
Ensuring Correctness During Process Configuration via
Partner Synthesis

Wil M.P. van der Aalsta,c,∗, Niels Lohmannb, Marcello La Rosac

aEindhoven University of Technology, The Netherlands
bUniversität Rostock, Germany

cQueensland University of Technology, Australia

Abstract

Variants of the same process can be encountered within one organization or
across different organizations. For example, different municipalities, courts, and
rental agencies all need to support highly similar processes. In fact, procurement
and sales processes can be found in almost any organization. However, despite
these similarities, there is also the need to allow for local variations in a controlled
manner. Therefore, many academics and practitioners have advocated the use
of configurable process models (sometimes referred to as reference models). A
configurable process model describes a family of similar process models in a
given domain. Such a model can be configured to obtain a specific process model
that is subsequently used to handle individual cases, for instance, to process
customer orders. Process configuration is notoriously difficult as there may be all
kinds of interdependencies between configuration decisions. In fact, an incorrect
configuration may lead to behavioral issues such as deadlocks and livelocks. To
address this problem, we present a novel verification approach inspired by the
“operating guidelines” used for partner synthesis. We view the configuration
process as an external service, and compute a characterization of all such services
which meet particular requirements via the notion of configuration guideline.
As a result, we can characterize all feasible configurations (i. e., configurations
without behavioral problems) at design time, instead of repeatedly checking each
individual configuration while configuring a process model.

Keywords: Configurable process model, operating guideline, Petri net,
C-YAWL

1. Introduction

Although large organizations support their processes using a wide variety
of process-aware information systems, the majority of business processes are

∗Corresponding author
Email addresses: w.m.p.v.d.aalst@tue.nl (Wil M.P. van der Aalst),

niels.lohmann@uni-rostock.de (Niels Lohmann), m.larosa@qut.edu.au (Marcello La Rosa)

Preprint submitted to Information Systems August 25, 2011

still not directly driven by process models [1]. Despite the success of Business
Process Management (BPM) thinking in organizations, Workflow Management
(WfM) systems — today often referred to as BPM systems — are not widely used.
One of the main problems of BPM technology is the “lack of content”; that is,
providing just a generic infrastructure to build process-aware information systems
is insufficient as organizations need to support specific processes. Organizations
want to have “out-of-the-box” support for standard processes and are only
willing to design and develop system support for organization-specific processes.
Yet most BPM systems expect users to model basic processes from scratch.
Enterprise Resource Planning (ERP) systems such as SAP and Oracle, on the
other hand, focus on the support of these common processes. Although all
ERP systems have workflow engines comparable to the engines of BPM systems,
lion’s share of processes supported by these systems are not driven by models.
For example, most of SAP’s functionality is not grounded in their workflow
component, but hard-coded in application software. ERP vendors try to capture
“best practices” in dedicated applications designed for a particular purpose. Such
systems can be configured by setting parameters. System configuration can be a
time consuming and complex process. Moreover, configuration parameters are
exposed as “switches in the application software”, thus making it difficult to see
the intricate dependencies among certain settings.

A model-driven process-oriented approach toward supporting business pro-
cesses has all kinds of benefits ranging from improved analysis possibilities
(verification, simulation, etc.) and better insights, to maintainability and ability
to rapidly develop organization-specific solutions [1, 2]. Although obvious, this
approach has not been adopted thus far, because BPM vendors have failed to
provide content and ERP vendors suffer from the “Law of the handicap of a head
start”. ERP vendors manage to effectively build data-centric solutions to sup-
port particular tasks. However, the complexity and large installed base of their
products makes it hard to refactor their software and make it process-centric.

Based on the limitations of existing BPM and ERP systems, we propose to
use configurable process models. A configurable process model represents a family
of process models ; that is, a model that through configuration can be customized
for a particular setting. By developing comprehensive collections of configurable
models, one could capture all possible process variations in a particular domain.
For example, one could create a configurable process model for logistics, one
for insurance, etc. From the viewpoint of ERP software, configurable process
models can be seen as a means to make these systems more process-centric,
although quite some refactoring would be needed as processes are hidden in
table structures and application code.

Various configurable languages have been proposed as extensions of existing
languages (e. g., C-EPCs [3], C-iEPCs [4], C-WF-nets [5], C-SAP and C-BPEL [6])
but few are actually supported by enactment software (e. g., C-YAWL [6]). In this
paper, we are interested in models in the latter class of languages, which, unlike
traditional reference models [7–10], are executable after they have been configured.
Specifically, we focus on the verification of configurable executable process models.
In fact, because of configuring a process model, the resulting configured model

2

may suffer from behavioral anomalies such as deadlocks and livelocks. This
problem is exacerbated by the total number of possible configurations a model
may have, which may be very large, and by the complex domain and data
dependencies which may exist between various configuration options. Checking
the feasibility of each single configuration can be time consuming as this would
typically require performing state-space analysis. Moreover, characterizing the
“family of correct models” for a particular configurable process model is even
more difficult and time-consuming as a naive approach would require solving
an exponential number of state-space problems, which is unfeasible for large
real-life models.

As far as we know, our earlier approach [5] is the only one focusing on the
verification of configurable process models which takes into account behavioral
correctness and avoids the state-space explosion problem. Other approaches
either only discuss syntactical correctness related to configuration [3, 11, 12], or
deal with behavioral correctness but run into the state-space problem [13, 14].
In this paper, we propose a novel verification approach where we consider the
configuration process as an “external service” and then synthesize a “most
permissive partner” using the approach described by Wolf [15] and implemented
in the tool Wendy [16]. This most permissive partner is closely linked to the
notion of operating guidelines for service behavior [17]. In this paper, we define
for any configurable model a so-called configuration guideline to characterize all
correct process configurations. This approach provides the following advantages
over our previous approach [5]:

• We provide a complete characterization of all possible (correct) configura-
tions at design time; that is, the configuration guideline.

• Computation time is moved from configuration time to design time and
results can be reused more easily.

• No restrictions are put on the class of models which can be analyzed. The
previous approach [5] was limited to sound free-choice WF-nets. Our new
approach can be applied to models which do not need to be sound, which
can have complex (non-free choice) dependencies, and which can have
multiple end states.

To prove the practical feasibility of this new approach, we have implemented
it as a component of the toolset supporting C-YAWL.

The remainder of this paper is organized as follows. In Section 2 we elaborate
on the need for process configuration and define the problem in a language
independent manner. Section 3 introduces basic concepts such as open nets
and weak termination. These concepts are used in Section 4 to formalize the
notion of process configuration. Section 5 presents the solution approach for
correctness ensuring configuration. Often configurable process models cannot
be freely configured and domain constraints and data dependencies need to be
taken into account. For example, one cannot skip an activity that produces data
to be used in a later phase of the process. Therefore, Section 6 shows how to

3

incorporate such constraints. Section 7 discusses tool support. Related work is
discussed in Section 8. Section 9 concludes the paper.

2. Motivation

The need for configuring business processes arises in many domains. For
example, there are about 430 municipalities in The Netherlands. However, in
principle, they all execute variants of the same set of processes. For example,
they all support processes for registering a marriage or a divorce.

Variability also occurs in the insurance domain. For example Suncorp, the
largest Australian insurance group, offers various insurance products using
different brands such as Suncorp, AAMI, APIA, GIO, Just Car, Bingle, Vero,
etc. There are insurance processes for each product (home, motor, commercial,
liability, etc.) and these processes exist for the different Suncorp brands. In
fact, there are up to 30 different variants of the process of handling an insurance
claim at Suncorp.

Organizations such as Suncorp need to support many variants of the same
process (intra-organizational variation). Likewise, different municipalities in
a country need to offer similar services to their citizens, and, hence, need to
manage similar collections of process models. However, due to demographics
and political choices, municipalities are handling things differently. Sometimes
these differences are unintentional; however, often these differences can be easily
justified by the desired “Couleur Locale” (inter-organizational variation). Clearly,
it is undesirable to support these intra- and inter-organizational variations by
making copies of the same process models (and related IT systems!) that are
subsequently adapted. Hence, it is important to support variability directly at
the process model level.

In this paper, we support process variability by means of configurable process
models. A configurable process model captures the behavior of all possible
process variants and can be configured to each specific variant. Accordingly,
configuration corresponds to removing process behavior. Clearly, other viewpoints
are possible. For example, some authors also consider refinement and model
extension as configuration primitives [12–14, 18, 19]. We will discuss such
alternative approaches in Section 8.

Specifically, we focus on two operators to remove process behavior: i) hiding,
i.e. bypassing, and ii) blocking, i.e. inhibiting, which are applied to the variation
points of a configurable process model. Hiding and blocking are two basic
operators for removing process behavior [5], since they apply to single activities.
In fact, all other configuration mechanisms for removing process behavior that
are available in the literature, can be expressed in terms of hiding and blocking
(e.g., [3, 6, 20]).

The configured model that results from a configuration can be analyzed using
traditional process verification approaches. In this paper, we call a configuration
feasible if the configured model is considered to be correct. In particular, we use
the notion of weak termination as a correctness criterion, according to which

4

a process instance can always terminate correctly. This notion excludes the
possibility of anomalies such as deadlocks and livelocks in the configured model.
Other variants of soundness can be also used [21], but this requires adaptations
with respect to the analysis technique used.

Using existing techniques, it is already challenging to verify a single con-
crete model. However, in process configuration, there can potentially be many
configured models which would need to be verified. In fact, if a model has n
variation points which are “allowed” by default and can all be configured as
“hidden” or “blocked”, there are 3n possible configurations, each leading to a
configured model. For example, the configurable process model we constructed
from the VICS documentation1— an industry standard for logistics and supply
chain management — comprises 50 activities, which result in 350 possible config-
urations (an extremely large number) [22]. Thus, as pointed out in Section 1,
it is unrealistic to assume that the brute-force approach depicted in Fig. 1 will
work in practice.

configurable

process model
3

n
 configured

process models

3
n
 correctness

checks

Figure 1: Classical, brute force, approach to verify the correctness of configurations.

One could use a trail-and-error approach when configuring a configurable
process model. However, ideally the information system should support the con-
figuration process by proactively removing configuration possibilities that result
in incorrect process models. In fact, one would like to have a characterization
of all feasible configurations and an “auto-complete” option that automatically
completes a partial configuration while ensuring the correctness of the final
model.

configurable

process model

controller

configuration

guideline

Figure 2: The approach presented in this paper. We reason about controllers that ensure
feasible configurations. Using partner synthesis, we create one configuration guideline capturing
all feasible configurations.

