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Abstract. Only recently, process mining techniques emerged that can
be used for Operational decision Support (OS), i.e., knowledge extracted
from event logs is used to handle running process instances better. In the
process mining tool ProM, a generic OS service has been developed that
allows ProM to dynamically interact with an external information sys-
tem, receiving streams of events and returning meaningful insights on the
running process instances. In this paper, we present the implementation
of a novel business constraints monitoring framework on top of the ProM
OS service. We discuss the foundations of the monitoring framework con-
sidering two logic-based approaches, tailored to Linear Temporal Logic
on finite traces and the Event Calculus.

Keywords: Declare, process mining, monitoring, operational decision
support.

1 Introduction

Process mining has been traditionally applied on historical data that refers to
past, complete process instances. Recently, the exploitation of process mining
techniques has been extended to deal also with running process instances which
have not yet been completed. In this setting, process mining providesOperational
decision Support (OS), giving meaningful insights that do not only refer to the
past, but also to the present and the future [1]. In particular, OS techniques can
be used to: check the current state of affairs detecting deviations between the
actual and the expected behavior; recommend what to do next; predict what
will happen in the future evolution of the instance.

In order to enable the effective development of OS facilities, the widely known
process mining framework ProM 6 [2] incorporates a backbone for OS [3]. Here,
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all the common functionalities needed for OS are implemented, such as manage-
ment of requests coming from external information systems, dynamic acquisition
and correlation of incoming partial execution traces (representing the evolution
of process instances), and interaction with different process instances at the
same time. The OS backbone relies on a client-server architecture. The client is
exploited by an external stakeholder to send a partial trace to ProM and ask
queries related to OS. On the server side, an OS service (running inside ProM)
takes care of coordinating the available OS functionalities in order to answer
such queries. Multiple OS providers that encapsulate specific OS functionalities
can be developed and dynamically registered to the OS service.

In this work, we present the implementation of a novel runtime compliance
verification framework on top of the ProM OS. The framework is called Mo-
bucon (Monitoring business constraints) and its focus is to dynamically check
the compliance of running process instances with business constraints, detecting
deviations and measuring the degree of adherence between the actual and the
expected behavior.

Given a business constraints reference model and a partial trace characterizing
the running execution of a process instance, Mobucon infers the status of each
business constraint. In particular, it produces a constantly updated snapshot
about the state of each business constraint, reporting whether it is currently
violated. Consequently, it determines whether the process instance is currently
complying with the reference model or not. Beside this, other meaningful insights
can be provided to end users, such as, for example, indicators and metrics related
to the “degree of compliance”, e.g., relating the number of violated constraints
with their total number.

The paper is organized as follows. Section 2 presents the Declare language
[4] and its extension to include metric temporal constraints and constraints on
event-related data. The language is declarative and graphical. Moreover, Declare
has been formalized using a variety of logic-based frameworks, such as Linear
Temporal Logic (LTL) with a finite-trace semantics1 [5,6] and the Event Calcu-
lus (EC) [7,8]. Section 3 describes the architecture of our proposed framework. In
Sect. 4 and 5, we describe the implementation of two different reasoning engines
as OS providers based on LTL and on the EC respectively. We are currently
applying our framework to various real-world case studies; in Sect. 6, we re-
port on the monitoring of Declare constraints in the context of maritime safety
and security. Finally, Sect. 7 includes a comparison of the two approaches and
discusses related work and conclusion.

2 Declare

Declare is a declarative, constraint-based process modeling language first pro-
posed in [5,4]. In a constraint-based approach, instead of explicitly specifying
all the acceptable sequences of activities in a process, the allowed behavior of

1 For compactness, in the following we will use the LTL acronym to denote LTL on
finite traces.
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Fig. 1. Two Declare models in the context of maritime safety and security

the process is implicitly specified by means of declarative constraints, i.e., rules
that must be respected during the execution. In comparison with procedural
approaches, that produce “closed” models, i.e., models where what is not explic-
itly supported is forbidden, declarative languages are “open” and tend to offer
more possibilities for execution. In particular, the modeler is not bound anymore
to explicitly enumerate the acceptable executions and models remain compact:
they specify the mandatory and undesired behaviors, leaving unconstrained all
the courses of interaction that are neither mandatory nor forbidden.

