Repairing Process Models to Reflect Reality

Dirk Fahland and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
d.fahland@tue.nl, w.m.p.v.d.aalst@tue.nl

Abstract. Process mining techniques relate observed behavior (i.e., event logs)
to modeled behavior (e.g., a BPMN model or a Petri net). Processes models
can be discovered from event logs and conformance checking techniques can be
used to detect and diagnose differences between observed and modeled behavior.
Existing process mining techniques can only uncover these differences, but the
actual repair of the model is left to the user and is not supported. In this paper
we investigate the problem of repairing a process model w.r.t. a log such that the
resulting model can replay the log (i.e., conforms to it) and is as similar as possible
to the original model. To solve the problem, we use an existing conformance
checker that aligns the runs of the given process model to the traces in the log.
Based on this information, we decompose the log into several sublogs of non-
fitting subtraces. For each sublog, a subprocess is derived that is then added to
the original model at the appropriate location. The approach is implemented in
the process mining toolkit ProM and has been validated on logs and models from
Dutch municipalities.

Keywords: process mining, model repair, Petri nets, conformance checking

1 Introduction

Process mining techniques aim to extract non-trivial and useful information from event
logs [1, 14]. Typically three basic types of process mining are considered: (a) process
discovery, (b) conformance checking, and (c) model enhancement [1]. The first type of
process mining is process discovery, i.e., automatically constructing a process model
(e.g., a Petri net or a BPMN model) describing the causal dependencies between activities.
The basic idea of control-flow discovery is very simple: given an event log containing a
set of traces, automatically construct a suitable process model “describing the behavior”
seen in the log. However, given the characteristics of real-life event logs, it is notoriously
difficult to learn useful process models from such logs. The second type of process mining
is conformance checking [2,4,5,8,9, 13,18, 19,21, 23]. Here, an existing process model
is compared with an event log of the same process. Conformance checking can be used
to check if reality, as recorded in the log, conforms to the model and vice versa. The
conformance check could yield that the model does not describe the process executions
observed in reality: activities in the model are skipped in the log, the log contains events
not described by the model, or activities are executed in a different order than described
by the model.

Here, the third type of process mining comes into play: to enhance an existing model
to reflect reality [3]. In principle one could use process discovery to obtain a model



Fig. 1. Original model (left), model (middle) obtained by repairing the original model w.r.t. a given
log, and model (right) obtained by rediscovering the process in a new model.

that describes reality. However, the discovered model is likely to bear no similarity
with the original model, discarding any value the original model had, in particular if
the original was created manually. A typical real-life example is the references process
model of a Dutch municipality shown in Fig. 1(left); when rediscovering the actual
process using logs from the municipality one would obtain the model in Fig. 1(right). A
more promising approach is repair, that is change, the original model so that the repaired
model can replay the log and is as similar as possible to the original model. This is the
first paper to focus on model repair with respect to a given log.

The concrete problem addressed in this paper reads as follows. We assume a Petri
net N (a model of a process) and a log L (being a multiset of observed cases of that
process) to be given. N conforms to L if N can execute each case in L, i.e., N can replay
L. If N cannot replay L, then we have to change N to a Petri net N’ s.t. N’ can replay L
and N’ is as similar to N as possible.

This problem is effectively a continuum problem between confirming that N can
replay L and discovering a new model N’ from L in case N has nothing to do with
L. The goal is to avoid the latter case as much as possible. We solve this problem in
a compositional way: we identify subprocesses that have to be added in order repair
N. In more detail, we first compute for each case [ € L an alignment that describes at
which parts, N and [ deviate. Based on this alignment, we identify transitions of N that
have to be skipped to replay / and which particular events of / could not be replayed
on N. Moreover, we identify the location at which N should have had a transition to
replay each of these events. We group sequences of non-replayable events at the same
location to a sublog L’ of L. For each sublog L’, we construct a small subprocess N’



that can replay L’ by using a process mining algorithm. We then insert N’ in N at the
location where each trace of L’ should have occurred. By doing this for every sublog
of non-replayable events, we obtain a repaired model that can replay L. Moreover, by
the way we repair N, we preserve the structure of N giving process stakeholders useful
insights into the way the process changed. We observed in experiments that even in
case of significant deviations we could identify relatively few and reasonably structured
subprocesses: adding these to the original model always required fewer changes to the
original model than a complete rediscovery. Repairing the model of Fig. 1(left) in this
way yields the model shown in Fig. 1(middle).

The remainder of this paper is structured as follows. Section 2 recalls basic notions
on logs, Petri nets and alignments. Section 3 investigates the model repair problem in
more detail. Section 4 presents a solution to model repair based on subprocesses. We
report on experimental results in Sect. 5 and discuss related work in Sect. 6. Section 7
concludes the paper.

2 Preliminaries

This section recalls the basic notions on Petri nets and introduces notions such as event
logs and alignments.

2.1 Event Logs

Event logs serve as the starting point for process mining. An event log is a multiset of
traces. Each trace describes the life-cycle of a particular case (i.e., a process instance) in
terms of the activities executed.

Definition 1 (Trace, Event Log). Let 2 be a set of actions. A trace | € 2™ is a sequence
of actions. L € B(X*) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having the
same trace. If the frequency of traces is irrelevant, we refer to a log as a set of traces
L =1{l,...,1,}. In this simple definition of an event log, an event is fully described by
an action label. We abstract from extra information such as the resource (i.e., person or
device) executing or initiating the activity and the timestamp of the event.