Given the above requirements, we propose a completely different approach
which is shown in Fig. 2. Rather than exhaustively trying all 3n possible
configurations, we construct a “controller” that configures the process model
correctly. Using controller synthesis [15, 16], we synthesize a so-called “most

1See www.vics.com

5

www.vics.com

permissive partner” (see Section 5.2). This is the controller that does not
remove any feasible configurations. Note that such a partner can be seen as an
external service that configures the configurable model. The most permissive
partner will serve as a configuration guideline steering the designer toward a
good configuration. This provides us with a complete characterization of all
feasible configurations at design time. Unlike existing approaches, we do not
need to impose all kinds of syntactical restrictions on the class of models to be
considered. Moreover, computation is moved from configuration time to design
time and advanced functionality such as “auto-completion” comes into reach.

The ideas presented in this section are generic and do not depend on a
particular representation. However, in order to explain the approach and to
formalize the concepts, we use Petri nets. The next section introduces some
preliminary concepts on Petri net.

3. Business Process Models

For the formalization of the problem we use Petri nets, which offer a formal
model of concurrent systems. However, the same ideas can be applied to other
languages (e. g. C-YAWL, C-BPEL), as it is easy to map the core structures of
these languages onto Petri nets. Moreover, our analysis approach is quite generic
and does not rely on specific Petri net properties.

Definition 1 (Petri net). A marked Petri net is a tuple N = (P, T, F,m0)
such that: P and T (P ∩ T = ∅) are finite sets of places and transitions,
respectively, F ⊆ (P × T) ∪ (T × P) is a flow relation, and m0 : P → N is an
initial marking.

A Petri net is a directed graph with two types of nodes: places and transitions,
which are connected by arcs as specified in the flow relation. If p ∈ P , t ∈ T ,
and (p, t) ∈ F , then place p is an input place of t. Similarly, (t, p) ∈ F means
that p is an output place of t.

The marking of a Petri net describes the distribution of tokens over places and
is represented by a multiset of places. For example, the marking m = [a2, b, c4]
indicates that there are two tokens in place a, one token in b, and four tokens in c.
Formally m is a function such that m(a) = 2, m(b) = 1, and m(c) = 4. We use ⊕
to compose multisets; for instance, [a2, b, c4]⊕ [a2, b, d2, e] = [a4, b2, c4, d2, e].

A transition is enabled and can fire if all its input places contain at least one
token. Firing is atomic and consumes one token from each of the input places
and produces one token on each of the output places. m0

t−→ m means that t is
enabled in marking m0 and the firing of t in m0 results in marking m. We use
m0

∗−→ m to denote that m is reachable from m0; that is, there exists a (possibly
empty) sequence of enabled transitions which by firing lead from m0 to m.

For our configuration approach, we use open nets. Initially, open nets were
introduced as an extension of workflow nets (WF-nets) [1], sometimes also referred
to as loosely coupled inter-organizational workflows [23], open WF-nets (oWF-
nets) [24], or workflow modules [25]. Whereas WF-nets are closed, open nets

6

are enriched with communication places to model channels for sending/receiving
messages to/from other open nets. In other publications the requirement, typical
of WF-nets, of having a dedicated source place (i.e. a place without input
transitions) and a dedicated sink place (i.e. a place without output transitions)
was dropped [26]. Accordingly, in this paper we allow multiple source and sink
places, an arbitrary initial marking and multiple final markings. As discussed
in Section 5.2, many results for open nets with asynchronous communication
can be extended to open nets with synchronous communication [15]. In fact, in
this paper we will only use synchronous communication as this simplifies the
modeling of process configuration. Therefore, we define a variant of open nets
without communication places but with transitions that can synchronize with
transitions in other open nets based on common labels. Hence, open nets extend
classical Petri nets with the identification of final markings Ω, a set of labels L,
and a function ` which assigns labels to transitions.

Definition 2 (Open net). A tuple N = (P, T, F,m0,Ω, L, `) is an open net if

• (P, T, F,m0) is a marked Petri net (called the inner net of N),

• Ω ⊂ P → N is a finite set of final markings,

• L is a finite set of labels,

• τ 6∈ L is a label representing invisible (also called silent) steps, and

• ` : T → L ∪ {τ} is a labeling function.

We use transition labels to represent the activity corresponding to the execu-
tion of a particular transition. This way we can model the situation where an
activity appears multiple times in a model. Two transitions having the same
visible label refer to the same activity. The special label τ refers to an invisible
step, sometimes referred to as “silent”. We use invisible transitions to represent
internal actions which do not mean anything at the business level. We use visible
labels to denote activities that may be configured. Later, in Section 5 we use
these labels to synchronize two open nets.

Note that Definition 2 does not allow for communication places; it is sufficient
to introduce transition labels that can be used to model synchronous commu-
nication. Therefore, the inner net, i.e., the process without communication
capabilities, is simply the core Petri net and its initial marking.

Figure 3 shows an example open net which models a typical travel request
approval. The process starts with the preparation of the travel form. This can
either be done by an employee or be delegated to a secretary. In both cases, the
employee personally needs to arrange the travel insurance. If the travel form has
been prepared by the secretary, the employee needs to check it before submitting
it for approval. An administrator can then approve or reject the request, or
make a request for change. Now, the employee can update the form according
to the administrator’s suggestions and resubmit it. In Fig. 3 all transitions bear

7

p2

p3

p5

p8

t3

t1 t2

t4

t6

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7
Check & Update
Travel Form
(Employee)

Arrange
travel
insurance
(Employee)

p4

t5

p6

p7

t9t8

p1

XOR-join

XOR-split

AND-join

AND-split

Flow

Place

Transition

Token

Figure 3: The open net for travel request approval (Ω = {[p8]}).

a visible label, except for t5 which bears a τ -label as it has only been added for
routing purposes.

Unlike our previous approach [5] based on WF-nets [1] and hence limited
to a single final place, here we allow multiple final markings. Good runs of an
open net end in a marking in set Ω. Therefore, an open net is considered to be
erroneous if it can reach a marking from which no final marking can be reached
any more. An open net weakly terminates if a final marking is reachable from
every reachable marking.

Definition 3 (Weak termination). An open net N = (P, T, F,m0,Ω, L, `)
weakly terminates if and only if for any marking m with m0

∗−→ m there exists a
final marking mf ∈ Ω such that m

∗−→ mf .

The net in Fig. 3 is weakly terminating. Weak termination is a weaker notion
than soundness, as it does not require transitions to be quasi-live [21]. This
correctness notion is more suitable as parts of a correctly configured net may be
left dead intentionally.

In this paper, we will restrict ourselves to open nets that are bounded, i.e.,
only finitely many states are reachable from the initial marking. The definitions
in this paper also apply to unbounded nets. However, since open nets describe
the life-cycle of one process instance in isolation (e.g., a travel request), there is
no need to consider unbounded behavior. Moreover, most synthesis problems
are known to be undecidable for unbounded nets [27].

8

4. Process Model Configuration

We use open nets to model configurable process models. An open net can
be configured by blocking or hiding activities. Blocking activity a means that
all transitions labeled a are removed. The corresponding activity is no longer
available, i.e., paths visiting a transition corresponding to the blocked activity
cannot be taken any more. Hiding activity a means that all transitions labeled
a are skipped rather than executed. Hiding a transition means that it can be
bypassed, i.e., the path containing the transition can still be taken. If a transition
is neither blocked nor hidden, we say it is allowed, meaning it remains in the
model. Configuration is achieved by setting visible labels to allow, hide or block.

Definition 4 (Open net configuration). Let N be an open net with label
set L. A mapping CN : L → {allow , hide, block} is a configuration for N . We
define:

• AC
N = {t ∈ T | `(t) 6= τ ∧ CN (`(t)) = allow},

• HC
N = {t ∈ T | `(t) = τ ∨ CN (`(t)) = hide}, and

• BC
N = {t ∈ T | `(t) 6= τ ∧ CN (`(t)) = block}.

An open net configuration implicitly defines an open net, called configured
net, where the blocked transitions are removed and the hidden transitions are
given a τ -label.

Definition 5 (Configured net). Let N = (P, T, F,m0,Ω, L, `) be an open net
and CN a configuration of N . The resulting configured net βC

N = (P, TC , FC ,m0,
Ω, L, `C) is defined as follows:

• TC = T \ (BC
N),

• FC = F ∩ ((P ∪ TC)× (P ∪ TC)), and

• `C(t) = `(t) for t ∈ AC
N and `C(t) = τ for t ∈ HC

N .

As an example, Fig. 4(a) shows the configured net derived from the open net
in Fig. 3 and the configuration CN (Prepare Travel Form (Secretary)) = block
(to allow only employees to prepare travel forms), CN (Arrange Travel Insurance
(Employee)) = hide (to skip arranging the travel insurance), and CN (x) = allow
for all other labels x.

A configured net may have disconnected nodes and some parts may be dead
(i. e., can never become active). Such parts can easily be removed. However,
as we impose no requirements on the structure of configurable models, these
disconnected or dead parts are irrelevant with respect to weak termination. For
example, if we block the label of t2 in Fig. 3, transition t5 becomes dead as it
cannot be enabled any more, and hence can also be removed without causing any
behavioral issues. Nonetheless, not every configuration of an open net results in
a weakly terminating configured net. For example, by blocking the label of t4 in

9

p2

p3

p5

p8

t3

t2

t4

t6

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7
Check & Update
Travel Form
(Employee)

p4

t5

p6

p7

t9t8

p2

p3

p5

p8

t3

t2

t6

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7

p4

t5

p6

p7

t9t8

(a) A weakly terminating configured net

p1 p1

(b) An incorrectly configured net

Figure 4: Two possible configured nets based on the model in Fig. 3.

the configured net of Fig. 4(a), we obtain the configured net in Fig. 4(b). This
net is not weakly terminating because after firing t7 tokens will get stuck in p3
(as this place does not have any successor) and in p5 (as t5 can no longer fire).

Blocking can cause behavioral anomalies such as the deadlock in Fig. 4(b).
However, hiding cannot cause such issues, because it merely changes the labels
of an open net. In this paper we are interested in all configurations which yield
weakly terminating configured nets. We use the term feasibility to refer to such
configured nets.

Definition 6 (Feasible configuration). Let N be an open net and CN a
configuration of N . CN is feasible if and only if the configured net βC

N weakly
terminates.

