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Abstract. Today’s information systems record real-time information
about business processes. This enables the monitoring of business con-
straints at runtime. In this paper, we present a novel runtime verifica-
tion framework based on linear temporal logic and colored automata.
The framework continuously verifies compliance with respect to a pre-
defined constraint model. Our approach is able to provide meaningful
diagnostics even after a constraint is violated. This is important as in
reality people and organizations will deviate and in many situations it is
not desirable or even impossible to circumvent constraint violations. As
demonstrated in this paper, there are several approaches to recover after
the first constraint violation. Traditional approaches that simply check
constraints are unable to recover after the first violation and still foresee
(inevitable) future violations. The framework has been implemented in
the process mining tool ProM.
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1 Introduction

Entities within an organization are supposed to operate within boundaries set
by internal policies, norms, best practices, regulations, and laws. For example,
requests of a particular type need to be followed by a decision. Also in a cross-
organizational setting, people and organizations need respect certain rules, e.g.,
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a bill should be paid within 28 days. We use the generic term business con-
straint to refer a requirement imposed on the execution of an intra- or inter-
organizational process [11, 9]. Business constraints separate compliant behavior
from non-compliant behavior.

Compliance has become an important topic in many organizations. Never-
theless, it is still difficult to operationalize compliance notions. Several authors
developed techniques to ensure compliance by designing process models that
enforce a set of business constraints [1, 7]. Given a process model and a set of
constraints, e.g., expressed in some temporal logic, one can use model checking
[4] to see whether the model satisfies the constraints .

However, static verification techniques are not sufficient to tackle compliance
problems in a comprehensive way. First of all, some aspects cannot be verified a
priori as compliance may depend on the particular context and its participants.
Second, it cannot be assumed that the behavior of all actors is known or can
be controlled. Most processes involve autonomous actors, e.g. a specialist in a
hospital may deviate to save lives and another organization may not be very
responsive because of different objectives. Third, process designs are typically
the outcome of a collaborative process where only some constraints are taken into
account (to reduce complexity and increase flexibility). Due to the procedural
nature of most process modeling languages [11], incorporating all constraints
is unreasonable (especially in environments with a lot of variability): the model
would become unreadable and difficult to maintain. Last but not least, violations
do not always correspond to undesirable behavior. Often people deviate for good
reasons. In unpredictable and dynamic settings, breaking the rules is sometimes
justified by the inadequacy or incompleteness of rules.

All these issues call for runtime verification facilities, able to monitor the
running cases of a process and to assess whether they comply with the business
constraints of interest. Such facilities should provide meaningful information
to the stakeholders involved. In this paper, we present a novel framework for
compliance evaluation at runtime. The framework offers the following:

1. intuitive diagnostics, to give fine-grained feedback to the end users (which
constraints are violated and why);

2. continuous support, to provide verification capabilities even after a violation
has taken place;

3. recovery capabilities, to realize different strategies for continuous support and
accommodate sophisticated recovery mechanisms.

Our proposed approach is based on colored automata, i.e., automata whose
states are associated to multiple relevant information (“colors”). Moreover, we
adopt Declare [10] as a constraint language. Declare constraints have an intuitive
graphical notation and LTL-based semantics. LTL (Linear Temporal Logic) is
an established formalism for describing behavioral constraints.

Concerning the feedback returned to the monitored system, our approach
does not only communicate if a running case is currently complying with the
constraint model, but also computes the state of each constraint. In this paper,
three possible states are considered for constraints: satisfied, possibly violated and
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permanently violated. The first state attests that the monitored case is currently
compliant with the constraint. The second state indicates that the constraint
is currently violated, but it is possible to bring it back to a satisfied state by
executing a sequence of event. The last state models the situation where it has
become impossible to satisfy the constraint. At runtime, two possible violations
may occur: (a) a forbidden event is executed, or (b) a state is reached such that
two or more constraints become conflicting. The presence of a conflict means
that there is no possible future state such that all the involved constraints are
satisfied. Furthermore, when the case is terminated all the possibly violated con-
straints become permanently violated, because no further event will be executed
to satisfy them.

