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Abstract. Process discovery—discovering a process model from example be-
havior recorded in an event log—is one of the most challenging tasks in process
mining. Discovery approaches need to deal with competing quality criteria such
as fitness, simplicity, precision, and generalization. Moreover, event logs may
contain low frequent behavior and tend to be far from complete (i.e., typically
only a fraction of the possible behavior is recorded). At the same time, mod-
els need to have formal semantics in order to reason about their quality. These
complications explain why dozens of process discovery approaches have been
proposed in recent years. Most of these approaches are time-consuming and/or
produce poor quality models. In fact, simply checking the quality of a model is
already computationally challenging.

This paper shows that process mining problems can be decomposed into a set
of smaller problems after determining the so-called causal structure. Given a
causal structure, we partition the activities over a collection of passages. Confor-
mance checking and discovery can be done per passage. The decomposition of
the process mining problems has two advantages. First of all, the problem can be
distributed over a network of computers. Second, due to the exponential nature of
most process mining algorithms, decomposition can significantly reduce compu-
tation time (even on a single computer). As a result, conformance checking and
process discovery can be done much more efficiently.

Keywords: process mining, conformance checking, process discovery, distributed
computing, business process management

1 Introduction

A recent report by the McKinsey Global Institute (MGI) called “Big Data: The Next
Frontier for Innovation, Competition, and Productivity” describes the spectacular growth
of data and the potential economic value of such data in different industry sectors [28].
MGI estimates that enterprises globally stored more than 7 exabytes of new data on disk
drives in 2010, while consumers stored more than 6 exabytes of new data on devices
such as PCs and notebooks. Despite the growth of storage space, it is impossible to store
all event data. The global capacity to store data has been estimated in various studies.
For example, a recent study in Science suggests that the total global storage capacity
increased from 2.6 exabytes in 1986 to 295 exabytes in 2007 [25].

The incredible growth of event data provides new opportunities for process analysis.
As more and more actions of people, organizations, and devices are recorded, there are
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ample opportunities to analyze processes based on the footprints they leave in event
logs. In fact, the analysis of hand-made process models will become less important
given the omnipresence of event data. This is the reason why process mining is one
of the “hot” topics in Business Process Management (BPM). Process mining aims to
discover, monitor and improve real processes by extracting knowledge from event logs
readily available in today’s information systems [2].

Starting point for process mining is an event log. Each event in such a log refers to
an activity (i.e., a well-defined step in some process) and is related to a particular case
(i.e., a process instance). The events belonging to a case are ordered and can be seen as
one “run” of the process. It is important to note that an event log contains only example
behavior, i.e., we cannot assume that all possible runs have been observed. In fact, an
event log often contains only a fraction of the possible behavior [2].

The growing interest in process mining is illustrated by the Process Mining Mani-
festo [26] recently released by the IEEE Task Force on Process Mining. This manifesto
is supported by 53 organizations and 77 process mining experts contributed to it. The
active contributions from end-users, tool vendors, consultants, analysts, and researchers
illustrate the significance of process mining as a bridge between data mining and busi-
ness process modeling.

Petri nets are often used in the context of process mining. Various algorithms em-
ploy Petri nets as the internal representation used for process mining. Examples are
the region-based process discovery techniques [6, 13,33, 19, 36], the « algorithm [7],
and various conformance checking techniques [8,30-32]. Other techniques use alter-
native internal representations (C-nets, heuristic nets, etc.) that can easily be converted
to (labeled) Petri nets [2].

In this paper, we focus on the following two main process mining problems:

— Process discovery problem: Given an event log consisting of a collection of traces
(i.e., sequences of events), construct a Petri net that “adequately” describes the
observed behavior.

— Conformance checking problem: Given an event log and a Petri net, diagnose the
differences between the observed behavior (i.e., traces in the event log) and the
modeled behavior (i.e., firing sequences of the Petri net).

Both problems are formulated in terms of Petri nets. However, other process notations
could be used, e.g., BPMN models, BPEL specifications, UML activity diagrams, Stat-
echarts, C-nets, heuristic nets, etc. In fact, also different types of Petri nets can be em-
ployed, e.g., safe Petri nets, labeled Petri nets, free-choice Petri nets, etc.

Process mining problems tend to be very challenging. There are obvious challenges
that also apply to many other data mining and machine learning problems, e.g., dealing
with noise, concept drift, and the need to explore a large and complex search space.
For example, event logs may contain millions of events. Moreover, there are also some
specific problems that make process discovery even more challenging:

— there are no negative examples (i.e., a log shows what has happened but does not
show what could not happen);

— due to concurrency, loops, and choices the search space has a complex structure
and the log typically contains only a fraction of all possible behaviors;
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— there is no clear relation between the size of a model and its behavior (i.e., a smaller
model may generate more or less behavior although classical analysis and evalua-
tion methods typically assume some monotonicity property); and

— there is a need to balance between four (often) competing quality criteria (see Sec-
tion 3): (1) fitness (be able to generate the observed behavior), (2) simplicity (avoid
large and complex models), (3) precision (avoid “underfitting”), and (4) general-
ization (avoid “overfitting”).

Process discovery and conformance checking are related problems. This becomes
evident when considering genetic process discovery techniques [29, 15]. In each gener-
ation of models generated by the genetic algorithm, the conformance of every individual
model in the population needs to be assessed (the so-called fitness evaluation). Models
that fit well with the event log are used to create the next generation of candidate mod-
els. Poorly fitting models are discarded. The performance of genetic process discovery
techniques will only be acceptable if dozens of conformance checks can be done per
second (on the whole event log). This illustrates the need for efficient process mining
techniques.

