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Abstract. Process models discovered using process mining tend to be complex
and have problems balancing between overfitting and underfitting. Overfitting
models are not general enough while underfitting models allow for too much be-
havior. This paper presents a post-processing approach to simplify discovered
process models while controlling the balance between overfitting and underfit-
ting. The discovered process model, expressed in terms of a Petri net, is unfolded
into a branching process using the event log. Subsequently, the resulting branch-
ing process is folded into a simpler process model capturing the desired behavior.
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1 Introduction

Information systems are becoming more and more intertwined with the operational pro-
cesses they support. While supporting these processes multitudes of events are recorded,
cf. audit trails, database tables, transaction logs, data warehouses. The goal of process
mining is to use such event data to extract process-related information, e.g., to auto-
matically discover a process model by observing events recorded by some information
system. The discovery of process models from event logs is a relevant, but also chal-
lenging, problem [1, 2].

Input for process discovery is a collection of traces. Each trace describes the life-
cycle of a process instance (often referred to as case). Output is a process model that
is able to reproduce these traces. The automated discovery of process models based on
event logs helps to jump-start process improvement efforts and provides an objective
up-to-date process description. Moreover, information from the log can be projected on
such models, e.g., showing bottlenecks and deviations.

The main problem of process discovery from event logs is to balance between over-
fitting and underfitting. A model is overfitting if it is too specific, i.e., the example
behavior in the log is included, but new instances of the same process are likely to
be excluded by the model. For instance, a process with 10 concurrent tasks has 10!
= 3628800 potential interleavings. However, event logs typically contain less cases.
Moreover, even if there are 3628800 cases in the log, it is extremely unlikely that all
possible variations are present. Hence, an overfitting model (describing exactly these
cases) will not capture the underlying process. A model is underfitting when it over-
generalizes the example behavior in the log, i.e., the model allows for behaviors very
different from what was seen in the log. Process discovery is challenging because (1)



P_12 

P_10 

P_40 

P_38 

P_32 

P_34 

P_36 

P_24 

P_22 

P_3 

P_11 

P_37 

P_31 

P_23 

P_6 

P_19 

P_16 

P_2 

P_5 

P_13 

P_18 

P_35 

P_27 

P_15 

P_9 

P_39 

P_14 

P_8 

P_25 

P_26 

P_29 

P_1 

P_4 

P_30 

P_7 

P_17 

P_20 

P_28 

P_21 

P_33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P_14 

P_10 

 

 

P_26 
P_13 

P_6 P_17 

P_9 

P_25 

P_38 

 

  

 

 

 

 

 

 

  

 

Fig. 1. Hospital patient treatment process after process mining (left) and after subsequent simpli-
fication using the approach presented in this paper (right).
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Fig. 2. Municipality complaint process after process mining (left) and after subsequent simplifi-
cation (right).

the log typically only contains a fraction of all possible behaviors, (2) due to concur-
rency, loops, and choices the search space has a complex structure, and (3) there are no
negative examples (i.e., a log shows what has happened but does not show what could
not happen) [1].

A variety of approaches has been proposed to address these challenges. Technically,
all these approaches extract ordering constraints on tasks which are then expressed as
control-flow constructs in the resulting process model. Usually, infrequent (exceptional)
behavior in the log leads to complex control-flow constructs in the model. Different ap-
proaches cope with this problem in different ways.
(1) Heuristic mining [3] and fuzzy mining [4] abstract from infrequent behavior to sim-
plify the model. Genetic algorithms [5] use evolution to find suitable models. As a
downside, the resulting model describes only an abstraction of the log.
(2) Approaches that do not abstract from infrequent behavior tend to over-generalize
to create a model that is able to replay the entire log. The approach presented in [6]
guarantees that all traces in the log can be reproduced by the model. In [7] an approach
based on convex polyhedra is proposed. Here the Parikh vector of each prefix in the
log is seen as a polyhedron. By taking the convex hull of these convex polyhedra one
obtains an over-approximation of the possible behavior.
(3) Other approaches generalize by restricting the most general model as much as pos-
sible. Techniques based on language-based regions [8, 9] use the property that adding
a place in a Petri net restricts its behavior, i.e., a place can be seen as a constraint on
the model’s behavior. The Petri net with transitions T and without any places can re-
produce any event log over T . As shown in [9] a system of inequations can be solved
to add places that do not exclude behavior present in the log. None of these approaches
(2) and (3) allows the user to control the balance between overfitting and underfitting.
Moreover, the resulting models tend to be convoluted as illustrated by Fig. 1 and 2.
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Fig. 3. The hospital process (Fig. 1) discovered by [10] (left) can be simplified (right).

(4) In [10] an approach to balance overfitting and underfitting is proposed. First, a tran-
sition system is constructed from the log; the user may balance generalization by in-
fluencing how states are generated from the log. Then, a Petri net is derived from this
transition system. But this approach requires expert knowledge to specify from the log
transition system states that yield a balanced model. If applied correctly, this technique
yields simpler models (compare Fig. 3 (left) and Fig. 1 (left)), but even these models
are still convoluted and can be simplified as shown by Fig. 3 (right).

