Creating Sound and Reversible Configurable
Processes Models using CoSeNets

D.M.M. Schunselaar*, HM.W. Verbeek*, W.M.P. van der Aalst*, and H.A.
Reijers*

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst, h.a.reijers}@tue.nl

Abstract. All Dutch municipalities offer the same range of services, and
the processes delivering these services are quite similar. Therefore, these
municipalities can benefit from configurable process models. This re-
quires the merging of existing process variants into configurable models.
Unfortunately, existing merging techniques (1) allow for configurable pro-
cess models which can be instantiated to unsound process models, and (2)
are not always reversible, which means that not all original models can be
obtained by instantiation of the configurable process model. In this pa-
per, we propose to capture the control-flow of a process by a CoSeNet: a
configurable, tree-like representation of the process model, which is sound
by construction, and we describe how to merge two CoSeNets into an-
other CoSeNet such that the merge is reversible. Initial experiments show
that this approach does not influence complexity significantly, i.e. it re-
sults in similar complexities for the configurable process model compared
to existing techniques, while it guarantees soundness and reversibility.

1 Introduction

Within the CoSeLoG project, we have 10 municipalities involved offering essen-
tially the same set of services. The process models supporting these services are
very similar, due to legislation and standardisation, but are different, due to
couleur locale and local decision making. The goal of the project is to support
the different process models via configurable process models.

Configurable process models are process models with configuration options.
The user has the possibility to configure the configurable process model by mak-
ing configuration choices for options. These configurations are used to deduce
the process models from the configurable process model (instantiation), by tak-
ing the different choices for the configuration options into account. Obtaining a
configurable process model can be done via the merger of process models. Merg-
ing a set of process models should be such that the behaviour of a configurable
process model is (an over-approximation of) the union of allowed behaviour from
the different process models.

* This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

We require that every instantiation of the configurable process model yields a
sound process model [1]. Furthermore, to support the different municipalities, we
want that the configurable process models are reversible [2], i.e. the models used
for obtaining the configurable model should be instantiations of the configurable
model. Both requirements should not impact the complexity of the resulting
configurable process model significantly in comparison to the state-of-the-art.
Applying existing techniques to obtain configurable process models from the
CoSeLoG process models resulted in configurable process models which can be
instantiated to unsound process models, and some techniques are not reversible.

To counter the aforementioned problems with existing techniques, and ad-
hering to the requirements, we propose to capture the process models in tree-like
representations of block-structured process models, which are sound by construc-
tion (see [3] for a comparison between block-structured and graph-structured
process models). Since there is a straightforward transformation from this tree-
like representation to, for instance, Petri nets, we can use the classical notion of
soundness.

The configurable variant of these process models is captured in CoSeNets, a
tree-like representation of configurable process models. Instantiating a CoSeNet
always yields sound process models. Furthermore, the merger of two CoSeNets is
always reversible. In order to show that the complexity is not significantly influ-
enced, an empirical comparison is presented between our approach and existing
techniques. This empirical evaluation shows that the complexity is comparable
to, or lower than existing techniques, using a subset of the processes used in [4].

This paper is structured as follows: Sect. 2 lists the relevant related work.
In Sect. 3, the CoSeNets are explained. We explain the merger of CoSeNets in
Sect. 4. In Sect. 5, we show a comparison between our approach and existing
approaches. Finally, Sect. 6 contains the conclusions and future work. For an
extended version of this paper with more technical details, we refer the reader
to [5].

2 Related Work

A number of configurable process modelling languages has been proposed. These
modelling languages can be subdivided into two categories, i.e. imperative and
declarative. Declarative languages constrain the allowed behaviour, i.e. every-
thing is allowed unless stated otherwise. An example of a configurable declarative
process modelling language is Configurable Declare [6]. Imperative languages are
the opposite of declarative languages; imperative languages specify the allowed
behaviour, i.e. nothing is allowed unless stated otherwise. C'-SAP WebFlow,
C-BPEL, C-YAWL [7], and C-EPC [8] are examples of imperative configurable
process modelling languages. These configurable modelling languages do not al-
ways have to yield sound process models when being instantiated [9,10].