Dozens of process discovery [2,6,7,11,13,18,19,21,24,29,33,35,36] and con-
formance checking [3, 8-10, 16,22, 24,30-32, 34] approaches have been proposed in
literature. Despite the growing maturity of these approaches, the quality and efficiency
of existing techniques leave much to be desired. State-of-the-art techniques still have
problems dealing with large and/or complex event logs and process models. Therefore,
we proposed a divide and conquer approach for process mining. This approach uses a
new concept: passages. A passage is a pair of two sets of activity nodes (X,Y") such
that Xe =Y (i.e., the activity nodes in X influence the enabling of the activity nodes
inY)and X = &Y (i.e., the activity nodes in Y are influenced by the activity nodes
in X). The notion of passages will be formalized in terms of graphs and labeled Petri
nets. Passages can be used to decompose process discovery and conformance checking
problems into smaller problems. By localizing process mining techniques to passages,
more refined techniques can be used. Assuming that the event log and process model
can be decomposed into many passages, substantial speedups are possible. Moreover,
passages can also be used to distribute process mining problems over a network of
computers (e.g., a grid or cloud infrastructure).

This paper focuses on the theoretical foundations of process mining based on pas-
sages. Section 2 introduces various preliminaries, including the new notion of passages
on graphs, event logs, and Petri nets. Section 3 discusses quality criteria for process min-
ing, e.g., the fitness notion is introduced. The notion of passages is used in Section 4 to
decompose the overall conformance checking problem into a set of local conformance
checking problems. Section 5 shows how the same ideas can be used for process discov-
ery, i.e., after determining the causal structure and related passages, the overall process
discovery problem can be decomposed into a set of local process discovery problems.
Related work is discussed in Section 6. Section 7 concludes the paper.
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2 Preliminaries

This section introduces basic concepts related to Petri nets, WF-nets, and event logs.
Moreover, we introduce the notation of passages on arbitrary graphs. This notion will
be used to decompose process mining problems into a set of smaller problems.

2.1 Graphs, Passages, and Paths

First, we introduce basic graphs notations. We will use graphs to represent process mod-
els (i.e., Petri nets) and the causal structure (also referred to as skeleton) of processes.

Definition 1 (Graph). A graph is a pair G = (N, E) comprising a set N of nodes and
aset E C N x N of edges.

For a graph G = (N, E) and n € N, we define preset on= {n" e N|(n,n)e
E} (direct predecessors) and postset ne= {n’ € N | (n,n') € E} (direct successors).
This can be generalized to sets, i.e., for X C N: E X = Upex c.; n and X c.;:
Unex nc.; . The superscript G can be omitted if the graph is clear from the context.

To decompose process mining problems into smaller problems, we partition process
models using the notion passages introduced in this paper. A passage is a pair of non-

empty sets of nodes (X, Y") such that the set of direct successors of X is Y and the set
of direct predecessors of Y is X.

Definition 2 (Passage). Let G = (N, E) be a graph. P = (X,Y) is a passage if and

onlyif0 # X CN,0£Y CN, Xe=Y, and X =Y. pas(G) is the set of all
passages of G.

Consider the sets X = {b,¢,d} and Y = {d, e, f} in Fig. 1 (for the moment ignore
the numbers in the graph). Xe = {b,c,d}e = {d,e, f} = Y and X = {b,c,d} =
e{d,e, f} = oY, s0 (X,Y) is indeed a passage.

A weak passage is a pair (X,Y)suchthat  # XUY C N, X Co;g Y, and
c.; Y C X, i.e., X may contain nodes without predecessors and Y may contain nodes

without successors. Note that any passage is also a weak passage but not vice versa. In
the remainder, we only consider passages.

Definition 3 (Operations on Passages). Ler P, = (X1,Y7) and Py = (X3,Y3) be two
passages.

- P < Pifandonlyif X1 C XoandY; CYs,
- Py < Pyifand only if P, < Py and P, # Ps,
-PUP=(XUX,;,Y1UY,),
P\ P, = (X1 \ X2, Y1\ Y2).

The union of two passages P; U P is again a passage. The difference of two passages
P, \ P, is a passage if P, < P;.
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Fig.1. A graph with five minimal passages: P1 = ({a},{b,c}), P» = ({b,c,d},{d,e, f}),
Py = ({e},{9}), P = ({f},{h}), and Ps = ({g,h},{i}). Passage P> is highlighted and
edges carry numbers to refer to the minimal passage they belong to.
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Lemma 1 (Properties of Passages). Ler G = (N, E) be a graph with passages Py, Ps €
pas(G).

— Py U P; is a passage.
— If P> < Py, then Py \ P, is a passage.

Proof. Let P, = (X1,Y7) and P, = (X3, Y>) be two passages.

For P3 = (X3,Y3) = P, UP, weneed to prove: ) # X3 C N, # Y3 C N,
Xze = Y3, and X3 = eY3. This trivially holds because X3zo = (X; U Xs)e =
XlO UXQO = Y1UY2 = Yg and 0Y3 = O(Yl UYQ) = .Yl U .}/2 = X1 UX2 = X3.

Assume that P, < P; and P; = (X3,Y3) = P; \ P>. Again we need to prove that
0 # X3 CN,0#Ys CN, Xze =Y3,and X3 = eY3. There is a (x,y) € E with
x € X3 and y € Y3. Otherwise, P, ¢ P,. Hence, X5 # () and Y3 # (). Observe that
Xo e NXze = () and eY; N eY3 = () because P is a passage. Moreover, Xze C Y}
and 0Y3 Q Xl. Hence, X3. = (X1 \XQ). = Xl [ \XQ. = Y1 \Y2 = Yg. .}/3 =
o(Y1\Y2) = Y]\ oYy = X; \ Xy = Xj5. Therefore, P; is indeed a passage. a

Since the union of two passages is again a passage, it is interesting to consider
minimal passages. A passage is minimal if it does not “contain” a smaller passage.