Declare is characterized by a user-friendly graphical front-end and is based
on a formal back-end. More specifically, the formal semantics of Declare can be
specified by using LTL [5,6], abductive logic programming with expectations [6],
or the EC [7,8]. These characteristics are crucial for two reasons. First, Declare
can be used in real scenarios being understandable for end-users and usable
by stakeholders with different backgrounds. Second, Declare’s formal semantics
enable verification and automated reasoning. This is a key aspect in the imple-
mentation of monitoring tools for Declare models.

Figure 1a shows a simple Declare model elicited in the context of a real case
study related to the monitoring of vessels behavior in the context of maritime
safety and security. We use this example to explain the main concepts. It involves
four events (depicted as rectangles, e.g., Under way using engine) and three
constraints (shown as arcs between the events, e.g., not coexistence). Events
characterize changes in the navigational status of each monitored vessel. Con-
straints highlight mandatory and forbidden behaviors, implicitly identifying the
acceptable execution traces that comply with (all of) them. In our case study,
a vessel can be either Under way using engine or Under way sailing but not
both, as indicated by the not coexistence between such two events. A vessel can
be Constrained by her draught, but only after being Under way sailing (a vessel
equipped with an engine cannot be constrained by draught and a sailing vessel
cannot be constrained before it is under way). This is indicated by the precedence
constraint. Finally, after being Moored each vessel must eventually be Under way
using engine, as specified by the response constraint.

In [7], an extension of this constraint-based language has been proposed; this
extension incorporates also non-atomic activities (i.e., activities whose execution
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is characterized by a life cycle that includes multiple events), event-related data
and data-aware conditions and metric temporal constraints (for specifying delays,
deadlines and latencies). This extended language is exploited in Fig. 1b to augment
the aforementioned constraints with conditions on time and data. More specifi-
cally, we assume that each event is equipped with two data: the identifier of the
vessel and its type. In particular, the response constraint is now differentiated on
the basis of the vessel type, introducing different timing requirements (which are
specified with the granularity of minute). The first response constraint indicates
that if the type of the vessel is Passenger ship and eventMoored occurs, then Un-
der way using engine must eventually occur within 6 hours at most. The second
one indicates that if the type of the vessel is Cargo ship and Moored occurs, then
Under way using engine must eventually occur within 48 hours. A last standard re-
sponse constraint is employed to capture the behavior of all other vessels, without
imposing any deadline. Finally, although not explicitly shown in the diagram, each
constraint is applied to events that are associated to the same vessel identifier. This
correlation mechanism makes it possible to properly monitor also a unique event
streams collecting the evolving behaviors of multiple vessels at the same time.

3 Mobucon Architecture

Figure 2 shows the overall architecture of Mobucon. Mobucon relies on the gen-
eral architecture of the OS backbone implemented inside ProM 6. Such backbone
has been introduced and formalized using colored Petri nets in [3]; in Sect. 3.1,
we will therefore sketch some relevant aspects of the general architecture. In
Sect. 3.2, we ground the discussion to the specific case of Mobucon, discussing
the skeleton of our compliance verification OS provider. The data exchanged
between the Mobucon client and provider is illustrated in Sect. 3.3. Finally, in
Sect. 3.4, we describe the implemented Mobucon clients. The two concrete in-
stantiations of the Mobucon skeleton in the LTL and EC settings are discussed
in Sect. 4 and 5.

3.1 General Architecture

The ProM OS architecture relies on the well-known client-server paradigm. More
specifically, the ProM OS service manages the interaction with running process
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instances and acts as a mediator between them and the registered specific OS
providers.