More precisely, given a configurable process model N , we are interested in
the following two questions: i) Is a particular configuration CN feasible? ii) How
to characterize the set of all feasible configurations?

The remainder of this paper is devoted to a new verification approach an-
swering these questions. This approach extends the work in [5] in two directions:
(i) it imposes no unnecessary requirements on the configurable process model (al-
lowing for non-free-choice nets [28] and nets with multiple end places/markings),
and (ii) it checks a weaker correctness notion (i. e. weak termination instead
of soundness). For instance, the net in Fig. 3 is not free-choice because t4 and
t5 share an input place, but their sets of input places are not identical. The
non-free-choice construct is needed to model that after firing t1 or t7, t5 cannot
be fired, and similarly, after firing t2, t4 cannot be fired.

10

5. Correctness Ensuring Configuration

To address the two main questions posed in the previous section, we could
use a direct approach by enumerating all possible configurations and simply
checking whether each of the configured nets βC

N weakly terminates or not (see
Fig. 1). As indicated before, the number of possible configurations is exponential
in the number of configurable activities. Moreover, most techniques for checking
weak termination typically require the construction of the state space. Hence,
traditional approaches are computationally expensive and do not yield a useful
characterization of the set of all feasible configuration. Consequently, we propose
a completely different approach using the synthesis technique described in [15].
As shown in Fig. 2, the core idea is to see the configuration as an “external service”
and then synthesize a “most permissive partner”. This most permissive partner
represents all possible “external configuration services” which yield a feasible
configuration. The idea is closely linked to the notion of operating guidelines
for service behavior [17]. An operating guideline is a finite representation of all
possible partners. Similarly, our configuration guideline characterizes all feasible
process configurations. This configuration guideline can also be used to efficiently
check the feasibility of a particular configuration without exploring the state space
of the configured net. Our approach consists of three steps:

1. Transform the configurable process model N into a configuration interface
NCI .

2. Synthesize the “most permissive partner” (our configuration guideline)
QCN for the configuration interface NCI .

3. Study the composition of NCI with QCN .

In the remainder of this section we explain these three steps. We will
use two types of configuration interfaces: one where everything is allowed by
default and the external configuration service can block or hide labels and one
where everything is blocked by default and the external configuration service can
“unblock” (i. e., allow or hide) labels. Section 5.1 provides some more preliminaries
needed to reason about configuration interfaces. In Section 5.2, we informally
describe how to check the existence of a partner and how to construct a most
permissive partner. The configuration interface in which everything is allowed
by default is presented in Section 5.3. The configuration interface in which
everything is blocked by default is presented in Section 5.4. Section 5.5 shows
another example to illustrate the concepts.

5.1. Composition and Controllability

For our solution approach, we compose the configurable process model with a
“configuration service” Q. To do so, we first introduce the notion of composition.
Open nets can be composed by synchronizing transitions according to their
visible labels. In the resulting net, all transitions bear a τ -label and labeled
transitions without counterpart in the other net disappear.

11

Definition 7 (Composition). For i ∈ {1, 2}, letNi = (Pi, Ti, Fi,m0i ,Ωi, Li, `i)
be open nets. N1 and N2 are composable if and only if the inner nets of N1 and
N2 are pairwise disjoint. The composition of two composable open nets is the
open net N1 ⊕N2 = (P, T, F,m0,Ω, L, `) with:

• P = P1 ∪ P2,

• T = {t ∈ T1 ∪ T2 | `(t) = τ} ∪ {(t1, t2) ∈ T1 × T2 | `(t1) = `(t2) 6= τ},

• F = ((F1 ∪ F2) ∩ ((P × T) ∪ (T × P))) ∪ {(p, (t1, t2)) ∈ P × T | (p, t1) ∈
F1 ∨ (p, t2) ∈ F2} ∪ {((t1, t2), p) ∈ T × P | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2},

• m0 = m01 ⊕m02 ,

• Ω = {m1 ⊕m2 | m1 ∈ Ω1 ∧m2 ∈ Ω2},

• L = ∅, and `(t) = τ for all t ∈ T .

Via composition, the behavior of each original net can be limited; for instance,
transitions may no longer be available or may be blocked by one of the two
original nets. Furthermore, final markings have an impact on weak termination:
final markings of the compositions consist of the final markings of each composed
net. Hence, it is possible that N1 and N2 are weakly terminating, but N1 ⊕N2

is not. Similarly, N1 ⊕N2 may be weakly terminating, but N1 and N2 are not.
The labels of the two open nets in Def. 7 serve now a different purpose: they are
not used for configuration, but for synchronous communication as described in
[15]. As discussed in Section 3, we consider open nets without communication
places as we restrict ourselves to synchronous communication. Therefore, the
inner nets need to be pairwise disjoint.

With the notions of composition and weak termination, we define the con-
cept of controllability, which we need to reason about the existence of feasible
configurations.

Definition 8 (Controllability). An open net N is controllable if and only if
there exists an open net N ′ such that N ⊕N ′ is weakly terminating.

Open net N ′ is called a partner of N if N ⊕N ′ is weakly terminating. Hence,
N is controllable if there exists a partner. Wolf [15] presents an algorithm to
check controllability: if an open net is controllable, this algorithm can synthesize
a partner.

5.2. Checking Controllability and Partner Synthesis

We briefly describe an algorithm from Wolf [15] to construct a partner for an
open if one exists. The approach is limited to bounded open nets. For infinite
state systems, a related controllability notion is undecidable [27]. The algorithm
does not directly construct an open net, but a finite-state automaton. The
latter can be transformed into a Petri net model using standard techniques and
tools [29, 30].

12

To construct a partner for an open net N , we first overapproximate the
behavior of any open net that is composable to N . As the marking of N is not
observable by the partner, we can only make assumptions based on the previous
communication with N . These assumptions and the uncertainty about the exact
state is modeled by a set S of markings the open net can reach at a certain
point of interaction. This set S contains all markings that can be reached in
N without requiring any actions of the environment. That is, S contains those
states that are reachable only by τ -labeled transitions. Hence, the set S can be
treated as a state of a partner of N .

The successors of the set S can be constructed according to the labels of N .
Given a label l ∈ L, we construct a new set S′ that contains all markings that
can be reached by an l-labeled transition from a marking m ∈ S. Again, we
add all markings to S′ that can be reached only by τ -labeled transitions. The
resulting set S′ is then the l-labeled successor of S.

In the resulting automaton, we treat those sets that contain a final marking
of N as final states of the partner. The initial state is the set that contains
exactly the initial marking m0 of N and those markings that can be reached
from m0 with only τ -labeled transitions.

For a bounded open net N , the set construction eventually terminates,
because only a finite number of marking sets exist. However, it is not guaranteed
that the resulting automaton ensures weak termination. Therefore, in a last
step, we need to remove all sets S that contain markings from which no final
marking of N is reachable. This removal has to be continued until a fixed point
is reached. Unless all sets are removed, the resulting automaton is a partner of
N and we can conclude that N is controllable.

The partner automaton N found using the above procedure represents the
“most permissive partner”.

Details on the algorithm as well as a formal definition can be found in [15].
The algorithm is implemented in the tool Wendy [16] which also implements
several reduction techniques that avoid the generation of sets that would be
removed in later steps.

5.3. Configuration Interface: Allow by Default

After these preliminaries, we define the notion of a configuration interface.
One of the objectives of this paper was to characterize the set of all feasible con-
figurations by synthesizing a “most permissive partner”. To do this, we transform
a configurable process model (i. e., an open net N) into an open net NCI , called
the configuration interface, which can communicate with services which configure
the original model. In fact, we shall provide two configuration interfaces: one
where everything is allowed by default and the external configuration service
can block and hide labels, and the other where everything is blocked by default
and the external configuration service can allow and hide labels. Similarly, one
can construct a hide by default variant, which we do not illustrate in this paper.
In either case, the resulting open net NCI is controllable if and only if there
exists a feasible configuration CN of N . Without loss of generality, we assume a

13

1-safe initial marking; that is, m0(p) > 0 implies m0(p) = 1. This assumption
helps to simplify the configuration interface and any net whose initial marking is
not 1-safe can easily be converted into an equivalent net having a 1-safe initial
marking.

Definition 9 (Configuration interface; allow by default). LetN = (P, T,
F,m0,Ω, L, `) be an open net. We define the open net with configuration interface
NCI

a = (PC , TC , FC ,mC
0 ,Ω

C , LC , `C) with

• PC = P ∪ {pstart} ∪ {px, pax, pbx, phx | x ∈ L},

• TC = T ∪ {tstart} ∪ {bx, hx | x ∈ L},

• FC = F∪{(pstart, tstart)}∪{(tstart, p) | p ∈ P∧m0(p) = 1}∪{(t, px), (px, t) |
`(t) = x} ∪ {(bx, pstart), (pstart, bx) | x ∈ L} ∪ {(hx, pstart), (pstart, hx) | x ∈
L} ∪ {(pax, bx), (px, bx), (bx, p

b
x) | x ∈ L} ∪ {(pax, hx), (hx, p

h
x) | x ∈ L},

• mC
0 = [p1 | p ∈ {pstart} ∪ {px, pax | x ∈ L}],2

• ΩC = {m⊕
⊕

x∈Lm
∗
x | m ∈ Ω ∧ ∀x∈L m∗x ∈ {[px, pax], [pbx], [px, p

h
x]} },3

• LC = {start} ∪ {blockx,hidex | x ∈ L}

• `C(tstart) = start, `C(bx) = blockx and `C(hx) = hidex for x ∈ L, and
`C(t) = τ for t ∈ T .

Figure 5 illustrates the two configuration interfaces for a simple open net
N . In both interfaces, the original net N consisting of places {p1, p2, p3, p4} and
transitions {t1, t2, t3, t4} is retained, but all transition labels are set to τ . Let
us first focus on the configuration interface where all activities are allowed by
default (Fig. 5(b)). The configuration interface consists of three parts: First,
places px and py are added and connected with biflows to each transition of
the original net. These places are used to control, for each label, whether a
transition is blocked (i. e., the place is unmarked) or may fire (i. e., the place
is marked). Second, the status of each label is modeled by the places pax and
pay (allowed), pbx and pby (blocked), and phx and phy (hidden). As we consider an
allow-by-default scenario, places px, pax, py, and pay are initially marked. With
two transitions for each label (bx and hx for blocking and hiding x-labeled
transitions, and by and hy for blocking and hiding y-labeled transitions), the
status can be changed by the environment by synchronizing via labels blockx,
hidex, blocky, and hidey, respectively. Finally, transition tstart has been added to
ensure configuration actions take place before the original net is activated. This

2[pk | p ∈ X] denotes the multiset where each element of X appears k times. Initially, pstart
contains one token. Since everything is allowed by default, also px and pax contain a token in
the initial marking (x ∈ L).

