Alignment Based Precision Checking

A. Adriansyah', J. Munoz-Gama?, J. Carmona?, B.F. van Dongen', and
W.M.P. van der Aalst!

1 Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.adriansyah,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl
2 Universitat Politecnica de Catalunya
Barcelona, Spain
{jmunoz, jcarmona}@lsi.upc.edu

Abstract. Most organizations have process models describing how cases
need to be handled. In fact, legislation and standardization (cf. the
Sarbanes-Oxley Act, the Basel II Accord, and the ISO 9000 family of
standards) are forcing organizations to document their processes. These
processes are often not enforced by information systems. However, tor-
rents of event data are recorded by today’s information systems. These
recorded events reflect how processes are really executed. Often reality
deviates from the modeled behavior. Therefore, measuring the extent
process executions conform to a predefined process model is increasingly
important. In this paper, we propose an approach to measure the pre-
cision of a process model with respect to an event log. Unlike earlier
approaches, we first align model and log thus making our approach more
robust, even in case of deviations. The approach has been implemented
in the ProM 6 tool and evaluated using both artificial and real life cases.

Keywords: Precision measurement, Log-model alignment, Conformance check-
ing, Process mining

1 Introduction

Process models are the starting point for most Business Process Management
(BPM) activities, as they provide insights into possible scenarios [10]. Process
models are used for analysis (e.g. simulation), enactment, redesign, and process
improvement. Therefore, they should reflect the dominant behavior accurately.
The increasing availability of event data enables the application of conformance
checking [9,12,13]. Conformance checking techniques compare event logs with
process models such that deviations can be diagnosed and quantified.
Conformance can be viewed along multiple orthogonal dimensions: (1) Fit-
ness, (2) Simplicity, (3) Precision, and (4) Generalization [12]. In this paper,
we focus on the precision dimension. Precision penalizes a process model for
allowing behavior that is unlikely given the observed behavior in the event log.
Take for example the two models and the event log in Figure 1. All traces in the
log can be reproduced by both models, i.e. the traces perfectly fit the models.

2 Adriansyah, Munoz-Gama, Carmona, van Dongen and van der Aalst

The “flower” model (F) The overfitting (precise) model (P)
Event Log
Trace Frequency
acdec 8698
abdec 8777
adcef 5043
acdeabdef 2482

Fig. 1. Example of an extremely precise (overfitting) and imprecise model (underfit-
ting) for a given log.

However, notice that the “flower” model (F) may provide misleading insights, as
it also allows for much more behavior not appearing in the log. In contrast, the
other model (P) only allows traces that occur in the log. Hence, the precision
of model P is better than model F with respect to the log.

Many existing precision metrics (e.g. [4,7,9]) assume that the event log per-
fectly fits the model, while many case studies show that this assumption does not
hold (e.g. [5,8,14]). In this paper, we do not use such assumptions and propose
a robust approach to measure the precision between an event log and a model.
This way we combine our earlier work on precision [6,7] and alignments [1,2].

The paper is organized as follows: Section 2 shows the notations and prelim-
inary concepts that are used throughout this paper. Alignment between event
logs and models is explained in Section 3. Alignment-based precision measure-
ments are presented in Section 4. Experimental results are given in Section 5.
Section 6 concludes the paper.

2 Preliminaries

Conformance checking requires as input both a process model and an event log.
Therefore, we first formalize process models and logs.

2.1 Sequence and Multiset

Let W be a set. For (finite) sequences of elements over a set W, we use € to
denote an empty sequence. A concatenation of sequences o1 and o5 is denoted
with oy - 0. W* denotes the set of all finite sequences over W. We refer to the
i-th element of a sequence ¢ as ol[i] and we use |o| to represent the length of
sequence 0. We say that any x € (W x W) is a pair. We use sely(z) and selz(x)
to refer to the first and the second element of pair x respectively. We generalize
this notation to sequences: sel; (o) = (sel;(o[1]), ..., sel;(c[|c]])). For all Q C W,
010 denotes the projection of ¢ € W* on Q, e.g., (a,a,b, C>¢{a,c} = {(a,a,c). For
simplicity, we omit brackets for sequences whenever their elements are clearly
distinguishable, e.g. we write aac instead of (a, a,c).