A number of merging techniques have been defined in literature. Gottschalk [7]
elaborates on the merger of process models into a single configurable process
model (e.g. EPCs). All requirements are met, however, one has to perform a

Table 1: Comparing the different merging techniques, note that the soundness
property of Gottschalk [7] is after some postprocessing.

Approach |Gottschalk [7] Li et al. [11] Mendling et La Rosa et Sun et

al. [12] al. [2] al. [14]
Soundness v X X X X
Reversibility v X X v X

postprocessing step to transform the process model into a sound process model.
Furthermore, Gottschalk allows for all possible different instantiations of the
configurable process model, i.e. certain parts can be blocked even if it was not
observed in any of the input models. Although this does not limit the reversibil-
ity, it is noteworthy from an application point of view since it will become harder
in this way to identify which parts are commonalities and which parts are vari-
abilities.

Li et al. [11] present an approach for creating a new reference model based
on models mined from a log. These models represent the different variations of a
reference model. Li et al. only consider “AND” and “XOR” operators. Further-
more, they seek to minimise a distance measure between the reference model
and the mined models, where distance is defined as the number of insertions,
deletions, and moving activities within the process model. By allowing the inser-
tion of activities, the reference model cannot be configured to obtain the input
models. Note that in our approach it is not allowed to insert activities.

In the paper by Mendling et al. [12], an approach is presented to merge the
different views on a process model. This approach does not yield configurable
models, i.e. the output is an EPC and not a C-EPC. Furthermore, soundness is
not guaranteed by this particular approach.

La Rosa et al. [2] present an approach for merging a set of process models
into a single configurable process model. With the use of AProMoRe [13] they
are even able to merge different formalisms into a single configurable process
model. Although this approach allows for the deduction of the input models, it
does not guarantee the deduction of sound process models.

Sun et al. [14] focus on merging block-structured process models. They, how-
ever, provide a merge for disjoint process fragments, while in this paper we
focus on the merger of variants of the same process. Due to the merger of dis-
joint process fragments, some activities are marked as redundant and removed
from the resulting model, which we consider undesirable as it does not allow for
the deduction of the input models. Finally, their approach does not allow for
configurations, i.e. the resulting model is a non-configurable process model.

Table 1 lists the different merging approaches and their adherence to our
requirements.

Fig.1: A process model with the corresponding Petri net

3 CoSeNet and metrics

Here, we introduce our new representations of process models and configurable
process models, i.e. process models and CoSeNets. Furthermore, the metrics used
for the experimental evaluation are elaborated on.

3.1 Process model

For our purposes, a process model is captured as a tree-like representation of a
block-structured process model. However, we allow for sharing subprocesses, i.e.
some subtrees might have multiple incoming edges to support reuse. Therefore,
we use Directed Acyclic Graphs (DAGs) to represent process models.

Fig. 1 depicts a process model with its corresponding Petri net. The top
node in the process model denotes the root and is a SEQ node (sequence, —).
The SEQ node has 5 children, i.e. three activity nodes (A and twice D) and
two operator nodes: XOR (X) and AND (A). Although the context in which D
is executed might be different for both D’s, from a control-flow perspective we
assume they are the same D. A SEQ node executes its children in the order
in which they occur, thus A is the first and the second D is the last. The XOR
node denotes an exclusive choice between any of its children, and the AND node
denotes the parallel execution of its children. Apart from the SEQ, XOR, and
AND, we currently support the OR node (one can execute any number of children
but at least one) and the DEF node (deferred choice, i.e. the choice based on
events instead of data). Furthermore, we support LOOP nodes, which have three
children: a do child, a redo child, and an ezit child. The do child is the root of the
subgraph representing the body of the loop. After having executed the do child,
there is a choice to either execute the redo child and, afterwards, execute the do
child again, or to execute the exit child and exit the loop construct. The choice
between the redo child and the exit child can be either exclusive (LOOPXOR) or
deferred (LOOPDEF). For the sake of brevity, we use LOOP as a shorthand for
both LOOPXOR and LOOPDEF.

