Efficient Discovery of Understandable
Declarative Process Models from Event Logs

Fabrizio M. Maggi *, R.P. Jagadeesh Chandra Bose, and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands.
{f.m.maggi, j.c.b.rantham.prabhakara, w.m.p.v.d.aalst}@tue.nl

Abstract. Process mining techniques often reveal that real-life pro-
cesses are more variable than anticipated. Although declarative process
models are more suitable for less structured processes, most discovery
techniques generate conventional procedural models. In this paper, we
focus on discovering Declare models based on event logs. A Declare model
is composed of temporal constraints. Despite the suitability of declara-
tive process models for less structured processes, their discovery is far
from trivial. Even for smaller processes there are many potential con-
straints. Moreover, there may be many constraints that are trivially true
and that do not characterize the process well. Naively checking all pos-
sible constraints is computationally intractable and may lead to models
with an excessive number of constraints. Therefore, we have developed
an Apriori algorithm to reduce the search space. Moreover, we use new
metrics to prune the model. As a result, we can quickly generate under-
standable Declare models for real-life event logs.

Keywords: process mining, business process management, declarative
process models

1 Introduction

The increasing availability of event data recorded by contemporary information
systems makes process mining a valuable instrument to improve and support
business processes [2]. Starting point for process mining is an event log. Each
event in a log refers to an activity (i.e., a well-defined step in some process) and
is related to a particular case (i.e., a process instance). The events belonging to
a case are ordered and can be seen as one “run” of the process (often referred to
as a trace of events). Event logs may store additional information about events
such as the resource (i.e., person or device) executing or initiating the activity,
the timestamp of the event, or data elements recorded with the event.
Typically, three types of process mining can be distinguished [2]: (a) process
discovery (learning a model from example traces in an event log), (b) confor-
mance checking (comparing the observed behavior in the event log with the
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structured unstructured

Fig. 1. Procedural models for structured and unstructured processes

modeled behavior), and (c) model enhancement (extending models based on ad-
ditional information in the event logs, e.g., to highlight bottlenecks). In this
paper, we focus on process discovery which is generally considered as the most
challenging process mining task.

Fig. 1 shows two example models discovered based on two different event
logs. The Petri net on the left shows a relatively structured process that is
easy to understand. The Spaghetti-like model on the right is less structured and
much more difficult to comprehend. In practice, process models are often less
structured than anticipated. Therefore, one could argue that procedural models
such as the ones depicted in Fig. 1 are less suitable. Nevertheless, almost all
process discovery techniques [1,5,6,10,12,14,18] aim to discover procedural model
expressed in terms of BPMN, UML activity diagrams, Petri nets, EPCs, and the
like. In this paper, we use a different approach and aim to discover declarative
models from event logs.

Fig. 2. Declare response constraint: O(a — Ob)

Fig. 2 shows a Declare model [4,13,20] consisting of only one constraint. The
arrow connecting activity a to b models a so-called response constraint, i.e.,
activity a is always followed by b. This response constraint is satisfied for traces
such as (a,a,b, c), (b,b,c,d), and (a,b, c,a,b), but not for (a,b,a,c) because the
second a is not followed by b. The semantics of Declare constraints are rooted
in Linear Temporal Logic (LTL), e.g., the response constraint can be formalized
as O(a — Ob) and checked or enforced automatically.

A Declare model consists of a set of constraints which, in turn, are based on
templates. A template defines a particular type of constraint (like “response”).
Templates have formal semantics specified through LTL formulas and are equipped
with a user-friendly graphical front-end that makes the language easy to under-
stand also for users that are not familiar with LTL [19,23]. Templates are pa-
rameterized, e.g., the response constraint in Fig. 2 is instantiated for activities a



and b. Hence, in a process model with n events there are n? potential response
constraints.