A multiset m over W is a mapping m : W — IN. We overload the set
notation, using @) for the empty multiset and € for the element inclusion. We write

Alignment Based Precision Checking 3

e.g. m = [p?,q] or m = [p, p,q] for a multiset m with m(p) = 2, m(q) = 1, and
m(z) =0 for all z & {p, q}. We use |m| to indicate the total number of elements
in multiset m (e.g. |[p?, ¢]|= 3). When we iterate over m, we refer to each unique
element in m, e.g. for all function f: W — IN, > f(z) = >, m(x) - f(z).

rem xre

2.2 Event Log and Process Model

The starting point for conformance checking is an event log. An event log records
the execution of all cases (i.e. process instances). Each case is described by a
trace, i.e., an activity sequence. Different cases may have exactly the same trace.
In reality, not all activities performed in a process are logged. We define the set
of all logged activities from the universe of activities A as Ay C A. An event
log over Ay, is a multiset L : A;* — IN. For example, the log in Figure 1 is
formalized as L = [acdec®5%®, abdec®™™", adce f°°43 acdeabde f2482].

Similarly, a process model defines a set of sequences of activities that leads
to proper termination of the process. Furthermore, some activities in a process
may not appear in its model. Thus, we define a set of modeled activities over the
set of all activities A as Ap; C A. A process model is a set of complete activity
sequences M C A", i.e., executions from the initial state to some final state.
Consider for example the precise model (P) in Figure 1. Assuming that the end
state is reached when the “end” place contains exactly one token, the model
are formalized by the set {acdec, abdec, adcef, acdeabdef}. Note that the set of
modeled activities and the set of logged activities may be disjoint, i.e. Ay N AL
can be an empty set.

3 Cost-Optimal Alignment

An alignment between an event log and a process model relates occurrences of
activities in the log to execution steps of the model. As the execution of a case
is often performed independently of the execution of another case, aligning is
performed on the basis of traces.

For each trace in an event log that fits a process model, each “move” in the
trace, i.e., an event observed in the log, can be mimicked by a “move” in the
model, i.e., an action executed in the model. However, this is not the case if the
trace does not fit the model perfectly. We use the symbol L to denote “no move”
in either the log or the model. Hence, we introduce the set A7 = A U{L} where
any x € At refers to a “move in log” and the set A3, = Ay U {L} where any
Yy € Aj/f refers to a “move in model”. Formally, a mowve is represented by a pair
(z,y) € A x A3, such that:

— (z,y) is a move in log if € A, and y = L,

(z,y) is a move in model if x = L and y € Ay,
— (x,y) is a synchronous move/move in both if x € Ar, y € Ay, and z =y,
(z,y)

x,y) is a illegal move in all other cases.

4 Adriansyah, Munoz-Gama, Carmona, van Dongen and van der Aalst

We use Ay to denote the set of all pairs of legal moves, i.e. all possible pairs
of move in log, move in model, and move in both.

Along this section, let L be a log over Ay, let o € L be a trace, and let
oy € M be a complete execution of the model. An alignment between oy, and
o is a sequence v € Apps™ where the projection of the first element (ignoring
1) yields o, (ie. sel1(v),4, = o) and projection of the second element yields
om (Le. selo(v) 4, = oMm)-

Take for example a trace oy, = aacef and an activity sequence adcef allowed
by model P in Figure 1. Some possible alignments between the two are:

oy = (el |alal Licel /) lalLlalclel/] | _|a]alc| L] Le|/]

o] L]d]c[e] /] [Llald]elelf] ™~ [ald][L]cle]7] ™~ [L]a]lL]d] c]e[/]
The moves are represented vertically, e.g., the first move of 79 is (a, L), indicating
that the log moves a while the model does not make any move. Note that the
projections of all moves in model in all alignments are by definition complete
activity sequences allowed by the model. This property is not always guaranteed
in some other approaches that also relates occurrences of observed activities in
the logs to execution steps in process models (e.g. [9]).