2.2 Petri Nets

We use labeled Petri nets to describe processes. We first introduce unlabeled nets and
then lift these notions to their labeled variant.

Definition 2 (Petri net). A Petri net (P, T, F) consists of a set P of places, a set T
of transitions disjoint from P, and a set of arcs F € (P x T) U (T X P). A marking
m of N assigns each place p € P a natural number m(p) of tokens. A net system
N = (P,T,F,my,my) is a Petri net (P,T, F) with an initial marking mo and a final
marking my.



We write *y := {x | (x,y) € F} and y* :=
{x| (y, x) € F}for the pre- and the post-set
of y, respectively. Fig. 2 shows a simple
net system N with the initial marking [p;]
and final marking [pe]. N will serve as our
running example.
The semantics of a net system N are Fig. 2. A net system N.

typically given by a set of sequential runs.

A transition ¢t of N is enabled at a marking m of N iff m(p) > 1, for all p € °*t. If ¢

is enabled at m, then r may occur in the step m 5 m, of N that reaches the successor
marking m, with m,(p) = m(p) — 1 if p € *t\ t*, m(p) = m(p) + 1 if p € t* \ °¢t, and

m;(p) = m(p) otherwise, for each place p of N. A sequential run of N is a sequence
3] 5] 173 fiv1 . P .
my — my — my... — my of steps m; — m;y1,i = 0,1,2,... of N beginning in the

initial marking m and ending in the final marking m, of N. The sequence #7, ... # is an
occurrence sequence of N. For example, in the net N of Fig. 2 transitions a is enabled at
the initial marking; abcd is a possible occurrence sequence of N.

The places and transitions of a Petri net can be labeled with names from an alpha-
bet 2. In particular, we assume label T € X denoting an invisible action. A labeled
Petri net (P, T,F,{) is anet (P, T, F) with a labeling function { : PUT — 2. A la-
beled net system N = (P,T, F,{,mg, my) is a labeled net (P, T, F, {) with initial marking
mg and final marking ms. The semantics of a labeled net is the same as for an un-
labeled net. Additionally, we can consider labeled occurrence sequences of N. Each
occurrence sequence o = tft3... of N induces the labeled occurrence sequence
(o) = L(t)l(t2)E(t3) . .. £(ty)|5\7) Obtained by replacing each transition #; by its label
£(t;) and omitting all 7’s from the result by projection onto X'\ {7}. We say that N can
replay alog L iff each [ € L is a labeled occurrence sequence of N.

2.3 Aligning an Event log to a Process Model

Conformance checking techniques investigate how well an event log L € B(2*) and a
labeled net system N = (P, T, F, £, mg, my) fit together. The process model N may have
been discovered through process mining or may have been made by hand. In any case, it
is interesting to compare the observed example behavior in L and the potential behavior
of N. In case the behavior in L is not possible according to N (L cannot replay N), we
want to repair N.

In the following we recall a technique for identifying where L and N deviate, and
hence where N has to be repaired. It will allow us to determine a minimal set of changes
that are needed to replay L on N [2, 5, 4]. It essentially boils down to relate / € L to an
occurrence sequence o of N s.t. [ and o are as similar as possible. When putting / and o
next to each other, i.e., aligning o and /, we will find (1) transitions in o that are not part
of [ and (2) activities of [ that are not part of o [2].

For instance, a trace [ = accd is similar to the occurrence sequence o- = abcd of the
net of Figure 2 where trace / deviates from o by skipping over b and having an additional
C.



In order to repair N to fit trace [, N has to allow to skip over transitions of the first
kind and has to be extended to execute activities of the second kind. In [5, 4] an approach
was presented that allows to automatically align a trace [ to an occurrence sequence of
N with a minimal number of deviations in an efficient way. All of this is based on the
notion of an alignment and a cost function.

Definition 3 (Alignment). Let N = (P, T, F,{,my) be a labeled net system. Let | =
aia; ...a, be atrace over X. A move is a pair (b, s) € (XU {>NX (T U{>D\{(>,>)).
An alignment of [ to N is a sequence a = (b1, s1)(b2, $2) ... (by, Sx) of moves, s.t.

1. the restriction of the first component to actions X is the trace l, i.e., (b1by ... by)|s =1,

2. the restriction of the second component to transitions T, (5152 ... S¢)|r, is an occur-
rence sequence of N, and

3. transition labels and actions coincide (whenever both are defined), i.e., for all
i=1,...k ifs; £ >,4(s;) # T, and b; # >, then {(s;) = b;.

Move (b;, s;) is called (1) a move on model iff b; = > A s; # >, (2) a move on log iff
b; # > A s; = >, and (3) a synchronous move ift b; # > A s; # >.

For instance, for trace / = accd and the net of Figure 2, a possible alignment would
be (a, a)(c,c)(>>, b)(c, >)(d, d).

Each trace usually has several (possibly infinitely many) alignments to N. We are
typically interested in a best alignment, i.e., one that has as many synchronous moves as
possible. One way to find a best alignment is to use a cost function on moves and to find
an alignment with the least costs.