3.2 CoSeNet

A CoSeNet is an extension of the process model we discussed hitherto. Fig. 2
depicts (a) the process model from Fig. 1 extended with some extra annotations
and nodes, and (b) a second CoSeNet which we want to merge with (a). The stop

(a))

Fig.2: Two CoSeNets we want to merge

sign denotes that this branch can be blocked, i.e. the execution of this subgraph
can be prevented. Hiding a particular branch, i.e. substituting the branch by a
silent transition (7), is denoted with the orange arrow. Finally, we have added a
placeholder node (dashed circle) to offer the user to select a subgraph to replace
this placeholder node. In this example, the user can select to substitute the
placeholder node by the activity node B, E, or by the subgraph rooted at the
OR node. A placeholder node is used instead of an exclusive choice to select a
subgraph. This to shift the moment of choice from run-time to configuration-
time. Fig. 1 can be obtained from (a) by not blocking the blockable branch, not
hiding the hideable branch, and replacing the placeholder node by activity node
B.

3.3 Metrics

In order to compare our approach with existing approaches w.r.t. complexity
(specifically, La Rosa et al. [2] and Gottschalk [7]), we use the complexity metrics
used in [4] since this is a continuation of that work. We elaborate briefly on the
used metrics. For a more complete discussion, we refer the reader to [4,15,16,17].

Control-Flow Complezity (CFC) [16] computes for every operator a weight
based on the number of outgoing edges. The CFC for a process model is the
summation of the weights for the individual operators in that process model.

The density of a process model [15] is defined as the amount of edges in the
model divided by the total amount of edges possible in that model.

With the Cross-Connectivity (CC) metric [17], one first computes the weight
of the different nodes (connectors and tasks) in the process model (based on
the amount of outgoing edges). Afterwards, the weight of the edge between two
nodes is deduced from the weight of the nodes the edge is connected to. From
this, the maximal weight for the paths between two nodes v and v is computed,
where a path is a sequence of edges. Finally, the summation of paths with the

ancestor

?
mapped x

node

preceding mapped succeeding
sibling node sibling

(a) (0) ()

descendant

G OUUE
B B B

Fig. 3: Restrictions on a proper CoSeMap.

largest weight between all pairs of nodes, is divided by the total amount of edges
possible in a directed graph with NV nodes (i.e. N - (N —1)).

4 Merge

When merging two CoSeNets into a single CoSeNet it is important to know
which nodes from the original CoSeNets may be merged into a single node. For
this reason, we introduce the concept of a node mapping between both original
CoSeNets, called a CoSeMap: Only if a node from one CoSeNet is mapped
onto a node of the other CoSeNet, then these nodes may be merged into a
single node. For the sake of simplicity, we assume a one-to-one correspondence
between nodes, and a CoSeMap corresponds to an injective function to and from
the nodes in both CoSeNets (for the sake of convenience, we assume a CoSeMap
to be symmetrical).

As a CoSeNet corresponds to a DAG, the CoSeNet that results from a merge
may not contain any cycles. Cycles may appear in the resulting CoSeNet if an
ancestor node of a mapped node in one CoSeNet is mapped onto a descendant
node of the node that the mapped node is mapped onto in the other CoSeNet
(see Fig. 3(a)). Second, for a resulting sequence node a correct ordering of its
children should be feasible, which is impossible if any preceding sibling of a
mapped child in one CoSeNet is mapped onto a succeeding sibling of the node
the mapped child is mapped onto in the other CoSeNet (see Fig. 3(b)). It makes
no sense to map a node from one type (activity, operator, placeholder) to a node
of another type, or to map an activity node to another activity node with a
different label (see Fig. 3(c)). Finally, we only allow the mapping of LOOP nodes
if and only if all nodes related to the LOOP nodes are mapped. L.e. the root of
the do subgraph, redo subgraph, and the root of the exit subgraph. For these
reasons, we require a CoSeMap to be proper:

1. No ancestor node is mapped onto a descendant node;

2. No preceding child is mapped onto a succeeding child for any sequence node;

3. All nodes are mapped onto nodes from the same type and with the same
label (in case they are activity nodes);

4. Loop nodes are mapped onto each other if all children are mapped in order.

Given a proper CoSeMap between them, two CoSeNets can be merged in a
straightforward way, which is the CoSeMerge:

