
Runtime Verification

of LTL-Based Declarative Process Models

Fabrizio Maria Maggi1,�, Michael Westergaard1,��,
Marco Montali2,� � �, and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands
{f.m.maggi,m.westergaard,w.m.p.v.d.aalst}@tue.nl

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
montali@inf.unibz.it

Abstract. Linear Temporal Logic (LTL) on finite traces has proven to
be a good basis for the analysis and enactment of flexible constraint-
based business processes. The Declare language and system benefit from
this basis. Moreover, LTL-based languages like Declare can also be used
for runtime verification. As there are often many interacting constraints,
it is important to keep track of individual constraints and combinations of
potentially conflicting constraints. In this paper, we operationalize the no-
tion of conflicting constraints and demonstrate how innovative automata-
based techniques can be applied to monitor running process instances.
Conflicting constraints are detected immediately and our toolset (real-
ized using Declare and ProM) provides meaningful diagnostics.

Keywords: Monitoring, Linear Temporal Logic, Finite State Automata,
Declarative Business Processes, Operational Support, Process Mining.

1 Introduction

Linear Temporal Logic (LTL) provides a solid basis for design-time verification
and model checking. Moreover, LTL has also been used for the runtime verifica-
tion of dynamic, event-based systems. In this latter setting, desired properties
are expressed in terms of LTL. These properties and/or their conjunction are
translated to a monitor which can be used to dynamically evaluate whether the
current trace, representing an evolving run of the system, complies with the
desired behavior or not.

Traditionally, LTL-based approaches were mainly used to verify or moni-
tor running programs. However, the need for flexibility and a more declarative
view on work processes fueled the interest in the Business Process Management

� Research carried out as part of the Poseidon project at Thales under the re-
sponsibilities of the Embedded Systems Institute (ESI). The project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

�� Research supported by the Technology Foundation STW, applied science division
of NWO and the technology program of the Dutch Ministry of Economic Affairs.

� � � Research supported by the NWO “Visitor Travel Grant” initiative and by the EU
Project FP7-ICT ACSI (257593).

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 131–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

132 F.M. Maggi et al.

(BPM) field. The Declare language and system [11] show that it is possible to
model LTL constraints graphically such that end user can understand them,
while a workflow engine can enact the corresponding process. Constraints may
be enforced by the Declare system or are monitored while the process unfolds.

Each graphical constraint in Declare is represented as an LTL formula, and
the global process model is formalized as the conjunction of all such “local”
formulas. Hence, there are two levels: (a) individual constraints well-understood
by the end-user and (b) global constraints resulting from the interaction of local
constraints. Runtime verification must provide intuitive diagnostics for every in-
dividual constraint, tracking its state as the monitored process instance evolves,
but at the same time also provide diagnostics for the overall process model, giving
a meaningful feedback obtained from the combination of different constraints.

In [6], we have investigated automata-based techniques for the runtime verifi-
cation of LTL-based process models. In particular, we proposed colored automata
to provide intuitive diagnostics for singular constraints and ways to continue ver-
ification even after a violation has taken place. Intuitively, a colored automaton
is a finite state automaton built for the whole set of constraints composing a
process model, where each state contains specific information (colors) indicating
the state of individual constraints.

Here, we again use colored automata for runtime verification. However, now
we focus on the interplay of constraints, i.e., we detect violations that cannot
be attributed to a single constraint in isolation, but result from combinations of
conflicting constraints. To do so, we extend a variant of the four-valued RV-LTL
semantics [2] with the notion of conflicting constraint set, in effect adding a fifth
truth value indicating that while a constraint is not violating the specification on
its own, the interplay with other constraints makes it impossible to satisfy the
entire system. Given the current trace of a system’s instance, a set of constraints
is conflicting if, for any possible continuation of the instance, at least one of such
constraints will be eventually violated. Hence, our approach is able to detect
constraint violations as early as possible. We show how to compute minimal
conflicting sets, i.e., conflicting sets where the conflict disappears if one of the
constraints is removed. We present our framework in the context of process
models (as it was developed in that context), but it is applicable to any system
described, directly or indirectly, using a set of finite automata.

Our approach has been implemented in the context of the Declare system1

and ProM2. We provide diagnostics that assist end-users in understanding the
nature of deviations and suggest recovery strategies focusing on the constraints
that are truly causing the problem.

The remainder of this paper is organized as follows. Section 2 presents some
background material, and, in Sect. 3, we introduce our runtime verification
framework. Section 4 explains the core algorithms used in our approach. We
have been applying our approach to various real-world case studies. In Sect. 5,

1 www.win.tue.nl/declare/
2 www.processmining.org

Runtime Verification of LTL-Based Declarative Process Models 133

Under way
using engine

Under way
sailing

Constrained by
her draught

Moored

responded
existence

precedence

not coexistence

Fig. 1. Example Declare model

we report on the monitoring of Declare constraints in the context of maritime
safety and security. Section 6 concludes the paper.