Definition 4 (Cost function, cost of an alignment). Let x : XUT — IN define for each
transition and each action a positive cost k(x) > 1 for all x € X U T. The cost of a move
(b, s)isk(b,s) = 1iff b#> # s, k(b,s) = k(s) iff b = >, and (b, s) = k(D) iff s = >.
The cost of an alignment a = (b1, s1) ... (by, si) is k(@) = Zf;l k(b;, $7).

In this paper, we abstract from concrete cost functions. However, we assume that desir-
able moves, i.e., synchronous moves (b, s) with £(s) = b and invisible moves on model
(>, 5) with £(s) = 7, have low costs compared to undesirable moves such as moves on
log (b, >) and visible moves on model (>, s) with {(s) # T.

Definition 5 (Best alignment). Let N = (P, T, F, £, mg) be a labeled net system. Let k
be a cost function over moves of N and X. Let | be a trace over X. An alignment « (of |
to N) is a best alignment (wrt. k) iff for all alignments o’ (of [ to N) holds k(a’) > «(a).

Note that a trace / can have several best alignments with the same cost. A best alignment
a of a trace [ can be found efficiently using an A*-based search over the space of all
prefixes of all alignments of /. The cost function « thereby serves as a very efficient
heuristics to prune the search space and guide the search to a best alignment. See [5, 4]
for details.

Using the notion of best alignment we can relate any trace / € L to an occurrence
sequence of N.



3 Model Repair: The Problem

The model repair problem is to transform a model N that does not conform to a log
L into a model N’ that conforms to L. We review the state-of-the-art in conformance
checking and investigate the model repair problem in more detail.

3.1 Conformance of a Process Model to a Log

Conformance checking can be done for various reasons. First of all, it may be used to
audit processes to see whether reality conforms to some normative or descriptive model.
Deviations may point to fraud, inefficiencies, and poorly designed or outdated procedures.
Second, conformance checking can be used to evaluate the results of process discovery
techniques. In fact, genetic process mining algorithms use conformance checking to
select the candidate models used to create the next generation of models [17].

Numerous conformance measures have been developed in the past [2,4,5,8,21,9,
13,18, 19,23]. These can be categorized into four quality dimensions for comparing
model and log: (1) fitness, (2) simplicity, (3) precision, and (4) generalization [1]. A
model with good fitness allows for most of the behavior seen in the event log. A model
has a perfect fitness if all traces in the log can be replayed by the model from beginning
to end. The simplest model that can explain the behavior seen in the log is the best model.
This principle is known as Occam’s Razor. A model is precise if it is not “underfitting”,
i.e., the model does not allow for “too much” behavior. A model is general if it is not
“overfitting”, i.e., the model is likely to be able to explain unseen cases [1, 2].

The fitness of a model N to a log L can be computed using the alignments of Sect. 2.3
as the fraction of moves on log or move on model relative to all moves [2]. The aligned
event log can also be used as a starting point to compute other conformance metrics such
as precision and generalization.

3.2 Repairing a Process Model to Conform to a Log

Although there are many approaches to compute conformance and to diagnose deviations
given a log L and model N, we are not aware of techniques to repair model N to conform
to an event log L.

There are two “forces” guiding such repair. First of all, there is the need to improve
conformance. Second, there is the desire to clearly relate the repaired model to the
original model, i.e., repaired model and original model should be similar. Given metrics
for conformance and closeness of models, we can measure the weighted sum or harmonic
mean of both metrics to judge the quality of a repaired model. If the first force is weak
(i.e., minimizing the distance is more important than improving the conformance), then
the repaired model may remain unchanged. If the second force is weak (i.e., improving
the conformance is more important than minimizing the distance), then repair can be
seen as process discovery. In the latter case, the initial model is irrelevant and it is better
to use conventional discovery techniques. Put differently, the model repair problem is
positioned in a spectrum of two extremes:

keep Keep the original model because it is of high value and non-conformance is within
acceptable limits, e.g., 99.9% of all cases can be replayed.



discover Model and log are effectively unrelated to each other, e.g., no case can be
replayed and alignments find few or no synchronous moves.

Typically model repair is applied in settings in-between these two extremes. This creates
a major challenge: How to identify which parts of a model shall be kept, and which
parts of a model shall be considered as nonconformant to the log and hence changed,
preferably automatically? The latter is a local process discovery problem which requires
to balance the four quality dimensions of conformance as well.

3.3 Addressing Different Quality Dimensions

In this paper, we primarily focus on fitness which is often seen as the most important
quality dimension for process models. A model that does not fit a given log (i.e., the
observed behavior cannot be explained by the model) is repaired using the information
available in the alignments.

Only for a fitting model precision can be addressed [18]; our particular technique
for model repair will cater for precision as well. The two other criteria of generalization
and simplicity may contradict these aims [1, 14]. Generalization and precision can be
balanced, for instance using a post-processing technique such as the one presented
in[11].

Similarity of the repaired model to the original model, as well as simplicity of the
repaired model in general, is harder to achieve. It may require tradeoffs with respect to
the other quality dimensions. For model repair basically the same experiences apply as
for classical process discovery: while repairing, one should not be forced to extend the
model to allow for all observed noisy behavior — it could result in overly complicated,
spaghetti-like models. Therefore, we propose the following approach.