The approach has been implemented using ProM and Declare. Declare [10] is
a flexible workflow system based on the Declare language. ProM3 is a pluggable
framework for process mining providing a wide variety of analysis techniques
(discovery, conformance, verification, performance analysis, etc.). In the context
of ProM, we have developed a generic Operational Support (OS) environment
[13, 16] that allows ProM to interact with systems like Declare at run-time. Our
monitoring framework has been implemented as an OS provider.

The remainder of this paper is organized as follows. Section 2 presents some
preliminaries: Declare as a specification language, RV-LTL as finite trace LTL se-
mantics, and a translation of LTL into automata to build the monitors. Section 3
explains how colored automata can be used to check compliance at runtime and
provide meaningful diagnostics. Section 4 presents three strategies for dealing
with violations. Section 5 shows that the Declare model can also be modified at
runtime, e.g., frequent violations may trigger an update of the model. Related
work is discussed in Section 6. Section 7 concludes the paper.

2 Background

In this section, we introduce some background material illustrating the basic
components of our framework. Using a running example, we introduce Declare
(Sec. 2.1). In Section 2.2, we present RV-LTL; an LTL semantics for finite traces.
In Section 2.3, we introduce an approach to translate a Declare constraint model
to a set of automata for runtime verification.

2.1 Running Example Using Declare

Declare is both a language and system based on constraints [10]. The language is
grounded in LTL, but is equipped with a graphical and intuitive language. The
Declare system is a full-fledged workflow system offering much more flexibility
than traditional workflow systems.

Figure 1 shows a fictive Declare model that we will use as a running ex-
ample throughout this paper. This example models two different strategies of

3 ProM and the runtime verification facilities described in this paper can be down-
loaded from www.processmining.org.
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Fig. 1. Reference Model

investment: bonds and stocks. When an investor receives an amount of money,
she becomes in charge of eventually investing it in bonds or in stocks and she
cannot receive money anymore before the investment (alternate response). If the
investor chooses for a low risk investment, she must buy bonds afterwards (re-
sponse). Moreover, the investor can receive a high yield only if she has bought
stocks before (precedence). Finally, the investor cannot receive a high yield and
buy bonds in the same trace (not coexistence). The figure shows four constraints.
Each constraint is automatically translated into LTL. For example, the response
constraint can be modeled as �(X =⇒ ♦Y ) where X is Low Risk and Y is
Bonds.

Unlike procedural languages, a Declare model allows for everything that is
not explicitly forbidden. Removing constraints yields more behavior. The not
coexistence constraint in Fig. 1 is difficult or even impossible to model in proce-
dural languages. Mapping this constraint onto a procedural language forces the
modeler to introduce a choice between Bonds and High Y ield (or both). Who
makes this choice? When is this choice made? How many times will this choice
be made? In a procedural language all these questions need to be answered,
resulting in a complex or over-restrictive model.

2.2 LTL Semantics for Runtime Verification

Runtime Verification Linear Temporal Logic (RV-LTL) is a four-valued seman-
tics for LTL [2]. Classically, LTL is defined for infinite traces. For business pro-
cesses this does not make an sense as instances are supposed to end. Therefore,
several authors defined alternative semantics. Here, we use the one described in
[2]. The truth value of an LTL formula ϕ given a partial finite trace u using
a variant of the standard semantics for dealing with finite traces is denoted by
u |= ϕ. RV-LTL extends this basic notion into a four-valued logic by taking
possible future continuations of u into account. [u |= ϕ]RV has one of the values
in B4 = {⊥,⊥p,>p,>}. The semantics of [u |= ϕ]RV is defined as follows:

– [u |= ϕ]RV = > if for each possible continuation σ of u: uσ |= ϕ (in this case
ϕ is permanently satisfied by u);

– [u |= ϕ]RV = ⊥ if for each possible continuation σ of u: uσ 6|= ϕ (in this case
ϕ is permanently violated by u);

– [u |= ϕ]RV = >p if u |= ϕ but there is a possible continuation σ of u such
that uσ 6|= ϕ (in this case ϕ is possibly satisfied by u);
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– [u |= ϕ]RV = ⊥p if u 6|= ϕ but there is a possible continuation σ of u such
that uσ |= ϕ (in this case ϕ is possibly violated by u).