In [17], the authors present a technique to automatically infer Declare con-
straints. This technique exhaustively generates all possible constraints and then
checks them on the event log. This approach suffers from two important draw-
backs:

— First of all, such an exhaustive approach is intractable for processes with
dozens of activities. For example, in a process with 30 activities there are
already 900 possible response constraints. Some of the other templates have
four parameters, resulting in 30* = 810,000 potential constraints for a sin-
gle template. Since there are dozens of templates in the standard Declare
language, this implies that the log needs to be traversed millions of times to
check all potential constraints. As event logs may contain thousands or even
millions of events, this is infeasible in practice.

— Second, of the millions of potential constraints, many may be trivially true.
For example, the response constraint in Fig. 2 holds for any event log that
does not contain events relating to activity a. Moreover, one constraint may
dominate another constraint. If the stronger constraint holds (e.g., O(a —
Ob)), then automatically the weaker constraint (e.g., ¢a — Ob) also holds.
Showing all constraints that hold typically results in unreadable models.

This paper addresses these two problems using a two-phase approach. In the
first phase, we generate the list of candidate constraints by using an Apriori al-
gorithm. This algorithm is inspired by the seminal Apriori algorithm developed
by Agrawal and Srikant for mining association rules [7]. The Apriori algorithm
uses the monotonicity property that all subsets of a frequent item-set are also
frequent. In the context of this paper, this means that sets of activities can only
be frequent if all of their subsets are frequent. This observation can be used to
dramatically reduce the number of interesting candidate constraints. In the sec-
ond phase, we further prune the list of candidate constraints by considering only
the ones that are relevant (based on the event log) according to (the combination
of) simple metrics, such as Confidence and Support, and more sophisticated met-
rics, such as Interest Factor (IF) and Conditional-Probability Increment Ratio
(CPIR), as explained in Section 4. Moreover, discovered constraints with high
CPIR values are emphasized like highways on a roadmap whereas constraints
with low CPIR values are greyed out. This further improves the readability of
discovered Declare models.

The paper is structured as follows. Section 2 introduces the Declare formalism
using a running example. Section 3 describes how an Apriori algorithm can be
applied to generate a list of candidate constraints. Section 4 explains how metrics
proposed in the literature on association rule mining can be used to evaluate
the relevance of a Declare constraint. Section 5 presents experimental results
comparing our new discovery algorithm with the naive approach presented in
[17]. Section 6 provides an illustrative case study. Section 7 concludes the paper.



2 Declare

In this paper, we present an approach to efficiently discover understandable De-
clare models. Therefore, we first introduce the Declare language [4,13,20] which
is grounded in Linear Temporal Logic (LTL).

LTL can be used to specify constraints on the ordering of activities (see also
[11]). For instance, a constraint like “whenever activity a is executed, eventually
activity b is executed” can be formally represented using LTL and, in partic-
ular, it can be written as O(a — ¢b). In a formula like this, it is possible to
find traditional logical operators (e.g., implication —), but also temporal oper-
ators characteristic of LTL (e.g., always (J, and eventually ¢). In general, using
the LTL language it is possible to express constraints relating activities (atoms)
through logical operators or temporal operators. The logical operators are: im-
plication (—), conjunction (A), disjunction (V), and negation (—). The main
temporal operators are: always (Op, in every future state p holds), eventually
(Op, in some future state p holds), next (Op, in the next state p holds), and
until (pLU ¢, p holds until ¢ holds).

LTL constraints are not very readable for non-experts. Declare [4,13,20] pro-
vides an intuitive graphical front-end together with a formal LTL back-end. In
Fig. 2 we already showed the graphical Declare representation for the response
constraint. There are dozens of different Declare constraints possible. Each type
of constraint is described using a parameterized template. Besides the response
constraint, we have constraints such as responded existence (formally: Oa — Ob)
and precedence (formally: (—=bU a) vV O(=b)).

2.1 Running Example

Fig. 3 shows a simple Declare model with some example constraints for an insur-
ance claim process. The model includes eight activities (depicted as rectangles,
e.g., Contact Hospital) and five constraints (shown as connectors between the
activities, e.g., co-existence).