3Recall that m1 ⊕m2 denotes the composition of two multisets. The set of final markings
imposes no restrictions on the newly added places. For label x, any of the three possible
states — allowed [px, pax], blocked [pbx], or hidden [px, phx] — is possible.

14

p1

p2 p3

p4

t1

t2

t3

t4

x y

τx

(a) Open net N
(Ω = {[p4]})

p1

p2 p3

p4

start

tstart

pb
x

pb
y

t1

t2

t3

t4ττ

τ τ

pstart

pa
ypa

x

ph
y

hy hidey

ph
x

hxhidex blockx blockybx by

px py

(b) Configurable interface NCI
a (allow by de-

fault)

p1

p2 p3

p4

start

tstart

pb
x

pb
y

t1

t2

t3

t4ττ

τ τ

pstart

pa
ypa

x

ph
y

hy hidey

ph
x

hxhidex

px py

allowx allowy ayax

(c) Configurable interface NCI
b (block by de-

fault)

Figure 5: An example open net (a) and its two configuration interfaces: (b) shows the allow
by default variant and (c) shows the block by default variant.

way, we avoid “configuration on the fly”. Note that currently the only constraint
with respect to the final marking is that the original net must reach its final
marking — all added places may be marked arbitrarily. In Sect. 6, we shall refine
this final marking to encode domain knowledge and data dependencies. We shall
discuss the construction of the configuration interface where all activities are
blocked by default later on.

Consider now a configuration service represented as an open net Q. NCI
a ⊕Q

is the composition of the original open net (N) extended with a configuration
interface (NCI

a), and the configuration service Q. In the initial phase, i. e., before
start fires, only blocking and hiding transitions such as bx, by, hx, and hy can
fire (apart from unlabeled transitions in Q). Next, transition start fires after
which blocking and hiding transitions such as bx, by, hx, and hy can no longer
fire. Hence, only the original transitions in NCI

a can fire in the composition after
firing start. The configuration service Q may still execute transitions, but these
cannot influence NCI

a any more. Hence, Q represents a feasible configuration if

15

and only if NCI
a can reach one of its final markings from any reachable marking

in the composition. So Q corresponds to a feasible configuration if and only if
NCI

a ⊕Q is weakly terminating; that is, Q is a partner of NCI
a .

To illustrate the basic idea, we introduce the notion of a canonical con-
figuration partner ; that is, the representation of a configuration CN : L →
{allow , hide, block} in terms of an open net which synchronizes with the original
model extended with a configuration interface.

Definition 10 (Canonical configuration partner; allow by default). Let
N be an open net and let CN : L→ {allow , hide, block} be a configuration for
N . QCN

a = (P, T, F,m0,Ω, L
Q, `) is the canonical configuration partner with:

• L∗ = {x ∈ L | CN (x) 6= allow} is the set of labels other than “allow”,

• P = {p0x, pωx | x ∈ L∗},

• T = {tx | x ∈ L∗} ∪ {tstart},

• F = {(p0x, tx), (tx, p
ω
x), (pωx , tstart) | x ∈ L∗},

• m0 = [(p0x)1 | x ∈ L∗],4

• Ω = { [] },

• LQ = {blockx,hidex | x ∈ L∗} ∪ {start},

• `(tx) = blockx, if CN (x) = block, `(tx) = hidex, if CN (x) = hide, and
`(tstart) = start.

The set of labels which need to be blocked or hidden to mimic configuration
CN is denoted by L∗. The canonical configuration partner QCN

a has a transition
for each of these labels. These transitions may fire in any order after which the
transition with label start fires. We observe that in the composition NCI

a ⊕QCN
a

first all transitions with a label in {blockx,hidex | x ∈ L∗} fire in a synchronous
manner (i. e., tx in QCN

a fires together with bx or hx in NCI
a), followed by the

transition with label start (in both nets). After this, the net is configured and
QCN

a plays no role in the composition NCI
a ⊕QCN

a any more.
The following lemma formalizes the relation between the composition NCI

a ⊕
QCN

a and feasibility.

Lemma 1. Let N be an open net and let CN be a configuration for N . CN is a
feasible configuration if and only if NCI

a ⊕QCN
a is weakly terminating.

Proof. (⇒) Let CN be a feasible configuration for N and let NCI
a be as defined

in Def. 9. Consider the composition NCI
a ⊕QCN

a after the synchronization via
label start has occurred. By construction, (1) NCI

a ⊕QCN
a reached the marking

4Recall that [pk | p ∈ X] denotes the multiset where each element of X appears k times. []
denotes the empty multiset.

16

m = m0 ⊕ m1 ⊕ m2 such that m0 is the initial marking of N , m1 marks all
places pax, pbx, and phx of the labels x with CN (x) = allow, CN (x) = block, and
CN (x) = hide, respectively. Furthermore, place px is marked for all unblocked
labels x. Marking m2 is the empty marking of QCN . Furthermore, (2) all
transitions which bear a synchronization label (i. e., tstart and all bx and hx
transitions) and all blocked transitions t ∈ BC

N are dead in m and cannot become
enabled any more. From NCI

a , construct the net N∗ by removing these transitions
and their adjacent arcs, as well as the places added in the construction (pstart and
pax, pbx, and phx for all labels x ∈ L). The marking of these places does not change
any more, i. e., they either always contain a token or remain unmarked, and we
already removed the transitions that are blocked. The resulting net N∗ coincides
with βC

N (modulo renaming of labels which has no effect on termination). Hence,
NCI

a ⊕QCN
a weakly terminates.

(⇐) Assume NCI
a ⊕ QCN

a weakly terminates. From QCN
a , we can straight-

forwardly derive a configuration C for N in which all labels are blocked which
occur in NCI

a ⊕ QCN
a . With the same observation as before, we can conclude

that βC
N coincides with the net N∗ constructed from NCI

a after the removal the
described nodes. Hence, βC

N weakly terminates and C is a feasible configuration
for N .

Lemma 1 states that checking the feasibility of a particular configuration can
be reduced to checking for weak termination of the composition. However, the
reason for modeling configurations as partners is that we can synthesize partners
and test for the existence of feasible configurations.

Theorem 1 (Feasibility coincides with controllability). Let N be an open net.
NCI

a is controllable if and only if there exists a feasible configuration CN of N .

Proof. (⇒) If NCI
a is controllable, then there exists a partner N ′ of NCI

a such
that NCI

a ⊕N ′ is weakly terminating. Consider a marking m of the composition
reached by a run σ from the initial marking of NCI

a ⊕N ′ to the synchronization
via label start . Using the construction from the proof of Lemma 1, we can derive
a net N∗ from NCI

a which coincides with a configured net βC
N for a configuration

CN . As NCI
a ⊕N ′ is weakly terminating, CN is feasible.

(⇐) If CN is a feasible configuration of N , then by Lemma 1, NCI
a ⊕QCN

a

weakly terminates and by Def. 8, NCI
a is controllable.

As shown in Section 5.2, it is possible to synthesize a partner which is most-
permissive. This partner simulates any other partner and thus characterizes
all possible feasible configurations. In previous papers on partner synthesis in
the context of service oriented computing, the notion of an operating guideline
was used to create a finite representation capturing all possible partners [17].
Consequently, we use the term Configuration Guideline (CG) to denote the
most-permissive partner of a configuration interface. Figure 6(a) shows the
configuration guideline CGa for the configurable model in Fig. 5(a), computed
from the configuration interface NCI

a in Fig. 5(b).

17

(a) CGa Allow by default

(b) CGb Block by default

Figure 6: Two configuration guidelines characterizing all possible configurations.

A configuration guideline is an automaton with one start state and one or
more final states. Any path in the configuration guideline starting in the initial
state and ending in a final state corresponds to a feasible configuration. The
initial state in Fig. 6(a) is denoted by a small arrow and the final states are
denoted by double circles. The leftmost path in Fig. 6(a) (i. e., 〈blockx, start〉),
corresponds to the configuration which blocks label x. Path 〈blocky, start〉
corresponds to the configuration which blocks label y. The rightmost path (i. e.,
〈start〉) does not block any label. The three paths capture all three feasible
configurations that do not consider hiding steps. As hiding and allowing have
the same effect on the original net (i. e., the respective labeled transitions may
fire), each configuration that does not block a transition (and hence allows it by
default) may further hide that transition. This yields a large number of further
possible configurations. Figure 6(a) lists all feasible configurations, and, for
example, shows that blocking both labels is not feasible. Since there are only
two labels and eight feasible configurations, the conclusions based on Fig. 6(a)
are rather obvious. However, configuration guidelines can be automatically
computed for large and complex configurable process models.

5.4. Configuration Interface: Block by Default

Thus far, we used a configuration interface that allows all configurable
activities by default, that is, blocking and hiding are explicit actions of the

18

partner. It is also possible to use a completely different starting point and
initially block all activities.

Definition 11 (Configuration interface; block by default). LetN = (P, T,
F,m0,Ω, L, `) be an open net. We define the open net with configuration interface
NCI

b = (PC , TC , FC ,mC
0 ,Ω

C , LC , `C) with

• PC = P ∪ {pstart} ∪ {px, pax, pbx, phx | x ∈ L},

• TC = T ∪ {tstart} ∪ {ax, hx | x ∈ L},

• FC = F∪{(pstart, tstart)}∪{(tstart, p) | p ∈ P∧m0(p) = 1}∪{(t, px), (px, t) |
`(t) = x} ∪ {(ax, pstart), (pstart, ax) | x ∈ L} ∪ {(hx, pstart), (pstart, hx) | x ∈
L} ∪ {(pbx, ax), (ax, p

a
x), (ax, px) | x ∈ L} ∪ {(pbx, hx), (hx, p

h
x), (hx, px) | x ∈

L},

• mC
0 = [p1 | p ∈ {pstart} ∪ {pbx | x ∈ L}],

• ΩC = {m⊕
⊕

x∈Lm
∗
x | m ∈ Ω ∧ ∀x∈L m∗x ∈ {[px, pax], [pbx], [px, p

h
x]} },

• LC = {start} ∪ {allowx,hidex | x ∈ L}

• `C(tstart) = start, `C(ax) = allowx and `C(hx) = hidex for x ∈ L, and
`C(t) = τ for t ∈ T .