Differently from the original RV-LTL semantics, which focuses on trace suffixes
of infinite length, we limit ourselves to possible finite continuations, since a busi-
ness process execution must eventually reach an end. To keep the presentation
compact, we do not elaborate on the subtle differences between [2] and our ap-
proach. The difference between >p and > is based on possible continuations: if
[u |= ϕ]RV = > then ϕ will always hold whereas if [u |= ϕ]RV = >p then there
is at least one continuation where ϕ does not hold.

Note that when monitoring a business process using LTL, it rarely happens
that a constraint is definitely permanently satisfied. For the most part, business
constraints are possibly satisfied but can be violated in the future. For this reason,
in this paper, we make no difference between permanently satisfied and possibly
satisfied constraints but we refer to both of them as satisfied. The following
example explains how the above semantics can be used in practice to monitor a
running process case.

Example 1. Let us consider the Declare model represented in Fig. 1. We name
the LTL formulas formalizing its different constraints as follows: ϕr is the re-
sponse constraint, ϕn is the not coexistence constraint, ϕa is the alternate re-
sponse constraint, and ϕp is the precedence constraint. Figure 2 shows a graphical
representation of the constraints’ evolution: events are displayed on the horizon-
tal axis. The vertical axis shows the four constraints.

Initially, all four constraints are satisfied. Let u0 = ε denote the initial
(empty) trace.

[u0 |= ϕr]RV = >p [u0 |= ϕn]RV = >p [u0 |= ϕa]RV = >p [u0 |= ϕp]RV = >p

Event Money is executed next (u1 = Money), we obtain:

[u1 |= ϕr]RV = >p [u1 |= ϕn]RV = >p [u1 |= ϕa]RV = ⊥p [u1 |= ϕp]RV = >p

Note that [u1 |= ϕa]RV = ⊥p because the branching alternate response becomes
possibly violated after the occurrence of Money occurs. The constraint is waiting
for the occurrence of another event (execution of Bonds or Stocks) to become
satisfied again. Then, Bonds is executed (u2 = Money,Bonds), leading to a
situation in which constraint ϕa is satisfied again:

[u2 |= ϕr]RV = >p [u2 |= ϕn]RV = >p [u2 |= ϕa]RV = >p [u2 |= ϕp]RV = >p

The next event is High Yield (u3 = Money,Bonds,High Y ield), resulting in:

[u3 |= ϕr]RV = >p [u3 |= ϕn]RV = ⊥ [u3 |= ϕa]RV = >p [u3 |= ϕp]RV = ⊥

ϕn and ϕp become permanently violated because Bonds and High Yield cannot
coexist in the same trace. Moreover, the precedence constraint requires that
High Yield is always preceded by Stocks and this is not the case for trace u3.
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Fig. 2. One of the views provided by our monitoring system. The colors show the state
of each four constraints while the process instance evolves; red refers to ⊥, yellow refers
to ⊥p, and green refers > or >p.

After reporting the violation, the monitoring system should continue to mon-
itor the process. Suppose that the framework is able to provide continuous sup-
port and uses the strategy to simply ignore the violated constraint. Assume that
Money is executed again, i.e., u4 = Money, Bonds, High Y ield, Money. The
result is that ϕa becomes possibly violated again:

[u4 |= ϕr]RV = >p [u4 |= ϕn]RV = ⊥ [u4 |= ϕa]RV = ⊥p [u4 |= ϕp]RV = ⊥

However, this time the case completes its execution. We suppose that this is
communicated to the runtime verifier by means of a special complete event.
Using uf to denote the resulting total trace, we obtain:

[uf |= ϕr]RV = > [uf |= ϕn]RV = ⊥ [uf |= ϕa]RV = ⊥ [uf |= ϕp]RV = ⊥

Note that all the possibly violated constraints that are pending when the case
completes become permanently violated (because they cannot become satisfied
anymore).