The responded existence constraint specifies that if High Medical History is
executed also High Insurance Check is executed in the same process instance.
The precedence constraint indicates that, if Receive Questionnaire Response is
executed, Send Questionnaire must be executed before. In contrast, the response

not succession co-existence

High Insurance Check W Contact Hospital Low Insurance Check H Low Medical History
responded existencel
) ) Receive Questionnaire
High Medical History Create Questionnaire Send Questionnaire
Response

response precedence

Fig. 3. Running example: Declare model consisting of five constraints



constraint indicates that if Create Questionnaire is executed this is eventually fol-
lowed by Send Questionnaire. The not succession constraint means that Contact
Hospital cannot be followed by High Insurance Check. Finally, the co-existence
constraint indicates that if Low Insurance Check and Low Medical History occur
in a process instance, they always coexist. We refer the reader to [4,13,20] for
more details about the Declare language (graphical notation and LTL seman-
tics).

2.2 Discovering Relevant Declare Constraints Using Vacuity
Detection

As shown in [3], LTL constraints can be checked for a particular trace and
therefore also for an entire event log. For example, one may find that responded
existence constraint between High Medical History and High Insurance Check
holds for 955 of 988 insurance claims. Hence, Declare models can be discovered
by simply checking all possible constraints as shown in [17]. First, all possible
constraints need to be constructed. Since there is a finite number of constraint
templates and in a given setting there is also a finite set of activities, this is
always possible. Then, the set of potential constraints can be pruned on the
basis of simple metrics such as the percentage of process instances where the
constraint holds, e.g., keep all constraints satisfied in at least 90% of cases.

Such an approach will result in the discovery of many constraints that are
trivially valid. Consider for example a process instance (a, a,b, a, b, a). The con-
straint O(c — Od) (“whenever activity ¢ is executed, eventually activity d is
executed”) holds. This constraint holds trivially because ¢ never happens. Using
the terminology introduced in [8,15], we say that the constraint is vacuously sat-
isfied. In general, a formula ¢ is vacuously satisfied in a path m, if 7 satisfies ¢
and there is some sub-formula of ¢ that does not affect the truth value of ¢ in 7
[8]. In our example, the first term of the implication O(c — ¢d) is always false.
Therefore, sub-formulas {d and d do not affect the truth value of (¢ — Od) in
(a,a,b,a,b,a).

To address this issue, in [17], the authors use techniques for LTL wvacuity
detection [8,15] to discriminate between instances where a constraint is generi-
cally non-violated and instances where the constraint is non-vacuously satisfied.
Only process instances where a constraint is non-vacuously satisfied are con-
sidered interesting witnesses for that constraint. Roughly speaking, to ensure
that a process instance is an interesting witness for a constraint, it is necessary
to check the validity of the constraint in the process instance with some extra
conditions. The authors in [15] introduce an algorithm to compute these extra
conditions. For example, for the constraint O(c — (d) the condition is {c. This
means that the constraint is non-vacuously satisfied in all the process instances
where “whenever activity c is executed, eventually activity d is executed” and
“eventually activity c is executed”. The percentage of interesting witnesses for a
constraint is a much better selection mechanism than the percentage of instances
for which the constraint holds.



In [21], the authors extend the list of vacuity detection conditions to ensure
that if a process instance is an interesting witness for a Declare constraint, no
stronger constraint holds in that process instance. Table 1 specifies the list of
vacuity detection conditions for some types of Declare constraints. For instance, a
response constraint is non-vacuously satisfied in all the process instances where it
is satisfied (O(a — Ob)), the vacuity detection condition derived from [15] is valid
(0a) and, in addition, constraints that are stronger than response (i.e., succession
and alternate response) do not hold (—=((=bUa)VvVO(=b)) A ~(d(a = O(—alid)))).
In this paper, we refer to this extended notion of vacuity detection.

For completeness we also mention the approach described in [16]. This ap-
proach also learns Declare models, but requires negative examples. This implies
that everything that did not happen is assumed not to be possible. We consider
this an unrealistic assumption as logs only contain example behavior.