2 Background

In this section, we introduce some background material illustrating the basic
components of our framework. Using a running example, we introduce Declare,
present RV-FLTL, an LTL semantics for finite traces, and an approach to trans-
late a Declare model to a set of automata for runtime verification.

2.1 Declare and Running Example

Declare is a declarative process modeling language and a workflow system based
on constraints [9]. The language is grounded in LTL, but has an intuitive graphi-
cal representation. Differently from imperative models that are “closed”, Declare
models are “open”, i.e., they specify undesired behavior and allow everything
that is not explicitly forbidden. The Declare system is a full-fledged workflow
management system that, being based on a declarative language, offers more
flexibility than traditional workflow systems.

Figure 1 shows a simple Declare model used within the maritime safety and
security field. We use this example to explain the main concepts. It involves four
events (depicted as rectangles, e.g., Under way using engine) and three constraints
(shown as arcs between the events, e.g., not coexistence). In our example, a vessel
can be Under way, either using an engine or sailing but not both, as indicated by
the not coexistence between the two events. A vessel can be Constrained by her
draught, but only after being Under way sailing (as a vessel with an engine cannot
be constrained by draught and a sailing vessel cannot be constrained before it is
under way). This is indicated by the precedence constraint. Due to harbor policy,
only vessels with an engine can be Moored (sailing ships are instead anchored).
This is indicated by the responded existence, which says that if Moored occurs,
Under way using engine has to occur before or after. Note that events represent
changes in the navigational state of a ship and then are considered to be atomic.

Each individual Declare constraint can be formalized as an LTL formula talk-
ing about the connected events. Let us consider, for example, Fig. 1, naming
the LTL formulas formalizing its different constraints as follows: ϕn is the not
coexistence constraint, ϕp is the precedence constraint and ϕr is the responded

134 F.M. Maggi et al.

existence constraint. Using M, S, E and C to respectively denote Moored, Under
way sailing, Under way using engine and Constrained by her draught, we then have

ϕn = (♦E) ⇒ (¬♦S) ϕp = (♦C) ⇒ (¬C � S) ϕr = (♦M) ⇒ (♦E)

The semantics of the whole model is determined by the conjunction of these
formulas.

2.2 LTL Semantics for Constraint-Based Business Processes

Traditionally, LTL is used to reason over infinite traces. When focusing on
runtime verification, reasoning is carried out on partial, ongoing traces, which
describe a finite portion of the system’s execution. Among the possible LTL
semantics on finite traces, we use a variant of Runtime Verification Linear Tem-
poral Logic (RV-LTL), a four-valued semantics proposed in [2]. Indeed, the four
values used by RV-LTL capture in an intuitive way the possible states in which
Declare constraints can be during the execution. Differently from the original
RV-LTL semantics, which focuses on trace suffixes of infinite length, we limit
ourselves to possible finite continuations (RV-FLTL). This choice is motivated
by the fact that we consider process instances that need to complete eventually.
This has considerable impact on the corresponding verification technique: rea-
soning on Declare models is tackled with standard finite state automata (instead
of, say, Büchi automata).

We denote with u |= ϕ the truth value of an LTL formula ϕ in a finite trace u,
according to FLTL [5], a standard LTL semantics for dealing with finite traces.

Definition 1 (RV-FLTL). The semantics of [u |= ϕ]RV is defined as follows:

– [u |= ϕ]RV = � (ϕ permanently satisfied by u) if for each possible finite
continuation σ of u: uσ |= ϕ;

– [u |= ϕ]RV = ⊥ (ϕ permanently violated by u) if for each possible finite
continuation σ of u: uσ �|= ϕ;

– [u |= ϕ]RV = �p (ϕ possibly satisfied by u) if u |= ϕ but there is a possible
finite continuation σ of u such that uσ �|= ϕ;

– [u |= ϕ]RV = ⊥p (ϕ possibly violated by u) if u �|= ϕ but there is a possible
finite continuation σ of u such that uσ |= ϕ.

We denote B4 = {�,⊥,�p,⊥p} and assume an order ⊥ ≺ ⊥p ≺ �p ≺ �.

We say a formula is satisfied (or violated), if it is permanently or possible satisfied
(or violated).

As we have seen for Declare, we do not look at specifications that consist
of a single formula, but rather at specifications including sets of formulas. We
generalize this aspect by defining an LTL process model as a set of (finite trace)
LTL formulas, each capturing a specific business constraint.

Definition 2 (LTL process model). An LTL process model is a finite set of
LTL constraints Φ = {ϕ1, . . . , ϕm}.