To measure the cost of an alignment, we define a distance function § :
Apy — IN where for all (ap,an) € Ay, d((ap,anr)) = 0 if ar, = apr and
§(ar,ap) = 1 otherwise. The distance function can be generalized to align-
ments v € App™ by taking the sum of the costs of all individual moves: §(y) =
> (ar.an)ey O((ar,anr)). Using this function, the cost of alignment 1 is 6(y1) =
d((a,a))+6((a, L))+0((L,d))+d((c,c))+6((e,e))+6((f, f)) = 0+1+1404+0+0 =
2. Note that the function returns the number of mismatches in the alignment.

Given a trace from an event log and a process model, we are interested in an
activity sequence from the model that is similar to the trace. Therefore, we define
the set of alignments I'y, v ={v € ALm™ | Jopenm @ v is an alignment between
or, and opr} to be all possible alignments between oy, and complete activity
sequences of M. Accordingly, we define the set of optimal alignments as the set of
all alignments with minimum cost, i.e. 7y ={y € I'o, m | Vyrer,, u 0(7) <
0(y')}. It is easy to see that there can be more than one optimal alignment
between a trace and a model. For example, {v1,72,73} is the set of optimal
alignments between the trace oy, = aacef and model P in Figure 1.

Given a log and a model, one can measure precision based on all optimal
alignments between traces in the log and the model or take just one represen-
tative element for each trace. In this paper, we investigate both approaches. We
define a function Ay € Ap* — Apy™ that maps each trace in the log to an op-
timal alignment, i.e. for any o, € L, Ay(0r) =, where v € Iy /. If there are
multiple optimal alignments, Ay; chooses one of them according to other exter-
nal criteria. With our previous example, suppose that s selects an alignment
that has the earliest occurrence of non-synchronous moves, Ays(op) = 2.

We define a function A\y; € Ar* — M based on Ay such that for any trace o,
in log L and a model M, Xps(or) = sela(Aar (01))a,,- Function A provides an

3 The distance function can be user-defined, but for simplicity we use a default distance
function that assigns unit costs to moves in log/model only.

Alignment Based Precision Checking 5

“oracle” that produces one complete activity sequence allowed by models. In [1,2]
various approaches to obtain an optimal alignment with respect to different cost
function are investigated. For any given trace and model, we can always obtain
an activity sequence that both perfectly fits the model and closest to the trace.

Note that in cases where process model has duplicate tasks (more than one
task to represent an activity) or unlogged tasks (tasks whose execution are not
logged), approaches to construct alignments (e.g. [1,2]) keep the mapping from
all model moves to the tasks they correspond to. Hence, given an alignment of a
trace and such models, we know exactly which task is executed for each model
move. Due to space constraints, we refer to [1,2] for further details on how such
mapping is constructed.

4 Alignment-Aware Precision

Given an event log and a model, the technique described in the previous section
provides one optimal alignment (through the Ay function) or all optimal align-
ments (through the I on M set) for each trace in the log. This section presents
a technique to compute precision based on the use of these optimal alignments.
The technique is grounded on the methods described in [6,7]. However, there is
a fundamental difference: whereas in [6,7] traces in the log are simply replayed
in the model, our new approach is based on alignments.

The advantages of the approach presented in this paper are manifold. First of
all, traces in the log do not need to be completely fitting. In [6,7] the non-fitting
parts are simply ignored. For most real-life logs this implies that only a fraction
of the event log can be used for computing precision. Second, the existence
of indeterminism in the model poses no problems when using the alignments.
In [6,7], ad-hoc heuristics were used to deal with non-determinism. Finally, the
use of alignments instead of log-based model replay improves the robustness
of conformance checking (as will be demonstrated later when we present the
experimental results). The remainder of this section is devoted to explain how
precision can be calculated.