Sessions are created and handled by the OS Service to maintain the state of
the interaction with each running client. To establish a stateful connection with
the OS Service, the client creates a session handle for each managed running
process instance, by providing host and port of the OS Service. When the client
sends a first query related to one of such running instances to the OS service,
it specifies information related to the initialization of the connection (such as
reference models, configuration parameters, etc.) and to the type of the queries
that will be asked during the execution. This latter information will be used by
the OS Service to select, among the registered active providers, the ones that
can answer the received query. The session handle takes care of the interaction
with the service from the client point of view, hiding the connection details and
managing the information passing in a lazy way. The interaction between the
handle and the service takes place over a TCP/IP connection.

3.2 Mobucon Skeleton

In Mobucon, the interaction between a client and the OS service mainly con-
sists of two aspects. First of all, before starting the runtime compliance verifi-
cation task, the client sends to the OS service the Declare reference model to
be used. This model is then placed inside the session by the OS service. The
reference model is an XML file that contains the information about events and
constraints mentioned in the model. This format is generated by the Declare
editor (www.win.tue.nl/declare/). The client can also set further information
and properties. For example, each constraint in the Declare reference model can
be associated to a specific weight, that can be then exploited to compute metrics
and indicators that measure the degree of adherence of the running instance to
the reference model.

Secondly, during the execution, the client sends queries about the current
monitoring status for one of the managed process instances. The session handle
augments these queries with the partial execution trace containing the evolution
that has taken place for the process instance after the last request. The OS
Service handles a query by first storing the events received from the client, and
then invoking the Mobucon provider.

The Mobucon provider recognizes whether it is being invoked for the first time
w.r.t. that process instance. If this is the case, it takes care of translating the
reference model onto the underlying formal representation. The provider then
returns a fresh result to the client, exploiting a reasoning component for the
actual result’s computation. The reasoning component, as well as the translation
algorithm, are dependent on the chosen logical framework (LTL or EC), while
the structure of the skeleton is the same for the two approaches. After each query,
the generated result is sent back to the OS service, which possibly combines it
with the results produced by other relevant providers, finally sending the global
response back to the client.

www.win.tue.nl/declare/
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3.3 Exchanged Data and Business Constraints States

We now discuss the data exchanged by the Mobucon client and provider. Note
that these data are common to both instantiations of the provider (Mobucon
LTL and Mobucon EC). The partial execution traces sent by the client to the
OS use the XES format (www.xes-standard.org/) for event data. XES is an
extensible XML-based standard recently adopted by the IEEE task force on
process mining.

The response produced by the Mobucon provider is composed of two parts.
The first part contains the temporal information related to the evolution of
each monitored business constraint from the beginning of the trace up to now.
At each time point, a constraint can be in one state, which models whether it
is currently: satisfied, i.e., the current execution trace complies with the con-
straint2; (permanently) violated, i.e., the process instance is not compliant with
the constraint; pending (or possibly violated), i.e., the current execution trace is
not compliant with the constraint, but it is possible to satisfy it by generating
some sequence of events. This state-based evolution is encapsulated in a fluent
model which obeys to the schema sketched in Fig. 3. A fluent model aggregates
fluents groups, containing sets of correlated fluents. Each fluent models a multi-
state property that changes over time. In our setting, fluent names refer to the
constraints of the reference model. The fact that the constraint was in a certain
state along a (maximal) time interval is modeled by associating a closed MVI
(Maximal Validity Interval) to that state. MVIs are characterized by their start-
ing and ending timestamps. Current states are associate to open MVIs, which
have an initial fixed timestamp but an end that will be bounded to a currently
unknown future value.

The Mobucon provider also computes the current value of a compliance in-
dicator of the running monitored instance. This number gives an immediate
feeling about the “degree of adherence” between the instance and the reference
model. A low degree of adherence can be interpreted differently depending on
the application domain. In general, it is used to classify a process instance as
“unhealthy”. However, it can also be used to show that a reference model is
obsolete and it must be improved to better reflect the reality. The compliance
indicator can be computed using different metrics, that can consider the cur-
rent state of constraints, as well as other information such as the weight of each
individual constraint. For example, the compliance indicator shown in Fig. 5a,
implemented in Mobucon LTL, is evaluated, at some time t, through the formula

1−
∑

i weighti#violi(t)

#events(t)
∑

i weighti
, and takes into account the number of violations of each

2 Mobucon LTL also differentiates between possibly and permanently satisfied.

www.xes-standard.org/
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individual constraint of the reference model (#violi) and its weight (weighti).
On the other hand, the compliance indicator shown in Fig. 5b, implemented
in Mobucon EC, considers the number of violated (#viol) and satisfied (#sat)
instances. In particular, at some time t the compliance indicator corresponds to

1− #viol(t)
#viol(t)+#sat(t)

3.