Runtime Verification of LTL-Based Declarative Process Models 135

s0

!E&!S s3
S

s2

E

!E

s1

E

!S
S

-

s0

!C&!S
s2

S

s1

C

-

-
s0

!M&!E

s2
E

s1

M

-

E!E

Fig. 2. Local automata for ϕn, ϕp, and ϕr from the example in Fig. 1

One way to verify at runtime an LTL process model Φ = {ϕ1, . . . , ϕm} is to test
the truth value [u |= Φ]RV = [u |= ∧

i=1,...,m ϕi]RV . This approach, however,
does not give any information about the truth value of each member of Φ in
isolation. A solution for that is to test the truth values [u |= ϕi]RV , i = 1, . . . ,m
separately. This is, however, still not enough. Let us consider, for example, the
Declare model represented in Fig. 1. After executing the traceMoored, Under way
sailing, the conjunction ϕn ∧ ϕp ∧ ϕr is permanently violated but each member
of the conjunction is not (ϕn is possibly satisfied, ϕp is permanently satisfied,
and ϕr is possibly violated). Therefore, to give insights about the state of each
constraint of an LTL process model and still detect non-local violations, we need
to check both global and local formulas.

2.3 Translation of an LTL Process Model to Automata

Taking advantage of finiteness of traces in the RV-FLTL semantics, we construct
a deterministic finite state automaton showing the state of each constraint given
a prefix (we simply refer to such an automaton as “automaton”). An automaton
accepts a trace if and only if it does not violate the constraint, and is constructed
by using the translation in [3].

For the constraints in the model in Fig. 1, we obtain the automata depicted
in Fig. 2. In all cases, state 0 is the initial state and accepting states are in-
dicated using a double outline. A gray background indicates that the state is
permanent (for both satisfied and violated). As well as transitions labeled with
a single letter (repesenting an event), we also have transitions labeled with one
or more negated letters; they indicate that we can follow the transition for any
event not mentioned. This allows us to use the same automaton regardless of
the exact input language. When we replay a trace on an automaton, we know
that if we are in an accepting state, the constraint is satisfied, and when we are
in a non-accepting state, it is violated. We can distinguish between the possi-
ble/permanent cases by the background; states with a gray background indicate
that the state is permanent.

We can use these local automata directly to monitor each constraint, but
to detect non-local violations we also need a global automaton. This can be
constructed as the automaton product of the local automata or equivalently as
the automaton of the conjunction of the individual constraints [12].

The global automaton for our example is shown in Fig. 3. We use state
numbers from each of the automata from Fig. 2 as state names, so state 202

136 F.M. Maggi et al.

000

001

M

FC

202
E

320

S

C,S
E

C,S

E,M

Fig. 3. Global automaton for our example

corresponds to constraint not coexistence being in state 2, constraint precedence
being in state 0, and constraint responded existence being in state 2. These
names are for readability only and do not indicate we can infer the states of
local automata from the global states. To not clutter the diagram, we do not
show self loops. These can be derived: every state also has a self-loop transition
for any transition not otherwise explicitly listed. Accepting states in the global
automaton correspond to states where all constraints are satisfied. In a non-
accepting state, at least one constraint is possibly violated. State F corresponds
to all situations where it is no longer possible to satisfy all constraints. We note
that state 321 is not present in Fig. 3 even though none of the local automata
is in a permanently violated state and it is in principle reachable from state
001 via a S. The reason is that from this state it is never possible to reach a
state where all constraints together are satisfied. Indeed, by executing the trace
Moored, Under way sailing, Under way with engine, for instance, we obtain the
trace 000 →M 001 →S F →E F . Hence, we correctly identify that after the first
event, we possibly violate some constraints, and after Under way sailing there is
a non-local violation and we cannot satisfy all constraints together anymore.

The global automaton in Fig. 3 allows us to detect the state of the entire
system, but not for individual constraints. In [6], we introduced a more elaborate
automaton, the colored automaton. This automaton is also the product of the
individual local automata, but now we include information about the acceptance
state for each individual constraint. The colored automaton for our example is
shown in Fig. 4. We retain the state numbering strategy, but add a second
line describing which constraints are satisfied. In this case, each state of the
colored automaton really contains indications about the acceptance state for each
individual constraint. If a constraint is satisfied in a state, we add the first letter
of the name of the constraint in uppercase (e.g., R indicating that the constraint
responded existence is permanently satisfied in state 202). If a constraint is only
possibly satisfied, we put parentheses around the letter (e.g., (R) in state 320). If
a constraint is possibly violated in a state, we add the letter in lowercase (e.g., r
in state 001), and if a constraint is permanently violated, we omit it entirely (e.g.,
precedence is permanently violated in state 011). Executing the trace Moored,
Under way sailing, Under way using engine on the colored automaton, we obtain
the trace 000 →M 001 →S 321 →E 122. We can see in state 122 that we have
permanently violated the constraint not coexistence and permanently satisfied
the others (PR). Note that the presence of an undesired situation, attesting an