1. Given a log L and model N, determine the multiset Ly of fitting traces and the
multiset L, of non-fitting traces.

2. Split the multiset of non-fitting traces L, into L, and L,. According to the domain
expert the traces in L, should fit the model, but do not. Traces in L, could be
considered as outliers/noise (according to the domain expert) and do not trigger
repair actions.

3. Repair should be based on the multiset L’ = Ly U L of traces. L’ should perfectly
fit the repaired model N’, but there may be many candidate models N’.

4. Return a repaired model N’ that can be easily related back to the original model N,
and in which changed parts are structurally simple.

The critical step of separating L, into L; and L, does not require manual inspection
of each case by a domain export. A number of standard preprocessing techniques can
help to filter L,: by (1) including in L, only cases with particular start and end events,
by (2) filtering infrequent events (that occur only rarely), and by (3) identifying events
that occur out of order using trace alignment [7]; see [6] for a comprehensive use of
preprocessing techniques in a case study.

In the remainder, we assume L’ to be given, i.e., outliers L, of L are removed. If an
event log is noisy and one includes also undesired traces L, it makes no sense to repair
the model while enforcing a perfect fit as the resulting model will be spaghetti-like and
not similar to the original model.



a c fle| > e > d a b c c|f e > d
a c |>>| b e b d a b c |>[>] e b d
[P2,p3]|[p4.p3] [p4,p5]|[P4,p3]|[p4,p5] | [P6] [p2,p3]|[p2,p5]|[P4,p5] [p4,p3]|[p4.p5] | [P6]

after replaying acfc after replaying abccf

Fig. 3. Alignments of log L = {acfced, abccfed} to the net of Fig. 2.
4 Repairing Processes by Adding Subprocesses

In the following, we present a solution to model repair. We first sketch a naive approach
which completely repairs a model w.r.t. the quality dimension of fitness but scores poorly
in terms of precision. We then define a more advanced approach that also caters for
precision. Improvements w.r.t. simplicity are discussed at the end.

4.1 Naive Solution to Model Repair - Fitness

Alignments give rise to a naive solution to the model repair problem that we sketch in
the following. It basically comprises to extend N with a 7-transition that skips over a
transition # whenever there is a move on model (>, t), and to extend N with a self-looping
transition ¢ with label a whenever there is a move on log (a, >). This extension has to
be done for all traces and all moves on log/model. The crucial part is to identify the
locations of these extensions.

Figure 3 illustrates how the non-fitting log L = {acfced, abccfed} aligns to the net
N of Fig. 2. The nets below each alignment illustrate the differences between log L
of Fig. 3 and net N of Fig. 2. After replaying ac, the net is in marking [p4, p3] and
the log requires to replay f which is not enabled in the net. Thus a log move (f, >) is
added. Similarly, c is not enabled at this marking and log move (c, >) is added. Then e
should occur, which requires to move the token from p3 to p5, i.e., a model move (>>, b).
Correspondingly, the rest of the alignment, and the second alignment is computed. The
third line of the alignment describes the marking that is reached in N by replaying this
prefix of the alignment on N.

Using this information, the extension w.r.t. a move on model (>>, t) is trivial: we just
have to create a new 7-labeled transition ¢* that has the same pre- and post-places as
t. The extension w.r.t. a move on log (a, >>) provides various options that only require
that an a-labeled transition is enabled whenever this move on log occurs. We can use
the alignment to identify for each move on log (a,>) in which marking m of N it
should have occurred (the “enabling location” of this move). In principle, adding an
a-labeled transition that consumes from the marked places of m and puts the tokens back
immediately, repairs N w.r.t. to this move on log. However, we improve the extension
by checking if two moves on log would overlap in their enabling locations. If this is



Fig. 4. Result of repairing the net of Fig. 2 w.r.t. the log of Fig. 4 by the naive approach (left) and
by adding subprocess (right).

the case, we only add one a-labeled transition that consumes from and produces on this
overlap only.

Figure 4(left) shows how model N of Fig. 2 would be repaired w.r.t. the alignment
of Fig. 3. The move on model (>>, b) requires to repair N by adding a 7 transition that
mimics b as shown in Fig. 4. The move on log (c, >) occurs at two different locations
{p4,p3} and {p4, p5} in the different traces. They overlap on p4. Thus, we repair N
w.r.t. (C,>) by adding a c-labeled transition that consumes from and produces on p4.
Correspondingly for (f, >). The extended model that is shown in Fig. 4(left) can replay
log L of Fig. 3 without any problems.

4.2 Identify Subprocesses — Precision

The downside of the naive solution to model repair is that the repaired model has low
precision. For a log L where a best alignment contains only few synchronous moves,
i.e., N does not conform to L, many 7-transitions and self-loops are added. In fact,
we observed in experiments that self-looping transitions were often added at the same
location creating a “flower sub-process” of events 2’ C 2 that locally permitted arbitrary
sequences (X”)* to occur.

In the following, we turn this observation into a structured approach to model repair.
Instead of just recording for individual events a € 2 their enabling locations w.r.t. log
moves, we now record enabling locations of sequences of log moves. Each maximal
sequence of log moves (of the same alignment) that all occur at the same location is
a non-fitting sub-trace. We group non-fitting subtraces at the same location Q into a
non-fitting sublog L of that location. We then discover from Lg a subprocess N(Lg)
that can replay Ly by using a mining algorithm that guarantees perfect fitness of N(Lg)
to Ly. We ensure that N(Ly) has a unique start transition and a unique end transition. We
then add subprocess N(Lg) to N and let the start transition of N(Ly) consumes from Q
and let the end transition of N(Lg) produce on 0, i.e., the subprocess models a structured
loop that starts and ends at Q.