NCI
b in Fig. 5(c) shows the configuration interface where all activities are

blocked by default. The idea is analogous to the construction of NCI
a . Instead

of bx and by, transitions ax and ay are added to model the explicit allowing
of labels x and y, respectively. Furthermore, the initial marking was adjusted:
places px and py are initially unmarked such that, by default, none of the
original transitions can fire. These places can be marked by allowing or hiding
the respective label. Very similar to the “allow by default” case, we define a
canonical configuration partner.

Definition 12 (Canonical configuration partner; block by default). Let
N be an open net and let CN : L→ {allow , hide, block} be a configuration for
N . QCN

b = (P, T, F,m0,Ω, L
Q, `) is the canonical configuration partner with:

• L∗ = {x ∈ L | CN (x) 6= block} is the set of labels other than “block”,

• P = {p0x, pωx | x ∈ L∗},

• T = {tx | x ∈ L∗} ∪ {tstart},

• F = {(p0x, tx), (tx, p
ω
x), (pωx , tstart) | x ∈ L∗},

• m0 = [(p0x)1 | x ∈ L∗],

• Ω = { [] },

• LQ = {allowx,hidex | x ∈ L∗} ∪ {start},

19

• `(tx) = allowx, if CN (x) = allow, `(tx) = hidex, if CN (x) = hide, and
`(tstart) = start.

The structure of the canonical configuration partner QCN

b is identical to that
of QCN

a . Only the labels are different; that is, L \ L∗ are the labels that need
to be “unblocked” (i. e., allow or hide). Moreover, we obtain the same results
linking feasibility to controllability.

Lemma 2. Let N be an open net and let CN be a configuration for N . CN is a
feasible configuration if and only if NCI

b ⊕QCN

b is weakly terminating.

Proof. Analogous to the proof of Lemma 1.

Theorem 2 (Feasibility coincides with controllability). Let N be an open net.
NCI

b is controllable if and only if there exists a feasible configuration CN of N

Proof. Analogous to the proof of Theorem 1.

Figure 6(b) shows the configuration guideline CGb for the configurable
model in Fig. 5(a), computed from the configuration interface NCI

b in Fig. 5(c).
Again, any path in CGb starting in the initial state and ending in a final state
correspond to a feasible configuration. The leftmost path (i. e., 〈allowx, start〉)
corresponds to the configuration which “unblocks” label x by allowing it. Paths
〈allowx, allowy, start〉 and 〈allowy, allowx, start〉 correspond to the configuration
where both x and y are allowed. The path 〈allowy, start〉) allows y only. Similar
paths exist for hiding, e.g., 〈hidex, start〉 corresponds to the configuration which
“unblocks” label x by hiding it. Again there are eight feasible configurations (see
final states in Fig. 6(b)).

Clearly, the two configuration guidelines in Fig. 6 point to the same set
of feasible configurations as they refer to the same original model. In can be
noted that for each configuration that contains an allowx there also exists a
configuration with a hidex, but otherwise identical actions. This is always the
case; hiding and allowing are equivalent with respect to feasibility. For this
reason, we shall not depict hiding actions in the remainder of this section. We
have included them both in the constructs used because they become relevant
when dealing domain knowledge and data dependencies (see Section 6). For
example, if a transition produces a data element used later in the process, there
is a clear difference between hiding or blocking it.

5.5. Another Example

Let us now consider a more elaborated example to see how configuration
guidelines can be used to rule out unfeasible configurations. Figure 7 shows
three open nets. The structures are identical, only the labels are different. For
example, blocking x in N2 corresponds to removing both t1 and t4 as both
transitions bear the same label, while blocking x in N3 corresponds to removing
t1 and t5. For these three nets, we can construct the configuration interfaces
using Def. 9 and then synthesize the configuration guidelines, as shown in Fig. 8.

20

p1

p2

p3 p4

p5

p6

v w

x

y z

t1 t2

t3

t4 t5

(a) N1

p1

p2

p3 p4

p5

p6

x

x y

y

τ

t1 t2

t3

t4 t5

(b) N2

p1

p2

p3 p4

p5

p6

τ

x y

y x

t1 t2

t3

t4 t5

(c) N3

Figure 7: Three open nets (Ω = {[p6]}).

(a) CGa
1 (b) CGa

2 (c) CGa
3

Figure 8: The configuration guidelines (allow by default) for N1 (a), N2 (b) and N3 (c). Hiding
actions are not depicted.

For these three nets, we can construct the configuration interfaces using Def. 9
or Def. 11, and then synthesize the configuration guidelines. Figure 8 shows the
three configuration guidelines using Def. 9 (allow by default). As mentioned
before, we refrained from presenting configurations that contain hiding activities.

Figure 8(a) reveals all feasible configurations for N1 in Fig. 7(a). From
the initial state in the configuration guideline CGa

1 , we can immediately reach
a final state by following the rightmost path 〈start〉. This indicates that all
configurations which block nothing (i. e., only allow or hide activities) are feasible.
It is possible to just block v (cf. path 〈blockv, start〉) or block both v and y
(cf. paths 〈blockv,blocky, start〉 and 〈blocky,blockv, start〉). However, it is not
allowed to block y only, otherwise a token would deadlock in p3. For the same
reasons, one can block w only or w and z, but not z only. Moreover, it is not
possible to combine the blocking of w and/or z on the one hand and v and/or y
on the other hand, otherwise no final marking can be reached. Also x can never
be blocked, otherwise both v and w would also need to be blocked (to avoid a
token to deadlock in p2) which is not possible. There are 35 = 243 configurations
for N1. If we abstract from hiding as this does not influence feasibility (assuming
we abstract from data and domain knowledge; see Section 6), there remain

21

25 = 32 possible configurations. Of these only 5 are feasible configurations which
correspond to the final states in Fig. 8(a). This illustrates that the configuration
guideline can indeed represent all feasible configurations in an intuitive manner.

Figure 8(b) shows the three feasible configurations for N2 in Fig. 7(b). Again
all final states correspond to feasible configurations. Here one can block the two
leftmost transitions (labeled x) or the two rightmost transitions (labeled y), but
not both.

The configuration guideline in Fig. 8(c) shows that nothing can be blocked
for N3 (Fig. 7(c)). Blocking x or y will yield an unfeasible configuration as a
token will get stuck in p4 (when blocking x) or p3 (when blocking y). If both
labels are blocked, none of the transitions can fire and thus no final marking can
be reached.

In the next section we show how the partner synthesis can be further refined by
ruling out specific partners based on domain knowledge and data dependencies.

6. Dealing with Domain Knowledge and Data Dependencies

Given an open net modeling a configurable process model, we can compute a
configuration guideline. This configuration guideline characterizes all feasible
configurations. The only consideration used to construct the configuration
guideline has been weak termination of the model after configuration, i.e., it
should always be possible to reach a desirable end state. However, in practice
there will be many more constraints that a configuration should satisfy. For
example, there may be domain constraints that inhibit particular configurations
(e.g., a check activity may only be hidden when the payment activity is blocked).
Data dependencies may also introduce such constraints. For example, if the only
activity producing data element X is hidden, all subsequent activities using X
should be blocked or hidden. These examples show that there is a significant
difference between hiding and allowing whereas this was irrelevant for weak
termination (cf. Section 5). Therefore, we introduce the notion of configuration
constraints. Section 6.1 motivates the need for such constraints. Section 6.2
shows how these constraints can be formalized by simply restricting the set of
final markings. As will be shown in Section 6.3, the notion of configuration
constraints can be trivially embedded in the approach described in Section 5.
This results in configuration guidelines that consider both weak termination and
additional configuration constraints.

6.1. Configuration Constraints

Typically, configurable process models cannot be freely configured, i.e., even
if the resulting configured model is free of deadlocks and livelocks, there may be
good reasons for not allowing a particular configuration.

First of all, a configuration has to comply with constraints imposed by
characteristics of the application domain [31]. Let us consider the travel request
example in Fig. 3. In this business process there must always be an option
to approve the request, and an option to reject it. Thus, we cannot block the

22

label of transition t8, nor that of t9, although blocking either of these labels
would still result in a feasible configuration. Moreover, we cannot hide the
label of t6 because a travel request cannot be approved or rejected if it has not
been submitted first. These examples show that domain constraints may limit
the space of acceptable configurations. Corporate governance and regulatory
compliance may result in additional configuration constraints, e.g., there may be
legal reasons for excluding particular configurations, such as the absence of a
particular check activity.

In a similar vein, data dependencies among activities may prevent certain
combinations of hiding and blocking. Activities typically have input data and
output data. Suppose that activity a1 creates a data element d that is later used
by activity a2. Obviously, it is not possible to hide or block a1 while keeping a2.
Coming back to the travel request example, we cannot hide the labels of t1 and
t2 because the data needed in subsequent steps would be missing. These two
transitions create the Travel Form, which is used as input by all other transitions,
e.g. transition “Arrange travel insurance” reads the Travel Form as input and
writes an Insurance document as output. Although hiding the labels of t1 and
t2 creates an obvious problem, we would not be able to observe this by just
considering Definition 6. This shows that data needs to be taken into account
when constructing the configuration guideline.

There is no need to take the actual data values into account; only the
presence of data matters. Data presence can be checked by providing a so-called
CRUD matrix. This is a matrix showing the relation between activities and
data elements using the basic operations Create (C), Read (R), Update (U), and
Delete (D). The idea to link data elements to activities originates from IBM’s
Business Systems Planning (BSP) methodology developed in the early eighties.

In [32] it was shown how the information contained in a CRUD matrix can
be added to a process model expressed in terms of Petri nets. The operations
considered in [32] are: read (activity a requires a data element d as input), write
(activity a creates or updates data element d), destroy (activity a deletes data
element d), and guard (a Boolean condition over data element d is used to route
control to activity a). Figure 9 shows a refined version of net N1 in Fig. 7(a),
namely net ND, which has been enriched with data manipulation aspects.