2.3 Translation of a Declare Constraint Model to Automata

To automatically determine the state of each constraint of a Declare model
during runtime, we construct a deterministic finite state automaton (we will
simply refer to such an automaton as “automaton”). The automaton accepts a
trace if and only if it satisfies the modeled constraint. We assume that constraints
are specified in LTL (with a finite trace semantics). We use the translation in
[6] for constructing the automaton.

For the constraints in the model in Fig. 1, we obtain the automata depicted
in Fig. 3. In all cases, state 0 is the initial state and accepting states are in-
dicated using a double outline. A transition is labeled with the initial letter of
the event triggering it (e.g., we use the label L to indicate that the Low Risk
event occurs). For example, the response constraint automaton starts in state
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Fig. 3. Finite automata accepting traces satisfying (a) ϕr, (b) ϕn, (c) ϕa, and (d) ϕp.

0, which is accepting. Seeing an L (Low Risk) we transition to state 1, which
is not accepting. Only upon seeing a B (Bonds) do we transition back to state
0 and accept the remainder of the trace. This models our understanding of the
constraint: when we execute Low Risk we have to subsequently execute Bonds.
As well as transitions labeled with a single letter, we also have transitions labeled
with one or more negated letters (e.g., !L for state 0 of the response constraint
automaton and !H&!B for state 0 of the not coexistence automaton). This in-
dicates that we can follow the transition for any event not mentioned (e.g., we
can execute the event High Y ield from state 0 of the response automaton and
remain in the same state). This allows us to use the same automaton regardless
of the input language.

When we replay a trace on the automaton, we know that if we are in an
accepting state, the constraint is satisfied and when we are in a non-accepting
state, it is not. We also need to distinguish between the case where the constraint
is permanently violated ⊥ and when it is possibly violated ⊥p. To do that, we
extend the original automaton to accept all prefixes of strings of the language
(In fact, Fig. 3 already shows the extended version of the automaton). This is
possible by connecting all the “illegal” transitions of the original automaton to a
new state represented using a dashed outline (e.g., state 3 in the not coexistence
constraint automaton). When we reach such a state during the execution of the
automaton, we know that the constraint is permanently violated and when we
are in a state with a normal outline, the constraint is possibly violated.

We can use these local automata directly to monitor each constraint, but we
can also construct a single automaton for monitoring the entire system. We call
such an automaton a global automaton. The global automaton is needed to deal
with conflicting constraints. Conflicting constraints are constraints for which
there is no possible continuation that satisfies them all. Note that even when
all individual local automata indicate that the constraint is (possibly) satisfied,
there can still be conflicting constrains.

The global automaton can be constructed in different ways. The simplest
way just constructs it as the automaton product of the local automata (or,
equivalently, as the automaton accepting the conjunction of the individual con-
straints). This allows us to recognize whether all constraints are satisfied, and
by also representing all prefixes of such traces, we can recognize that at least
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one constraint is violated as well. [15] describes how to construct the global
automaton efficiently.

3 Colored Automata for Runtime Verification

The global automaton for the system under study is shown in Fig. 4. We use
as state names the state numbers from each of the automata from Fig. 3, so
state 1020 corresponds to constraint response being in state 1, constraint not
coexistence being in state 0, and so on. To not clutter the diagram, we do not
shown self loops. These can be derived; every state also has a self-loop tran-
sition for any transition not otherwise explicitly listed. State fail corresponds
to all situations where it is no longer possible to satisfy all constraints. Note
that state 1202 is not present in Fig. 4 even though none of the local au-
tomata is in a permanently violated state. The reason is that from this state
it is never possible to ever reach a state where both response and not coexistence
are satisfied, i.e., the two constraints are conflicting (in order to satisfy the first,
we have to execute B which would move the latter to state 3). Executing the
trace from Example 1 (u4 = Money,Bonds,High Y ield,Money), we obtain the
trace 0000 →M 0020 →B 0100 →H fail →M fail. Hence, we correctly identify
that after the first two events all constraints are satisfied, but after executing
High Y ield we permanently violate a constraint.