Figure 4(right) illustrates this idea. The model depicted is the result of repairing
N of Fig. 2 by adding subprocesses as described by the alignments of Fig. 3. We can
identify two subtraces cf and fc that occur at the same sublocation p4. Applying process
discovery on the sublog {cf, fc} yields the subprocess at the top right of Fig. 4(right) that
puts ¢ and f in parallel. The two grey-shaded silent transitions indicate the start and end
of this subprocess.



4.3 Formal Definitions

The formal definitions read as follows. For the remainder of this paper, let N be a Petri
net system, let L be a log. For each trace [ € L, assume an arbitrary but fixed best fitting
alignment a(/) to be given. Let a(L) = {a(l) | [ € L} be the set of all alignments of the
traces in L to N.

Locations. Let @ = (ai,t1)...(a, 1) be an alignment w.r.t. N = (P, T, F,mg, my, ).
For any move (a;, 1), let m; be the marking of N that is reached by the occurrence
sequence t; ...t;,_1|r of N. For all 1 <i < n, if (a;,t;) = (a;,>) is a log move, then the
enabling location of (a;,>) is the set loc(a;,>) = {p € P | m;(p) > 0} of places that
are marked in m;. For example in Fig. 3, loc(c, >) = {p4, p3} in the first alignment and
loc(c,>) = {p4, p5} in the second alignment.

It is easy to check that extending N with a new a-labeled transition ¢ with *r =
loc(a;,>) = t* turns the log move (a;, >) into synchronous move (a;, ?), i.e., repairs N
w.r.t. (a;,>). We now lift this local repair for one log move to a repair for all alignments
of alogto N.

Subtraces. Any two consecutive log moves have the same location as the marking
of N does not change. We group these moves into a subtrace. A maximal sequence
B = (a;,>)...(aiu,>>) of consecutive log moves of « is a subtrace of a at location Q
iff loc(aj, >) = loc(a;,>) = Q,i < j < i+ k, and no longer sequence of log moves has
this property. We write loc(8) = loc(a;,>) for the location of subtrace 5. Let S(L) be the
set of all subtraces of all alignments a(L) of L to N.

For example, in Fig. 4, fc is a subtrace of the first alignment at location {p4, p3} and
cf is a subtrace of the second alignment at location {p4, p5}. We could repair the net by
adding two subprocesses, one that can replay fc at Q; = {p4, p3} and one that can replay
cf at O, = {p4, p5}. However, we could instead just add one subprocess that can replay
fc and cf at location Q1 N Q, = {p4}.

Formally, we say that Q is a sublocation of a subtrace 8 = (a;,>)...(a,>) iff
0 C loc(B). A sublog (Lo, Q) of a(L) at location Q is a set of subtraces Ly C S(L) s.t.
forall g€ Ly, 0 # Q C loc(B), that is, each trace in L can start at sublocation Q of its
first event.

Sublogs. The entire set of subtraces S(L) can be partitioned into several sublogs of
disjoint sublocation, though there are multiple ways of partitioning. We call a set
{(Lo,1,Q1), ..., (Lok, Or)} of sublogs of a(L) complete iff Lo U ... U Loy = B(L).
While completeness is enough to repair N w.r.t. L, one may want to have as few sublogs
at as few locations as possible, for instance, by merging two sublogs (Lg 1, Q) and
(Loa, Q2) 10 (Lg1 U Lgo, Q1N QDo) if Q1N Qs # 0. We call {(Lg1, Q1),-- -, (Lo On)}
minimal iff Q;NQ;=0forall 1 <i< j< k. There may be multiple minimal complete
sets of sublogs of L. This allows us to configure the repair w.r.t. the locations and the
contents of the different sublogs, yielding different repair options.

We now have all notions to formally define how to repair model N w.r.t. log L. For
a complete set of sublogs of a(L), we can repair N w.r.t. a(L) by discovering for each
sublog (Lg, Q) a process model Ny, adding Ny to N and connecting the start- and end
transition of Ny to Q.

10



Definition 6 (Subprocess of a sublog). Let L be a log, let N be a Petri net, let a(L) be
an alignment of L to N, and let (Ly, Q) be a sublog of a(L).

Let LJé = {start ay ...ax end | (a1,>)...(ax,>) € Lo} be the sequences of events
described in Ly extended by a start event and an end event (start, end ¢ 2 ).

Let M be a mining algorithm that returns for any log a fitting model (i.e., a Petri net
that can replay the log). Let Ng = M(LE). Then (N, Q) is the subprocess of Lo.

The mining algorithm M will produce transitions labeled with the events in LB and

with label start and an end transition tZle with label end. In the
No*®

. N
a start transition 7,2

following, we assume that 'zﬁfg,, = ( and L = 0, i.e., that start and end transitions have
no pre- or post-places. In case M produced pre- and post-places for start and end, these

places can be safely removed without changing that N can replay LE. When repairing

No No
N, we connect f,;,, and 7, -,

to the location Q of the subprocess.
Definition 7 (Subprocess model repair). Let L be a log, let N be a Petri net. Let a(L)
be the alignments of the traces of L to N.