Definition 4 (Minimal Passage). Let G = (N, E) be a graph with passages pas(G).
P € pas(G) is minimal if there is no P’ € pas(G) such that P' < P. pas,,;,(G) is
the set of minimal passages.

min

Figure 1 contains five minimal passages. The sets X and Y highlight minimal pas-
sage P, = ({b,¢,d},{d,e, f}). The edges in Fig. 1 have numbers corresponding to
the passage they belong to, e.g., edges (a,b) and (a, ¢) have a label “1” showing that
they belong to passage P; = ({a}, {b, c}). Here we already use the property that an
edge belongs to precisely one minimal passage. In fact, a minimal passage is uniquely
identified by any of its elements as is shown next.
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Lemma 2. Let G = (N, E) be a graph and (x,y) € E. There is precisely one minimal
passage P, ;) = (X,Y) € pas,,;,(G) suchthatx € X andy €Y.

Proof. Construct P(, ) = (X,Y) as follows. Initially: X := {2} and Y := {y}. Then
repeat X := X U oY and Y := Y U Xe until X and Y do not change anymore. The
algorithm will end because there are finitely many nodes. When it ends X = oY and
Y = Xe. Hence, P, = (X,Y) is passage. No unnecessary elements are added to
X and Y, so (X,Y) is minimal and there is precisely one such mininal passage for
(z,y) € E. O

Passages define an equivalence relation on the edges in a graph: (z1,y1) ~ (22, y2)
if and only if P, ) = Pg,,y,)- It is easy to see that ~ is reflexive (i.e., (z,y) ~
(z,y)) , symmetric (i.e., (z1,y1) ~ (z2,y2) if and only if (x2,y2) ~ (x1,y1)), and
transitive (i.e., (x1,y1) ~ (z2,y2) and (z2,y2) ~ (z3,ys) implies (z1,y1) ~ (z3,y3))-
In Fig. 1 (b,d) ~ (b,e) ~ (b, f) ~ (¢, f) ~ (d,d) ~ (d,e), i.e., the arcs having label
“2” form an equivalence class.

For any {(z,y),(z",y),(2,9")} € E: Pay) = Pay) = Pay) i€, Pay)
is uniquely determined by x and P is also uniquely determined by y. Moreover,
pasmin(G) = {P(w,y) ‘ (f’y) € E}

We use the notation x e a y to state that there is a non-empty path o from node
x to node y in the graph G = (N, E) where the set of intermediate nodes visited by
path o does not include any nodes in Q).

z,y)

Definition 5 (Path). Let G = (N, E) be a graph with x,y € N and Q C N. x s

y if and only if there is a sequence 0 = (ny,nsg,...ng) with k > 1 such that x = ny,
y =ny, forall 1 <i < k:(n;,niy1) € E, and forall 1 < i < k: n; € Q. Derived
notations:

-z Fi2 y if and only if there exists a path o such that x ¥ Y,

ISR y is a shorthand for x e y with Q = ),

- nodes(aj Ein y) = {n co | Jpen+ T ”:%Q y}’ and
— for X, Y C N: nodes(X E#Q Y)= Uley)eX x¥ nodes(x E#Q V).

Consider the graph G = (N, E) in Fig. 1 to illustrate these notions. a P2 i holds

for Q = {b,d, e, g} because of the path ¢ = (a,c, f, h,i). a F#£? i does not hold if

@ = {g, h} because all paths connecting a to i need to visit g or h. If Q = {d, e, g},

then nodes(a 2 1) ={a,b,c, f,h,i} because of the two paths connecting a to ¢ not

visiting any of the nodes in Q.

2.2 Multisets

Multisets are used to represent the state of a Petri net and to describe event logs where
the same trace may appear multiple times.

B(A) is the set of all multisets over some set A. For some multiset b € B(A), b(a)
denotes the number of times element ¢ € A appears in b. Some examples: b; = [ ],
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by = [z, 2,9], bg = [2,9,2], ba = [z,2,y,2,y, 2], b5 = [23,y?, 2] are multisets over
A = {x,y, z}. b is the empty multiset, by and b3 both consist of three elements, and
by = bs, i.e., the ordering of elements is irrelevant and a more compact notation may
be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x € ba, ba W bg = by,
bs \ by = bs, |bs| = 6, etc. {a € b} denotes the set with all elements a for which b(a) >
t1.. [f(a) | @ € b] denotes the multiset where element f(a) appears } -, <y (2)= () (%)
imes.

2.3 Petri Nets

Most of the results presented in the paper, can be adapted for various process modeling
notations. However, we use Petri nets to formalize the main ideas and to prove their
correctness.

Definition 6 (Petri Net). A Petri net is tuple PN = (P, T, F') with P the set of places,
T the set of transitions, and F C (P x T') U (T x P) the flow relation.

Figure 2 shows an example Petri net PN = (P, T, F) with P = {start,cl,...,
ch,end}, T = {a,b,...,h}, and F = {(start,a), (a,cl), (a,c2),...,(h,end)}. The
state of a Petri net, called marking, is a multiset of places indicating how many fokens
each place contains. [start] is the initial marking shown in Fig. 2. Another potential
marking is [c110, ¢25, c4°]. This is the state with ten tokens in cl, five tokens in ¢2, and
five tokens in c4.

b
examine
thoroughly
g
c c3 pay
a e compensation
xamine
start register casually decide ¢c5 ond
request -
reject
check ticket » request
reinitiate
request

Fig. 2. A Petri net.