The problem that we address in this paper is to structurally simplify a mined pro-
cess model N while preserving that N can replay the entire log L from which it was
generated; a model is simpler if it shows less interconnectedness between its nodes,
see Figs. 1-3. In the following, we propose a technique for re-adjusting the generaliza-
tion done by process mining algorithms, and to cut down involved process logic to the
logic that is necessary to explain the observed behavior. Starting point for our approach
is an event log L and a discovered process model N = M(L) where the mining algo-
rithm M guarantees a fitting model, i.e., all traces in L can be replayed on N.1 Next
we generate a compact representation β of the behavior of the process model N w.r.t.
the log L from which N was discovered. We then deliberate this representation β from
unnecessary dependencies, and apply generalization techniques that do not introduce
new dependencies unless motivated by a specific generalization aim.

Technically, we use Petri nets to represent process models; β is the branching pro-
cess of the Petri net N representing the traces in L. We (1) define operations to fold
β to a more explicit representation N′ of the process logic compared to N, (2) reduce
superfluous control-flow structures by removing implicit places from N′, and (3) define
abstraction operations to simplify the structure of N′ and generalize the described be-
havior in a controlled way. Our technique leads to a modular technique for transforming
N to a model N′ that has a simpler structure than N. Moreover, if the original model N
exhibits all behavior of L, then also the simplified model N′ exhibits L. Fig. 4 illustrates

1 If the mining algorithm does not guarantee a perfectly fitting model, we can still use the tech-
nique presented in [11] to create a fitting event log.

event log
mining

algorithm
process
model
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process
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Fig. 4. Overview on the approach to simplify mined process models.
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our approach which is supported by the process mining toolkit ProM.2 We validated
the feasibility of our technique in a number of experiments to simplify benchmark pro-
cesses as well as process models from industrial case studies. Figs. 1 and 2 illustrate the
effectiveness of our technique.

In the remainder of this paper, we first introduce preliminaries regarding Petri nets,
partially ordered runs, and branching processes. Sect. 3 defines the operations for sim-
plifying a mined process model illustrated by a running example. We report on experi-
mental results in Sect. 4. Sect. 5 discusses related work and Sect. 6 concludes the paper.

2 Causal Behavior of Process Models w.r.t. a Log

This section recalls some notions from Petri net theory. In particular the notion of a
branching process will be vital for our approach.

2.1 Petri Nets and Logs

Initially, we assume some log L to be given, consisting of the cases L = {l1, . . . , ln} over
the actions Σ(L). Each case li ∈ Σ(L)∗ is a finite sequence of actions, i = 1, . . . , n. In
practice, a log may contain multiple identical cases; however we will not exploit this
kind of information in the following. A mining algorithmM returns for a log L a Petri
net N = M(L). In the following, we consider the case where (1) each action t ∈ Σ(L)
defines one transition t of N, and (2) the behavior of N contains all cases in L. That is,
each l ∈ L is an occurrence sequence of N.

Definition 1 (Petri net). A Petri net (P,T, F) consists of a set P of places, a set T
of transitions disjoint from P, and a set of arcs F ⊆ (P × T ) ∪ (T × P). A marking
m of N assigns each place p ∈ P a natural number m(p) of tokens. A net system
N = (P,T, F,m0) is a Petri net (P,T, F) with an initial marking m0.

a

x

c

z u v

b

y

w

d e

f

g h

Fig. 5. A net system N.

We write •y := {x | (x, y) ∈ F} and y• := {x | (y, x) ∈
F} for the pre- and the post-set of y, respectively.
Fig. 5 shows a slightly involved net system N with
the initial marking [a, b]. N will serve as our running
example as its structural properties are typical for re-
sults of a mining algorithm.

The semantics of a net system N are typically
given by a set of sequential runs. A transition t of
N is enabled at a marking m of N iff m(p) ≥ 1, for
all p ∈ •t. If t is enabled at m, then t may occur
in the step m

t
−→ mt of N that reaches the successor

marking mt with mt(p) = m(p) − 1 if p ∈ •t \ t•,
mt(p) = m(p) + 1 if p ∈ t• \ •t, and mt(p) = m(p) oth-
erwise, for each place p of N. A sequential run of N is a sequence m0

t1
−→ m1

t2
−→ m2 . . .

of steps mi
ti+1
−−→ mi+1, i = 0, 1, 2, . . . of N beginning in the initial marking m0 of N. The

2 ProM, including the new plug-in ’Uma’, can be downloaded from www.processmining.org
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sequence t1t2 . . . is an occurrence sequence of N. For example, in the net N of Fig. 5
transitions x and y are enabled at the initial marking [a, b]; the occurrence of x results
in marking [c, d, b] where z, u, and y are enabled; xzyuwyz is a possible occurrence
sequence of N.

2.2 Partially Ordered Runs and Branching Processes

In the following, we study the behavior of N in terms of its partially ordered runs. We
will use so-called branching processes to represent sets of partially ordered runs, e.g.,
an event log will be represented as a branching process. We first illustrate the idea of a
partially ordered run of N by an example and then define the branching processes of N.
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b13

Fig. 6. A partially ordered run π1

of N of Fig. 5.

Partially ordered runs. A partially ordered run π or-
ders occurrences of transitions by a partial order —
in contrast to a sequential run where occurrences are
totally ordered. A partially ordered run π is again rep-
resented as a Petri net. Such a Petri net is labeled and,
since it describes just one run of the process, the pre-
set (postset) of a place contains at most one element.
The net π1 in Fig. 6 describes a partially ordered run
of the net N to the left. A partially ordered run π of a
net system N has the following properties:

– The places and transitions of π are labeled with
the places and transitions of N, respectively.