Precision is estimated by confronting model and log behaviors: imprecisions
between the model and the log (i.e., situations where the model allows more
behavior than the one reflected in the log) are detected and analyzed. For in-
stance, there are 5 clear cases of imprecision (b,c,d, e, f) in the initial state of
the F model in Figure 1, where a,b, ¢, d, e, f are possible activities according to
the model but only a occurs in the initial state according to the log.

First, log behavior must be determined in terms of model perspective, i.e.,
we consider the optimal alignments of each trace for this purpose. In particular,
the projection of the second element of each optimal alignment, i.e., 56[2(7)¢AM-
These sequences are used to build the alignment automaton, i.e., a prefix au-
tomaton that includes information of all log traces. Depending on whether all
the possible optimal alignments are used to build the automaton (i.e., ry M) OF
just one (i.e., Apr), we will refer to the instantiation of the automaton as A or
A respectively. Clearly, A provides more information than .A', and hence the

6 Adriansyah, Munoz-Gama, Carmona, van Dongen and van der Aalst

precision value will be closer to the reality. But for large logs it may be difficult
to compute all optimal alignments. Apart from providing individual precision
metrics for each one of these two automata, the experiments demonstrate that
using A in the precision metric is a good approximation to the value provided
by using A.

Take for example the model and the log L = [01, 01, 02, 03] in Figure 2, where
01 = abede and o9 = acbde. The set of optimal alignments for the two possible
traces consists of:

s =|efpleldlelL] o _|albleldlel - |alblc|dle] L
[-L[B[L]de[] [-L1Ble[L] L] [-L[b[Ldle[a]
lalclbldle| L] | _|a|c|bld|e| L]

78 = [T[T[pldle[a] 7 T [T]T]o[dle]c]

In the first part of this section we consider the case where only one optimal
alignment per trace is used, i.e., we use function Ap(or) rather than Iy ,,
to construct the automaton A! (the case where all the optimal alignments are
considered is detailed at the end of the section). Considering the distance func-
tion and an external criteria, the optimal alignments selected for the traces in
the log could be, for instance, Ap(o1) = 5 and Apy(02) = ~s. The projec-
tion of the second element of each optimal alignment (e.g., Ays(01) = bdec and
A (02) = bdea) is used to build the automaton A!, where the states of that
automaton are determined by complete set of all the prefixes of the alignment
projections (e.g., {€,b,bd, bde, bdea, bdec} on this example).

Formally, the alignment automaton is defined such that:

— The set of states corresponds to all prefixes.
— The set of labels corresponds to the activities.

— The arcs define the concatenation between prefixes and activities, e.g., states
bd and bde are connected by arc labeled e.

— The state corresponding with the empty sequence € is the initial state.

— The function w determines the weight of each state according to its impor-
tance for the precision computation. Graphically it is shown as a number
inside the state.

Process Model Event Log Alignment Automaton A!
Case ID [Trace
1 abcde
2 abcde
3 acbde
4 acbde

Fig. 2. Example of a model with an unfitting log and its alignment automaton (ap-
pended with available actions, colored grey), considering one optimal alignment per

trace (A').

Alignment Based Precision Checking 7

Function w is used to determine the importance of the states based on fre-
quencies. In this example, where only one alignment per trace is considered, value
of w for a state is the number of occurrences of the state in the multiset of all
visited states when replaying the log, e.g. using the example in Figure 2, w(b) = 4
because b is a prefix of both A\ys(01) and A\ys(02) and L(oy) + L(og) = 2+2 = 4.
w(bdea) = 2 because bdea is only a prefix of Ajs(02) and L(og) = 2.