3 Apriori Algorithm for Declare Discovery

Vacuity detection can be used to prune set of constraints, but this can only be
done after generating a set of candidate constraints. As discussed in the intro-
duction, even for smaller processes, there can be millions of potential constraints.
Therefore, we adopt ideas from the well-known Apriori algorithm [7] for discov-
ering association rules. Using an Apriori-like approach we can efficiently discover
frequent sets of correlated activities in an event log.

Let X be the set of potential activities. Let t € X* be a trace over X, i.e.,
a sequence of activities executed for some process instance. An event log L is a
multi-set over L i.e., a trace can appear multiple times in an event log.

The support of a set of activities is a measure that assesses the relevance of
this set in an event log.

Definition 1 (Support). The support of an activity set A C X' in an event log
L=t t,...,t,] is the fraction of process instances in L that contain all of the
activities in A, i.e.,
L4
supp(A) = I where Lo = [t € L | Vgea z €

An activity set is considered to be frequent if its support is above a given thresh-
old supp,;in- Let Ay denote the set of all frequent activity sets of size k¥ € N and
let Cx, denote the set of all candidate activity sets of size k that may potentially
be frequent. The Apriori algorithm uncovers all frequent activity sets in an event
log. The algorithm starts by considering activity sets of size 1 and progresses
iteratively by considering activity sets of increasing sizes in each iteration and is
based on the property that any subset of a frequent activity set must be frequent.
The set of candidate activity sets of size k + 1, Cr41, is generated by joining
relevant frequent activity sets from Ay. This set can be pruned efficiently using
the property that a relevant candidate activity set of size k + 1 cannot have an
infrequent subset. The activity sets in Cx41 that have a support above a given



Table 1. Vacuity detection conditions for some Declare constraints

template LTL semantics vacuity detection conditions
responded existence Oa — Ob Qa A —=(0O(a — Ob)) A —(Oa +> Ob)
co-existence Qa + Ob Qa A Ob A —~(O(a — Ob) A (mbUa) v O(—b))
response O(a— 0b)  |OGa A =((mbUa)VvO(=b) A =(O(a— O(-alid)))

Ob A —a A=(0O(a — Ob)) A
=(((mbUa) vO(=b) ADD — O((-bUa) vO(-D))))
not succession O(a — —(0b)) Qa N Ob

precedence (=bUa) Vv O(-d)

threshold supp,,;, constitute the frequent activity sets of size k+ 1 (Ag41) used
in the next iteration.

We explain the Apriori algorithm with an example. Consider an event log
L= [(6’ a, ba a,a,c, e>’ <6, a,a, ba C, 6>> <6’ a,a, da d7 e>’ <b7 ba C, C>7 <67 a,a,c, da 6” de-
fined over the set of activities X' = {a,b,c,d,e}. Let us try to find frequent
activity sets whose support is above 50%. The Apriori algorithm starts by first
considering activity sets of size 1, i.e., the individual activities. The candidate
sets in Cy correspond to the singletons of the elements of X. Fig. 4(a) depicts the
candidate activity sets and their support. Among the candidate sets, activity d
has a support of only 40% in the event log, which is below the specified threshold.
Therefore, the frequent activity sets correspond to the singletons of the elements
of X\ {d}. In the next iteration, the Apriori algorithm considers candidate activ-
ity sets of size 2, C5. Since the support of d is less than the specified threshold,
all activity sets that involve d are bound to have their support less than the
threshold. The Apriori algorithm elegantly captures this by deriving candidates
at iteration k + 1, Ci41, from frequent activity sets of iteration k. Fig. 4(b) de-
picts such candidate activity sets of size 2 along with their support values. Only
4 activity sets among Cy satisfy the minimum support criteria and hence are
considered frequent (see Ay in Fig. 4(b)). Proceeding further, we get only one
frequent activity set of size 3 as depicted in Fig. 4(c). The algorithm terminates
after this step as no further candidates can be generated. The frequent activity
sets in £ are A; U Ay U As.