– A place b of π with label p describes a token on
p, the places of π with an empty pre-set describe
the initial marking of N; b is called condition.

– A transition e of πwith label t describes an occur-
rence of transition t which consumes the tokens
•e from the places •t and produces the tokens e•

on the places t•; e is called event.

For example, event e2 of π1 in Fig. 6 describes an occurrence of y consuming token
b2 from place b and producing token b5 on e and a new token b6 on b. The events
of π1 are partially ordered: e5 depends on e2 whereas neither e1 depends on e2 nor e2
on e1. That is, e1 and e2 occur concurrently. The partially ordered run π1 describes
the occurrence sequence xzyuwyz — and several other sequences that order concurrent
events differently such as yyxuzwz.

Branching processes. The partial order behavior of a net system N is the set of its
partially ordered runs. A branching process represents a set of distributed runs in a
single structure; we will use it to calculate on the behavior of N.

A branching process β of N resembles an execution tree: each path of an execution
tree denotes a run, all runs start in the same initial state, and whenever two runs diverge
they never meet again. In β a “path” denotes a distributed run of N and we can read β
as a special union of distributed runs of N: all runs start in the same initial marking,
and whenever two runs diverge (by alternative events), they never meet again (each
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condition of β has at most one predecessor). Fig. 7 depicts an example of a branching
process representing two distributed runs π1 and π2. π1 is shown in Fig. 6, π2 consists of
the white nodes of Fig. 7. Both runs share b1-b11 and e1-e5, and diverge at the alternative
events e6 and e8 which compete b9 (i.e., a token in h) and also for b8 and b5.

A branching process of N is formally a labeled Petri net β = (B, E,G, λ); each b ∈ B
(e ∈ E) is called condition (event), λ assigns each node x ∈ B ∪ E a label.
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Fig. 7. A branching process β the
Petri net N of Fig. 5.

Here, we give the constructive definition of the
branching processes of N [12]. To begin with, we
need some preliminary notions. Two nodes x1, x2 of
β are in causal relation, written x1 ≤ x2, iff there is
path from x1 to x2 along the arcs G of β. x1 and x2 are
in conflict, written x1 # x2, iff there exists a condition
b ∈ B with distinct post-events e1, e2 ∈ b•, e1 , e2
and e1 ≤ x1 and e2 ≤ x2. x1 and x2 are concurrent,
written x1 || x2 iff neither x1 ≤ x2, nor x2 ≤ x1, nor
x1 # x2. For example in Fig. 7 e2 and e9 are in causal
relation (e2 ≤ e9), e7 and e9 are in conflict (e7 # e9),
and e3 and e9 are concurrent (e3 || e9).

The branching processes of a Petri net N =

(P,T, F,m0) are defined inductively:
Base. Let B0 :=

⋃
p∈P{b1

p, . . . , b
k
p | m0(p) = k, λ(bi

p) =

p} be a set of conditions representing the initial mark-
ing of N. Then β := (B0, ∅, ∅, λ) is a branching pro-
cess of N.
Assumption. Let β = (B, E,G, λ) be a branching pro-
cess of N. Let t ∈ T with •t = {p1, . . . , pk}. Let
{b1, . . . , bk} ⊆ B be pair-wise concurrent conditions
(i.e., bi || b j, for all 1 ≤ i < j ≤ k) with λ(bi) = pi,
for i = 1, . . . , k. The conditions b1, . . . , bk together
represent tokens in the pre-set of t.
Step. If there is no post-event e of b1, . . . , bk that rep-
resents an occurrence of t, then a new occurrence of t can be added to β. Formally, if
there is no post-event e ∈

⋂k
i=1 bi

• with λ(e) = t, then t is enabled at {b1, . . . , bk}. Then
the Petri net β′ = (B ∪C, E ∪ {e},G′, λ′) is obtained from β by adding

– a fresh event e (not in β) with label λ′(e) = t with •e = {b1, . . . , bk}, and
– a fresh post-condition for each of the output places of t, i.e., for t• = {q1, . . . , qm},

the set of conditions C = {c1, . . . , cm} is added to β′ such that λ′(ci) = qi, •ci = {e}
for i = 1, . . . ,m;

β′ is a branching process of N. For example, assume the branching process β of Fig. 7
without e10, b17, e11, b18 to be given. The conditions {b7, b14, b16, b10} are pair-wise con-
current and represent tokens in •w of N of Fig. 6. Appending e10 (labeled w) and b17
(labeled c) represents an occurrence of w; event e11 of z is added in the same way.

The arcs of a branching process β of N form a partial order, and any two nodes x1
and x2 are either in causal relation, in conflict, or concurrent [12]. Moreover, every Petri
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net N has a unique, possibly infinite, maximal branching process β(N) which contains
every other branching process of N as a prefix [13].

3 Operations to Simplify Process Models

Returning to our problem setting, we consider now the behavior of a Petri net N =M(L)
that was discovered from a log L by a mining algorithmM. Usually, each action in Σ(L)
becomes a transition of N. For the results of this paper, we assume that each case of L
is an occurrence sequence of N i.e., each case of L can be replayed on N. For instance,
the class of ILP-based mining algorithms returns nets of this kind [9].

As explained in Sect. 1, the net N can be structurally complex because of howM
generalizes the behavioral information in L. In this section, we contribute a technique
to balance the generalization done byM and simplify the structure of N.