Definition 7 (Marking). Let PN = (P, T, F') be Petri net. A marking M is a multiset
of places, i.e., M € B(P).
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Like for graphs we define the preset and postset of a node. For any z € PU T,

e = {y | (y,x) € F} (input nodes) and 2o = {y | (z,y) € F} (output nodes).

We drop the superscript PN if it is clear from the context.

A transition ¢ € T is enabled in marking M, denoted as M [t), if each of its input
places et contains at least one token. Consider the Petri net in Fig. 2 with M = [¢3, c4]:
M e) because both input places are marked.

An enabled transition ¢ may fire, i.e., one token is removed from each of the input
places et and one token is produced for each of the output places te . Formally: M’ =
(M \ ot) W te is the marking resulting from firing enabled transition ¢ in marking M.
Mty M’ denotes that ¢ is enabled in M and firing ¢ results in marking M. For example,
[start][a)[c1, 2] and [c3, c4][e)[c5] for the net in Fig. 2.

Let 0 = (t1,t2,...,t,) € T* be a sequence of transitions. M[o) M’ denotes that
there is a set of markings My, My,..., M,, such that My = M, M, = M’, and
M;[tiz1) M1 for 0 < i < n. A marking M’ is reachable from M if there exists a
o such that M [c) M’. For example, [start][o)[end] for o = {a,b,d, e, g).

Definition 8 (Labeled Petri Net). A labeled Petri net PN = (P,T,F,T,) is a Petri
net (P, T, F) with visible labels T,, C T. Let 0, = (t1,t2,...,tn) € To be a sequence
of visible transitions. Mo, > M’ if and only if there is a sequence o € T™* such that
M/o)M' and the projection of o on T, yields o, (i.e., o, = olT,).

If we assume T, = {a,e,g,h} for the Petri net in Fig. 2, then [start][o, > [end)]
for o, = (a,e,e,e,e,g) (ie., b, ¢, d, and f are invisible).

In the context of process mining, we always consider processes that start in an initial
state and end in a well-defined end state. For example, given the net in Fig. 2 we are
interested in firing sequences starting in M; = [start] and ending in M, = [end].
Therefore, we define the notion of a system net.

Definition 9 (System Net). A system net is a triplet SN = (PN, M;, M,) where
PN = (P,T,F,T,) is a Petri net with visible labels T,, M; € B(P) is the initial
marking, and M, € B(P) is the final marking.

Given a system net, 7(SN) is the set of all possible visible full traces, i.e., firing
sequences starting in M; and ending in M, projected onto the set of visible transitions.

Definition 10 (Traces). Let SN = (PN, M;, M,) be a system net. 7(SN) = {o, |
M;[oy> M,} is the set of visible traces starting in M; and ending in M.,,.

If we assume T, = {a, ¢, f, g, h} for the Petri net in Fig. 2, then 7(SN) = {{a, e, g),
<(L, €, h)a <a7 €, f,e,g>, <a’7 €, fa €, h>7 . }
2.4 WF-net

The Petri net in Fig. 2 has a designated source place (start), a designated source place
(end), and all nodes are on a path from start to end. Such nets are called WF-nets [1,
4].

Definition 11 (WF-net). WF = (PN, in, T;, out, T,) is a workflow net (WF-net) if
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— PN = (P,T,F,T,) is a labeled Petri net,

— in € P is a source place such that ein = () and ine = Tj,

— out € P is a sink place such that oute = () and eout =T,

- T; C T, is the set of initial transitions and oT; = {in},

- T, C T, is the set of final transitions and T,e = {out}, and

- nodes(in % out) = PUT, i.e., all nodes are on some path from source place in
to sink place out.

WF-nets are often used in the context of business process modeling and process
mining. Compared to the standard definition of WF-nets [1,4] we added the require-
ment that the initial and final transitions need to be visible.

A WF-net WF = (PN, in,T;, out,T,) defines the system SN = (PN, M;, M,)
with M; = [in] and M, = [out]. Ideally WF-nets are also sound, i.e., free of deadlocks,
livelocks, and other anomalies [1,4]. Formally, this means that for any state reachable
from M; it is possible to reach M,,.

Process models discovered using existing process mining techniques may be un-
sound. Therefore, we cannot assume/require all WF-nets to be sound.

2.5 Event Log

As indicated earlier, event logs serve as the starting point for process mining. An event
log is a multiset of traces. Each trace describes the life-cycle of a particular case (i.e., a
process instance) in terms of the activities executed.

Definition 12 (Trace, Event Log). Let A be a set of activities. A trace 0 € A* is a
sequence of activities. L € B(A*) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having the
same trace. In this simple definition of an event log, an event refers to just an activity.
Often event logs may store additional information about events. For example, many
process mining techniques use extra information such as the resource (i.e., person or
device) executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). In this paper, we abstract from such
information. However, the results presented in this paper can easily be extended to event
logs with more information.

An example log is L1 = [{a,e, g)', (a,e, h)°, (a,e, f,e,g9)3, (a,e, f,e, h)?]. Ly
contains information about 20 cases, e.g., 10 cases followed trace (a, e, g). There are
10 x3+5x3+3x%x5+2x5="70events in total.