The Apriori algorithm returns frequent activity sets, which indicate that the
activities involved in an activity set are correlated. However, it doesn’t specify
the type of correlation. Declare templates capture different relationships between
activities. For instance, for any frequent activity set {a,b}, one can generate
constraints such as the response O(a — Ob).

In general, to discover constraints deriving from a Declare template with k
parameters, we have to generate frequent activity sets of size k. Afterwards,
we generate the list of candidate constraints. To do that, we instantiate the
considered template by specifying as parameters all the possible permutations
of each frequent set. For instance, for the frequent activity set {a, b}, we generate
the response constraints O(a — Ob) and O(b — Qa).

Limiting ourselves to frequent activity sets drastically reduces the number
of candidate constraints to be checked. For instance, if we take the example in
Fig. 4(b), to generate the candidate constraints deriving from a template with



candidate frequent candidate frequent candidate frequent
activity sets activity sets | activity sets activity sets activity sets activity sets
Cy | supp Ay | supp Cy supp Ay supp Cs supp As supp
a | 80 a | 80 {a, b} | 40 {a, c} | 60 {a,b, c}| 40 {a, c,e} | 60
b | 60 b | 60 {a,c}| 60 {a,e} | 80 {a,b, e} | 40
c | 80 c | 80 {a, e} | 80 {b,c} | 60 {a, c,e}| 60
d | 40 e | 80 {b,c} | 60 {c,e} | 60 {b, c,e} | 40
e | 80 {b, e} | 40
{c,e} | 60

(a) (b) (c)

Fig. 4. Discovering frequent activity sets using the Apriori algorithm in the event log
L. The support values are expressed in %

2 parameters we consider all the permutations of each frequent activity set in
Ay and we generate 12 candidate constraint (we also include pairs (a,a), (b, b),
(¢, c), (e, e) by considering repetitions of elements of frequent activity sets of size
1). In contrast, with the naive approach we need to consider all the dispositions
of length 2 of 5 activities (a,b,c, d, e), i.e., 25 (5?) candidate constraints. In gen-
eral, to discover constraints deriving from a Declare template with k& parameters
from a log with n activities, the state space exploration using the naive approach
always leads to n* candidate constraints. In contrast, applying our Apriori algo-
rithm and considering only the frequent activity sets, the number of candidate
constraints depends on the support value we specify for the Apriori algorithm.
This number is often significantly lower than n* because we ignore the item sets
with low support.

One could also look at negative events (non-occurrence) within the Apriori
setup. Such information might be useful for inferring, for instance, events that
act as mutually exclusive, e.g., if a occurs then b does not occur. To facilitate
this, we can also consider the negative events —a, for all @ € X. Fig. 5 depicts the
discovery of frequent items sets considering non-occurrence of events using the

candidate frequent candidate frequent candidate frequent
activity sets activity sets| activity sets activity sets activity sets activity sets

Cy | supp Ay | supp Co supp Ay supp Cs supp As supp
a | 80 a | 80 {a,b} | 40 {a, c} | 60 {a,b,c} | 40 {a,c,e} | 60
b | 60 b | 60 {a,c} | 60 {a,e} | 80 {a,b,e} | 40 || {pb,c,d}| 60
c | 80 c | 80 {a,e} | 80 {b,c} | 60 {a,c,e} | 60

d | 40 e | 80 {a, ~d} | 40 || {b, ~d} | 60 {a, b, ~d} | 40
e | 80 -d | 60 {b,c} | 60 {c,e} | 60 {a, c, d} | 40

-a| 20 {b,e} | 40 {c,-d} | 60 {a, e, ~d} | 40

-b | 40 {b, ~d} | 60 || {e, ~d}| 60 {b,c,e} | 40

—c| 20 {c,e} | 60 {b, c, =d} | 60

-d | 60 {c, ~d} | 60 {b, e, ~d} | 40

—e | 20 {e, —d} | 60 {c, e, ~d} | 40

(a) (b) (c)

Fig. 5. Discovering frequent activity sets considering negative (non-occurrence) events
using the Apriori algorithm in the event log £. The support values are expressed in %