Runtime Verification of LTL-Based Declarative Process Models 137

000
(N)(P)(R)

001
(N)(P)r

M

010
(N)(R)

C

202
(N)(P)R

E

320
(N)P(R)

S

011
(N)r

C

E

321
(N)Pr

S

M

212
(N)R

E

310
(N)(R)

S

E

311
(N)r

S

112
R

122
PR

S

C

S

E

M

E

E

M E

Fig. 4. Colored automaton for the example in Fig. 1

unavoidable future violation, is already detected in state 321. However, in 321,
the problem cannot be attributed to a single constraint. The problem is non-local
and is caused by the interplay between not coexistence and responded existence
(the first forbidding and the other requiring the presence of event Under way
using engine). We capture this kind of situation by introducing the notion of
conflicting constraint sets.

3 Conflicting Constraint Sets

The colored automaton described in the previous section is able to detect both
local and non-local violations. However, it does not provide enough information
for user-friendly diagnostics. To do so, we have to identify the smallest parts of
the original LTL process model that cause a problem. We tackle this issue by
characterizing the relationship between the overall state of the system and the
one of individual constraints. In particular, we show that the global state can
be determined from the local states only when an explicit notion of conflicting
set is defined and included in the semantics. In this respect, we first look at the
truth value of subsets of the original specification:

Definition 3 (Monitoring evaluation). Given an LTL process model Φ and
a finite trace u, we define the sets Ps(Φ, u) = {Ψ ⊆ Φ | [u |= Ψ]RV = s}
for s ∈ B4. The monitoring evaluation of trace u w.r.t. Φ is then M(Φ, u) =
(P⊥(Φ, u), P⊥p(Φ, u), P�p(Φ, u), P�(Φ, u)).

As our goal is to deduce the global state of a system from the states of individual
constraints, we need to analyze the structure of elements of M(Φ, u). It can be
observed that M(Φ, u) is a partition of the powerset of Φ:

Property 1 (Partitioning). Given an LTL process model Φ and a finite trace u,
M(Φ, u) is a partition of the powerset of Φ, i.e.,

⋃
s∈B4

Ps(Φ, u) = 2Φ and for
s, s′ ∈ B4 with s �= s′: Ps(Φ, u) ∩ Ps′(Φ, u) = ∅.

138 F.M. Maggi et al.

This is realized by observing that every subset of Φ has exactly one assigned
truth value. Second, for two subsets of Φ, Ψ ′ ⊆ Ψ ′′ ⊆ Φ, the larger one is not
easier to satisfy:

Property 2 (Inclusion). Given an LTL process model Φ and a finite trace u, then
for Ψ ′ ⊆ Ψ ′′ ⊆ Φ and an s ∈ B4, if Ψ

′ ∈ Ps(Φ, u) then Ψ ′′ ∈ Ps′(Φ, u) for some
s′ ∈ B4 with s′ � s.

This stems from monotonicity of truth values of conjunctions. Third, perma-
nently satisfied constraints do not change the truth value of sets of constraints:

Property 3 (Effect of permanently satisfied constraints). Given an LTL process
model Φ and a finite trace u, and a ψ ∈ Ψ such that [u |= ψ]RV = �, if
Ψ ∈ Ps(Φ, u) for some s ∈ B4, then Ψ \ {ψ} ∈ Ps(Φ, u).

This stems from the fact that for any extension, the permanently satisfied one
reduces to true and can be removed using identity �∧ψ = ψ for any constraint
ψ. This allows us to characterize the structure of sets with a given truth value:

Property 4 (Structure of global states). Given an LTL process model Φ and a
finite trace u, for a subset of constraints Ψ ⊆ Φ

1. Ψ ∈ P�(Φ, u) if and only if ∀ψ ∈ Ψ , [u |= ψ]RV = �,
2. Ψ ∈ P�p(Φ, u) if and only if ∀ψ ∈ Ψ , [u |= ψ]RV ∈ {�,�p} and ∃ψ ∈ Ψ such

that [u |= ψ]RV = �p,
3. if Ψ ∈ P⊥p(Φ, u), then ∀ψ ∈ Ψ , [u |= ψ]RV ∈ {�,�p,⊥p} and ∃ψ ∈ Ψ such

that [u |= ψ]RV = ⊥p, and
4. if Ψ ∈ P⊥(Φ, u) and ∀ψ ∈ Ψ , [u |= ψ]RV �= ⊥, then ∃ψ ∈ Ψ such that

[u |= ψ]RV = ⊥p.

The first item is seen by assuming that some constraint exists in Φ that is not
permanently satisfied for u. Equivalently, there exists a finite continuation of u
where this constraint is not satisfied and the conjunction of all constraints in
Φ is not satisfied for u. The second and third are seen by similar arguments.
The last one is seen by observing that if a set has only possibly or permanently
satisfied members, it is itself possibly or permanently satisfied.