The starting point to balance generalization is an overfitting net N(L), which is de-
rived from N and replays exactly each case of L (and all cases obtainable by reordering
concurrent tasks of L.) We define several operations that generalize the behavior of N(L)
and simplify its structure. The structural complexity of N is its simple graph complexity
c(N) =

|F|
|P|+|T | which correlates with the perceived complexity of the net, e.g., the com-

plexities in Fig. 1 are 4.01 (left) and 1.46 (right). Each operation transforms a net N′

into a net N′′ guaranteeing that (1) N′ exhibits at least each case of N′′ (generalization),
and (2) c(N′′) ≤ c(N′) (simplification).

3.1 Starting Point: an Overfitting Model

The maximal branching process β(N) of N introduced in Sect. 2.2 describes all behavior
of N, not only the cases recorded in L. This additional behavior was introduced by the
mining algorithm M which discovered N from L. To re-adjust the generalization, we
restrict the behavior β(N) to L and derive an overfitting process model N(L) that exhibits
exactly this behavior.

The restriction of β(N) to the cases L is the branching process β(L) that we obtain
by restricting the inductive definition of the branching processes of N to the cases in L.
Beginning with β = (B0, ∅, ∅, λ0), iterate the following steps for each case l = t1t2 . . . tn ∈
L. Initially, let M := B0, i := 1.

1. Let {p1, . . . , pk} = •ti.
2. If there exists {b1, . . . , bk} ⊆ M with λ(b j) = p j, j = 1, . . . , k and e ∈

⋂k
j=1 b j

• with
λ(e) = ti, then M := (M \ •e) ∪ e•.
[The occurrence e of ti is already represented at {b1, . . . , bk}; compute the successor
marking of M by consuming the tokens •e from the pre-places •ti and producing the
tokens e• on ti•.]

3. Otherwise, choose {b1, . . . , bk} ⊆ M with λ(b j) = p j, j = 1, . . . , k, and append a
new event e, λ(e) = ti to all b j, j = 1, . . . , k, and append a new condition c to e (with
λ(c) = q) for each q ∈ t•. M := (M \ •e) ∪ e•.
[Add a new occurrence e of ti at {b1, . . . , bk} and compute the successor marking.]

4. i := i + 1, and return to step 1 if i ≤ n.
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This procedure is sound as N replays each l ∈ L. By construction, β(L) is a smallest
prefix of β(N) that represents each l ∈ L. Step 3 is non-deterministic when marking M
puts more than one token on a place. The results in this paper were obtained by treating
M as a queue: the token that is produced first is also consumed first.

For example, the branching process of Fig. 7 is the branching process β = β(L) of
net N of Fig. 5 for the log L = {xzuywz, xzuyvuywz, xzyuwz, xyzuvuywz, xuzywz,
xuzyywz, yyxuvuzwz, . . .}.

β(L) already defines a Petri net that exhibits β(L) not only succinctly represents
L, but also all cases that differ from L by reordering concurrent actions. The min-
ing algorithm that returned N determines whether two actions are concurrent. Fur-
ther, β(L) already defines a Petri net that exhibits exactly the log L. By putting a to-
ken on each minimal condition b of β(L) with •b = ∅, we obtain a labeled Petri net
N(L) = (B, E,G, λ,m0) that exhibits β(L), i.e., N(L) restricts the behavior of N to L.

3.2 Generalizing and Simplifying an Overfitting Model

The algorithm of the preceding section yields for a Petri net N discovered from a log L,
an overfitting net N(L) that exhibits exactly the branching process β(L), i.e., the cases
L. In the following, we present our main contribution: a number of operations that gen-
eralize N(L) (introduce more behavior) and simplify the structure compared to N. Each
operation addresses generalization and simplification in a different way and is indepen-
dent of the other operations. So, a user may balance between the overfitting model N(L)
and the complex model N by choosing from the available generalization and simplifi-
cation operations. We provide three kinds of operations which are executed by default
in the given order.
(1) N(L) describes the cases L in an explicit form, i.e., only observed behavior is cap-
tured. We fold N(L) to a more compact Petri net by identifying loops, and by merging
similar behavior after an alternative choice. This partly generalizes behavior of N(L);
the folded net is as most as complex as N.
(2) Then we structurally simplify the folded net by removing implicit places. An im-
plicit place does not constrain whether a transition is enabled and hence can be re-
moved [14]. Repeatedly removing implicit places can significantly simplify the net.
(3) Finally, the net may have specific structures such as chains of actions of the same
kind or places with a large number of incoming and outgoing arcs. We provide tech-
niques to replace such structures by simpler structures. This allows us to generalize the
behavior of N(L) in a controlled way.

3.3 Folding an Overfitting Model

Our first step in creating a simplified process model is to fold the overfitting net N(L)
to a Petri net N f (L). N f (L) exhibits more behavior than N(L) (generalization) and has a
simpler structure than the original net N.

Technically, we fold the underlying branching process β(L) = (B, E,G, λ) of N(L)
by an equivalence relation ∼ on B ∪ E that preserves labels of nodes, and the local
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Fig. 8. The branching process β2 (left) can be folded to different nets N2 (middle) and N′2 (right)
using different folding equivalences.

environments of events. We write 〈x〉∼ := {x′ | x ∼ x′} for the equivalence class of node
x. 〈X〉∼ = {〈x〉∼ | x ∈ X} is a set of equivalence classes.