The global automaton allows us to identify whether we have a (possible)
violation, but not to determine exactly which constraint(s) caused it. In order to
do that, we preserve information about which constraints are satisfied and which
are not. In effect, we color the states with a unique color for each constraint,
assigning the color to the state if the constraint is satisfied. Figure 5 shows the
colored automaton for our running example. We have indicated that a constraint
is satisfied by writing the first letter of its name in upper case (e.g., in state 0000
we have colors RNAP and all constraints are satisfied) and that a constraint can
be eventually satisfied by writing the first letter of its name in lower case (e.g.,
in state 1202 we have colors rNAP where constraint response is not satisfied, but
it can be satisfied by executing Bonds and transitioning to state 0302). Figure 2
already used such a coloring, i.e., red refers to ⊥, yellow refers to ⊥p, and green
refers > or >p.

Comparing figures 4 and 5 shows that we now have many states with a dashed
outline, i.e., states from which we cannot reach a state where all constraints
are satisfied. This reflects our desire to continue processing after permanently
violating a constraint. In fact, by folding all states with a dashed outline in
Fig. 5, we obtain the original global automaton of Fig. 4. Note states 1202 and
1222 have a dashed outline even though all constraints are satisfied or at least
can be satisfied in successor states. This is because it is not possible to reach a
state where all constraints are satisfied at the same time (we have basically asked
for low risk, requiring investment in bonds as well as asked for high yield, which
requires investment in stocks only). Executing the trace from Example 1 (u4 =
Money,Bonds,High Y ield,Money), we obtain 0000 →M 0020 →B 0100 →H
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Fig. 4. Global automaton for the system in Fig. 1.

0301 →M 0321. The last state is colored with Ra, indicating that the response
constraint is satisfied, the alternate response constraint is possibly violated, and
the two remaining constraints are permanently violated.

Once the colored global automaton is constructed, runtime monitoring can
be supported in an efficient manner. The status of an instance can be monitored
in constant time, independent of the number of constraints and their complexity.

4 Strategies for Continuous Support

As discussed in Sec. 1, the monitoring system should continue to provide mean-
ingful diagnostics after a violation takes place. This section presents three ways
of recovering from a violation. These have been implemented in ProM.

4.1 Recovery by Ignoring Violated Constraints

The first recovery strategy simply ignores a constraint after it is permanently
violated. This was the approach we used for the trace discussed in Example 1.
Figure 2 illustrates the desired behavior when this strategy is used for u4 =
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Fig. 5. Colored global automaton for the system in Fig. 1.

Money, Bonds, High Y ield, Money. The colored automaton directly supports
this strategy. In Fig. 5 there are multiple states with a dashed outline to be able
to monitor the state of all constraints after a violation.

4.2 Recovery by Resetting Violated Constraints

The second recovery strategy resets a constraint when it is permanently vio-
lated. Constraints that are not violated progress as before. Consider, for in-
stance, the trace Money, Bonds, Money, Stocks, High Y ield, Money, Stocks,
High Y ield, Money, Stocks, High Y ield, complete. The first four events can
be executed without encountering any problem: 0000 →M 0020 →B 0100 →M

0120 →S 0102. Executing High Y ield results in a failed state in the colored
automaton: 0102 →H 0302. The automaton modeling the not coexistence con-
straint is in state 3. Resetting the constraint results in global state 0002. The
remaining events can be executed without any problems: 0002 →M 0022 →S

0002 →H 0202 →M 0222 →S 0202 →H 0202.
Figure 6 shows the monitor in ProM using the reset strategy for trace Money,

Money, Low Risk, Money, Bonds. When Money is executed for the second
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Fig. 6. Recovery by resetting violated constraints.

time, the alternate response constraint becomes permanently violated. However,
after having detecting the violation, the constraint is put back to the initial
state, i.e., it becomes again satisfied when the following event Low Risk occurs.