These data operations can be encoded in a Petri net which models the
presence of data elements and the state of guards. There is no need to encode
the explicit values of data elements to find data dependency errors. In [32] a
set of data-flow anti-patterns is defined. For instance, the anti-pattern DAP 1
(Missing Data) describes the situation where some data element needs to be
accessed, i.e., read or destroyed, but either it has never been created or it has
been deleted without having been created again. Hiding an activity that creates
a data element may easily result in the situation described by DAP 1. The
data-flow anti-patterns are defined in the context of WF-nets. However, the ideas
can easily be converted to open nets. In this paper, we do not list the various
anti-patterns. Instead, we focus on the implications for process configuration.

Let us consider Fig. 9 again. This process starts when data element a is
available. Based on the evaluation of the guard pred(a), control is either routed

23

[pred(a)]

v
read: a

write: c

destroy:

t1

w
read: a

write: d

destroy:

t2

x
read: a

write: e

destroy: a

t3

p1

p2

y
read: c,e

write: f

destroy: c,e

t4

p3 p4

p5

p6

z
read: d,e

write: g

destroy: d,e

t5

[¬pred(a)]

Figure 9: Net ND models an open net annotated with information on data, e.g., transition t1
has a guard involving data element a, t1 reads a, and writes c.

to activity v or to activity w. Both these activities need to read a to start. v
uses a to write, i.e. create, a new data element c, whereas w uses a to create d.
After one of these activities is executed, control is passed to activity x which
also requires a to start. This activity creates e and destroys a. The process
concludes with the execution of y or z, based on the set of data elements that
are available after executing x, i.e. c and e (in this case y is executed) or d and
e (in this case z is executed).

From a configuration point of view, we are interested in the data dependencies
that activity y has on activities v and x. v creates c and x creates e, which are
both needed by y. These data dependencies imply the following data constraints
for configuration: i) we can no longer block or hide v without also blocking
or hiding y; and ii) we can no longer hide x without also hiding or blocking y
(recall that x cannot be blocked for correctness reasons, as shown in Fig. 8(a)).
Indeed, if we do not also hide or block y, this activity will deadlock waiting
for a data element that will never be available. Similarly, z depends on the
output produced by w and x. Thus, we can no longer block or hide w, or hide
x, without also blocking or hiding z, otherwise the latter activity will deadlock.
On the other hand, the dependency of activities v, w and x on a, as well as
the guard on a, do not have any implication on the configuration of this net
because a is an external data element. In fact, for the sake of refining the set of
feasible configurations, we are only interested in the internal data dependencies

24

among activities. More precisely, we consider reads, destroys and guards on data
elements that are produced by some activity in the net.

In summary, both domain knowledge and data dependencies may limit
the total number of feasible configurations. We refer to such restrictions as
configuration constraints.

6.2. Formalization of Configuration Constraints

In order to consider configuration constraints in the partner synthesis, we
introduce boolean constraints (“formulae”) over activity labels (i.e., set L). For
example, the domain constraint that the label of transition t8 (“Approve Travel
Form”) cannot be blocked in our travel request process, can be expressed as
¬block`(t8) (recall that visible transition labels correspond to activities, i.e., we
do not block a specific transition, but all transitions having label x). Further,
the data constraint that the labels of t1 and t2 cannot be simultaneously hidden,
can be expressed as ((hide`(t1) ⇒ ¬hide`(t2))∧ (hide`(t2) ⇒ ¬hide`(t1))), whereas
the data constraints among the transitions of net ND can be expressed as
allowy ⇒ (allowv ∧ allowx) and allowz ⇒ (alloww ∧ allowx).

Definition 13 (Formula). Formulae are defined inductively:
(Base) For a label x ∈ L, allowx, blockx and hidex are formulae. F =⋃

x∈L{allowx,blockx,hidex} is the set of all atomic formulae.
(Step) If ϕ and ψ are formulae, so are ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ), and (ϕ⇒ ψ).

Examples of atomic formulae are allowx and hidey. Examples of non-atomic
formulae are (allowx ∨ hidey) and ((hidex ∧ blocky)⇒ ¬hidez).

Such formulae are generated based on domain knowledge and data dependen-
cies. In [31] we showed how domain constraints can be transformed into such
formulae while in [32] we showed how data dependencies can be extracted from
a process model enhanced with data operations.

Next, we translate these formulae into constraints on the set of final markings
of a configuration interface. In Definition 9, we defined that the set of final mark-
ings of the configuration interface (allow by default) is ΩC = {m⊕

⊕
x∈Lm

∗
x |

m ∈ Ω ∧ ∀x∈L m∗x ∈ {[px, pax], [pbx], [px, p
h
x]} }. The configuration interface de-

fined in Definition 11 (block by default) specified the same set of final markings
ΩC . Hence, in both cases each label x is required to be in one of the following
three states: [px, p

a
x] (allowed), [pbx] (blocked), or [px, p

h
x] (hidden). Since this

covers all three possibilities, it does not constrain the set of feasible configura-
tions. We observe that after firing tstart, the state of a label does not change
any more. Therefore, domain knowledge and data dependencies can be captured
by removing undesirable markings from ΩC .

Definition 14 (Translation of formulae into a set of final markings).
Let N = (P, T, F,m0,Ω, L, `) be an open net and ϕ be a formula representing
the conjunction of all constraints resulting from domain knowledge and data
dependencies. Aϕ ⊆ 2F is the set of all satisfying assignments of ϕ.

25

For an assignment A ∈ Aϕ and label x ∈ L, we define the multiset mx
A with:

mx
A =

[px, p

a
x], allowx ∈ A

[pbx], blockx ∈ A
[px, p

h
x], hidex ∈ A

This allows us to redefine the set of final markings of the configuration interface:

ΩC = {m⊕
⊕
x∈L

mx
A | m ∈ Ω ∧ A ∈ Aϕ}

Each assignment corresponds to a set of final markings. The redefined set of final
markings ΩC can be used in the configuration interfaces defined in Definitions 9
and 11. By restricting ΩC , domain knowledge and data dependencies are taken
into account when checking feasibility and when constructing the configuration
guideline.

6.3. Computing Configuration Guidelines Using Additional Constraints

The idea to constrain the set of partners of an open net by adjusting its
final marking is inspired by the concept of behavioral constraints presented in
[33]. By replacing ΩC in Definitions 9 and 11 by the constrained ΩC specified in
Definition 14 we limit the set of feasible configurations to all weakly terminating
configurations that do not violate any of the configuration constraints. This
implies that we can still use the approach described in Section 5, i.e., using
partner synthesis we synthesize a partner which is most-permissive resulting in
the desired the configuration guideline.

Consider again ND, the configurable model extended with data, shown in
Fig. 9. Assume that we have two configuration constraints: allowy ⇒ (allowv ∧
allowx) and allowz ⇒ (alloww ∧ allowx). Based on these constraints we redefine
the set of final markings of the configuration interface ΩC . Based on the first con-
figuration constraint (allowy ⇒ (allowv ∧ allowx)) we remove those combinations
of markings featuring [py, p

a
y, p

b
v], [py, p

a
y, pv, p

h
v], [py, p

a
y, p

b
x], or [py, p

a
y, px, p

h
x].

Based on the second configuration constraint (allowz ⇒ (alloww ∧ allowx))
we remove all combinations featuring [pz, p

a
z , p

b
w], [pz, p

a
z , pw, p

h
w], [pz, p

a
z , p

b
x], or

[pz, p
a
z , px, p

h
x]. This leads to the new configuration guideline CGa

ND
depicted in

Fig. 10 (for simplicity those actions that have been hidden are not depicted).
For example, now it is no longer possible to complete a configuration by blocking
v only, i.e., y needs also to be blocked. It is also not possible to block only w, i.e.
z also needs to be blocked. Compare Fig. 10 with Fig. 8(a) to see the differences
between both configuration guidelines.

Although the example does not show the labels that have been hidden, we
stress that from the viewpoint of domain knowledge and data dependencies there
is a considerable difference between allowing and hiding an activity. When an
activity is hidden no data is consumed nor produced. Therefore, we included
hiding in the configuration interfaces (Definitions 9 and 11). Without adding

26

Figure 10: CGa
ND

the configuration guideline (allow by default) for ND (hidden actions are

not shown).

this to the corresponding interfaces, we would be unable to express constraints
related to hiding.

The simplicity of handling configuration constraints illustrates the flexibility
of our approach based on partner synthesis.

7. Tool Support

To prove the feasibility of our approach, we applied it to the configuration of
C-YAWL models [6] and extended the YAWL system accordingly.5 The YAWL
language can be seen as an extension of Petri nets which provides “syntactic
sugaring” (shorthand notations for sequences and XOR-splits/joins). An atomic
activity is called a task in YAWL. Composite tasks represent subprocesses. YAWL
also provides advanced constructs such as cancelation sets, multiple instance
tasks and OR-joins. YAWL is based on the well-know workflow patterns.6 The
YAWL system supporting this language is one of the most widely used open
source workflow systems. For configuration, we restrict ourselves to the basic
control-flow patterns supported by most systems. Thus we leave out YAWL’s
cancelation sets, multiple instance tasks and OR-joins. This allows us to easily
map a YAWL model onto an open net.

A C-YAWL model is a YAWL model where some tasks are annotated as
configurable. Configuration is achieved by restricting the routing behavior of
configurable tasks via the notion of ports. A configurable task’s joining behavior is
identified by one or more inflow ports, whereas its splitting behavior is identified
by one or more outflow ports. The number of ports for a configurable task
depends on the task’s routing behavior. For example, an AND-split/join and
an OR-join are each identified by a single port, whereas an XOR-split/join is
identified by one port for each outgoing/incoming flow. An OR-split is identified
by a port for each combination of outgoing flows. To restrict a configurable
task’s routing behavior, inflow ports can be hidden (thus the corresponding

5http://www.yawlfoundation.org
6http://www.workflowpatterns.com

27

http://www.yawlfoundation.org
http://www.workflowpatterns.com

Figure 11: The C-YAWL model for travel request approval.

task will be skipped) or blocked (no control will be passed to the corresponding
task via that port), whereas outflow ports can only be blocked (the outgoing
paths from that task via that port are disabled). For instance, Fig. 11 shows
the C-YAWL model for the travel request approval in the YAWL Editor, where
configurable tasks are marked with a thicker border.

The YAWL Editor can be downloaded from www.yawlfoundation.org. It
provides a graphical interface to conveniently configure and check C-YAWL
models and subsequently generate configured models. Given a configuration, the
tool can show a preview of the resulting configured net by graying out all model
fragments which have been blocked, and commit the configuration by removing
these fragments altogether.