Definition 2 (Folding equivalence). Let β be a branching process of N. An equivalence
relation ∼ on the nodes of β is a folding equivalence iff

1. x1 ∼ x2 implies λ(x1) = λ(x2), for all nodes x1, x2 of β, and
2. e1 ∼ e2 implies 〈•e1〉∼ = 〈•e2〉∼ and 〈e1

•〉∼ = 〈e2
•〉∼, for all events e1, e2 of β.

Trivial folding equivalences are (1) the identity, and (2) the equivalence induced by the
labeling λ: x1 ∼ x2 iff λ(x1) = λ(x2). Sect. 3.4 will present a folding equivalence tailored
towards process mining. Every folding equivalence of a branching process β induces a
folded Petri net which is in principle the quotient of β under ∼.

Definition 3 (Folded Petri net). Let β be a branching process of N, let ∼ be a folding
equivalence of β. The folded Petri net (w.r.t. ∼) is β∼ := (P∼,T∼, F∼,m∼) where P∼ :=
{〈b〉∼ | b ∈ Bβ}, T∼ := {〈e〉∼ | e ∈ Eβ}, F∼ := {(〈x〉∼, 〈y〉∼) | (x, y) ∈ Fβ}, and m∼(〈b〉∼) :=
|{b′ ∈ 〈b〉∼ | •b′ = ∅}|, for all b ∈ Bβ.

For example, on β2 of Fig. 8 we can define a folding equivalence b6 ∼ b1, b4 ∼ b5,
e4 ∼ e5, , b7 ∼ b8 (and each node equivalent to itself). The corresponding folded net β2

∼

is N2 of Fig. 8. The coarser folding equivalence defined by the labeling λ, i.e., x ∼ y
iff λ(x) = λ(y), yields the net N′2 of Fig. 8 (right). This example indicates that choosing
a finer equivalence than the labeling equivalence yields a more explicit process model.
Regardless of its explicitness, each folded net exhibits the original behavior β(L).

Lemma 1. Let N be a Petri net. Let β be a branching process of N with a folding
equivalence ∼. Let N2 := β∼ be the folded Petri net of β w.r.t. ∼. Then the maximal
branching process β(N2) contains β as a prefix.

Proof (Sketch). By Def. 2, all nodes of N2 carry the same label, and the pre-set (post-
set) of each transition t of N2 is isomorphic to the pre-set (post-set) of each event of
β defining t. Thus, β(N2) is built from the same events as β. By induction follows that
N2 can mimic the construction of β: for each event e with post-set that is added when
constructing β, the transition t = 〈e〉∼ of N2 leads to an isomorphic event e2 that is added
when constructing β(N2). Thus, we can reconstruct β (up to isomorphism) in β(N2). N2
may allow to add more events to β(N2) than represented in β. These additional events
are always appended to β, so β is a prefix of β(N2).
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Fig. 9. Folding the branching process β of Fig. 7 by future(β) yields the Petri net N f (β) (left). Re-
moving places of the implicit conditions b8 and b14 yield the Petri net Ni(β) (middle). Abstracting
the chain of y transitions yields the net Nc(β) (right).

3.4 The Future Equivalence

The following procedure future(β) constructs a folding equivalence (Def. 2) that specifi-
cally suits the simplification of discovered process models. The principle idea is to make
all conditions that represent a token on a final place of the process model N (i.e., with
an empty post-set) equivalent, and then to extend the equivalence as much as possible.
To this end, we assume β to be finite which is the case for β(L) introduced in Sect. 2.

1. Begin with the identity x1 ∼ x2 iff x1 = x2, for all nodes x1, x2 of β.
2. While ∼ changes:

for any two conditions b1, b2 of βwith λ(b1) = λ(b2) and b1
• = b2

• = ∅, set b1 ∼ b2.
3. While ∼ changes:

for any two events e1, e2 of β with λ(e1) = λ(e2) and e1
• = {y1, . . . , yk}, e2

• =

{z1, . . . , zk} with yi ∼ zi, for i = 1, . . . , k, set e1 ∼ e2, and set u ∼ v, for any two
pre-conditions u ∈ •e1, v ∈ •e2 with the same label λ(u) = λ(v).

4. Return future(β) := ∼.

Folding β along ∼ = future(β) merges the maximal conditions of β, i.e., rebuilds the
final places of the process model of N, and then winds up β backwards as much as
possible. This way, we also identify loops in the process model as illustrated in Fig. 9.

Taking β of Fig. 7 as input, the algorithm sets b13 ∼ b18 in step 2, b11 remains
singleton. In the third step, first e7 ∼ e11 and b12 ∼ b17 are set because of b13 ∼ b18;
then e6 ∼ e10 and b7 ∼ b7, b8 ∼ b14, b9 ∼ b16, b5 ∼ b10. The equivalence b9 ∼ b16
introduces a loop in the folded model. Step 3 continues with e4 ∼ e9 and b4 ∼ b15, so
that e8 (v) has now b4 (d) in the post-set. Folding β by this equivalence yields the net
N f (β) of Fig. 9. It differs from N of Fig. 5 primarily in representing action z twice in
different contexts. This example illustrates the main effect of future(β): to make process
flow w.r.t. termination more explicit.