Definition 13 (Projection). Let A be a set and X C A a subset.[x€ A* — X* isa
projection function and is defined recursively: (1) ()| x= () and (2) for o0 € A* and

a€ A:
olx ifag X
(03 (@) x= :
olxi(a) ifacX
The projection function is generalized to event logs, i.e., for some event log L € B(A*)

and set X C A: Ll x= [o|x| o € L].

For the event log L1: Ly [{q,g.ny= [(a,9)'?, (a, h)7]. Note that all e and f events
have been removed.
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3 Conformance Checking

Conformance checking techniques investigate how well an event log L € B(A*) and
a system net SN = (PN, M;, M,,) fit together. Note that the process model SN may
have been discovered through process mining or may have been made by hand. In any
case, it is interesting to compare the observed example behavior in L and the potential
behavior of SN.

Conformance checking can be done for various reasons. First of all, it may be used
to audit processes to see whether reality conforms to some normative or descriptive
model [5]. Deviations may point to fraud, inefficiencies, and poorly designed or out-
dated procedures. Second, conformance checking can be used to evaluate the results
of a process discovery techniques. In fact, genetic process mining algorithms use con-
formance checking to select the candidate models used to create the next generation of
models [29].

There are four quality dimensions for comparing model and log: (1) fitness, (2)
simplicity, (3) precision, and (4) generalization [2]. A model with good fitness allows
for most of the behavior seen in the event log. A model has a perfect fitness if all traces
in the log can be replayed by the model from beginning to end. The simplest model
that can explain the behavior seen in the log is the best model. This principle is known
as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the quality
of a discovered process model. For example, it is very easy to construct an extremely
simple Petri net (“flower model”) that is able to replay all traces in an event log (but also
any other event log referring to the same set of activities). Similarly, it is undesirable to
have a model that only allows for the exact behavior seen in the event log. Remember
that the log contains only example behavior and that many traces that are possible may
not have been seen yet. A model is precise if it does not allow for “too much” behavior.
Clearly, the “flower model” lacks precision. A model that is not precise is “underfitting”.
Underfitting is the problem that the model over-generalizes the example behavior in the
log (i.e., the model allows for behaviors very different from what was seen in the log).
At the same time, the model should generalize and not restrict behavior to just the
examples seen in the log. A model that does not generalize is “overfitting”. Overfitting
is the problem that a very specific model is generated whereas it is obvious that the
log only holds example behavior (i.e., the model explains the particular sample log, but
there is a high probability that the model is unable to explain the next batch of cases).

In the remainder, we will focus on fitness. However, the ideas are applicable to the
other quality dimensions.

Definition 14 (Perfectly Fitting Log). Let L € B(A*) be an event log and let SN =
(PN, M;, M,) be a system net. L is perfectly fitting SN if and only if {o € L} C
T(SN).

Consider two event logs L1 = [(a, e, )10, {a, e, h)%, (a,e, f,e,9)3, (a,e, f, e, h)?]
and Ly = [{a,e,9)1%, (a,e, h)®, {(a,9)%, (a,a,g,e,h)?] and the system net SN of the
WEF-net depicted in Fig. 2 with T,, = {a, e, f, g, h}. Clearly, L is perfectly fitting SN
and Lo is not. There are various ways to quantify fitness [2, 3, 8, 24,29-32], typically
on a scale from 0 to 1 where 1 means perfect fitness. To measure fitness, one needs to
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align traces in the event log to traces of the process model. Some example alignments

for Ly and SN:
‘e‘h‘ _lala|[>g|e|h
leln] 7 T la[>Teld>>

The top row of each alignment corresponds to “moves in the log” and the bottom row
corresponds to “moves in the model”. If a move in the log cannot be mimicked by a
move in the model, then a “>>” (“no move”) appears in the bottom row. For example, in
74 the model is unable to do the second a move and is unable to do g before e. If a move
in the model cannot be mimicked by a move in the log, then a “>>" (“no move”) appears
in the top row. For example, in 7y3 the log did not do an e move whereas the model has to
make this move to enable g and reach the end. Given a trace in the event log there may
be many possible alignments. The goal is to find the alignment with the least number of
> elements, e.g., y4 is clearly better than ~5. The number of >> elements can be used
to quantify fitness. Moreover, once an optimal alignment has been established for every
trace in the event log, these alignments can be used as a basis to quantify precision and
generalization [3].

4 Distributed Conformance Checking

Conformance checking techniques can be time consuming as potentially many different
traces need to be aligned with a model that may allow for an exponential (or even
infinite) number of traces. Event logs may contain millions of events. Finding the best
alignment may require solving many optimization problems [8] or repeated state-space
explorations [32]. When using genetic process mining, one needs to check the fitness of
every individual model in every generation [29]. As a result, thousands or even millions
of conformance checks need to be done. For each conformance check, the whole event
log needs to be traversed. Given these challenges, we are interested in reducing the time
needed for conformance checking.

In this section, we show that it is possible to decompose and distribute conformance
checking problems using the notion of passages defined in Section 2.1. In order to do
this we focus on the visible transitions and create the so-called skeleton of the process
model.

Definition 15 (Skeleton). Ler PN = (P, T, F,T,) be a labeled Petri net. The skeleton
of PN is the graph skel(PN) = (N, E) with N =T, and E = {(x,y) € T, x T}, |
¢ T2 Y}

Figure 3 shows the skeleton of the WF-net in Fig. 2 assuming that T;, = {a, e, f, g, h}.
The resulting graph has two minimal minimal passages.

Note that only the visible transitions T, appear in the skeleton. For example, if we
assume that T, = {a, g, h} in Fig. 2, then the skeleton is ({a, g, h}, {(a,g),(a,h)})
and there is only one passage ({a}, {g, h}).