Note that the alignment automaton is similar to the prefix automaton pre-
sented in [6]. However, the alignment automaton is built from proper firing
sequences, i.e., the projections of the alignments. Therefore, any sequence of
activities corresponding with a prefix of the automaton can be replayed unam-
biguously on the model. This also ensures that occurrences of activities that
are modeled but not logged (i.e. unlogged tasks) and duplicate tasks (i.e. which
task an event is mapped to) are identified correctly. This is not the case on the
construction of the prefix automaton in [6].

Once the log behavior has been determined in terms of the model’s perspec-
tive, the confrontation with the actual model behavior is required in order to
determine the precision of the system. For each state of the automaton, we com-
pute its set of available actions, i.e. possible direct successor activities according
to the model (a,(0)), and then compare it with the set of executed actions, i.e.
activities really executed in the log (e, (o)). Take for example the alignment au-
tomaton and process model in Figure 2. e, (bde) = {a,c} as after the state bde
in the alignment automaton, only a and ¢ occur in the log. a,(bde) = {a, c,d, e}
because after firing transitions bde, the model allows to fire a,c,d, or e. Note
that, by construction e, (o) C a,(0), i.e., the set of executed actions of a given
state is always a subset of all available actions according to the model.

The actions available in a state but never observed in the log are used to
collect the imprecision of the system, i.e., an activity that escapes from the
log behavior. These imprecisions are represented in gray in the automaton of
Figure 2. For example, the imprecisions of the state bde are {a,c,d,e}\ {a,c} =
{d, e}. The computation and analysis of these imprecisions are the cornerstone
of the precision checking presented in this paper. All identified imprecisions can
be analyzed and further used to correct the model and make it more precise.
Furthermore, in order to globally estimate precision, these imprecisions in turn
are pondered by their weight within the process.

The align-based precision (a),) of a system, where only one alignment per
trace is considered (hence, using automaton A!), is determined by the formula:

D) ko)
A = o) o)

oc€S

where S is the set of states of the alignment automaton A!, i.e. S is the set of
all prefixes of all constructed optimal alignments.

The metric compares the number of available actions and executed actions
for each state in an alignment automaton, weighted with their importance. For
example, given the automaton, appended with available actions in Figure 2,

8 Adriansyah, Munoz-Gama, Carmona, van Dongen and van der Aalst

precision is computed as:

1-4+1-441-4+2-440-240-2
1-4+4-44+4-4+4-440-24+0-2

=0.38

where each s-w summand refers to a state on the automaton, i.e., s is the number
of available/executed actions of the state and w is the number of occurrence of
the prefix represented by the state in the log.

In order to focus on the important parts of the process and to mitigate the
effects produced by rarely occuring traces or incomplete traces, the precision
defined above could be restricted to consider only such states with a weight
greater than a given pruning threshold (called 7). In the remainder, we assume
no pruning (i.e., 7 = 0), unless it is stated otherwise. The effects of the pruning
can be seen in [7]. Additionally, it is also possible to consider the precision with
a severity factor associated to the activity that escapes from the log behavior.

The case considered so far is the one where only one optimal alignment
per trace is used to build the automaton (A!). The same idea can be used to
propose a metric for the general case (denoted a,) where all the best alignments
of a trace are used to build the alignment automaton (A). For instance, following
the running example, there are three optimal alignments for the trace o1 (75,76
and 77), and two for the trace oo (vs and v9). The process of building the
alignment automaton A (see Figure 3) and computing the metric a,, is the same
as computing a}g, except the definition of the function w.