Given an LTL process model Φ, a trace u, and a subset Ψ ⊆ Φ, we can easily
identify whether Ψ belongs to P�(Φ, u) or P�p(Φ, u) by simple inspection of the
state of individual constraints in the colored automatonmentioned earlier. For the
first two items of Prop. 4, the states of the constraints in a node completely char-
acterize, in this case, the global state of the system. However, we cannot determine
whether a set belongs to P⊥p(Φ, u) or P⊥(Φ, u) only by looking at the state of indi-
vidual constraints: Prop. 4 only gives us implication in one direction in this case.

We introduce a fifth truth value of constraints ⊥c that allows us to deduce
the state of the entire system from the state of individual constraints. This
reflects that a constraint is not permanently violated, but is in conflict with
others so the entire system cannot be satisfied again. To better characterize the
problem when a permanent violation occurs, we minimize the sets originating
the violation. Therefore, we look at minimal subsets Ψ ∈ P⊥(Φ, u). A first group

Runtime Verification of LTL-Based Declarative Process Models 139

of these minimal subsets are singletons {ψ} with ψ ∈ P⊥(Φ, u). A second group
consists of conflicting sets :

Definition 4 (Conflicting set). Given an LTL process model Φ and a finite
trace u, Ψ ⊆ Φ is a conflicting set of Φ w.r.t. u if:

1. Ψ ∈ P⊥(Φ, u),
2. ∀ψ ∈ Ψ , [u |= ψ]RV �= ⊥, and
3. ∀ψ ∈ Ψ , [u |= Ψ \ {ψ}]RV �= ⊥.

We extend the semantics of RV-FLTL to capture conflicting sets:

Definition 5 (RVc-FLTL). The semantics of [u, Φ |= ϕ]RV c is defined as

[u, Φ |= ϕ]RV c =

{
⊥c if there is a conflicting set Ψ ⊆ Φ s.t. ϕ ∈ Ψ

[u |= ϕ]RV otherwise.

Therefore, we can introduce a variant of Prop. 4 allowing us to determine the
global state solely using local values:

Theorem 1 (Structure of global states). Given an LTL process model Φ
and a finite trace u, then

1. [u |= Φ]RV = �, if and only if ∀ψ ∈ Φ, [u, Φ |= ψ]RV c = �,
2. [u |= Φ]RV = �p, if and only if ∀ψ ∈ Φ, [u, Φ |= ψ]RV c ∈ {�,�p} and

∃ψ ∈ Φ such that [u, Φ |= ψ]RV c = �p,
3. [u |= Φ]RV = ⊥p, if and only if ∀ψ ∈ Φ, [u, Φ |= ψ]RV c ∈ {�,�p,⊥p} and

∃ψ ∈ Φ such that [u, Φ |= ψ]RV c = ⊥p,
4. [u |= Φ]RV = ⊥ if and only if ∃ψ ∈ Φ such that [u, Φ |= ψ]RV c ∈ {⊥c,⊥}.
In [6], we explain how to modify the original LTL process model on the fly in an
efficient way when a violation occurs. Therefore, when a non-local violation is
detected, it can be useful to identify minimal sets of constraints to be removed
in the original LTL process model to recover from the violation. We capture this
as a recovery set :

Definition 6 (Recovery set). Given an LTL process model Φ and a finite
trace u such that [u |= Φ]RV = ⊥, then Ψ ⊆ Φ is a recovery set of Φ′ w.r.t. Φ
and u if

1. [u |= Φ \ Ψ]RV �= ⊥
2. ∀ψ ∈ Ψ , [u |= Φ \ (Ψ \ {ψ})]RV = ⊥.

Intuitively, we must remove exactly one constraint from each conflicting set in
Φ, but if two (or more) conflicting sets overlap, we can remove one from the
intersection to make a smaller recovery set.

Let us consider the Declare model represented in Fig. 1. We name the LTL
constraints of this model as specified in Sect. 2.1. Figure 5 shows a graphical rep-
resentation of the constraints’ evolution: events are displayed on the horizontal

140 F.M. Maggi et al.

Fig. 5. One of the views provided by our monitoring system. Colors show the state
constraints while the process instance evolves; red (viol) refers to ⊥, yellow (poss. viol)
to ⊥p, green (poss. sat) to �p, blue (sat) refers to �, and orange (conflict) to ⊥c.

axis. The vertical axis shows the three constraints. Initially, all three constraints
are possibly satisfied. Let u0 = ε denote the initial (empty) trace:

[u0, Φ |= ϕn]RV c = �p [u0, Φ |= ϕp]RV c = �p [u0, Φ |= ϕr]RV c = �p

Event Moored is executed next (u1 =Moored), we obtain:

[u1, Φ |= ϕn]RV c = �p [u1, Φ |= ϕp]RV c = �p [u1, Φ |= ϕr]RV c = ⊥p

Note that [u1 |= ϕr]RV = ⊥p because the responded existence constraint becomes
possibly violated after the occurrence of Moored. The constraint is waiting for
the occurrence of another event (execution of Under way using engine) to become
satisfied again. Then, Under way sailing is executed (u2 = Moored, Under way
sailing), leading to a situation in which constraint precedence is permanently
satisfied, but not coexistence and responded existence are in conflict.