If there are multiple minimal passages in the skeleton, we can decompose confor-
mance checking problems into smaller problems by partitioning the Petri net into net
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register decide N pay
request compensation

reinitiate f h reject
request request

Fig. 3. The skeleton of the labeled Petri net in Fig. 2 (assuming that T, = {a, e, f, g, h}). There
are two minimal minimal passages: ({a, f},{e}) and ({e},{f, g, h}).

fragments and the event log into sublogs. Each passage (X, Y") defines one net fragment
PNY) and one sublog L[ xyy. We will show that conformance can be checked per
passage.

b f
examine reinitiate
a thoroughly request
register cl c c3 " € d
request -
q examine e decide c5 pay .
casually Mode compensation
f h
— d
reinitiate c2 c4 reject
request check ticket request

Fig.4. Two net fragments corresponding to the two passages of the skeleton in Fig. 3:
PN, = PNUa/bAeD) (eft) and PN, = PNUeh /92D (right). The visible transitions
T, ={a,e, f, g, h} that form the boundaries of the fragments are highlighted.

Consider event log L = [(a,e,g)', (a,e,h)5, (a,e, f,e,9)3, (a,e, f, e, h)?], the
WEF-net PN shown in Fig. 2 with T, = {a, €, f, g, h}, and the skeleton shown in Fig. 3.
There are two passages: P; = ({a, f},{e}) and P, = ({e},{f, g, h}). Based on this
we define two net fragments PN, and PN, as shown in Fig. 4. Moreover, we de-
fine two sublogs: L1 = [(a,e)!®, (a,e, f,e)°] and Ly = [{e, g)1%, (e, h)?, (e, f, e, )3,
(e, f,e,h)?]. To check the conformance of the overall event log on the overall model,
we check the conformance of L; on PN and Ly on PN . Since L, is perfectly fitting
PN and L, is perfectly fitting PN o, we can conclude that L is perfectly fitting PN .
This illustrates that conformance checking can be decomposed.

In order to prove this, we first define the notion of a net fragment.

Definition 16 (Net Fragment). Ler PN = (P, T, F,T,) be a labeled Petri net. For any
two sets of transitions X, Y C T, we define the net fragment PN X-Y) = (P, T, F',T))
with:
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F#T,
foard

Z = nodes(X
- P =PnZ,
T=(TNZ)uXUY,

F'=Fn (P xT')U(T' x P')), and
T =XUY.

Y)\ (X UY) are the internal nodes of the fragment,

Note that PN, = PNUaFfhed) iy Fig.4has Z = {b,c,d, cl, 2,3, ¢4} as internal
nodes.

N AN
LD | LD

v
N

B

L2
\

W,

A
> — j
<|> /\Q\:% JI N

Fig.5. WE-net WF is decomposed in subnets PN (X*¥)_ The “clouds” model the internal struc-
ture of these subnets (places but possibly also hidden transitions). Due to the decomposition based
on passages, one cloud can only influence another cloud through the visible interface transitions
X and Y. Since the visible interface transitions are “controlled” by the event log, it is possible to
check fitness locally per subnet.

Now we can prove the main result of this paper. Figure 5 illustrates our decomposi-
tion approach. A larger model can be decomposed into net fragments corresponding to
minimal passages. The event log can be decomposed in a similar manner and confor-
mance checking can be done per passage.

Theorem 1 (Main Theorem). Let L € B(A*) be an event log and let WF = (PN,
in, T;, out, T,) be a WF-net with PN = (P, T, F,T,).
L is perfectly fitting system net SN = (PN, [in], [out]) if and only if

— forany {a1,as,...ax) € L: ay € T; and ay, € T,, and
— for any (X,Y) € pas,,;, (skel(PN)): L [xuy is perfectly fitting SNY) =
(PNEEY, [T 1]).

Proof. (=) Leto, = (a1,a2,...ax) € L such that there is a o € T with [in][o) [out]
and o[1, = o0, (i.e., 0, fits into the overall WF-net). We need to prove the two properties
listed above:
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— a1 € T; and a;, € T, because only transitions in 7; are enabled in the initial
marking and only transitions in 7}, can produce tokens for out. Moreover, when
o puts a token in place out all other places should be empty; otherwise o cannot
result in [out] (property of WF-nets). Note that T; C T, and T, C T, so the first
and last transition need to be visible.

— Forany (X,Y) € pas,,;, (skel(PN)): we define PNY) = (P, T' F’,T!) and
o' = o 7. We need to prove that [ ][o/)[ ] in PNXY) This follows trivially
because SN XY) can mimic any move of SN with respect to transitions 7".

(<) Let 0, = {a1,as9,...a;) € L such that ay € T;, ar € T,, and assume that for
any (X,Y) € pas,,;,(skel(PN)) there is a sequence o(x,y) such that [ ][o(x y))[ ]
in PN&XY) = (P, T, F',T)) with o(x vy [ xUy= 0u[xuy. We need to prove that
there is a o € T such that [in][o)[out] in PN with o[7,= o, The different o(x y
sequences can be stitched together into an overall o because the different subnets only
interface via visible transitions. Transitions in one subnet can only influence other sub-
nets through visible transitions and these can only move synchronously as defined by
oy € L. O

Although the theorem only addresses the notion of perfect fitness, other confor-
mance notions can be decomposed in a similar manner. Metrics can be computed per
passage and then aggregated into an overall metric.