To assist end users in ruling out all unfeasible configurations in an interactive
manner, we developed a new component for the YAWL Editor named C-YAWL
Correctness Checker. Given a C-YAWL model in memory, the component first
maps this model into an open net. More precisely, it maps each condition to
a place, each configurable task’s port to a labeled transition, and each non-
configurable task to a silent transition. Also, for each task it adds an extra place
to connect the transition(s) derived from its inflow port(s) with the transition(s)
derived from its outflow port(s). By using silent transitions we prevent non-
configurable tasks from being later configured via a configuration interface. Next,
the component passes the generated open net to the tool Wendy [16]. Wendy
creates the corresponding configuration interface (allow by default), and produces
the configuration guideline (allow by default) from the latter artifact.

28

www.yawlfoundation.org

YAWL Editor

WendyC-YAWL Correctness Checker

mapping

analysis

Configuration
interface

Open net

Configuration
guideline

generation

generation
Configured

YAWL model

C-YAWL model

Interactive
configuration

User

Figure 12: The interaction between the C-YAWL Correctness Checker and the Wendy tool.

Wendy is a free and open source tool7 which implements the algorithms for
partner synthesis [15] and to calculate operating guidelines [17]. Wendy itself
offers no graphical user interface, but is controlled by input/output streams. In
our setting, Wendy’s output is piped back into the Correctness Checker, where it
can be parsed. The component’s interaction with Wendy is illustrated in Fig. 12.

The construction of the configuration guideline is based on partner synthesis
as described in Section 5.2. Hence, we inherit the complexity of the partner
synthesis algorithm. To synthesize a partner for an open net N with label set L,
first a graph is constructed that over-approximates any potential interaction with
N using the communication labels from L. Second, any behavior that violates
weak termination is removed. If this results in a non-empty graph, we conclude
N is controllable. We refer to [15] for a detailed description of the synthesis
algorithm.

The complexity of this algorithm is dominated by the potential size of the
over-approximation which is at most exponential i) on the size of N (because
the reachability graph of N needs to be generated), and ii) on the size of L.
The tool Wendy implements several reduction techniques to address potential
problems due to this worst case complexity. First, the internal behavior that does
not influence the interaction behavior is removed from the reachability graph.
Second, the reachability graph is further preprocessed to discover non-terminating
behavior as early as possible. Third, efficient data structures further minimize
the memory footprint of the over-approximation stage. These optimizations

7Available for download at http://service-technology.org/wendy.

29

http://service-technology.org/wendy

speed-up Wendy significantly when applied to real-life examples. Practical
experiences show that Wendy is able to analyze industrial models having millions
of states. Wendy is also capable of synthesizing partners of similar sizes [16].

At each configuration step, the Correctness Checker scans the set of outgoing
edges of the current state in the configuration guideline, and prevents users
from blocking those ports not included in this set. This is done by disabling
the block button for those ports. As users block a valid port, the Correctness
Checker traverses the configuration guideline through the corresponding edge
and updates the current state. If this is not a consistent state, that is, a state
with an outgoing edge labeled “start”, further ports need to be blocked, because
the current configuration is unfeasible. In this case the component provides an

“auto complete” option. This is achieved by traversing the shortest path from
the current state to a consistent state and automatically blocking all ports on
that path. After this, the component updates the current state and notifies the
user with the list of ports that have been automatically blocked. For example,
Fig. 11 shows that after blocking the input port of task Check and Update Travel
Form, the component notifies the user that the input port of task Prepare Travel
Form for Approval (Secretary) and the output port of task Submit Travel Form
for Approval to task Request for Change have also been blocked. Figure 13
shows the preview of the resulting configured net. From this we can observe
that condition p3 and task Request for Change will also be removed from the
net as a result of applying the earlier configuration. Similarly, the component
maintains a consistent state in case users decide to allow a previously blocked
port. In this case the component traverses the shortest backward path to the
closest consistent state and allows all ports on that path. By traversing the
shortest path we ensure that the number of ports being automatically blocked
or allowed is minimal.

This auto-completion feature can be extended by prompting the user with
the set of paths from the current state to a consistent state of a given length
(e.g. five states). In this way the user can select which combinations of ports to
block/allow in order to keep the configuration feasible.

The C-YAWL example of Fig. 11 comprises ten inflow ports and nine outflow
ports. In total more than 30 million configurations are potentially possible. If
we abstract from hiding we obtain 524,288 possible configurations, of which
only 1,593 are feasible according to the configuration guideline. Wendy took
an average of 336 seconds (on a 2.4 GHz processor with 2GB of RAM) to
generate this configuration guideline which consumes 3.37 MB of disk space.
Nonetheless, the shortest path computation is a simple depth-first search which
is linear in the number of nodes in the configuration guideline. Thus, once the
configuration guideline has been generated, the component’s response time at
each user interaction is instantaneous.

8. Related Work

Traditional reference models [7–10] are typically not executable. For example,
the well-known SAP reference model is disconnected from the actual system

30

Figure 13: The preview of a configured net for the example in Fig. 11.

and has many internal inconsistencies [34]. Such models focus on training and
documentation rather than enactment. Configurable process models [3, 4, 6, 20,
35] can be seen as executable reference models.

In this paper, we take the viewpoint that configuration is achieved by re-
striction (i.e., hiding and blocking). Other paradigms are possible. For example,
in the Provop (Managing and Configuring Process Variants) approach process
designers create process variants by applying well-defined change operations
on some reference model [13, 14]. Another example is the Application-based
Domain Modeling (ADOM) approach which allows both reuse (i.e., restriction)
and specialization [18, 19]. Specialization corresponds to the concretization
of a reference model element into a specific business process model element.
In [12] both configurative and generic adaptation techniques are proposed for
adaptive reference modeling. In [36, 37] an approach is described to discover a
reference model for which the edit distance to a given set of variants is minimal.
This approach assumes that configuration corresponds to a sequence of change
operations. Nevertheless, the majority of process configuration approaches use
restriction of behavior as a configuration mechanism [3, 4, 6, 20, 35]. This paper
also assumes that configuration is done through behavioral restrictions (hiding
and blocking).

Since configurable process models are actively used to support processes,
they need to be correct and only correct configurations should be allowed. Many
researchers have worked on the verification of business processes, workflows,
and services (e.g., [21, 32, 34, 38–41]). However, these approaches focus on the
analysis of one process in isolation and can only be used to exhaustively verify

31

all possible configurations to create a configuration guideline. In this respect,
they face the state-space explosion problem.

To the best of our knowledge, our earlier approach [5] is the only one focusing
on the behavioral correctness of process configurations which avoids state-space
explosion. Other approaches either only discuss syntactical correctness related
to configuration [3, 11, 12], or deal with behavioral correctness but run into
the state-space problem [13]. For example, [3] preserves syntactic correctness
by construction of the configured EPC model from a C-EPC, whereas [11, 12]
prompt users with a list of syntactic issues detected during process configuration,
which need to be manually fixed. Finally, [13] proposes to check the correctness
of each single configured process model.

The approach in [5] presents a technique to derive propositional logic con-
straints from configurable process models that, if satisfied by a configuration step,
guarantee the behavioral correctness of the configured model. This approach
allows correctness to be checked at each intermediate step of the configuration
procedure. Whenever a configuration value is assigned to a transition label (e.g.
x is blocked), the current set of constraints is evaluated. If the constraints are
satisfied, the configuration step is applied. If on the other hand the constraints
are violated, a reduced propositional logic formula is computed, from which addi-
tional configuration values are determined, that also need to be applied in order
to preserve correctness. Unfortunately, this approach requires the configurable
process model to be a sound, free-choice Workflow net. Thus, these requirements
limit the applicability of the approach. In the current paper, we do not impose
such restrictions.

This paper is an extended version of [42]. In [42], we already described the
idea of synthesizing a configuration guideline based on the partner synthesis
approach [15]. However, in [42] we abstracted from hiding and only showed one
configuration interface (allow by default). The actual construction presented in
Section 5 is different from that in [42] to be able to deal with hiding. Moreover,
we showed the configuration interface where everything is blocked by default.
Hiding, blocking and allowing are now symmetric. In principle, we could have
also provided a configuration interface that hides by default. Finally, we showed
how constraints can be incorporated in our approach. These constraints may
be derived from the domain in which the configurable process model has been
constructed, or from data dependencies that exist among process tasks.

9. Conclusion

Configurable process models are a means to compactly represent families of
process models. However, the verification of such models is difficult as the number
of possible configurations grows exponentially in the number of configurable
elements. Due to concurrency and branching structures, configuration decisions
may interfere with each other and thus introduce deadlocks, livelocks and other
anomalies. The verification of configurable process models is challenging and only
few researchers have worked on this. Moreover, existing results impose restrictions
on the structure of the configurable process model and fail to provide insights

32

into the complex dependencies among different process model configuration
decisions.

The main contribution of this paper is an innovative approach for ensuring
correctness during process configuration. Using partner synthesis we compute the
configuration guideline — a compact characterization of all feasible configurations,
which allows us to rule out configurations that lead to behavioral problems. The
approach is highly generic and imposes no constraints on the configurable process
models that can be analyzed. Moreover, all computations are done at design
time and not at configuration time. Thus, once the configuration guideline has
been generated, the response time is instantaneous stimulating the practical
(re-)use of configurable process models. The approach is implemented in a
checker integrated in the YAWL Editor. This checker uses the Wendy tool to
ensure correctness while users configure C-YAWL models.

In previous work, we have shown that our Wendy tool can cope with models
generating millions of states. Furthermore, we have extensively evaluated the
use of process configuration by “behavior restriction” to various domains such
as logistics, municipalities and the screen business [4, 22, 35]. However, we
acknowledge that further evaluations need to be conducted, in order to claim
that the specific approach presented in this paper can be used in practice. This
is an avenue for future work.

Several interesting extensions to this work are possible. First, it is possible to
create more compact representations of configuration guidelines (e.g. exploiting
concurrency [29]). The “diamond structures” in the example configuration guide-
lines illustrate that regions can help fold the guidelines and separate unrelated
configuration decisions. However, more research is needed to understand how to
best present the configuration guidelines to end-users (see e.g. our earlier work on
questionnaire-based variability modeling [22]). Second, one could consider con-
figuration at run-time, that is, while instances are running, configurations can be
set or modified. This can be easily embedded in the current approach, but would
be impossible when using conventional techniques. Finally, we are interested in
relating this work on process configuration to process mining. Process mining
has been focusing on the analysis of individual processes. However, as more
and more variants of the same process need to be supported, it is interesting to
analyze differences between these variants based on empirical data.

