally, the focus of ProM was exclusively on
process mining. However, over time the scope of the system broadened to also
include other types of analysis (e.g., verification). In the remainder, we provide
a brief overview of ProM’s functionality. Note that we show just a fraction of
the hundreds of plug-ins available (cf. www.processmining.org).

4.1 Model Management and Conversion

ProM is able to load and save C-nets in a dedicated file format. Petri nets can
be converted to C-nets using the construction of Definition 10. Similarly, it is
possible to convert a C-net into a Petri net using the construction of Defini-
tion 11. Conversions to and from other formats (EPCs, BPMN, etc.) are being
developed. These formats can already be converted to Petri nets thus enabling
an indirect conversion from these formats to C-nets.

4.2 Model-Based Verification

ProM has extensive support for transition systems and Petri nets. Moreover,
also Petri nets with reset and inhibitor arcs and specific subclasses such as WF-
nets are supported. Typical Petri nets properties such as liveness, boundedness,
etc. can be analyzed using various plug-ins. ProM also embeds the well-known
LoLA (a Low Level Petri Net Analyzer) tool for more advanced forms of model-
based analysis. There are also plug-ins analyzing structural properties of the
net (invariants, traps, siphons, components, etc.). These plug-ins can be applied
to WF-nets. Moreover, plug-ins like Woflan are able to verify soundness and
diagnose errors.

The plug-in “Check Soundness of Causal Net” checks the property defined in
Definition 5. Internally, the plug-in converts the model into a WF-net and then
checks relaxed soundness.
3 Expressiveness in terms matching sequences.

4.3 Process Discovery

One of the most challenging topics in process mining is the automated derivation
of a model based on example traces [2]. The starting point for process discovery
is an event log in MXML or XES format. ProM provides a wide variety of
process discovery techniques, e.g., techniques based on state-based region theory,
language-based region theory, genetic mining, fuzzy mining, folding of partial
orders, or heuristic mining. The process discovery plug-ins in ProM typically
produce a Petri net or a model close to C-nets [2,7,8,9,10]. Using the various
conversion plug-ins such results can be mapped onto C-nets.

What is missing are dedicated process discovery techniques producing C-nets
while exploiting the representational bias. This is a topic for further research.

4.4 Conformance Checking and Performance Analysis

Given an event log and a process model, it is possible to replay the log on
the model. ProM provides several plug-ins that replay logs on Petri nets. An
example, is the “Conformance Checker” plug-in [2].

(a) Conformance analysis (b) Performance analysis

Fig. 7. Two ProM plug-ins showing the results obtained through replaying the event
log on a C-net

Recently, ProM started to support several plug-ins that replay logs on C-nets
[4]. Figure 7(a) shows that ProM is able to discover deviations between a C-net
and an event log. The plug-in indicates where deviations occur and what the
overall fitness of the log is (using configurable cost functions). Most event logs
contain timestamps. Therefore, replay can also be used to identify bottlenecks
and to measure waiting and service times. Figure 7(b) shows the result of such
analysis; the colors and numbers indicate different performance measurements.

5 Conclusion

This paper makes the case for Causal-nets (C-nets) in process mining. C-nets
provide a better representational bias than conventional languages that are ei-
ther too restrictive (e.g., OR-joins, unstructured loops, and skipping cannot be

expressed) or too liberal (in the sense that most models are incorrect). Key in-
gredients are (1) the notion of bindings allowing for any split and join behavior
and (2) the semantic restriction to valid binding sequences.

We explored the basic properties of C-nets and analyzed their relation to Petri
nets. Moreover, we described the degree of support provided by ProM. Model
management, conversion, verification, process discovery, conformance checking,
and performance analysis of C-nets are supported by ProM 6 which can be
downloaded from www.processmining.org.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, Berlin, 2011.

3. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classifi-
cation, Decidability, and Analysis. Formal Aspects of Computing, 23(3):333–363,
2011.

4. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards Robust Con-
formance Checking. In M. zur Muehlen and J. Su, editors, BPM 2010 Workshops,
Proceedings of the Sixth Workshop on Business Process Intelligence (BPI2010),
volume 66 of Lecture Notes in Business Information Processing, pages 122–133.
Springer-Verlag, Berlin, 2011.

5. R. Bruni and U. Montanari. Zero-Safe Nets: Comparing the Collective and Indi-
vidual Token Approaches. Information and Computation, 156(1-2):46–89, 2000.

6. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

7. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 328–343.
Springer-Verlag, Berlin, 2007.

8. A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery, 14(2):245–304, 2007.

9. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

10. A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). BETA
Working Paper Series, WP 334, Eindhoven University of Technology, Eindhoven,
2010.

11. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process Discovery using Integer Linear Programming. Fundamenta Informaticae,
94:387–412, 2010.