3.4 Mobucon Clients

We have developed three Mobucon clients, in order to deal with different settings:
(a) manual insertion of the events, (b) replay of a process instance starting from a
complete event log, and (c) acquisition of events from an information system. The
first two clients are mainly used for testing and experimentation. The last client
requires a connection to some information system, e.g., a workflow management
system. The three clients differ on how the user is going to provide the stream of
events, but all of them include an interface with a graphical representation of the
obtained fluent model, showing the evolution of constraints and also reporting
the trend of the compliance indicator (Fig. 4).

4 Mobucon LTL

As discussed earlier, there are two Mobucon providers for monitoring business
constraints: one based on LTL and one based on the EC. We now describe the
LTL-based provider [9]. The basic idea is that a stream of events is monitored
w.r.t. a given Declare reference model. Each LTL constraint implied by the
Declare model is translated to a finite state automaton. Moreover, the conjunc-
tion of all LTL constraints is also translated to a finite state automaton. The
generated automata are used to monitor the behavior. Using the terminology
introduced in [9], we call the automaton corresponding to a single Declare con-
straint local automaton and the automaton corresponding to their conjunction
global automaton. Local automata are used to monitor each single constraint in
isolation, whereas the global automaton is used to monitor the entire system and
detect non-local violations originated by the interplay of multiple constraints.

4.1 Modeling and Implementation

When Mobucon LTL receives a request from a new process instance, it first
initializes the session for that instance. In particular, each single constraint of the
Declare model associated to the session by the client and their conjunction are
translated into finite state automata. For the translation, we use the algorithm
introduced for the first time in [10] and optimized in [11]. Local and global
automata are stored in the session. After that, the provider processes the event
(or a collection of events) received with the first request from the client. The
following requests will provide again single events or collections of events. The

3 If #viol(t) + #sat(t) = 0, then the compliance indicator is defined to be 1.
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Fig. 4. Screenshot of one of the Mobucon clients

events are processed one by one by using the automata every time retrieved
from the session. In this way, the state of each automaton is always preserved
from the last request. The set of fluents’ MVIs associated to each constraint is
recomputed accordingly and returned by the reasoner.

4.2 Approach

Both global and local automata are reduced so that, if a transition violates
the automaton from a certain state, this transition does not appear in the list
of the outgoing transitions from that state. More specifically, a transition can
be positive if it is associated to a single positive label (representing an event,
e.g., moored), or negative if it is associated to negative labels (e.g., ¬aground).
Positive labels indicate that we follow the transition when exactly the event cor-
responding to that label occurs, whereas negative labels indicate that we can
follow the transition for any event not mentioned. Hence, acceptable events cor-
respond to the label associated to a positive outgoing transition from the current
state or to no one of the labels associated to a negative outgoing transition.

The Mobucon LTL provider checks first whether the processed event is ac-
ceptable by the global automaton. If the event is allowed, the provider fires
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the corresponding transition on the global automaton. In this case, to compute
the state of every single constraint in isolation as well, it also fires the transi-
tions corresponding to the processed event on the local automata (note that,
if the event is acceptable by the global automaton, it is also acceptable by all
local automata). If, after having fired the transition, a local automaton is in an
non-accepting state, the corresponding constraint is possibly violated. If a local
automaton is in an accepting state, the corresponding constraint is (possibly or
permanently) satisfied. To distinguish between possibly and permanently satis-
fied constraints, the provider checks whether all possible events correspond to a
self loop on the current state. If this is the case, the constraint is permanently
satisfied, otherwise it is possibly satisfied. If the processed event violates the
global automaton, from the point of view of the automata, the violating event
is ignored. However, the provider still informs the client that the event caused a
violation w.r.t. the reference model. Moreover, it also gives intuitive diagnostics
about the violation. Indeed, the global automaton allows the provider to pre-
cisely identify which events were permitted instead of the one that caused the
violation. This information is derived from the labels of the outgoing negative
and positive transitions from the current state in the global automaton.