Table 2. Association rule formulation for some Declare constraints

template LTL semantics rule antecedent|consequent
responded existence Oa — Ob If a occurs then b occurs a b
. If @ occurs then b occurs A
co-existence Qa < Ob If b oceurs then a ocours (aVd) (aVb)
response O(a — Ob) If @ occurs then b follows a b
precedence (=bUa) v O(—b) If b occurs then a precedes b a
not succession O(a — —(0b)) |If @ occurs then b does not follow a b

apriori algorithm on the event log £. Note that we now have additional frequent
activity sets such as {b, ¢, ~d} signifying that if b and ¢ occurs then d does not
occur.

4 Post-Processing

The set of frequent activity sets helps in reducing the preliminary set of con-
straints that one uncovers. In particular, the candidate constraints generated
from frequent sets all involve activities that occur frequently in the log. However,
this does not mean that these constraints are also frequently (non-vacuously) sat-
isfied in the log. Let us consider, for example, {a, e}, a frequent activity set for the
event log £ mentioned earlier. One can define various Declare constraints involv-
ing these two activities, e.g., the response constraints d(a — ¢e) and O(e — Qa).
However, only the former constraint holds for all cases in £ whereas the latter
constraint is only satisfied in one of the five cases. Even more, according to the
vacuity detection conditions illustrated in Table 1, O(a — ¢e) is non-vacuously
satisfied in four cases, whereas O(e — Oa) is never non-vacuously satisfied. Ob-
viously, there is a need to further prune constraints that are less relevant, i.e.,
non-vacuously satisfied in a lower percentage of process instances than others.
We can consider a Declare constraint as a rule or as a conjunction/disjunction
of rules, e.g., O(a — Qe) can be thought of as the rule “If a is executed, then
e follows”. A rule is comprised of two components, the antecedent part and the
consequent part. Table 2 depicts the interpretation of Declare constraints as as-
sociation rules. We can adopt various metrics proposed in the association rule
mining literature to evaluate the relevance of a rule and thereby the Declare
constraints. We use four metrics, i.e., support, confidence, interest factor, and
CPIR. The latter three metrics are defined on the primitive measure of support
of the antecedent, consequent, and the rule.

Definition 2 (Support (of a Declare constraint)). The support of a Declare
constraint in an event log L is defined as the fraction of process instances in
which the constraint is non-vacuously satisfied, i.e., the percentage of interesting
witnesses for that constraint in the log.

Definition 3 (Confidence). The confidence of a Declare constraint expressed
as an association rule in an event log L is the ratio between the support of the



rule and the support of the antecedent

supp(rule)
supp (antecedent)

conf (rule) =

For the above event log £, the support of the constraint O(a — Qe) is 0.8 and
the confidence of the constraint is 1. One can use the support and confidence
metrics to prune constraints, e.g., consider only those constraints whose sup-
port is above a minimum support threshold and/or whose confidence is above
a minimum confidence threshold. Confidence measures might be misleading in
scenarios where the support of either the antecedent or the consequent is 1. On
a general note, frequent activity sets involving an activity whose support is 1
do not reflect the real correlation between the activities. Brin et al. [9] have
proposed a measure called interest factor to deal with such scenarios. A stronger
dependency between the antecedent and the consequent is associated with a
value of this measure that is further from 1.

Definition 4 (Interest Factor). The interest factor of a Declare constraint
expressed as an association rule in an event log L is the ratio between the support
of the rule and the product of the support of the antecedent and the consequent.

supp(rule)

InterestFactor(rule) =
supp (antecedent) supp(consequent)

Wu et al. [22] have proposed a conditional-probability increment ratio (CPIR)
measure that assesses whether two entities (in our case activities) a and b are
positively or negatively related.

Definition 5 (CPIR). The CPIR measure of a Declare constraint expressed
as an association rule in an event log L is defined as

supp(rule) — supp(antecedent) supp(consequent)

CPIR(rule) =
(rule) supp(antecedent)(1 — supp(consequent))

CPIR can be used as a measure of confidence of a constraint and can be used to
mine negative constraints as well. If CPIR(rule) involving the activities a and
b is greater than some threshold, then the constraint defined over a and b is
a positive constraint of interest. If CPIR(rule) involving the activities a and b
is negative then a and b are negatively related or in other words a and —b are
positively related.