We can provide support for the reset strategy in two different ways: (a)
by retaining the local automata for the system and translating back and forth
between the global and local automata when an error is encountered or (b) by
making an automaton specifically tailored to handle this strategy.

The first approach requires a mapping from states of the colored automaton
to states of each of the local automata and vice versa. We can do this using a hash
mapping, which provides constant lookup for this table. When we encounter a
transition that would lead us to a state from which we can no longer reach a state
where all constraints are satisfied (a dashed state in Fig. 5), we translate the state
to states of the local automata. For instance, transition 0100 →H 0301 during
the trace u4 = Money,Bonds,High Y ield,Money from Example 1 results in a
dashed state 0301. Two of the four local automata are in a permanently violated
state. These automata are reset resulting in state 0000.

The second approach creates a dedicated recovery automaton. Figure 7 shows
the recovery automaton for our running example. In this automaton we take the
colored automaton and replace any transition to an error (dashed) state with
the state we would recover to, effectively precomputing recovery. We do this by
translating any transition to a dashed state to a transition to the state with the
correct recovery state. In Fig. 7 we removed all dashed states, and introduced
new states not previously reachable (here 0200, 1200, 0220, and 1220). We have
handled recovery in states 1202 and 1222 by retaining both of the two conflicting
(but not yet violated) constraints response and not coexistence and handling the
conflict when the violation occurs.

From a performance point of view, a dedicated recovery automaton is prefer-
able. Each step takes constant time regardless of the size of the original model.
A possible disadvantage is its rigidity; the recovery strategy needs to be deter-
mined beforehand and the only way to switch to another recovery strategy is to
generate a new recovery automaton.
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Fig. 7. Recovery automaton for the system in Fig. 1 using recovery strategy reset and
retaining states for conflicting constraints.

4.3 Recovery by Skipping Events for Violated Constraints

The third recovery strategy skips events for permanently violated constraints
(but still executing it for non-violated constraints). Consider, for example, trace
Money, Money, Low Risk, Money, Bonds, complete. Since two occurrences of
Money happen next to each other, the alternate response constraint is perma-
nently violated. Under the skip strategy, this constraint is made again active, by
bringing it back to the last state before the violation, i.e., the alternate response
constraint effectively ignores the second occurrence of Money. In this way, when
Low Risk occurs the constraint is possibly violated and when another Money
is again executed, a new violation is detected. Finally, when at the end Bonds
occurs, the constraint becomes satisfied. Figure 8 shows the monitor in ProM
using the skip strategy for this trace.

Figures 6 and 8 illustrate that the reset and skip strategies may produce
different results; the former detects one violation whereas the latter detects
two violations. Another example is the trace Money, Bonds, Money, Stocks,
High Y ield,Money, Stocks,High Y ield,Money, Stocks,High Y ield, complete.
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Fig. 8. Recovery by skipping events for violated constraints.

Using the skip strategy, the monitor detects three violations corresponding to
the three occurrences of High Y ield. The reset strategy detects only one vio-
lation; after resetting the not coexistence automaton no violations are detected
anymore.

Similar to recovery by resetting violated constraints, it is possible to con-
struct a dedicated recovery automaton using the skipping events for violated
constraints. As a result, monitoring can be done in an efficient manner.

In this section, we described three recovery strategies. There is no “best
strategy” for continuous support. The choice strongly depends on the application
domain and other contextual factors. Therefore, we have implemented all three
approaches in ProM.

5 Runtime Modification

Thus far we assumed that the model does not change during monitoring. In work-
flow literature one can find many approaches supporting flexibility by change [14,
12, 5]. The basic idea is that the process model can be changed at runtime. This
generates all kinds of complications (see for example the well-known “dynamic
change bug” [12]). Models may change due to a variety of reasons, e.g., the im-
plementation of new legislation or the need to reduce response times. This type
of flexibility can easily be supported by Declare while avoiding problems such as
the “dynamic change bug”. Moreover, frequent violations of existing constraints
may trigger model changes such as removing a constraint.