[u2, Φ |= ϕn]RV c = ⊥c [u2, Φ |= ϕp]RV c = � [u2, Φ |= ϕr]RV c = ⊥c

Note that we have exactly one conflicting set, {ϕn, ϕr}. Indeed, if we look at
the automaton in Fig. 4, from 321 it is not possible to reach a state where both
these constraints are satisfied. Moreover, no supersets can be a conflicting set
(due to minimality). {ϕn, ϕp} is not a conflicting set as they are both satisfied
in 122, and {ϕn, ϕp} is not a conflicting set as it is temporarily satisfied. The
next event is Under way using engine (u3 =Moored, Under way sailing, Under
way using engine), resulting in:

[u3, Φ |= ϕn]RV c = ⊥ [u3, Φ |= ϕp]RV c = � [u3, Φ |= ϕr]RV c = �
not coexistence becomes permanently violated because Under way using engine
and Under way sailing cannot coexist in the same trace. Note that this violation
has been detected as early as possible by our monitoring system; already when

Runtime Verification of LTL-Based Declarative Process Models 141

Under way sailing occurred, the conflicting set of constraints showed that it would
be impossible to satisfy all constraints at the same time. However, it is still
possible to see that the responded existence constraint becomes permanently
satisfied by the Under way using engine event.

4 Deciding RVc-FLTL Using Automata

In this section, we give algorithms for detecting the state of sets of constraints.
We start by giving algorithms for the extra information we have added to the
automata in Sect. 2, and then focus on how to compute the information about
conflicting sets contained in the colored automaton.

4.1 Local Automata

We get most of the information exhibited in the local automata in Fig. 2 from
the standard translation in [3]. The only thing missing is the background color
indicating whether a constraint is permanently/possibly satisfied or violated.

We get the background information by marking any state from which an
accepting state is always/never reachable. We can do this efficiently using the
strongly connected components (SCCs) of the automaton (this can be computed
in linear time using Tarjan’s algorithm [10]). We look at components with only
outgoing arcs to components already processed (initially none), and we color a
component gray only if i) it contains nodes that are all accepting/non-accepting
and ii) all (if any) reachable components contain the same type states and are
colored. This is also linear in the input automaton.

If the automaton we get is deterministic and minimal, we know that at most
one accepting state will have gray background and at most one non-accepting
state will have gray background. These can be identified as the (unique) accept-
ing and non-accepting states with a self-loop allowing all events. All automata
in Fig. 2 satisfy this, and we see they all have at most one gray state of each
kind. Using these automata, we can decide the state of a constraint (�, ⊥, �p,
or ⊥p) with respect to each trace, but we cannot detect non-local violations.

4.2 Global Automaton and Its Combination with Local Automata

We can compute the global automaton directly using the same approach adopted
for local automata (following [12] for better performance). This is the approach
used for the automaton in Fig. 3. Using this automaton, we compute the state of
the global system, but not for individual constraints. In this way, we can detect
non-local violations, but we cannot compute conflicting sets nor decide the state
of individual constraints.

To infer the state of the entire system as well as of individual constraints, we
can use at the same time the local and global automata. However, this forces us
to replay the trace on many automata: the global one plus n local ones, where
n is the number of constraints. Moreover, we cannot here detect exactly which
constraints are conflicting, only that there are some, making this approach less
useful for debugging.

142 F.M. Maggi et al.

4.3 Colored Automaton

To identify conflicting sets, we construct a colored automaton (like the one in
Fig. 4) using the method described in [6]. We then post-process it to distinguish
permanently/possibly satisfied or violated states (by computing SCCs, exactly
like we did for the local automata).

To additionally compute conflicting sets, we notice that they are shared among
states in an SCC (if a set of constraints cannot be satisfied in a state, it also
cannot be satisfied in states reachable from it, and all states in an SCC are
reachable from each other by definition). Furthermore, conflicting sets have to
be built using possibly satisfied and possibly violated constraints of an SCC. We
can ignore permanently satisfied constraints because of Prop. 3 and item 3 of
Def. 4. We can ignore permanently violated constraints due to item 2 of Def. 4.
In an SCC, all states share permanently violated and satisfied constraints as
they can all reach each other, so we can obtain all interesting constraints by
looking at one of the states in isolation.