In some cases, a violation in the global automaton can be directly reduced to
a violation of a local automaton. However, in other cases none of the individual
local automata is violated as the problem stems from the interplay of multiple
constraints [9]. In the latter case, the Mobucon LTL provider is able to identify
the conflicting sets of constraints, i.e., the minimal sets of constraints that cause
the violation.

5 Mobucon EC

Mobucon EC exploits a reactive EC-based reasoner to provide monitoring fa-
cilities. When a first query is received for some process instance, the provider
applies a translation algorithm which analyzes the reference model stored in the
corresponding session, producing a set of corresponding EC axioms. It then cre-
ates a new instance of the reasoner, initializing it with the EC theory obtained
from the translation procedure. The reasoner instance is then stored into the
session. Every time a new partial trace must be checked, the reasoner is ex-
tracted from the session and updated with the new events. This triggers a new
reasoning phase in which the previously stored fluents’ MVIs are revised and
extended. The set of all MVIs is then returned by the reasoner.

In the following, we first sketch how Declare constraints, possibly augmented
with data and metric temporal aspects, can be tackled by means of EC axioms.
We then discuss the implementation of the reasoner.

5.1 Modeling

A comprehensive description of how the EC can be used in the Declare setting
can be found in [8]. Here, we consider one of the constraints mentioned in Fig. 1b,
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namely the response constraint over a Cargo ship, to give an intuition about such
a translation, considering data and metric temporal constraints as well.

Broadly speaking, an EC theory is a logic program which employs special
predicates for modeling how fluents change over time, in response of the execu-
tion of certain events. For example, initiates(e, f, t) (terminates(e, f, t)) is used
to say that event e initiates (terminates) f , i.e., makes f true (false), at time
t; holds at(f, t) is used to run queries over the validity of fluents, in this case
verifying whether f is true at time t. For a comprehensive description of the EC,
we refer the reader to [12].

In the context ofDeclare, and differently from the LTL-based approach, the run-
time characterization of business constraints is not given over the constraints them-
selves, but is tailored to constraints’ instances. A constraint instance represents a
specific “grounding” of the constraint inside a specific context, i.e., with specific
data, specific instantiation time, and so on. According to this observation, in the
EC-based formalization of Declare fluents have the form state(i(ID, Params),
State), where ID is the identifier of the constraint, Params is a list of parame-
ters characterizing a specific instance of the constraints, and State is the current
state of the instance, i.e., one among sat, viol and pend (to respectively model
that the constraint instance is satisfied, violated or pending). In our example,
the response constraint over a Cargo ship will be identified by cr, and the params
characterizing each instance will be the identifier of the vessel (needed to prop-
erly correlate events) and the creation time (needed to properly check the metric
temporal constraints).

EC axioms are given over event types, which are then subject, during the
execution, to unification with each occurring concrete event. Event types have
the form exec(Name,Who,Data), where Name is the name of the event, Who
identifies the entity that originated the event, and Data is a list of further
data. The response over a Cargo ship is associated to the moored and (Under
way using) engine events, which can be represented by the two event types
exec(moored, Vid, [Vtype]) and exec(engine, Vid, [Vtype]). It is instantiated every
time a moored event happens for a cargo vessel; the instance is put in a pending
state, waiting for the occurrence of a corresponding engine event:

initiates(exec(moored, Vid, [cargo]), status(i(cr, [Vid, T ]), pend), T )