Let {(Lg,1,Q1)s .., (Lok, OQr)} be a minimal and complete set of sublogs of a(L).
The subprocess-repaired model of N w.r.t. a(L) is the net N’ that is obtained from N as

follows.

— Add to N a fresh transition t; ¢ Ty with °t, = *t and t.* = t*,0'(t;) = 7T iff there
exists an alignment a € a(L) containing a visible model move (>, t), and

— For each sublog (Lg;, Qi),i = 1,...,k, let (Ng;, Q;) be the subprocess of Ly, s.t.
Ny and N are disjoint (share no transitions or places). Extend N with Ng; (add all

Nei oy for each

end’

places, transition and arcs of Ng; to N) and add arcs (q, ti\t]g'rit) and (t
q € Qi, and set labels €'(1\%) = T and £'(1%

start end

Theorem 1. Let L be a log, let N be a Petri net. Let a(L) be the alignments of the traces
of Lto N and {(Lg,1,01),-..,(Lgx, Or)} be a minimal and complete set of sublogs of
a(L). Let N’ be a subprocess-repaired model of N w.r.t. these subtraces. Then each trace
l € Lis a labeled occurrence sequence of N’, that is, N' can replay L.

)=T1.

Proof (Sketch). The theorem holds from the observation that each alignment a =
(ai,t1)...(ay, t,) € a(L) of L to N can be transformed into an alignment of L to N’
having synchronous moves or model moves on invisible transitions only as follows.
Every move on model (>, t;) of @ w.r.t. N is replaced by a model move (>, #; ) wW.r.t.
N’ on the new invisible transition #; -, {(#; ».) = T which allows to skip over ¢,.
Every move on log (a,>) w.r.t. N is part of a subtrace 8 = (a;,>)...(a,>) of
a sublog (Lg;, Q). By adding the subprocess Ng; at location Q;, the subtrace § is

N, i N, i .
replayed by a sequence (>, 1,2 )ai, t1) - . . (ax, i) (>, tenQd' ) of synchronous moves in the
No. No.
subprocess Ng;. Moves (f;0,>) and (¢,%,>) are harmless because they are made
. . No,i Noi .
silent by relabeling 7,5, and 7, % with . o

This theorem concludes the techniques for process model repair presented in this
paper. Observe that original model N is preserved entirely as we only add new transitions
and new subprocesses. By taking a best alignment a(L) of L to N, one ensures that
number of new 7-transitions and the number of new subprocesses (or of new self-looping
transitions) is minimal.

11



4.4 Improving Repair — Simplicity

The quality of the model repair step can be improved in some cases. According to Def. 7,
each sublog (Lo, O;) is added as a subprocess Ny ; that consumes from and produces
on the same set Q; of places, i.e., the subprocess is a loop. If this loop is executed in
each case of L only once, then Ny is also executed exactly once. Thus, N could be
repaired by inserting Ny ; in sequence (rather than as a loop), by refining the places
Qi =1q1,....qi} toplaces {q;,...,q; } and {q],...,q]} with

° — . —e No.i .
L. °q; =°q;,q7" = {tyen},j=1....k and
o o o — NQJ R

2. q;f =gq;°, q}r ={t, hi=1....k
Also, the repaired model N’ can structurally be simplified by removing those model
elements which are no longer used. Consider for instance a transition # which is never
executed because the alignment only includes moves on model (>, t;), where ¢ is the
new transition to skip over ¢. In this case 7 is always bypassed by transition ¢, and ¢ can
be removed from N’.

5 Experimental Evaluation

The technique for model repair presented in this paper is implemented in the Process
Mining Toolkit ProM 6 in the package, available from http://www.promtools.org/
prom6/.

Uma provides a plugin Repair Model that takes as input a Petri net N, a log L, and a
best-fitting alignment a(L) of L to N. The alignment can be computed in ProM 6 using
the Conformance Checker of [2,5,4]. The Repair Model plugin repairs N by extending
N with subprocesses as defined in Sect. 4.3 and Sect. 4.4. For this, it first replays each
alignment on N, and identifies all subtraces. Then subtraces are grouped to sublogs at
the same location. The resulting sublogs are merged if they share the same location in
a greedy way (by merging sublogs with the largest overlap of places first), until the
resulting set of sublogs is minimal (i.e., all locations are disjoint). Each sublog is then
passed to the ILP miner [24] which guarantees to return a model that can replay the
sublog. The returned model is then simplified according to [11] and added to N as a
subprocess as defined in Def. 7.

We validated our implementation on real-life logs from a process that is shared by
five Dutch municipalities. Figure 1(left) shows the reference base model that is used
in several municipalities. However, each municipality runs the process differently as
demanded by the “couleur locale”. As a result, the process observed in each municipality
substantially deviates from the base model. To validate our technique, we repaired the
base model for each municipality based on the municipality’s log. In the following, we
report our findings.