5 Experiments and Discussion

To analyze the performance of our approach, we have simulated multiple event
logs of the insurance claim example with varying numbers of cases/events.

In the first phase of our approach, we generate a set of candidate constraints.
For a Declare template with k& parameters, we use the Apriori algorithm to
generate frequent sets of size k. Then, we generate all permutations of each
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Fig. 6. Experimental results for the insurance claim process

frequent set. Fig. 6(a) shows the average computation time along with the 95%
confidence interval (over five independent runs) required for this first phase!. We
generated frequent sets of different sizes (2, 3 and 4) and with a support of (at
least) 0.4. We can see that the time required varies linearly with the size of the
log. Fig. 6(a) also depicts the number of permutations generated. As expected,
the number of permutations is close to constant and is not significantly influenced
by the size of the event log. Moreover, these results show that we need to generate
(on average) 126 candidate constraints to discover constraints deriving from a
Declare template with 2 parameters, (on average) 1,140 candidate constraints
to discover constraints deriving from a Declare template with 3 parameters, and
(on average) 8,800 candidate constraints to discover constraints deriving from a
Declare template with 4 parameters. Considering that the number of activities in
each of the considered logs is 15, these numbers are small compared to the naive
approach where 152 (225), 15% (3,375) and 15* (50,625) candidate constraints
would be generated for constraints with 2, 3 and 4 parameters respectively.

In the second phase of our approach, we prune the set of candidate constraints
using the metrics described in Section 4. Fig. 6(b) shows the average computation
time required for pruning for the different event logs (with a 95% confidence
interval computed over five independent runs). We compare the time needed for
the pruning phase using the naive approach and the Apriori-based approach. In

1 All the computation times reported in this section are measured on a Core 2 Quad
CPU @2.40 GHZ 3 GB RAM.
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Fig. 7. Analysis of the Apriori-based approach

both cases, the time required varies linearly with respect to the size of the log.
However, the Apriori-based approach clearly outperforms the naive approach.
The computation time for the Apriori algorithm itself is negligible (less than
0.05% of the computation time needed for pruning).

Fig. 7(a) shows the number of permutations generated for varying sizes of the
event log and for different support values for the Apriori algorithm (again with
95% confidence intervals over five independent runs). As expected, the number of
frequent sets does not depend on the number of process instances in the log but
on the support value used by the Apriori algorithm. The number of permutations
clearly increases when the support value increases. Fig. 7(b) shows the average
computation time in relation to the support and number of traces. The time
required varies linearly with respect to the size of the log. However, the gradient
of the lines increases when the support increases.

The Declare models obtained after pruning using the naive approach and the
approach based on the Apriori algorithm are always the same but the latter is
more efficient.

Table 3 shows a set of four constraints discovered from one of our synthetic
logs (with 250 process instances). These constraints have been discovered using
a minimum value for support (0.4), a minimum value for confidence (0.9), and a
minimum value for CPIR (0.03). It is important to highlight that all these metrics
are important when selecting relevant constraints. Consider, for instance, the two
responded existence constraints in the table. Both constraints have a confidence
close to 1, but the responded existence between Send Notification by Phone and
Receive Questionnaire Response has CPIR equal to 0.035, whereas the responded
existence between High Medical History and High Insurance Check has CPIR
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Table 3. Constraints discovered from a synthetic logs with 250 process instances

interest

template |LTL semantics| parameter a parameter b support|confidence factor CPIR
. . Contact Receive .

response O(a — Ob) Hospital Questionnaire Response 0.400 0.925 1.028 | 0.259
. - Contact High Insurance . o

not succession| O(a — —(0b)) Hospital Check 0.432 1.000 1.633 | 1.000

responded Oa—s Ob Send Notification ) Rec'elve 0.712 0.903 1.000 | 0.035

existence by Phone Questionnaire Response

responded Oa—s Ob ngh‘ Medical High Insurance 0.496 1.000 1.633 | 0.999

existence History Check

equal to 0.999. This is due to the fact that the existence of High Medical History
is strongly related to the existence of High Insurance Check (the former can only
be executed if the latter has been executed), whereas in the other responded
existence constraint the connection between Send Notification by Phone and
Receive Questionnaire Response is less relevant.