All nodes from the first CoSeNet are added to the resulting CoSeNet;

All unmapped nodes from the second CoSeNet are added;

All edges from the first CoSeNet are added;

All edges that involve some unmapped node from the second CoSeNet are

added, but only after any mapped node is replaced by the node it is mapped

onto from the first CoSeNet;

5. Configuration options from the second CoSeNet that involve only mapped
nodes are added (if needed) to a corresponding branch from the first CoSeNet.
Furthermore, some extra configuration options have to be added (see [5], for
the exact details);

6. A new root node is added, which is a placeholder node with both root nodes

as children. If both root nodes are mapped onto each other, the new root

node will only have an edge to the root of the first CoSeNet.

=N

Please note that edges from a SEQ/LOOP node are added in such a way that the
order in which the children occur of both original nodes are taken into account.
The CoSeMerge yields a CoSeNet containing the union of behaviour of the input
CoSeNets.

When applying our CoSeMerge on any two CoSeNets (say, N; and Ns), it
is easy to see that N can be instantiated from the resulting CoSeNet as all
nodes and edges from Nj are present: After having removed all other nodes and
edges, and after having removed the new root placeholder node and configuration
options that were only present in N, the resulting graph is identical to N;. For
Ny this is a bit harder to see, as some nodes and edges from this net are not
present. However, it is clear that only those nodes and edges are left out for
which an alternative exists in N;. Thus, after having removed all other nodes
and edges, and the new root placeholder node and configuration options only
present in Ny, the CoSeNet is identical to No. Hence, both N7 and N can be
instantiated from the resulting CoSeNet, which means that the CoSeMerge is
reversible.

In the remainder of this paper, we will describe two different ways to construct
a proper CoSeMap, called an activity CoSeMap and an extended CoSeMap. An
activity CoSeMap maps only activity nodes; it is computed by taking all pairs of
activity nodes with the same label. Recall that we assume that a CoSeNet does
not contain two activity nodes with the same label. If a CoSeNet contains two
activity nodes with the same label, we can combine these into a single activity
node. Fig. 4 shows the resulting CoSeNet after having merged both CoSeNets
from Fig. 2 using an activity CoSeMap. An extended CoSeMap takes an activity
CoSeMap as a starting point, but extends this CoSeMap with operator nodes and
placeholder nodes (if possible) in such a way that the number of mapped nodes
is maximised. The basic strategy for constructing the extended CoSeMap is to
map one node onto another node (of the same type) if some child of the first node

Fig.5: An extended CoSeMap (horizontal gray lines) for merging the CoSeNets
from Fig. 2

is mapped onto some child of the second node. As a result, the construction of
this CoSeMap works in a bottom-up way, as initially we only have activity nodes
that are mapped onto each other, which reside at the bottom of a CoSeNet. Note
that it is possible that we have to choose between alternative ways to extend
a current partial extended CoSeMap. Hence, given an activity map, multiple
extended CoSeMaps may exist. If this is the case, we arbitrarily choose one of
the alternatives. Fig. 5 shows a possible extended CoSeMap for merging both
CoSeNets from Fig. 2, Fig. 6 shows the result after having merged these CoSeNets
using this CoSeMap.

F G J

Fig. 6: Merging the models from Fig. 5 using the extended CoSeMap from Fig. 5

5 Experimental evaluation

In the previous sections, we have argued that CoSeNets can only be instantiated
to sound process models. Furthermore, the CoSeMerge ensures that the merged
CoSeNet is reversible. In this section, we want to show that these attractive
properties of soundness and reversibility do not incur a penalty on the complexity
of the configurable process model.

The implementation of the construction of an activity CoSeMap, the con-
struction of an extended CoSeMap, and the CoSeMerge have been implemented
as ProM 6 plug-ins'. The construction of an activity CoSeMap is a straight-
forward implementation of string comparison on the activity labels. The con-
struction of an extended CoSeMap is computed via linear programming. Linear
programming is used since we have an maximisation problem, i.e. we desire that
our extended CoSeMap is maximal. If our extended CoSeMap is maximal, it
allows us to share as much subgraphs as possible, which reduces the duplication
of subgraphs and hence the complexity of the configurable process model. After
the merger, the CoSeNet is converted into a YAWL [18] model, which can be
analysed in a repaired version of ProM 5.22. Noteworthy facts of this conversion
are that it treats a placeholder node as an XOR operator node, that it will reuse
the YAWL fragment that corresponds to an operator node if possible, but that
it will not reuse the YAWL fragment that corresponds to an activity node.