We obtained 5 raw logs (M1-M5) from the municipalities’ information systems.
From these we created filtered logs (M1/-M5/) by removing all cases that clearly should
not fit the base model, for instance because they lacked the start of the process or were
incomplete (see Sect. 3 for the discussion). Table 1 shows the properties of these 10 logs
(over 44 different event classes) discussed in the following. The table lists the number of

12



Table 1. Results on model repair for 10 logs from Dutch municipalities.

log deviations subprocesses change to original

moves on per # added|T| total |T| similarity-dist.

traces length model log case avg. max. add. rem. repair discover

M1 434 1-51 3327 310 1-26 7 7 21 69 3 0.144 0.476
M2 286 1-72 1885 323 1-41 5 10 23 65 3 0.147 0.486
M3 481 2-82 3079 1058 1-49 10 13 37 151 3 0.199 0.542
M4 324 1-37 2667 192 2-21 8 7 13 71 4 0.139 0.541
M5 328 2-43 3107 342 225 6 9 24 60 3 0.143 0.540
M1/ 249 24-40 681 229 1-12 2 6 9 25 4 0.074 0.473
M2/ 180 23-70 516 240 1-41 2 12 21 37 5 0.103 0.539
M3/ 222 22-82 465 598 1-49 7 10 26 87 5 0.164 0.543
M4/ 239 15-37 1216 180 2-17 6 7 13 60 4 0.124 0.542
M5/ 328 13-43 1574 280 2-16 4 9 23 51 3 0.111 0.541

traces, minimum and maximum length, and the properties of a best matching alignment
of the log to the model of Fig. 1(left) as the total number of model moves, number of
log moves and the minimum and maximum number of deviations (log move or model
move) per case. None of the traces could be replayed on the base model, in some cases
deviations were severe.

Repairing the base model of Fig. 1(left) w.r.t. the filtered log M1/ yields the model
of Fig. 1(middle). Repairing the same model w.r.t. the raw log M1 results in the model
shown in Fig. 5(left). Repairing the base model w.r.t. the filtered log M2/ yields the
model of Fig. 5(right). In each case, model repair requires only several seconds; a best-
fitting alignment (needed for repair) could be obtained in about a minute per log. We
checked all resulting models for their capability to replay the respective log and could
confirm complete fitness for all models.

Moreover, we could re-identify the original model as a sub-structure of the repaired
model, making it easy to understand the made repairs in the context of the original
model. The original model had 68 transitions, 59 places, and 152 arcs. Table 1 shows
for each log the number of added subprocesses, the average and maximal number of
transitions per subprocess, and the total number of added and of removed transitions
in the entire process. We can see that in the worst case, M3, the number of transitions
in the model is more than tripled. Nevertheless, this large number of changes is nicely
structured in subprocesses: between 2 and 10 subprocesses were added per log, the
largest subprocess had 37 transitions, the average subprocess had 6-13 transitions. We
identified alternatives, concurrent actions, and loops in the different subprocesses. Yet,
simplification [11] ensured a simple structure in all subprocesses, i.e., graph complexity
between 1.0 and 2.0. Model repair also allowed 25%-30% of the original transitions to
be skipped by new 7-transitions; only few original transitions could be removed entirely.

To measure similarity, we computed the graph similarity distance [10] between
repaired model and original model, and between a completely rediscovered model and the
original model. The rediscovered model was obtained with the ILP miner [24] (ensuring
fitness) and subsequently simplified by the technique of [11] using the same settings as
for subprocess simplification. The similarity distance, roughly, indicates the fraction of

13



Fig. 5. Result of repairing Fig. 1(left) w.r.t. M1 (left) and M2/ (right).

the original model that has to be changed to obtain the repaired/rediscovered model, i.e.,
0.0 means identical models. We observed that original model is significantly more similar
to the repaired models (.074-.199) than the original model to the rediscovered models
(.473-.543). This indicates that model repair indeed takes the original model structure by
far more into account than model repair. The numbers also match the observations one
can make when comparing Fig. 1(middle) to Fig. 1(right). Finally, the simpler models
and fewer changes required for the filtered logs compared to the raw logs indicate that
log preprocessing, as discussed in Sect. 3, has a significant impact on model repair.

6 Related Work

The model repair technique presented in this paper largely relates to two research streams:
conformance checking of models and changing models to reach a particular aim.

Various conformance checking techniques that relate a given model to an event log
have been developed in the past. Their main aim is to quantify fitness, i.e., how much the
model can replay the log, and if possible to highlight deviations where possible [2, 4, 5,
8,21]. The more recent technique of [2, 4] uses alignments to relate log traces to model
executions which is a prerequisite for the repair approach presented in this paper. Besides
fitness, other metrics [2,9, 13, 18, 19, 23] (precision, generalization, and simplicity) are
used to describe how good a model represents reality. Precision and generalization are
currently considered in our approach only as a side-effect and not a leading factor for
model repair. Incorporating these measure into model repair is future work. Simplicity is
considered in our approach in the sense that changes should be as tractable as possible,
which we could validate experimentally.

14



A different approach to enforcing similarity of repaired model to original model
could be model transformation incorporating an edit distance. The work in [15] describes
similarity of process model variants based on edit distance. Another approach to model
repair is presented in [12] to find for a given model a most similar sound model (using
local mutations). [16] considers repairing incorrect service models based on an edit
distance. These approaches do not take the behavior in reality into account. Other
approaches to adjust a model to reality, adapt the model at runtime [22,20], i.e., an
individual model is created for each process execution. This paper repairs a model for
multiple past executions recorded in a log. The approach of [11] uses observed behavior
to structurally simplify a given model obtained in process discovery.