6 Case Study

After showing experimental results focusing on the performance of our new ap-
proach to discover Declare models, we now demonstrate its applicability using
an event log provided by a Dutch municipality. The log contains events related
to requests for excerpt from the civil registration. The event log contains 3,760
cases and 19,060 events. There are 26 different activities.

Fig. 8(a) depicts the Declare model discovered using the naive approach
showing all constraints with at least 30% of interesting witnesses in the log.
The resulting Spaghetti-like model has 45 constraints. The computation time to

55 ProM UTopia

(=28 [E=3EoR =)

e g uxicon

(a) 30% of interesting witnesses (b) 50% of interesting witnesses

Fig. 8. Declare models discovered using the naive approach
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generate this model is 1,711 seconds. This model can be improved by increasing
the percentage of required interesting witnesses. Fig. 8(b) depicts the resulting
Declare model using the naive approach including only constraints with at least
50% of interesting witnesses. This model has 33 constraints and the computation
time needed to generate it is 1,743 seconds. Note that the computational time
needed to discover the Declare models in Fig. 8 is approximatively the same
because in both cases 2,028 (3 - 262) constraints must be checked (we search for
three types of constraints with 2 parameters, i.e., precedence, response and not
succession).

Fig. 9 shows the results obtained using our new approach based on the Apriori
algorithm and the pruning techniques described in this paper. This model is

L& proM UrTopia [E=H(EEE

desiged by ’ fluxicon

Prolyi

Mined Model

single model

not succession 0.637/0.746
Rapportage

not succession 0.796/0.74

precedence 0.638/0.765 Verzenden beschikking

precedence 0.797/0.756

not succession 0.641/0.886

precedence 0.641/0.888
Beslissing

response 0.513/0.761
7

Toetsing
not succession 0.548/0.741

Administratie

precedence 0.548/0.741

Fig. 9. Declare model discovered using the new approach. Note that the most impor-
tant constraints are highlighted
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composed of 9 constraints and the computation time needed to generate it is 76
seconds. The model contains only constraints with a support greater than 0.5
and CPIR value greater than 0.7.

Moreover, the discovered model emphasizes the most important constraints,
just like highways are highlighted on a roadmap. Constraints with a CPIR value
of at least 0.85 (considered more relevant) are indicated in black, whereas the
constraints with CPIR less than 0.85 (less relevant) are indicated in gray. Each
constraint is annotated with support and CPIR values (in red). The graphical
feedback facilitates the interpretation of the discovered Declare model.

We evaluate the support of a Declare constraint on the basis of the vacuity
detection conditions in Table 1. These conditions guarantee that a process in-
stance is an interesting witness for a constraint if no stronger constraint holds
in the same instance. This means that if two constraints hold in the log and one
of them is stronger than the other, our approach will discover the stronger one.

7 Conclusion

Although real-life processes discovered through process mining are often Spaghetti-
like, lion’s share of process discovery algorithms try to construct a procedural
model (e.g., BPMN models, EPCs, Petri nets, or UML activity diagrams). The
resulting models are often difficult to interpret. Therefore, it is interesting to
discover declarative process models instead.

In this paper, we present an approach to efficiently discover Declare mod-
els that are understandable. Unlike earlier approaches we do not generate all
possible constraints and only check the most promising ones using an Apriori
algorithm. This results in dramatic performance improvements. We also defined
several criteria to evaluate the relevance of a discovered constraint. The discov-
ered model is pruned using these criteria and the most interesting constraints are
highlighted. As demonstrated using a case study, this results in understandable
process models.
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