Unlike the case with one alignment, in this case the importance of each state
does not depend exclusively on the frequency, but must also be equally balanced
among all its alignments. Consider for instance the state corresponding with the
prefix b. This prefix appears in all the optimal alignments of all the traces in the
log (01 and 02). So, the weight of this state is 4 (1 for each trace and both traces
occur twice in the log), as shown in Figure 3. However, this is not the case for
the state bc. This state only appears in the set of optimal alignments of only one
trace (o1) that occurs twice in the log. The first naive attempt would be then
assign to this state a weight of 2 (1 for each occurrence). However, note that,
there are cases where the number of optimal alignments of one trace may not
coincide with another trace, e.g. o1 has 3 alignments and o2 has 2. In order to
eliminate the bias produced by traces with many optimal alignments, this value
needs to be normalized, i.e., we consider also the number of optimal alignments
of the trace and also in how many of them the prefix appears. For example,

Fig. 3. Alignment automaton A of model and log in Figure 2, considering all optimal
alignments per trace (appended with available actions, colored grey).

Alignment Based Precision Checking 9

the weight of state be in Figure 3 is 1/3 (it appears only in one of the 3 optimal
alignments of the trace o1) times 2 (1 occurs twice in the log), i.e., 1/3-2 = 0.6.

Let L be alog over Ap, let M C Ap/* be a model, and let A be the alignment
automaton constructed from all best alignments of all traces in L with M, the
function w for all states s of A is defined as:

crI?° sel =s-0'No' € Apy”
w(s) = Z {y oL, M | 2(’7)¢AM v

o€l |F0(?L,J\/[|

Note that there are theoretical differences concerning the imprecisions of
A' and A. For instance, in the running example, bc is an imprecision in A’
but not in A. This difference is reflected in the values of a, and a}, (0.47 and
0.38 respectively). Since all the optimal alignments are taken into account, a
more complete characterization of log behavior is considered in A. However, the
experiments show that, the use of azl, is a good approximation of a,, in such cases
where complexity is an issue (see Sec. 5).

The metrics presented in this section coincide with the intuition for precision
presented in the introduction of this paper. This is illustrated by the the results
of the azl, and a, metrics for the example log and model in Figure 1. As expected,
the precision for models P is high (1.00 for both a, and azl,) while the precision
for model F is low (0.20 for both a, and a,).

5 Experiments

We have implemented the proposed precision calculation as a ProM 6 plugin,
publicly available from www.processmining.org. We used it to perform a range
of experiments to test the robustness of our proposed approach using both syn-
thetic and real-life models and logs.

5.1 Artificial cases

The first set of experiments was performed to evaluate the values provided by
the proposed metrics. We measured precision between various logs and models
whose expected values are known and compare them against etcp [7] precision as
benchmark for existing precision metrics. We created new models whose expected
precision values are between the two extremes by combining the models and log
in Figure 1 (P and F) in different orders. Two models are combined by merging
the end place of one with the initially marked place of another. Merged models
are named according to the their original models, e.g. PF model is the result of
merging the end place of P with the initially marked place of F. The activity
names in the merged models and logs are renamed such that splitting the logs
and models into two parts yields back the original logs and models. Precision
values were measured 10 times for event logs consisting of 5,000 traces, generated
by simulating the precise model (i.e. PP). The results are shown in Fig. 4(i).
As shown in Figure 4(i), both a, and a; give the same values as etcp. In
cases where logs are perfectly fit to models and activity execution can be mapped

10 Adriansyah, Munoz-Gama, Carmona, van Dongen and van der Aalst

(i) 1.00 (i) 1.00 .
£ 060 s oco b iy
% 0. a v Z N1
8 0.40 - soa) - Edp
*0.20 211 "oy - map
F P FF FP PFPP P FP PF PP

Process Model Process Model

Fig. 4. Precision values for (i) perfectly fitting logs, and (ii) unfitting logs where 4
events are removed from each trace in the logs.