Consider for example a trace containing both Bonds and High Y ield, thus
violating the not coexistence constraint. Instead of applying one of the afore-
mentioned recovery strategies, we could leverage on the possibility of modifying
the model at runtime. In particular, we can perform runtime modification using
the algorithms for dynamic modifications presented in [15]. The algorithms are
able to update an automaton with changes (such as adding and removing con-
straints). This approach is much faster than regenerating the automaton from
scratch.
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Fig. 9. Dynamic change of the model shown in Fig. 1

Fig. 10. Recovery by runtime change; at runtime the model shown in Fig. 1 is replaced
by the model shown in Fig. 9.

In our example, we could remove the not coexistence constraint from the ref-
erence model adding at the same time a new not succession constraint, obtaining
the Declare model shown in Fig. 9. After this modification, events Bonds and
High Y ield can coexist but when Low Risk occurs, High Y ield cannot occur
anymore. After the modification the trace is monitored w.r.t. the new model,
leading to the result reported in Fig. 10.

6 Related Work

Several BPM researchers have investigated compliance at the model level [1, 7].
In this paper, we focus on runtime verification and monitoring based on the
observed behavior rather than the modeled behavior. This has been a topic of
ongoing research, not only in the BPM domain, but also in the context of soft-
ware engineering and service oriented computing. Most authors propose to use
temporal logics (e.g., LTL) and model checking [4]. We refer to the survey paper
by Bauer et al. [2] for an overview of existing approaches. Classical automata-
based model checking techniques must be adapted to reason upon partial traces.
The monitored traces are finite, and also subject to extensions as new events
happen, making it not always possible to draw a definitive conclusion about
the property’s satisfaction or violation. Our verification technique is inspired by
[6], where the use of (a finite-trace version of) LTL is also considered to tackle
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runtime verification. Here a translation from arbitrary (next-free) LTL formulas
is used to monitor any running system. The main difference with our approach
is that we consider the monitor to be composed by several constraints, each of
which can be violated, and we report and recover based on individual automata
instead of the entire system.

Other logic-based approaches have been proposed to deal with runtime ver-
ification of running traces. The work closest to our approach is [3], where Dec-
SerFlow (one of the constraint-based languages supported by Declare) is used to
declaratively model service choreographies, and a (reactive version) of the Event
Calculus [8] is employed to provide the underlying formalization and monitoring
capabilities. Unlike our approach, the interplay between constraints is not taken
into account in [3].

The approach presented in this paper has been implemented as an Opera-
tional Support (OS) provider in ProM (www.processmining.org). The OS frame-
work in ProM can be used to detect, predict, and recommend at runtime. For
example, [13] describes OS providers related to time. For example, based on a
partial trace the remaining flow time is predicted and the action most likely to
minimize the flow time is recommended.

7 Conclusion

Compliance has become an important topic in organizations that need to en-
sure the correct execution of their processes. Despite the desire to monitor and
control processes, there are many events that cannot be controlled. For exam-
ple, it is impossible and also undesirable to control the actions of customers
and professionals. Therefore, we propose a comprehensive set of techniques to
monitor business constraints at runtime. These techniques are based on colored
automata. One global automaton contains information about all individual con-
straints. This automaton can be precomputed, thus making monitoring very
efficient.

Since constraints may be permanently violated, it is important to recover
after a violation (to continue to give meaningful diagnostics). We proposed and
implemented three recovery approaches (ignore, reset, and skip). Moreover, we
showed that it is possible to efficiently modify the constraint model while mon-
itoring.

The approach has been applied in the Poseidon project where is has been used
to monitor “system health” in the domain of maritime safety and security. Future
work aims at more applications in typical BPM domains (banking, insurance,
etc.). Moreover, we would like to further improve our diagnostics and include
other perspectives (data, time, resources).
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