7 Conclusion

This paper addressed, for the first time, the problem of repairing a process model w.r.t. a
given log. We proposed a repair technique that preserves the original model structure and
introduces subprocesses into the model to permit to replay the given log on the repaired
model. We validated our technique on real-life event logs and models and showed the
approach is effective and the resulting model allows to understand the changes done to
the original model for repair.

Our proposed technique of model repair covers the entire problem space of model
repair between confirming conformance and complete rediscovery. In case of complete
fitness, the model is not changed at all. In case of an entirely unfitting model (no
synchronous move), the old model is effectively replaced by a rediscovered model. In
case of partial fitness, only the non-fitting parts are rediscovered. This allows to apply
our technique also in situations where the given model is understood as a partial model
(created by hand) that is then completed using process discovery on available logs.

The technique can be configured. The cost-function influences the best-fitting align-
ment found, grouping of traces into sublogs and identifying sublocations for inserting
new subprocesses allows for various solutions. Any process discovery algorithm can be
used to discover subprocesses; the concrete choice depends on the concrete conformance
notion addressed.

In our future work we would like to consider other conformance metrics such as
generalization and precision. Moreover, in our current approach we abstract from extra
logging information such as the resource executing or initiating the activity and the
timestamp of the event. We would like to incorporate this information when repairing
the model. For example, resource information can give valuable clues on for repair.

Acknowledgements. We thank M. Kunze and R.M. Dijkman for providing us with an implementa-
tion of the graph similarity distance and the anonymous reviewers for their fruitful suggestions. The
research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement n° 257593 (ACSI).

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

15



10.

11.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Models

for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge
Discovery 2(2), 182-192 (2012)

. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on Process

Mining. Information Systems 36(2), 450-475 (2011)

. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking using Cost-

Based Fitness Analysis. In: EDOC 2011. IEEE Computer Society (2011)

. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance

Checking. In: BPM 2010 Workshops. LNBIP, vol. 66, pp. 122-133 (2011)

. Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of Patient Treatment Procedures. In: BPM

Workshops’11. LNBIP, vol. 99, pp. 165-166 (2011)

. Bose, R.PJ.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment: Opportuni-

ties, issues, and challenges. Inf. Syst. 37(2), 117-141 (2012)

. Calders, T., Guenther, C., Pechenizkiy, M., Rozinat, A.: Using Minimum Description Length

for Process Mining. In: SAC 2009. pp. 1451-1455. ACM Press (2009)

. Cook, J.E., Wolf, A.L.: Software Process Validation: Quantitatively Measuring the Correspon-

dence of a Process to a Model. ACM Transactions on Software Engineering and Methodology
8(2), 147-176 (1999)

Dijkman, R.M., Dumas, M., Garcia-Bafiuelos, L.: Graph Matching Algorithms for Business
Process Model Similarity Search. In: BPM. LNCS, vol. 5701, pp. 48-63 (2009)

Fahland, D., van der Aalst, W.M.P.: Simplifying Mined Process Models: An Approach Based
on Unfoldings. In: Business Process Management (BPM 2011). LNCS, vol. 6896, pp. 362-378.
Springer (2011)

. Gambini, M., Rosa, M.L., Migliorini, S., ter Hofstede, A.H.M.: Automated Error Correction

of Business Process Models. In: BPM 2011. LNCS, vol. 6896, pp. 148—-165. Springer (2011)

. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with

Artificial Negative Events. Journal of Machine Learning Research 10, 1305-1340 (2009)

. IEEE Task Force on Process Mining: Process Mining Manifesto. In: BPM Workshops. LNBIP,

vol. 99, pp. 169—-194. Springer (2012)

Li, C., Reichert, M., Wombacher, A.: Discovering Reference Models by Mining Process
Variants Using a Heuristic Approach. In: BPM 2009. LNCS, vol. 5701, pp. 344-362. Springer
(2009)

Lohmann, N.: Correcting Deadlocking Service Choreographies Using a Simulation-Based
Graph Edit Distance. In: BPM 2008. LNCS, vol. 5240, pp. 132-147. Springer (2008)
Medeiros, A., Weijters, A., Aalst, W.: Genetic Process Mining: An Experimental Evaluation.
Data Mining and Knowledge Discovery 14(2), 245-304 (2007)

Munoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: BPM
2010. LNCS, vol. 6336, pp. 211-226. Springer (2010)

Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Stability,
Confidence and Severity. In: CIDM 2011. IEEE, Paris, France (April 2011)

Reichert, M., Dadam, P.: ADEPTflex-Supporting Dynamic Changes of Workflows Without
Losing Control. JIIS 10(2), 93—-129 (March 1998)

Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring
Real Behavior. Information Systems 33(1), 64-95 (2008)

Sadiq, S.W., Sadiq, W., Orlowska, M.E.: Pockets of flexibility in workflow specification. In:
ER’2001. LNCS, vol. 2224, pp. 513-526 (2001)

Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Robust F-measure for Evaluating
Discovered Process Models. In: CIDM 2011. pp. 148-155. IEEE (April 2011)

van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process Discovery using
Integer Linear Programming. Fundamenta Informaticae 94, 387-412 (2010)

16