Assuming a process model with many passages, the time needed for conformance
checking can be reduced significantly. There are two reasons for this. First of all, as
Theorem 1 shows, larger problems can be decomposed into a set of independent smaller
problems. Therefore, conformance checking can be distributed over multiple comput-
ers. Second, due to the exponential nature of most conformance checking techniques,
the time needed to solve “many smaller problems” is less than the time needed to solve
“one big problem”. Existing approaches use state-space analysis (e.g., in [32] the short-
est path enabling a transition is computed) or optimization over all possible alignments
(e.g., in [8] the A* algorithm is used to find the best alignment). These techniques do
not scale linearly in the number of activities. Therefore, decomposition is useful even if
the checks per passage are done on a single computer.

5 Process Discovery: Divide and Conquer

As explained before, conformance checking and process discovery are closely related.
Therefore, we can use the approach used in Theorem 1 for process discovery provided
that some coarse causal structure (comparable to the skeleton in Section 4) is known.
Based on the passages in the causal structure, multiple smaller discovery problems are
formulated. This result in one net fragment per passage. These fragments can be folded
into an overall model.

More concretely, we propose the following discovery approach:

1. Inputis an event log L4, € B(AL,,,) over a set of activities Ay -
2. Extend each trace in the event log with an artificial start event T and an artificial
endevent L ({T, L}NArqw = 0). Lt = [(T);0; (L) | 0 € Lyay] is the resulting

logover Aczt = {T, L} U Apqp-
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3. Discover the causal structure, i.e., we assume that there is an algorithm ~. such
that ve(Legt) = (A, C) with {T, L} C A C Ayt and C C A x A. The causal
structure may be inspected and modified by a domain expert.

4. Filter the event log using the selected set of activities A: L = Legi[ a.

5. Compute the set of passages on the graph G = (A,C): PS = pas,,;,(G) =
{(X1, Y1), (X2,Y2),...,(Xk, Yr)}. We assume that there is an algorithm ~,, such
that v, (L [x,uy;, X;,Y;) = PN; = (P, T}, F;, X; UY;) returns a Petri net with
visible transitions X; U Y;. The discovered Petri nets only overlap with respect to
visible transitions, i.e., for 1 < i < j < k: (P, UT;) \ (X; UY3)) N ((P; U
T;)\ (X; UYj)) = 0. Moreover, each PN ; should respect the causal structure, i.e.,
visible transition « € X; is connected to visible transition y € Y; in PN; if and
only if (z,y) € C.

6. Merge the individual subsets into one overall system net SN = (PN, M;, M,)
with PN = (P, T, F,T,) such that:

- P= {Z"m out} U Ui<i<k B,

- T =Ui<i<k T,

- F={(in,T), (L, out)} U (Ur<i<k Fi),
- Tv = A’

- M; = [in], and

- M, = [out].

Q
|

The discovery process is parameterized by 7. (the algorithm to find causal struc-
ture) and +, (the algorithm to find a local, transition bordered process model). Any
combination of -y and -y, can be used as the two main steps are decoupled by the causal
structure. 7. can also be used to filter out infrequent activities, noise, etc. Moreover, the
user is able to edit the causal structure using domain knowledge or particular prefer-
ences. Experience shows that user feedback is vital to balance between overfitting and
underfitting.

The log is extended by adding an artificial start event T and an artificial end event
L to every trace, This is just a technicality to ensure that there is a clearly defined
start and end. Note that passages can be activated multiple times, e.g., in case of loops.
Therefore, we add transitions T and L and places in and out. If there is a unique start
(end) event, then there is no need to add transition T (). Ideally, the causal structure
created in Step 3 has one source node T, one sink node L, and all other nodes are on a
path from T to L (like in a WF-net).

To illustrate the divide and conquer approach based on passages, consider the event
10g Lyaw = [{a,b,c,d)0,(b,a,c,d)3® {(a,b,c,e)30, (b, a,c,e)?, (a,b,z,d)*, (a,b,e)l].
The log describes 132 cases. We first add the artificial start and events (Step 2): Ley: =
[<T7 a, b» &) da J—>407 <T7 ba a,c, da J—>357 <T7 a, b, ¢ e, J—>307 <T7 ba a,c,e, J—>25? <T’ a, ba
x,d, L)', (T,a,b,e, L)!]. Then we compute the causal structure using -, (Step 3). As-
sume that the causal structure shown in Fig. 6 is computed. Since x occurs only once
whereas the other activities occur more than 50 times, x is excluded. The same holds
for the dependency between b and e. L is the log where x is removed (Step 4).

The causal structure has four minimal passages: P, = ({T}, {a,b}), P> = ({a,b},
{e}), Ps = ({c},{d,e}), and Py = ({d,e},{L}). Based on these passages we create
four corresponding sublogs: Ly = [(T,a,b)™, (T, b,a)%°], Ly = [(a,b,c)™, (b, a, )5,
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T

Pl
c 1L
N

Fig. 6. Causal structure ~.(Legt) discovered for the extended event log having four minimal
passages.

{a,b)?], Lz = [{c,d)™, {c,e)®® (d)!, (e)'],and Ly = [{d, L)7, (e, 1)55]. One transition-
bordered Petri net is discovered per sublog using -, (Step 5). Figure 7 shows the result-
ing net fragments. Note that infrequent behavior has been discarded, i.e., trace {(a, b) in
L is not possible in PN o, and traces (d) and (e) in L3 are not possible in PN 3. What
behavior is included and what not depends on 7.

Fig.7. The Petri net fragments discovered for the four passages: PN 1, PN 1, PN3, and PN 4.

In the last step of the approach, the four net fragments of Fig. 7 are merged into
the overall model shown in Figure 8 (Step 6). Note that this model is indeed able to
replay all frequent behavior. Two of the 132 cases cannot be replayed because they
were treated as noise by . and y,,.