Acknowledgments.. We thank Jingxin Xu for his help with the implementation
and testing of the C-YAWL component, and its integration with the Wendy tool.
We also thank the anonymous reviewers for their valuable feedback which helped
us improve the paper.

References

[1] W.M.P. van der Aalst, C. Stahl, Modeling Business Processes: A Petri Net
Oriented Approach, MIT press, Cambridge, MA, 2011.

[2] F. Leymann, D. Roller, Production Workflow: Concepts and Techniques,
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

33

[3] M. Rosemann, W.M.P. van der Aalst, A Configurable Reference Modelling
Language, Information Systems 32 (1) (2007) 1–23.

[4] M. La Rosa, M. Dumas, A. ter Hofstede, J. Mendling, Configurable Multi-
Perspective Business Process Models, Information Systems 36 (2).

[5] W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A. ter Hofstede, M. Rosa,
J. Mendling, Preserving Correctness During Business Process Model Con-
figuration, Formal Aspects of Computing 22 (3) (2010) 459–482.

[6] F. Gottschalk, W.M.P. van der Aalst, M. Jansen-Vullers, M. L. Rosa, Config-
urable Workflow Models, International Journal of Cooperative Information
Systems 17 (2) (2008) 177–221.

[7] T. Curran, G. Keller, SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model, Upper Saddle River, 1997.

[8] P. Fettke, P. Loos, Classification of Reference Models - A Methodology
and its Application, Information Systems and e-Business Management 1 (1)
(2003) 35–53.

[9] S. Huan, S. Sheoran, G. Wang, A Review and Analysis of Supply Chain
Operations Reference (SCOR) Model, Supply Chain Management - An
International Journal 9 (1) (2004) 23–29.

[10] R. Addy, Effective IT Service Management. To ITIL and Beyond!, Springer-
Verlag, Berlin, 2007.

[11] K. Czarnecki, M. Antkiewicz, Mapping Features to Models: A Template
Approach Based on Superimposed Variants, in: Proceedings of the 4th
Int. Conference on Generative Programming and Component Engineering,
Springer-Verlag, Berlin, 2005, pp. 422–437.

[12] J. Becker, P. Delfmann, R. Knackstedt, Adaptive Reference Modeling:
Integrating Configurative and Generic Adaptation Techniques for Infor-
mation Models, in: J. Becker, P. Delfmann (Eds.), Reference Modeling:
Efficient Information Systems Design Through Reuse of Information Models,
Physica-Verlag, Springer, Heidelberg, Germany, 2007, pp. 27–58.

[13] A. Hallerbach, T. Bauer, M. Reichert, Guaranteeing Soundness of Config-
urable Process Variants in Provop, in: CEC, IEEE, 2009, pp. 98–105.

[14] A. Hallerbach, T. Bauer, M. Reichert, Capturing Variability in Business
Process Models: The Provop Approach, Journal of Software Maintenance
and Evolution: Research and Practice 22 (6-7) (2010) 519–546.

[15] K. Wolf, Does my Service Have Partners?, in: K. Jensen, W.M.P. van der
Aalst (Eds.), Transactions on Petri Nets and Other Models of Concurrency
II, Vol. 5460 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
2009, pp. 152–171.

34

[16] N. Lohmann, D. Weinberg, Wendy: A Tool to Synthesize Partners for
Services, in: J. Lilius, W. Penczek (Eds.), International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency,
Vol. 6128 of Lecture Notes in Computer Science, Springer-Verlag, 2010, pp.
297–307

[17] N. Lohmann, P. Massuthe, K. Wolf, Operating Guidelines for Finite-State
Services, in: J. Kleijn, A. Yakovlev (Eds.), 28th International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency,
ICATPN 2007, Siedlce, Poland, June 25-29, 2007, Proceedings, Vol. 4546
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2007, pp.
321–341.

[18] I. Reinhartz-Berger, P. Soffer, A. Sturm, Organizational Reference Models:
Supporting an Adequate Design of Local Business Processes, International
Journal of Business Process Integrations and Management 4 (2) (2009)
134–149.

[19] I. Reinhartz-Berger, P. Soffer, A. Sturm, Extending the Adaptability of
Reference Models, IEEE Transactions on Systems, Man and Cybernetics -
Part A: Systems and Humans 40 (5) (2011) 1045–1056.

[20] A. Schnieders, F. Puhlmann, Variability Mechanisms in E-Business Process
Families, in: W. Abramowicz, H. Mayr (Eds.), Proceedings of the 9th
International Conference on Business Information Systems (BIS’06), Vol. 85
of LNI, GI, 2006, pp. 583–601.

[21] W.M.P. van der Aalst, K. Hee, A. ter Hofstede, N. Sidorova, H. Verbeek,
M. Voorhoeve, M. Wynn, Soundness of Workflow Nets: Classification,
Decidability, and Analysis, Formal Aspects of Computing 23 (3) (2011)
333–363.

[22] M. Rosa, W.M.P. van der Aalst, M. Dumas, A. ter Hofstede, Questionnaire-
based Variability Modeling for System Configuration, Software and Systems
Modeling 8 (2) (2009) 251–274.

[23] W.M.P. van der Aalst, Process-oriented Architectures for Electronic Com-
merce and Interorganizational Workflow, Information Systems 24 (8) (2000)
639–671.

[24] P. Massuthe, W. Reisig, K. Schmidt, An Operating Guideline Approach
to the SOA, Annals of Mathematics, Computing & Teleinformatics 1 (3)
(2005) 35–43.

[25] E. Kindler, A. Martens, W. Reisig, Inter-Operability of Workflow Appli-
cations: Local Criteria for Global Soundness, in: W.M.P. van der Aalst,
J. Desel, A. Oberweis (Eds.), Business Process Management: Models, Tech-
niques, and Empirical Studies, Vol. 1806 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2000, pp. 235–253.

35

[26] R. Heckel, Open Petri Nets as Semantic Model for Workflow Integration, in:
H. Ehrig, W. Reisig, G. Rozenberg, H. Weber (Eds.), Petri Net Technology
for Communication Based Systems, Vol. 2472 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2003, pp. 281–294.

[27] P. Massuthe, A. Serebrenik, N. Sidorova, K. Wolf, Can I find a Partner?
Undecidablity of Partner Existence for Open Nets, Information Processing
Letters 108 (6) (2008) 374–378.

[28] J. Desel, J. Esparza, Free Choice Petri Nets, Vol. 40 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge,
UK, 1995.

[29] E. Badouel, P. Darondeau, Theory of Regions, in: W. Reisig, G. Rozenberg
(Eds.), Lectures on Petri Nets I: Basic Models, Vol. 1491 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1998, pp. 529–586.

[30] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev,
Petrify: A Tool for Manipulating Concurrent Specifications and Synthesis of
Asynchronous Controllers, IEICE Transactions on Information and Systems
E80-D (3) (1997) 315–325.

[31] M. La Rosa, J. Lux, S. Seidel, M. Dumas, A. ter Hofstede, Questionnaire-
driven Configuration of Reference Process Models, in: CAiSE’07, Vol. 4495
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2007, pp.
424–438.

[32] N. Trcka, W.M.P. van der Aalst, N. Sidorova, Data-Flow Anti-Patterns:
Discovering Data-Flow Errors in Workflows, in: P. van Eck, J. Gordijn,
R. Wieringa (Eds.), Advanced Information Systems Engineering, Proceed-
ings of the 21st International Conference on Advanced Information Systems
Engineering (CAiSE’09), Vol. 5565 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2009, pp. 425–439.

[33] N. Lohmann, P. Massuthe, K. Wolf, Behavioral Constraints for Services, in:
BPM 2007, Vol. 4546 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2007, pp. 271–287.

[34] J. Mendling, H. Verbeek, B. van Dongen, W.M.P. van der Aalst, G. Neu-
mann, Detection and Prediction of Errors in EPCs of the SAP Reference
Model, Data and Knowledge Engineering 64 (1) (2008) 312–329.

[35] F. Gottschalk, T. Wagemakers, M. Jansen-Vullers, W.M.P. van der Aalst,
M. Rosa, Configurable Process Models: Experiences From a Municipality
Case Study, in: P. van Eck, J. Gordijn, R. Wieringa (Eds.), Advanced
Information Systems Engineering, Proceedings of the 21st International
Conference on Advanced Information Systems Engineering (CAiSE’09), Vol.
5565 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2009,
pp. 486–500.

36

[36] C. Li, M. Reichert, and A. Wombacher, Discovering Reference Models by
Mining Process Variants Using a Heuristic Approach, in: U. Dayal, J. Eder,
J. Koehler, H. Reijers (Eds.), Business Process Management (BPM 2009),
Vol. 5701 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
2009, pp. 344–362.

[37] C. Li, M. Reichert, A. Wombacher, The Minadept Clustering Approach for
Discovering Reference Process Models Out of Process Variants, International
Journal of Cooperative Information Systems 19 (3) (2010) 159–203.

[38] H. Lin, Z. Zhao, H. Li, Z. Chen, A Novel Graph Reduction Algorithm to
Identify Structural Conflicts, in: Proceedings of the Thirty-Fourth Annual
Hawaii International Conference on System Science (HICSS-35), IEEE
Computer Society Press, 2002.

[39] J. Dehnert, P. Rittgen, Relaxed Soundness of Business Processes, in: K. Dit-
trich, A. Geppert, M. Norrie (Eds.), Proceedings of the 13th International
Conference on Advanced Information Systems Engineering (CAiSE’01), Vol.
2068 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001,
pp. 157–170.

[40] W. Sadiq, M. Orlowska, Analyzing Process Models using Graph Reduction
Techniques, Information Systems 25 (2) (2000) 117–134.

[41] N. Sidorova, C. Stahl, N. Trcka, Soundness Verification for Conceptual
Workflow Nets With Data: Early Detection of Errors With the Most
Precision Possible, Information Systems 37 (7) (2011) 1026–1043.

[42] W.M.P. van der Aalst, N. Lohmann, M. Rosa, J. Xu, Correctness Ensur-
ing Process Configuration: An Approach Based on Partner Synthesis, in:
R. Hull, J. Mendling, S. Tai (Eds.), Business Process Management (BPM
2010), Vol. 6336 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2010, pp. 95–111.

37