Model P Model PF Model FP Model PP
1.00 R—E—E—E—F 1.00 - 040 1.00 B
g 0.95 g 0.80 1 S 030 BmEWEE o098 —o—€tcp
- ‘@ 0.60 = 2
2 0.90 - 8 B 020 | 2 T 1
] 9 0.40 3 g 095 = ay
a 08 | &, & 010 093 ap
080 ———— 0.00 0.00 +—+———1— 0.90 ——T—
012 3 4 01234 01234 012 3 4
#Removed events #Removed events #Removed events #Removed events

Fig. 5. Robustness of Precision to Unfitting Logs

1

»» and etcp are the

unambiguously to tasks in the models, values of both a,, a
same as there is only one optimal alignment per trace.

The second set of experiments were conducted to evaluate the robustness
of the proposed metric against non-fitting logs. We took the models and log
from the previous experiment and create unfitting logs by removing n number
of events randomly per trace from the fitting log. To ensure that the created
logs are unfitting, only events that belong to the precise part (i.e. mapped to P
part) are removed. Figure 4(ii) and Figure 5 show the results.

As it is shown in Figure 4(ii) and Figure 5, our metrics are more robust
to noise than etcp. Even in cases where almost half of the events in all traces
are removed, both metrics provide the same value as the ones given for perfectly
fitting traces. In contrast, the etcp value may change significantly because for all
non-fitting traces, it ignores the rest of the traces after the first non-fitting event
occur. In the experiment with model PF, etcp value changes significantly even
when only one event is removed per trace as the remaining events that belong to
the imprecise model are ignored. In the experiment with model FP, etcp values
gets closer to the precision value of the F model as the number of removed
events increases, because non fitting events always occur in the precise part of
the model (i.e. P). Figure 5 also shows that all, values are good approximation
to a, values because the aggregation of all selected optimal alignments for each
trace in the logs cover all traces allowed by the P part of all four models.

5.2 Real-life Logs and Models

To evaluate the applicability of the approach to handle real life logs, we use 5
pairs of process models and logs from the CoSeLoG project [3,11]. The models

Alignment Based Precision Checking 11

and logs were obtained from participating municipalities in the Netherlands.
We consider processes related to five types of building permission applications.
All processes have unlogged tasks, and two of the models allow loops. We have
compared the proposed precision measurements with related metrics such as the
etcp metric [7] and the advanced behavioral appropriateness a; [9]. The results
are shown in Table 1.

An important conclusion that can be drawn from Table 1 is that the com-
putation time of a, takes much longer than azl,. From all evaluated precision
metrics, a}, managed to provide precision values for all logs and models under
12 seconds, while a, calculation takes much longer. Similarity between states
optimation technique to find one optimal alignment is not applicable to find
all alignments. However, this is not a problem because all) provides a close es-
timation to a,. Table 1 also shows that in reality, the observed traces are not
perfectly fitting the corresponding models (see #not synchronous moves/case)
and hence justifies the need of having precision measurements that are robust
to non-fitting logs. Other than azl), etcp metric is the only precision metric that
could be computed in a timely manner in our set of experiments. However, as
shown in subsection 5.1, it is very sensitive to non-fitting traces.

6 Conclusion

In literature, conformance checking has been mainly focusing on fitness, i.e.,
quantifying the proportion of the event log that is possible according to a given
model. However, it is also important to analyze precision. A process model that
allows for behavior unrelated to the example behavior seen in the log is too
general. Existing approaches for quantifying precision are time consuming and
have problems dealing with non-fitting traces. This results in unreliable precision
measurements as shown in this paper. Therefore, we developed an approach that
first aligns event log and model. The pre-alignment of log and model makes it
possible to measure precision more accurately. In this work we presented two
metrics (azl, and a,) to measure the precision, considering just one or all possible
optimal alignments respectively. The results show experimentally the usefulness
and the robustness of the approach proposed. Since the metrics only measure
the precision dimension, they should be used together with other metrics that