Complexitywise, future(β) has at most |E| steps where events are merged; merging
e1 with another event requires to check at most |E| events e2; whether e1 and e2 are
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Fig. 10. The unsafe net N3 (left) has among others the non-deterministic branching process β3

(middle); a deterministic future equivalence merges transitions and results in a deterministic net
Nd(β3) = β3

det(future(β3))
(right).

merged depends on the equivalence classes of their post-sets. Hence, future(β) runs in
O(|E|2 · k) where k is the size of the largest post-set of an event.

The folded model β∼ exhibits the behavior β and possibly additional behavior. Some
of this additional behavior may be problematic: if the original model N reaches an
unsafe marking (i.e., a place has more than two tokens), the folded model N f (β) = β∼
may reach a corresponding marking which enables two transitions t1 , t2 with the same
label a ∈ Σ(L). However, when replaying l ∈ L one can select the wrong transition,
potentially resulting in a deadlock. Fig. 10 illustrates the situation.

The net N3 of Fig. 10 and the log L3 = {xuzyw, xyvuw, xyuzw} yield the branching
process β3 = β(N3) shown in the middle. The future equivalence future(β3) would only
join b9 ∼ b6 ∼ b10. When replaying the third case xyuzw in β3, we have to choose
whether e7 or e2 shall occur; the choice determines whether the net can complete the
case with z or ends in a deadlock.

We can solve the problem by determinizing the equivalence ∼ using the following
procedure det(∼):
while ∼ changes do, for any two events e1, e2 of β, e1 6∼ e2 with λ(e1) = λ(e2), if there
exist conditions b1 ∼ b2 with b1 ∈

•e1, b2 ∈
•e2, then

(1) set e1 ∼ e2,
(2) set c1 ∼ c2, for all c1 ∈

•e1, c2 ∈
•e2 with λ(c1) = λ(c2),

(3) set c1 ∼ c2, for all c1 ∈ e1
•, c2 ∈ e2

• with λ(c1) = λ(c2).
The resulting equivalence relation det(future(β)) is a folding equivalence that is

coarser than the trivial equivalence defined by the identity on β and finer than the equiv-
alence defined by the labeling of β. For example, determinizing future(β3) of Fig. 10 sets
additionally b7 ∼ b3, e7 ∼ e2, b11 ∼ b5. Note that we can merge the two u labeled events
because b2 ∼ b2, b2 ∈

•e7, and b2 ∈
•e2 The resulting folded net Nd(β3) = β3

det(future(β3))

of Fig. 10 (right) is indeed deterministic and can replay the entire log L3.
The folded net βdet(future(β)) exhibits β (by Lem. 1) and possibly more behavior be-

cause the folding inferred loops from β and merged nondeterministic transitions, which
defers unobservable choices. For our running example (β in Fig. 7), N f (β) is already
deterministic (cf. Fig. 9), i.e., Nd(β) = N f (β).
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The preceding operations of unfolding a mined net N to its log-induced branching
process β(L) and refolding β(L) to Nd(L) := β(L)det(future(β(L))) yields a net that can re-
play all cases in L (by Lem. 1). The structure of Nd(L) is at most as complex as the
structure of the original net N — when β(L) completely folds back to N. We observed
in experiments that this operation reduces the complexity of N by up to 30%.

3.5 Removing Implicit Places

A standard technique for structurally simplifying a Petri net N while preserving its
behavior is to remove places that do not restrict the enabling of a transition. Such places
are called implicit.

Definition 4 (Implicit place). Let N be a Petri net. A pre-place p of a transition t of N
is implicit iff whenever N reaches a marking m with tokens on each pre-place •t \ {p},
then also p has a token.

In other words, whether t is enabled only depends on •t\{p}. Removing an implicit place
p from N preserves the behavior of N up to tokens on p [14]. In the running example
of Fig. 5, place f is implicit. This yields our second simplification operation: remove
all implicit places from the folded net Nd(β). Finding implicit places is a well-known
problem and several techniques are applicable, e.g., [14].

Although being a standard technique, we learned from experiments that removing
implicit places yields significant structural reduction on mined process models. In some
cases, the structure simplified by up to 72%; up to 95% of the places were implicit.

3.6 Controlled Generalization of Process Models

The previously presented two operators, unfolding/refolding and removing implicit
places, generalized and simplified N along the structure of N as it was defined by the
mining algorithm M that returned N. Next, we present two operators to generalize N
by changing N’s structure.
Abstracting chains of unrestricted transitions. Mined Petri nets often contain several
unrestricted transitions which are always enabled such as transition y in Fig. 5. The
branching process then contains a chain of occurrences of these transitions that often
cannot be folded to a more implicit structure as illustrated by e2 and e5 of Fig. 9.

Yet, we can abstract such a chain t1 . . . tn of unrestricted transitions with the same
label a to a loop of length 1: (1) replace t1 . . . tn with a new transition t∗ labeled a,
(2) add a new place p∗ in the pre- and post-set of t∗, and (3) for each place p which
had a ti in its pre-set and no other transition t j , ti in its post-set, add an arc (t∗, p).
Fig. 9 illustrates the abstraction: abstracting the chain of y-labeled transition of Ni(β)
(middle) yields the net Nc(β) (right); we observed significant effects of this abstraction
in industrial case studies.