A state transition from the pending to the satisfied state happens for an instance,
if the following conditions hold: (1) the instance is currently pending; (2) an
engine event occurs for a Cargo ship; (3) the event has the same vessel identifier
of the instance; (4) the timestamp of the event is after the creation time of the
instance, but before the actual deadline (which corresponds to the creation time
plus 2880 minutes). Such state transition is modeled by terminating the previous
state and initiating the new one, if all conditions are satisfied:

terminates(exec(engine, Vid, [cargo]), status(i(cr, [Vid, Tc]), pend), T ) : −
holds at(status(i(cr, [Vid, Tc]), pend), T ), T > Tc, T ≤ Tc + 2880.

initiates(exec(engine, Vid, [cargo]), status(i(cr, [Vid, Tc]), sat), T ) : −
holds at(status(i(cr, [Vid, Tc]), pend), T ), T > Tc, T ≤ Tc + 2880.
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Contrariwise, if a (generic) event happens at a time which is greater than
the creation time of the instance plus 2880, and the constraint instance is still
pending, this attests that the deadline has expired, and that a transition from
the pending to the violated state must be triggered:

terminates( , status(i(cr, [Vid, Tc]), pend), T ) : −
holds at(status(i(cr, [Vid, Tc]), pend), T ), T > Tc + 2880.

initiates( , status(i(cr, [Vid, Tc]), viol), T ) : −
holds at(status(i(cr, [Vid, Tc]), pend), T ), T > Tc + 2880.

Finally, a further general rule is added to state that each pending instance
becomes violated when the process instance is completed.

The visualization depicted in Fig. 5b shows the status of the various con-
straints for a running trace and is based on the above axioms (together with the
ones modeling the other constraints in Fig. 1b).

5.2 Reasoner Implementation

To effectively compute the MVIs characterizing the evolution of each constraint
instance, Mobucon EC relies on a reactive EC reasoner and three translation
components. A first translator converts the XML representation of a Declare
reference model to a corresponding set of EC axioms. A second one converts a
XES (partial) trace to a set of logic programming facts, also applying a trans-
lation of timestamps using the chosen granularity; such facts are then matched
against the EC axioms that formalize the reference model. A last translator is
used to convert the outcome produced by the reasoner (a set of strings) to a
fluent model according to the schema of Fig. 3.

The reactive reasoner is inspired by the Cached EC (CEC) developed by
Chittaro and Montanari [13]. It uses a Prolog-based axiomatization of the EC
predicates following the CEC philosophy, i.e., already computed MVIs of fluents
are cashed and subsequently revised and extended as new events are received.

Different underlying Prolog engines can be plugged into the tool. In particular,
we experimented TuProlog (tuprolog.alice.unibo.it/) which is completely
implemented in JAVA and thus guarantees a seamless integration inside ProM,
and YAP (yap.sourceforge.net/), which is one of the highest-performance
Prolog engine available today.

6 Case Study

In this section, we present the application of the two Mobucon providers (LTL
and EC) as part of a case study conducted within the research project Poseidon
(www.esi.nl/poseidon/) and focused on the analysis of vessel behavior in the do-
main of maritime safety and security. The case study has been provided by Thales,
a global electronics company delivering mission-critical information systems and
services for the Aerospace, Defense, and Security markets. In our experiments,
we use logs collected by an on-board maritime Automatic Identification System

tuprolog.alice.unibo.it/
yap.sourceforge.net/
www.esi.nl/poseidon/
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(a) Mobucon LTL. (b) Mobucon EC.

Fig. 5. Examples of monitoring results in our case study

(AIS) [14], which acts as a transponder that logs and sends events to an AIS re-
ceiver. An event represents a change in the navigational status of a vessel (e.g.,
moored or Under way using engine). Each event has an associated vessel ID and
vessel type (e.g., Passenger ship or Cargo ship). The logs are excerpts of larger
logs and correspond to a period of one week. The standard behavior of the vessels
is described by domain expert using Declare, where constraints are used to check
the compliance of the behavior of vessels as recorded in the logs.

Let us first focus on the Mobucon LTL provider. Figure 1a shows the reference
model used to monitor vessels behavior. Each vessel corresponds to a process
instance in the log. Figure 5a shows a graphical representation of the constraints’
evolution for a specific instance. Events are displayed on the horizontal axis (for
the sake of readability, a more compact notation is used). The vertical axis shows
the constraints, reporting their evolution as events occur.