/Q—»a d
jo=

(O—{T

c LHQ

out

Fig. 8. The WF-net obtained by merging the individual subsets.

The small example shows that we can use a divide and conquer approach when
discovering process models. We deliberately did not select concrete algorithms for ~,
and -y,,. The approach is generic and can be combined with existing process discovery
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techniques [2,6,7,11,13,18,19,21,24,29, 33,35, 36]. Moreover, the user can modify
the causal structure (i.e., the result of ~y.) to guide the discovery process.

By decomposing the overall discovery problem into a collection of smaller discov-
ery problems, it is possible to do a more refined analysis and achieve significant speed-
ups. The discovery algorithm +,, is applied to an event log consisting of just the activi-
ties involved in the passage under investigation. Hence, process discovery tasks can be
distributed over a network of computers (assuming there are multiple passages). More-
over, most discovery algorithms are exponential in the number of activities. Therefore,
the sequential discovery of all individual passages on one computer is often still faster
than solving one big discovery problem. If there are more passages than computers, one
can merge minimal passages into aggregate passages and use these for discovery and
conformance checking (one passage per computer). However, in most situations, it will
be more efficient to analyze the minimal passages sequentially.

6 Related Work

For an introduction to process mining we refer to [2]. For an overview of best practices
and challenges, we refer to the Process Mining Manifesto [26]. The goal of this paper
is to decompose challenging process discovery and conformance checking problems
into smaller problems. Therefore, we first review some of the techniques available for
process discovery and conformance checking.

Process discovery, i.e., discovering a process model from a multiset of example
traces, is a very challenging problem and various discovery techniques have been pro-
posed [6,7,11,13,18,19,21,24,29,33, 35, 36]. Many of these techniques use Petri nets
during the discovery process and/or to represent the discovered model. It is impossible
to provide an complete overview of all techniques here. Very different approaches are
used, e.g., heuristics [21, 35], inductive logic programming [24], state-based regions
[6, 19, 33], language-based regions [13, 36], and genetic algorithms [29]. Classical syn-
thesis techniques based on regions [23] cannot be applied directly because the event
log contains only example behavior. For state-based regions one first needs to cre-
ate an automaton as described in [6]. Moreover, when constructing the regions, one
should avoid overfitting. Language-based regions seem good candidates for discover-
ing transition-bordered Petri nets for passages [13, 36]. Unfortunately, these techniques
still have problems dealing with infrequent/incomplete behavior.

As described in [2], there are four competing quality criteria when comparing mod-
eled behavior and recorded behavior: fitness, simplicity, precision, and generalization.
In this paper, we focused on fitness, but also precision and generalization can also be in-
vestigated per passage. Various conformance checking techniques have been proposed
in recent years [3, 8-10, 16,22, 24,30-32, 34]. Conformance checking can be used to
evaluate the quality of discovered processes but can also be used for auditing purposes
[5]. Most of the techniques mentioned can be applied to passages. The most challeng-
ing part is to aggregate the metrics per passage into metrics for the overall model and
log. We consider the approach described in [8] to be most promising as it constructs an
optimal alignment given an arbitrary cost function. This alignment can be used for com-
puting precision and generalization [3, 31]. However, the approach can be rather time
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consuming. Therefore, the efficiency gains can be considerable for larger processes with
many activities and passages.

Little work has been done on the decomposition and distribution of process mining
problems. In [15] an approach is described to distribute genetic process mining over
multiple computers. In this approach candidate models are distributed and in a similar
fashion also the log can be distributed. However, individual models are not partitioned
over multiple nodes. Therefore, the approach in this paper is complementary. Moreover,
unlike [15], the decomposition approach based on passages is not restricted to genetic
process mining.

Most related are the divide-and-conquer techniques presented in [20]. In [20] it is
shown that region-based synthesis can be done at the level of synchronized State Ma-
chine Components (SMCs). Also a heuristic is given to partition the causal dependency
graph into overlapping sets of events that are used to construct sets of SMCs. Passages
provide a different (more local) partitioning of the problem and, unlike [20] which fo-
cuses on state-based region mining, we decouple the decomposition approach from the
actual conformance checking and process discovery approaches.

Several approaches have been proposed to distribute the verification of Petri net
properties, e.g., by partitioning the state space using a hash function [14] or by mod-
ularizing the state space using localized strongly connected components [27]. These
techniques do not consider event logs and cannot be applied to process mining.

Most data mining techniques can be distributed [17], e.g., distributed classification,
distributed clustering, and distributed association rule mining [12]. These techniques
often partition the input data and cannot be used for the discovery of Petri nets.

7 Conclusion

Computationally challenging process mining problems can be decomposed in smaller
problems using the new notion of passages. This paper shows that the fitness of the
overall model can be analyzed per passage. The approach is independent of the partic-
ular conformance checking technique used. Moreover, the same idea can be applied to
other conformance notions. The paper also presents a discovery approach where the dis-
covery problem can be decomposed after determining the causal structure. The refined
behavior can be discovered per passage and, subsequently, the discovered net fragments
can be merged into an overall process model. Conformance checking and process dis-
covery can be done much more efficiently using such decompositions. Moreover, the
approach can be distributed over a network of computers.

This paper presents the idea of passages and provides a formal correctness proof
showing that a log is perfectly fitting the overall model if and only if the property
holds per passage. Future work will focus on large scale experiments demonstrating
the performance gains on a variety of process mining problems. We anticipate that the
actual speedup heavily depends on the number of passages. Therefore, it is important
investigate this using real-life logs and models.
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