Due to item 1 for Def. 4 and Prop. 2, we only have to consider states that
are permanently violated for computation of conflicting sets (gray states with
single outline in Fig. 4). We notice that the conflicting sets of an SCC have to be
super-sets of conflicting sets of all successor SCCs or contain a constraint that
in a successor SCC is permanently violated. This is seen by a weaker version
of the argument for members of SCCs sharing conflicting sets, as reachability
is only true in one direction. The inclusion may be strict due to minimality of
conflicting sets (item 3 of Def. 4).

We thus start in terminal SCCs (SCCs with no successors) and compute the
conflicting sets. This is done by considering all subsets composed of possibly
violated/satisfied constraints with more than one member and checking whether
they are satisfiable in the component. This can be done by examining all states
of the SCC and checking if there is one where all members of the considered
subset are (possibly) satisfied. We can perform this bottom-up or top-down.
The bottom-up approach starts with sets with two elements and adds elements
until a set become unsatisfiable, exploiting minimality (item 3 of Def. 4) in that
no superset of a conflicting set is a conflicting set. Alternatively, we can compute
the sets top-down, starting with all possible violated/satisfied constraints and
removing constraints until the set becomes satisfied, exploiting that subsets of
a set of satisfied constraints do not need to be considered due to monotonicity.
Which one is better depends on the size of the conflicting sets.

For each globally unsatisfiable SCC we recursively compute for all successors
and then build conflicting set bottom-up, starting with all possible (minimal)
unions of conflicting sets or singleton permanently violated properties of suc-
cessors. For the example in Fig. 4, state 112 has, for instance, no conflicting
sets, but two permanently violated constraints (ϕn and ϕp). Computing con-
flicting sets for 311 only needs to consider sets containing (at least) one of
these, and as ϕp is permanently violated, we can ignore it. The only possi-
bility, {ϕn, ϕr}, is indeed a conflicting set. For state 310 we need to consider
unions of the conflicting sets and permanently violated constraints of successors

Runtime Verification of LTL-Based Declarative Process Models 143

of 311 and 112, i.e., {C1 ∪ C2 | C1 ∈ {{ϕn}, {ϕp}}, C2 ∈ {{ϕn, ϕr}, {ϕp}}} =
{{ϕn, ϕr}, {ϕn, ϕp}, {ϕp, ϕn, ϕr}, {ϕp}} which can be reduced by removing sets
containing ϕp (which is permanently violated in 310) to {{ϕn, ϕr}}. We further-
more remove any supersets of contained sets (none in this case), and use the sets
as basis for computing conflicting sets. As {ϕn, ϕr} is satisfiable in 310, such
constraints do not constitute a conflicting set, hence 310 has no conflicting sets.

Each SCC can have exponentially many conflicting sets in the number of
constraints (assume we have n constraints and construct a SCC with all states
possibly satisfying exactly n

2 constraints and possibly violating the remaining;
as all sets have the same size, none can be subsets of the others, and we have
n!
n
2 ! ∈ O(2

n
2) such sets). In our initial experiments, we have never seen examples

with more than a few possibly violated/satisfied constraints, so in practice this
is acceptable. Future work includes validating that this is also true for large
real-life examples. If the pre-computation proves to be too expensive, we can
also perform the algorithm at run-time, only computing conflicting sets when
we reach a globally permanently violated state. By caching and sharing the
results between instances (as well as intermediate results imposed by recursion),
we should be able to provide acceptable runtime performance.

In our running example, executing the trace Moored, Under way sailing, we
obtain the trace 000 →M 001 →S 321. Using our algorithm to compute the
conflicting sets, we see that in terminal SCC 122 in Fig. 4, we have no conflicting
sets, but a single permanently violated constraint ϕn. In state 321, we have
exactly one conflicting set, {ϕn, ϕr}.

5 Case Study

We now present a real case study focused on monitoring vessel behavior in the
context of maritime safety and security. It has been provided by Thales, a global
electronics company delivering mission-critical information systems and services
for aerospace, defense, and security. For the sake of brevity, the results obtained
in the case study are only partially illustrated in this section. Here, we only want
to give an example of a possible application of our framework.

In our experiments, we use different logs describing the behavior of different
types of vessels. These logs have been collected by a maritime Automatic Identi-
fication System (AIS) [4], which acts as a transponder that logs and sends events
to an AIS receiver. Each log contains a set of process instances corresponding
to the behavior of vessels of the same type (e.g., Passenger ship, Fishing boat,
Dredger or Tanker). An event in a process instance is a change in the navigational
state of the vessel (e.g., Moored, Under way using engine, At anchor, Under way
sailing, or Restricted maneuverability). The logs are one-week excerpts of larger
logs tracing the behavior of each vessel in the long term.

Starting from these logs, exploiting process mining techniques [1], we discover
Declare models representing the behavior of each vessel type. A fragment of
the discovered model for Dredger is shown in Fig. 6. The ultimate goal is to
consequently use these models to monitor new vessel behaviors, using the colored
automata-based approach outlined in this contribution.