The new transition t∗ can mimic the chain t1 . . . tn: t∗ is always enabled and an oc-
currence of t∗ has the combined effect of all t1, . . . , tn. For this reason, a chain-abstracted
net exhibits at least the behavior of the original net and possibly more. For longer chains
this results in a significant reduction in size and complexity.
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Splitting flower places. The last operation in this paper deals with a specific kind of
places that are introduced by some mining algorithms and cannot be abstracted with the
previous techniques.
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Fig. 11. The flower place f in the net on the left
sequentializes occurrences of w and z. Splitting
f and removing self-loops yields the structurally
simpler net on the left with more behavior.

A flower place p is place which has
many transitions that contain p in their
pre- and their post-set. Mostly, p only
sequentializes occurrences of these tran-
sitions as can be seen in Fig. 11 to the
left: z may occur arbitrarily often before
or after w, though only after x and be-
fore y occurred. While f in Fig. 11 cer-
tainly has an important function w.r.t. z,
its effect on w is limited.

Based on this observation we may
(1) remove self-loops of transitions that
are still restricted by another pre-place
such as w, and (2) split the flower place
for a transition t that has no other pre-place, i.e., to create a new place p in the pre-
and post-set of t. The net in Fig. 11 to the right shows the result of this abstraction. The
resulting net exhibits more behavior than the original net. Some of this behavior may
even be wrong. For example, w may occur now before x and after y. Yet, the transfor-
mation may help to significantly reduce the number of synchronizing arcs in the mined
process model.We observed structural simplification of up to 55% in experiments.

3.7 A Parameterized Process Model Simplification Algorithm

All operations presented in the preceding sections together yield the following algo-
rithm for simplifying a mined Petri net N =M(L).

1. Construct the branching process β(L) of N that represents all cases l ∈ L; construct
the folding equivalence ∼ = det(future(β(L))); fold Nd := β(L)∼.

2. Remove implicit places from Nd.
3. Abstract chains of unrestricted actions from Nd.
4. Split flower-places of Nd.

The technique is modular. By design, the result of each transformation step is a net that
is structurally simpler than the preceding net and can replay the entire log L, i.e., the
resulting model N′ recalls each case of L. Moreover, starting from β(L) which is an
overfitting model of L, each step also generalizes β(L) towards an underfitting model
of L. The degree to which N′ allows more behavior than L is measured by a precision
metric [15, 16]. Each of the four steps can be applied selectively. This way it is possible
to balance between precision, generalization, and complexity reduction.

4 Experimental Results

We implemented our approach as a plugin for the process mining toolkit ProM. The
user picks as input a log and a Petri net that was mined from this log, the plugin then
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Table 1. Experimental results.

original simplified difference runtime
|P|/ |T |/ |F|/ c |P|/ |T |/ |F|/ c |P|/ |F|/ c in sec

a22n0 21/ 22/ 61/ 1.41 21/ 22/ 55/ 1.27 0%/ -10%/ 1.11 1
a22n5 38/ 22/ 204/ 3.40 22/ 25/ 81/ 1.72 -42%/ -60%/ 1.98 4.1
a22n10 52/ 22/ 429/ 5.79 16/ 22/ 79/ 2.07 -69%/ -82%/ 2.80 89.2
a22n20 74/ 22/ 569/ 5.92 12/ 22/ 53/ 1.55 -84%/ -91%/ 3.82 389.5
a22n50 91/ 22/ 684/ 6.05 12/ 22/ 43/ 1.26 -87%/ -94%/ 4.80 639.7

a32n0 32/ 32/ 76/ 1.18 33/ 32/ 75/ 1.15 3%/ -1%/ 1.03 0.423
a32n5 44 32/ 228/ 3.00 33/ 32/ 96/ 1.47 -25%/ -58%/ 2.04 7.9
a32n10 68/ 32/ 543/ 5.43 20/ 32/ 89/ 1.71 -71%/ -84%/ 3.18 362.0
a32n20 90/ 32/ 613/ 5.02 25/ 32/ 87/ 1.52 -72%/ -86%/ 3.30 361.1
a32n50 110/ 32/ 868/ 6.11 20/ 32/ 84/ 1.61 -82%/ -90%/ 3.80 584.2

HC1 41/ 15/ 225/ 4.01 11/ 15/ 38/ 1.46 -73%/ -83%/ 2.75 0.119
HC2 20/ 14/ 140/ 4.11 12/ 16/ 39/ 1.39 -40%/ -72%/ 2.96 0.008
HC3 23/ 14/ 123/ 3.32 10/ 15/ 38/ 1.52 -57%/ -69%/ 2.18 0.004
HC4 43/ 17/ 224/ 3.73 11/ 17/ 45/ 1.60 -74%/ -80%/ 2.33 0.030
HC5 89/ 26/ 959/ 8.33 10/ 26/ 51/ 1.41 -89%/ -95%/ 5.91 0.298
M1 58/ 55/ 359/ 3.17 67/ 88/ 205/ 1.32 16%/ -43%/ 2.40 0.299
M2 31/ 23/ 256/ 4.74 16/ 23/ 55/ 1.41 -48%/ -79%/ 3.36 0.116

shows a panel, where the user can configure the simplification of the net by disabling
any of the steps as discussed in Sect. 3.7. By default, all steps are enabled and fully
automatic requiring no Petri net knowledge from the user for model simplification.〈TODO: reviewer

1:The nature of the
sample instances
should be described.
Where exactly do they
come from? How have
they been chosen?
Are they well-known
in literature? Are
there previous results
on these instances
in literature? If they
are benchmarks, who
else has used them
and what were the
results?〉

Using this plugin, we validated our approach in a series of experiments on bench-
mark logs, and logs obtained in industrial case studies. For each experiment, we gener-
ated from a given log L a Petri net N with the ILP Miner [9] using its default settings;
the log was not pre-processed beforehand. We then applied the simplification algorithm
of Sect. 3.7 on N using the original log L. Figs. 1 and 2 illustrate the effect of our algo-
rithm on industrial processes: the algorithm balances the control-flow logic of a mined
process model by removing up to 89% of the places, and up to 95% of the arcs.