When event moored is executed the response constraint becomes possibly
violated. Indeed, the constraint is waiting for the occurrence of another event
(execution of (Under way using) engine) to become satisfied. After moored, (Un-
der way) sailing is executed, leading to a conflict caused by the interplay of the
not coexistence and the response constraints. The conflict is due to the fact that
the first constraint forbids whereas the other constraint requires the presence of
event engine. Note that, after a conflict or a (local) violation, constraints can
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become non-violated. In fact, Mobucon LTL implements a recovery strategy
where the violating events are ignored (after having been reported). In this case,
for instance, when sailing occurs, the conflict is raised but the event is, in fact,
ignored. The next event is engine and response (that was possibly violated before
the conflict) becomes possibly satisfied. After that, when event sailing occurs,
not coexistence becomes permanently violated because engine and sailing can-
not coexist in the same trace (note that also in this case the violating event is
ignored after that the violation has been reported). The next event is moored
and response becomes possibly violated. When the case completes, the response
constraint becomes violated because it is not possible to satisfy it anymore.

Finally, note the trend of the compliance indicator in Fig. 5a. The indicator
decreases in correspondence of each (local) violation. This example also shows
clearly that a violation of the response constraint influences the indicator more
than a violation of the not coexistence constraint.

Let us now consider the Mobucon EC provider, which employs the reference
model shown in Fig. 1b. In order to show the potentiality of the approach,
we consider in this case the unique events stream generated by the AIS receiver;
correlation between events referring the same vessel is under the responsibility of
the framework itself, using the formalization discussed in Sec. 5. Figure 5b shows
a graphical representation of the constraints’ evolution. Events (with attached
data and timestamps) are displayed on the horizontal axis. The vertical axis
shows the constraints and their instances, reporting their evolution as time flows.

Every time event moored occurs, a new instance of the response constraint
(for the specific vessel type) is created. At first, the state of the instance is
pending because it is waiting for the occurrence of an (Under way using) engine
event referring to the same vessel ID, and within the deadline specific for the
corresponding vessel type. Event engine occurs for Passenger ship v1 less than
6 hours after moored. For v4 this takes more than 6 hours, thus resulting in a
violation. Similar to the example used for the Mobucon LTL provider, also in this
case, the occurrence of sailing for Sailing boat v2 generates a conflict between
the instance of the response constraint and the instance of the not coexistence
constraint corresponding to this vessel. They can never become both satisfied,
the first requiring and the other forbidding the presence of event engine for this
vessel. However, unlike the LTL-based provider, the Mobucon EC provider does
not point out any problem when the conflict arises. Only when, as the last event
of the trace, engine occurs for v2, the instance of the not coexistence constraint
for vessel v2 becomes violated. This example shows that, on the one hand,
the Mobucon EC provider is able to monitor constraints augmented with data
conditions and metric temporal constraints. On the other hand, the Mobucon
LTL provider supports the early detection of violations originating from a conflict
among two or more constraints.

As explained in Sect. 3.3, the compliance indicator is computed differently in
both providers. For both providers the indicator decreases after each violation.
However, in EC-based provider, the compliance indicator increases when new
satisfied instances are created.
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Table 1. Comparison between the Mobucon LTL and EC providers (I = imple-
mented, I* = partially implemented, + = supported by the formal framework, –
= not supported by the formal framework)

LTL EC LTL EC

1. single constraints monitoring I I 5. recovery and compensation + +

2. non-local violations I* – 6. metric temporal aspects – I

3. continuous support I I 7. data and data-aware conditions – I*

4. diagnostics I – 8. non-atomic activities – +

7 Discussion and Conclusion

This paper presents a new Operational decision Support (OS) framework for
monitoring business constraints. The framework implementation exploits the
functionalities provided by the OS service in ProM. Mobucon comes with a
general flexible architecture able to accommodate multiple reasoning engines. In
this paper, we demonstrate two such engines, one based on (finite-trace) Linear
Temporal Logic (LTL) and automata, and the other on the Event Calculus (EC)
and a Prolog-based reactive reasoner.