Table 1. Precision values from experiments on real-life logs and models

. | Process model |#Not sync.|| ; [time time /

Log - |#Cases)#Events Fplace|#trans.|moves/case| 7 |(sec)|| “? | (sec) etep | ap
MLogl| 3181 | 20491 15 12 5.33 0.92/11.31.00|321.1{] 0.97 |0.82
MLog2| 1861 | 15708 16 19 1.45 0.93| 3.7 {|0.93| 53.5 || 0.97 |0.92
MLog4| 4852 | 29737 16 27 2.09 0.96| 4.1 {|0.99| 15.7 || 0.86 |0.75
Bouw-1| 139 3364 33 34 9.46 0.82] 0.7 ||n/a| n/a || 0.85(0.95
Bouw-4| 109 2331 31 31 6.18 0.44| 2.4 ||n/a| n/a || 0.34 |n/a

*n/a : not found in 6 hours.

12 Adriansyah, Munoz-Gama, Carmona, van Dongen and van der Aalst

measure other dimension of conformance to provide a comprehensive evaluation
on how “good” is a model, given its executions [9].

Acknowledgments

This work is supported by NWO (proj. 612.063.919), the projects TIN2011-22484
and TIN2007-66523, and by the Spanish Ministerio de Educacién (AP2009-
4959).

References

1. A. Adriansyah, N. Sidorova, and B.F. van Dongen. Cost-Based Fitness in Con-
formance Checking. International Conference on Application of Concurrency to
System Design, pages 57—66, 2011.

2. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance Check-
ing Using Cost-Based Fitness Analysis. IEEFE International Enterprise Distributed
Object Computing Conference, pages 55-64, 2011.

3. J.C.AM. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Towards cross-
organizational process mining in collections of process models and their execu-
tions. In Business Process Management Workshops, volume 100 of Lecture Notes
in Business Information Processing. Springer Berlin Heidelberg, 2012.

4. T. Calders, C.W. Giinther, M. Pechenizkiy, and A. Rozinat. Using Minimum
Description Length for Process Mining. In Proceedings of the 2009 ACM symposium
on Applied Computing, SAC ’09, pages 1451-1455, New York, USA, 2009. ACM.

5. K. Gerke, J. Cardoso, and A. Claus. Measuring the Compliance of Processes with
Reference Models. In Proceedings of the Confederated International Conferences,
CooplS, DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet
Systems: Part I, OTM 09, pages 76-93, Berlin, Heidelberg, 2009. Springer-Verlag.

6. J. Munoz-Gama and J. Carmona. A Fresh Look at Precision in Process Confor-
mances. In Proceedings of the 8th International Conference on Business Process
Management, BPM’10, pages 211-226, Berlin, Heidelberg, 2010. Springer-Verlag.

7. J. Munoz-Gama and J. Carmona. Enhancing precision in process conformance:
Stability, confidence and severity. In IEEE Symposium on Computational Intelli-
gence and Data Mining, CIDM 2011, pages 184-191. IEEE, April 2011.

8. A. Rozinat, I.S.M. de Jong, C.W. Glinther, and W.M.P. van der Aalst. Process
Mining Applied to the Test Process of Wafer Steppers in ASML. IEEE Trans-
actions on Systems, Man and Cybernetics - Part C: Applications and Reviews,
39:474-479, 2009.

9. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64-95, March 2008.

10. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern
Business Process Automation. Springer-Verlag, 2010.

11. W.M.P. van der Aalst. Business Process Configuration in The Cloud: How to
Support and Analyze Multi-Tenant Processes? In G. Zavattaro, U. Schreier, and
C. Pautasso, editors, Proceedings of the 9th IEEE European Conference on Web
Services (ECOWS 2011), pages 3-10. IEEE Computer Society Press, 2011.

12. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, Berlin, 2011.

13. W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182-192,
2012.

14. M. Weidlich, A. Polyvyanyy, N. Desai, and J. Mendling. Process Compliance Mea-
surement based on Behavioural Profiles. In Proceedings of the 22nd international
conference on Advanced information systems engineering, CAiSE’10, pages 499—
514, Berlin, Heidelberg, 2010. Springer-Verlag.