! http://www.promtools.org/prom6/

2 http://win.tue.nl/coselog/files/ProM-CoSeLoG-20110802.zip, which corresponds to
ProM 5.2 with some bugs in the algorithms to compute the various metrics have
been fixed.

Table 2: The complexities of the models using different merging techniques

Municipality | GBA 1 GBA 2 GBA 3 MOR WOZ
Mun 4 5 21 11 42 12
Mung 3 29 11 23 8
Munc 2 38 28 29 14
Munp 3 35 18 24 11
Mung 6 25 26 25 25
Munz 3 21 9 44 15
Mung 5 21 9 20 15
Mun 5 29 11 18 11
Mun; 3 41 9 28 11
Mun 3 29 8 25 26
Act. CoSeMap 56 435 209 397 223
Ext. CoSeMap| 39.8 £4.3 126.3 £10.6 172.9 £23.2 262.4 +£18.9 134.1 £13.6
La Rosa et al. | 146.6 £12.9 781.3 +42.7 412.7 +£16.5 937.8 £34.3 707.1 £34.9
Gottschalk 80 317 210 - 335

We compare our approach to the approaches from Gottschalk [7] and La Rosa
et al. [2]. As the process models used in [4] were not well-structured, we could
not use these process models directly and had to modify them for our analysis.

Table 2 lists the values for the various complexity measures for the individual
process models as well as for the merged process model. In case an approach
yields a non-deterministic result, the average u and standard deviation o of 10
results are listed as “u £0”. “Act. CoSeMap” and “Ext. CoSeMap” represent the
merger with an activity CoSeMap and with an extended CoSeMap. The Synergia
tool-set?, implements the merge by La Rosa et al. [2]. Finally, “Gottschalk” is
the implementation of the EPC-merge by Gottschalk in ProM 5.2% [7].

From Table 2, one can see that the complexities of the different approaches
vary significantly, i.e. ranging from roughly a factor 2 (GBA 1) up to roughly
a factor 6 (GBA 2). Complexity metrics allow us to compare processes in an
quantitative manner. In general, a higher complexity for an approach means a
worse approach than an approach which yields models with a lower complexity
(Occam’s Razor). See [15], for an extensive evaluation of the different metrics.

Placing the 10 models next to each other can be seen as a base case (which
corresponds to the activity CoSeMap), as our conversion to YAWL will not reuse
YAWL fragments that correspond to activity nodes, as mentioned earlier). We
wish to avoid that the complexity of the configurable process model is signif-
icantly greater than the sum of the complexities of the individual models. In
case of La Rosa et al. [2], they merge different connectors into a single con-
nector which increases the CFC metric, especially with OR-operators which are
exponential in the out-degree.

3 http://www.processconfiguration.com/
4 http://promtools.org/prom5/

10

The approach of Gottschalk [7] is in some cases comparable (w.r.t. complex-
ity) to our approach (e.g. GBA 3), but yields in some cases significantly higher
levels of complexity (e.g. GBA 2) or is not computable (e.g. MOR). In general,
Gottschalk performs similar to the activity CoSeMap.

All in all, it can be concluded that, at least with this set of models, we achieve
a comparable (or even lower) complexity w.r.t. existing techniques. Hence, it
seems possible to obtain sound and reversible process models without paying a
too expensive price for this, or actually no price at all.

6 Conclusion

Existing techniques allow for the instantiation of unsound process model from
a configurable process model. Furthermore, some techniques are not reversible.
Our solution successfully addresses both problems. Soundness is addressed by
considering tree-like representations of process models and CoSeNets. The merge
as we defined it in this paper takes care of the reversibility property. When merg-
ing CoSeNets into a single CoSeNet, the original CoSeNets are instantiations of
the resulting CoSeNet.