In the literature, most of the proposed approaches for compliance verification
either work on static models at design time [15,16] or on off-line a-posteriori con-
formance checking [17] using only historical data. The majority of approaches
for online business process monitoring focus on measuring numerical attributes,
such as Key Performance Indicators (KPIs). For example, in [18], a framework is
introduced for modeling and monitoring of KPIs in Semantic Business Process
Management. In particular, the authors integrate the KPI management into a
semantic business process lifecycle, creating an ontology that is used by busi-
ness analysts to define KPIs based on ontology concepts. In [19], an integrated
framework is presented for run-time monitoring and analysis of the performance
of WS-BPEL processes. In particular, this framework allows for dependency
analysis and machine learning with the ultimate goal of discovering the main
factors influencing process performance (KPI adherence).

An exception to this trend is the work by Ly et al. on semantic constraints
in business processes [20]. This work is more related the one presented here.
Both approaches recognize the importance of runtime compliance verification of
processes with rules and constraints. However, while Ly et al. aims to describe a
comprehensive framework for compliance of semantic constraints over the whole
process lifecycle, here we have proposed concrete ways for attacking this problem
during the execution of processes.

Table 1 provides a comparison of our two OS providers for monitoring busi-
ness constraints (LTL-based and EC based). Analysis of this table provides some
interesting insights. First of all, both approaches are able to manage the monitor-
ing of individual business constraints. Non-local violations refer to the situation
in which no single constraint is currently violated, but there is a conflicting set of
constraints. Whereas the LTL-based approach can discover non-local violations
thanks to the construction of the global automaton, the EC-based approach does
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not support this. Note that the detection of non-local violations is currently only
partially supported by the Mobucon LTL provider: the non-local violations is
detected, but the minimal conflicting set is not yet computed efficiently. We are
currently working on extending the colored-automata based approach to more
efficiently identify minimal sets of conflicting constraints [21]. Both approaches
support continuous support, i.e., the monitoring framework is able to provide
support even after a violation takes place. While the Mobucon EC provider is
only able to detect that a violation has taken place, Mobucon LTL also provides
diagnostics about which events were expected (not) to occur. Although recovery
and compensation mechanisms have not yet been included in our implementa-
tion, both approaches can support them [9,22].

The last three rows in Tab. 1 refer to the extension of the Declare language.
Metric temporal aspects have been already incorporated into the Mobucon EC
provider [8]. Metric temporal logics and timed-automata will be investigated to
improve the LTL-based approach in this direction. Data and data-aware con-
ditions are not-expressible in LTL, while the EC-based tool is being extended
to accommodate them. Its ability to support data is attested by the formaliza-
tion example shown in Sec. 5 and Fig. 5b. Similarly, EC is also able to support
non-atomic activities.

Finally, let us briefly comment on the performance of the two approaches.
For the Mobucon LTL provider, a recent investigation has revealed that very
efficient algorithms can be devised for building local and global automata [11].
Once the automata are constructed, runtime monitoring can be supported in an
efficient manner. The state of an instance can be monitored in constant time, in-
dependent of the number of constraints and their complexity. According to [11],
the time to construct an automaton is 5-10 seconds for random models with
30-50 constraints. For models larger than this, automata can no longer routinely
be constructed due to lack of memory, even on machines with 4-8 GiB RAM.
For the Mobucon EC provider, some complexity results are inherited from the
seminal investigation by Chittaro and Montanari [13]. An initial investigation of
the performance of this approach (with YAP Prolog as underlying reasoner) can
be found in [8]. Differently from the LTL-based approach, whose most resource-
consuming task is the generation of the automaton, which is done before the
execution, the EC-based approach triggers a reasoning phase every time a new
event is acquired. Despite this, our investigation shows that, for randomly gener-
ated models and traces, the reasoner takes an average time of 300ms to process
the 1000th acquired event with a model containing 100 constraints.
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