144 F.M. Maggi et al.

Under way
using engine

Restricted
maneuverability

Moored

At anchor

Under way
sailing

Fig. 6. Discovered model for vessel type Dredger; dashed constraints represent a con-
flicting set arising after the occurrence of At anchor

More specifically, to construct the model in Fig. 6, we apply the Declare
discovery technique described in [7]. We fix the not coexistence and response
constraints as possible candidate constraints (the response indicating that if the
source event occurs, then the target event must eventually occur). The miner
identifies all the not coexistence and response constraints that are satisfied in all
the traces of the log. However, when the log is an excerpt of a larger log, it is pos-
sible to make the discovery process more flexible by accepting a constraint also
if it is possibly violated in some traces: being each execution trace incomplete,
such a constraint could be satisfied in the continuation of the trace.

Even though the miner only identifies constraints that never give rise to a
permanent violation by themselves, it is possible that conflicting sets of con-
straints exist in the discovered model. The conflicting sets are caused by the
fact that, to extract the reference models from the logs, the miner checks each
constraint separately while accepting possibly violated constraints. This makes
the approach presented in this paper relevant in the prompt identification of
an actual conflict during the monitoring process. For example, Fig. 6 contains
a conflict when At anchor is executed; the conflicting constraints are depicted
with dashed lines. In this specific case, each constraint of the conflicting set is a
recovery set: the conflict is solved by removing any of them from the model.

6 Conclusion

We have introduced the runtime verification of flexible, constraint-based process
models formalized in terms of LTL on finite traces, focusing on violations arising
from interference of multiple constraints. A conflicting set provides a minimal
set of constraints with no continuation where all constraints can be satisfied.

To do so, we have exploited in a novel way established results achieved in the
field of temporal logics and runtime verification. In particular, we have considered
a finite-trace variation of the RV-LTL semantics [2], following the finite state
automata approach of [3] and the optimized algorithms proposed in [12] for
the generation of automata. Such automata are employed to provide intuitive
diagnostics about the business constraints during execution of a model. More
specifically, we have shown how local and/or global information can be provided
by combining the use of local automata and of a global automaton, or using a
single colored automaton to provide full information.

Runtime Verification of LTL-Based Declarative Process Models 145

All the techniques presented in this paper have been fully implemented in
Declare and ProM. In particular, we have developed an Operational Support
(OS) provider for ProM [1,13], exploiting the recently introduced OS service. The
OS service is the backbone for implementing process mining techniques that are
not used in a post-mortem manner, i.e., on already completed process instances,
but are instead meant to provide runtime support to running executions. Our
provider takes in input a Declare model, and exploits the colored automata-
based techniques presented here to track running instances and give intuitive
diagnostics to the end users, graphically showing the status of each constraint,
as well as reporting local and non-local violations (see Fig. 5 for an example).
In the latter case, recovery sets are computed, showing the minimal possible
modifications that can be applied to the model to alleviate the detected conflict.

Monitoring business constraints can be also tackled by using the Event Calcu-
lus (EC) [8]. The two approaches are orthogonal to each other: the EC can only
provide diagnostics about local violations, but is easier to augment with other
perspectives such as metric time constraints and data related aspects. We plan to
investigate the incorporation of metric time aspects also in an automaton-based
approach, relying on timed automata for verification.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. In: Logic and Computation, pp. 651–674 (2010)

3. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal
Properties on Running Programs. In: Proc. ASE, pp. 412–416 (2001)

4. International Telecommunications Union. Technical characteristics for a universal
shipborne Automatic Identification System using time division multiple access in
the VHF maritime mobile band, Recommendation ITU-R M.1371-1 (2001)

5. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: Proc. of Logic
of Programs, pp. 196–218 (1985)

6. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

7. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declar-
ative Process Models. In: Proc. of CIDM, pp. 192–199 (2011)

8. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring Business Constraints with the Event Calculus. Technical Report DEIS-LIA-
002-11, University of Bologna, Italy, LIA Series no. 97 (2011)

9. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proc. of EDOC, pp. 287–300 (2007)

10. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 146–160 (1972)

146 F.M. Maggi et al.

11. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balanc-
ing between flexibility and support. Computer Science - R&D (2009)

12. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Work-
flow Languages Using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011)

13. Westergaard, M., Maggi, F.M.: Modelling and Verification of a Protocol for Oper-
ational Support using Coloured Petri Nets. In: Proc. of ATPN 2011 (2011)

	Runtime Verification of LTL-Based Declarative Process Models
	Introduction
	Background
	Declare and Running Example
	LTL Semantics for Constraint-Based Business Processes
	Translation of an LTL Process Model to Automata

	Conflicting Constraint Sets
	Deciding RVc-FLTL Using Automata
	Local Automata
	Global Automaton and Its Combination with Local Automata
	Colored Automaton

	Case Study
	Conclusion
	References