Apart from defining our solution, we also applied our solution on the process
models from the CoSeLoG project. This evaluation supports the view that the
complexity of our approach is similar to/lower than the approach by Gottschalk
and La Rosa et al. Thus, the guarantee of soundness and reversibility does not
incur a penalty on the complexity of the configurable process models.

However, there is still room for improvement. This paper is, therefore, to be
considered as a starting point. There are numerous ways in which we want to
continue the development of this new approach. Amongst other in the following
directions: this research has been started to support the processes of the mu-
nicipalities. Therefore, we plan to extend our CoSeMerge and CoSeMaps, e.g.
different process models have different granularity (see the work of Weidlich et
al. [19]). Furthermore, as noted in the experimental evaluation, some quality
dimensions have not (yet) been addressed. We intend to define these quality
dimensions on our CoSeNets.

Finally, we would like to extend CoSeNets with resources and data, in order
to fully support the processes of the municipalities.

Acknowledgements We would like to thank Marcello La Rosa for his com-
ments, which improved this paper significantly.

References

1. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Proceedings of the 18th
International Conference on Application and Theory of Petri Nets, Springer (1997)
407-426

2. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.M.: Business Process Model Merg-
ing: An Approach to Business Process Consolidation. In Press (2012)

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-
Based and Block-Structured Business Process Modelling Languages. Enterprise
Modelling and Information Systems 4(1) (2009) 3-13

Vogelaar, J.J.C.L., Verbeek, H.M.W., Luka, B., van der Aalst, W.M.P.: Comparing
Business Processes to Determine the Feasibility of Configurable Models: A Case
Study. In: BPM 2011 Workshops, Part II. Volume 100 of LNBIP., Springer (2012)
50-61

Schunselaar, D.M.M., Verbeek, HM.W., van der Aalst, W.M.P., Reijers, H.A.:
Creating Sound and Reversible Configurable Processes Models using CoSeNets.
Technical Report BPM Center Report BPM-11-21, BPMcenter.org (2011)
Schunselaar, D.M.M.: Configurable Declare. Master’s thesis, Eindhoven University
of Technology, The Netherlands (2011)

Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University
of Technology, The Netherlands (2009)

Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1) (2007) 1-23

van der Aalst, W.M.P., Lohmann, N., La Rosa, M.: Ensuring Correctness During
Process Configuration Via Partner Synthesis. To Appear (2012)

van der Aalst, W.M.P., Lohmann, N., La Rosa, M., Xu, J.: Correctness Ensuring
Process Configuration: An Approach Based on Partner Synthesis. In: Business
Process Management. Volume 6336 of Lecture Notes in Computer Science. Springer
(2010) 95-111

Li, C., Reichert, M., Wombacher, A.: Discovering Reference Models by Mining
Process Variants Using a Heuristic Approach. In: Business Process Management.
Volume 5701 of Lecture Notes in Computer Science. Springer (2009) 344-362
Mendling, J., Simon, C.: Business Process Design by View Integration. In: Busi-
ness Process Management Workshops. Volume 4103 of Lecture Notes in Computer
Science., Springer (2006) 55-64

La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling,
J., Dumas, M., Garcia-Bafiuelos, L.: APROMORE: An advanced process model
repository. Expert Systems with Applications 38 (2011) 7029-7040

Sun, S., Kumar, A., Yen, J.: Merging Workflows: A New Perspective on Connecting
Business Processes. Decision Support Systems 42(2) (2006) 844-858

Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Springer (2008)

Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s
Properties. In: 6th International Enformatika Conference, Transactions on Enfor-
matika, Systems Sciences and Engineering. Volume 8. (2005) 213-218
Vanderfeesten, [.T.P., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso,
J.: On a Quest for Good Process Models: The Cross-Connectivity Metric. In:
CAIiSE. Volume 5074 of Lecture Notes in Computer Science., Springer (2008) 480—
494

ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N., eds.: Modern
Business Process Automation: YAWL and its Support Environment. Springer
(2010)

Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification
of Correspondences between Process Models. In: CAIiSE. Volume 6051 of Lecture
Notes in Computer Science., Springer (2010) 483-498

12