〈TODO: Reviewer 1:
Since there have been
other approaches to
this problem, it would
be interesting to show
how this approach per-
forms in comparison.
(re-run with ts-miner)〉

Table 1 gives some more details. The logs named aXnY are benchmark logs having
X different activities; the aXn0 are logs of highly structured processes. Y is the per-
centage of random noise events introduced into the log aXn0. The remaining logs were
obtained in case studies in the health care domain (HC) and from municipal adminis-
trations (M). We compared the nets in terms of the numbers |P|, |T |, and |F| of places,
transition and arcs, and their simple graph complexity c =

|F|
|P|+|T | which roughly corre-

lates with the perceived complexity of the net. The effect of the algorithm is measured as
the percentage of places |P| and arcs |F| removed from (or added to) the original net, and
the factor by which the graph complexity simplified, i.e., cdifference = coriginal/csimplified.

〈TODO: Reviewer 1:
I do not understand
how the authors make
sure the resulting net
is not an underfitting
model.〉
〈TODO: Reviewer 2:
While the paper de-
scribes a measure for
identifying the simpler
model, the more gen-
eral model is not clear.
〉

〈TODO: Reviewer 4:
but would have liked
a comparison between
original and produced
model in terms of
traces〉

The numbers show that almost all models could be reduced significantly in terms of
places and arcs (up to 87% and 94%). We observed that some models (a22n0, a32n0,
M1) grew slightly in size, i.e., more places and transitions were introduced. We found
unrolled loops of length greater than 2 that occur only once in the branching process
to be responsible for the growth in size. Our algorithm cannot fold back these singular
loops; though the algorithm could be extended to handle such patterns (see Sect. 3.6).
Yet, even in case of larger nets, our technique reduced each Petri net’s graph complexity
c by a factor between 1.07 and 5.91 resulting in graph complexities of 1.26 to 2.07. A
modeler is able to inspect models of this complexity and gain an understanding of the
modeled process as illustrated by Figs. 1 and 2 which show the models of HC1 and M2.
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We observed that splitting flower places is responsible for about 10% of the removed
arcs in logs with a noise level of 10% or more. Chain reduction removed between 12%
and 51% of the transitions in logs with 5% noise and in M1. Runtimes correlate with the
size of the branching processes constructed by the algorithm, we observed branching
processes of up to 192,000 nodes and 360,000 arcs in the benchmarks and 4,800 and
9,800 arcs in the case studies. Altogether, the case study processes demonstrate the
feasibility of the technique in practice in terms of simplification and runtime.

5 Related work

In the last decade, process mining emerged as a new research disciple combining tech-
niques from data mining, process modeling, and process analysis. Process discovery,
i.e., constructing a process model based on sample behavior, is the most challenging
process mining task [1] and many algorithms have been proposed. Examples are the α
algorithm [1], heuristic mining [3], genetic mining [5], fuzzy mining [4], etc. Of partic-
ular interest for this paper are the process discovery algorithms that guarantee a model
with fitness 1 [8, 7, 6, 9], e.g. several process mining techniques based on language-
based regions have been proposed [8, 9]. See [2] for a recent survey.

The approach of [10] allows to balance between overfitting and underfitting of
mined process models, controlled by the user. However, this approach requires expert
knowledge to find the right balance. Our approach is easier to configure, and yields
significant simplification in the fully automatic setting. Moreover, our approach even
simplifies models produced by [10] as shown in Fig. 3.

Conformance checking techniques [16, 15], like the post-processing approach pre-
sented in this paper, use a log and a model as input. In [15] the log is replayed on the
Petri net to see where the model and reality diverge. In [16] the behavior of the model
restricted to the log is computed. The border between the log’s and model’s behavior
highlights the points where the model deviates from the log.

The goal of this paper is to simplify and structure discovered process models. This is
related to techniques transforming unstructured processes models in structured models
[17, 18]. However, these techniques do not consider the real observed behavior.

The problem coped with in this paper resembles the problem of restricting a system
(here N) to admissible behaviors (here L) by means of a controller, e.g., [19]. However,
these approaches require N to have a finite state space, which usually does not hold for
mined process models. Additionally, our aim is also to structurally simplify N, not only
to restrict it to L.

6 Conclusion
〈TODO: Reviewer
1: The authors claim
to show feasability. I
wonder what exactly
feasability is in this
context. What does
this mean in practice?〉
〈TODO: Reviewer 3:
A question arise here:
is it possible to de-
velop a mining ap-
proach (and not only a
post-processing step)
based on the same
idea.〉

The approach presented in this paper can be combined with any process discovery tech-
nique that produces a Petri net that can reproduce the event log. Extensive experimen-
tation using real-life event logs show that our post-processing approach is able to dra-
matically simplify the resulting models. Moreover, the approach allows users to balance
between overfitting and underfitting. Unnecessary generalization is avoided and the user
can guide the simplification/generalization process.
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