
Woflan: A Petri-net-based Workflow Analyzer

W.M.P. van der Aalst
Department of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven,
The Netherlands, telephone: -31 40 2474295,
e-mail: wsinwa@win.tue.nl

Abstract

Workflow management promises a new solution to an age-old problem: controlling,
monitoring, optimizing and supporting business processes. What is new about workflow
management is the explicit representation of the business process logic which allows for
computerized support. Unfortunately, today’s systems give hardly any support to verify the
correctness of workflow processes. This paper discusses a verification tool Woflan. Woflan
uses state-of-the-art results from Petri net theory, and interfaces with some of the leading
workflow tools at the Dutch market. This paper describes the architecture of Woflan and
illustrates its functionality by means of some small examples.

1. Introduction

This paper describes Woflan, a tool which analyzes workflow process definitions specified in
terms of Petri nets. Woflan (WOrkFLow ANalyzer) has been designed to verify process
definitions which are downloaded from a workflow management system (cf. [7,14]). Clearly,
there is a need for such a verification tool, because today’s workflow management systems
do not support advanced techniques to verify the correctness of workflow process definitions.
These systems typically restrict themselves to a number of (trivial) syntactical checks.
Therefore, serious errors such as deadlocks and livelocks may remain undetected. This means
that an erroneous workflow may go into production, thus causing dramatic problems for the
organization. An erroneous workflow may lead to extra work, legal problems, angry
customers, managerial problems, and depressed employees. Therefore, it is important to
verify the correctness of a workflow process definition before it becomes operational.

start register

send_form

evaluate

process_complaint

check_proc

process_form

time-out
archive

ready

c1

c2

c3

c4

c5

c6

c7
c8

• Figure 1: An erroneous workflow process definition.

Consider for example the workflow process definition shown in Figure 1. The process
handles complaints which enter the system via the place start and leave via the place ready.
First the complaint is registered by executing the task register, then in parallel a
questionnaire is sent to the complainant (task send_form) and the complaint is evaluated (task
evaluate). If the complainant returns the questionnaire within two weeks, the task
process_form is executed. If the questionnaire is not returned within two weeks, the result of
the questionnaire is discarded (task time_out). Based on the result of the evaluation, the
complaint is processed or not. The actual processing of the complaint (task
process_complaint) is delayed until the form has been processed. The processing of the
complaint is checked via task check_proc. Finally, task archive is executed. In Figure 1, the
workflow process definition is specified in terms of a Petri net. The tasks register,
send_form, evaluate, process_form, time_out, process_complaint, check_proc and archive
have been modeled by transitions. To model the states between tasks, conditions have been
added. Each condition is modeled by a place. For example, place c2 corresponds to the
condition `ready to evaluate complaint'. Condition c5 is true (i.e. place c5 contains a token) if
the questionnaire has been processed or a time-out has occurred. Transition register is a so-
called AND-split, i.e., a token is produced for each of its output places. The transitions
evaluate and check_proc are OR-splits, i.e., precisely one of the output places obtains a
token.

A close observation of the workflow process definition shown in Figure 1 reveals several
design errors. If the complaint needs to be processed and the complainant does not return the
form in time, the complaint will deadlock with a token in c4 and c5. A similar deadlock
occurs if the complaint needs to be processed for a second time. Moreover, if the complaint
does not need to be processed, place c8 may contain a dangling reference after archiving the
complaint. Although the workflow process definition shown in Figure 1 may have dramatic
consequences, it can be designed and made operational using almost all of the workflow
management systems available today. These systems will not warn for the potential deadlock.
We have developed Woflan to assist the workflow designer to detect and repair errors such as
the one shown in Figure 1.

This paper is organized as follows. First, we discuss the role of a workflow verification tool
in the context of the standard architecture for workflow management systems. Then we
discuss the architecture and functionality of Woflan in more detail. We also give pointers to
two workflow tools which can interface with Woflan: COSA (COSA Solutions/Software-
Ley, Pullheim, Germany, [19]) and Protos (Pallas Athena, Plasmolen, The Netherlands, [18]).

2. The need for a workflow verification tool

In the last five years, workflow management systems [15, 20] have become a popular tool to
support the logistics of business processes in banks, insurance companies, and governmental
institutions. Until recently there were no generic tools to support workflow management. As
a result, parts of the business process were hard-coded in the applications. For example, an
application to support task X triggers another application to support task Y. This means that
one application knows about the existence of another application. This is undesirable,
because every time the underlying business process is changed, applications need to be
modified. Moreover, similar constructs need to be implemented in several applications and it
is not possible to monitor and control the entire workflow. Therefore, several software
vendors recognized the need for workflow management systems. A workflow management
system (WFMS) is a generic software tool which allows for the definition, execution,
registration and control of workflows. At the moment, many vendors are offering a workflow
management system. This shows that the software industry recognizes the potential of
workflow management tools.

In this paper we restrict ourselves to workflow management systems which support the
processing of large amounts of cases according to predefined process definitions expressed in
some formal language. The Workflow Management Coalition (WfMC) also focuses on this
type of software tools (cf. [15,20]). Many vendors and users of these workflow management
systems have joined the WfMC to identify the common characteristics of these tools, to
standardize terminology and define standard architectures and interfaces. One of the first
results achieved by the WfMC was the definition of a reference model. Figure 2 gives an
overview of this reference model. The reference model describes the major components and
interfaces within a workflow architecture. The core of any workflow system is the workflow
enactment service. The workflow enactment service provides the run-time environment
which takes care of the control and execution of the workflow. For technical (scalability)
and/or managerial reasons the workflow enactment service may use multiple workflow
engines. Each workflow engine handles selected parts of the workflow and manages selected
parts of the resources. The process definition tools are used to specify and analyze workflow
process definitions and/or resource classifications. These tools are used at design time. In
most cases, the process definition tools can also be used as a BPR-toolset. Most workflow
management systems provide three process definition tools: (1) a graphical interface to define
workflow processes, (2) an interface to specify resource classes (organizational model) and
(3) a simulation tool to analyze a specified workflow. The end-user communicates with the
workflow system via the workflow client applications. An example of a workflow client
application is the well-known in-basket. Via such an in-basket work items are offered to the
end user. By selecting a work item, the user can execute a task for a specific case. If
necessary, the workflow engine invokes applications via interface 3. The administration and
monitoring tools are used to monitor and control the workflow. These tools are used to
register the progress of cases and to detect bottlenecks. Moreover, these tools are used to set
parameters, allocate people and handle abnormalities. Via interface 4 the workflow system
can be connected to other workflow systems. The architecture shown in Figure 2 has been
adopted by most vendors. Unfortunately, only interface 2 has been standardized.

By using a workflow management system, it becomes easy to modify an existing workflow or
to design a new one. This way, the system allows for the realization of flexible information

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4Interface 5
Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s)

Workflow
Engine(s)

Invoked
Applications

• Figure 2: The reference architecture of the WfMC ( WfMC).

systems. However, there is a potential problem: the (re)designed workflow may contain
dramatic errors. These errors may result in deadlocks, lost cases, livelocks, and dangling
references. Therefore, it is important to verify the correctness of the workflow process
definition before it becomes operational. Today’s workflow management systems support
some checks. Most of these checks are at a syntactical level and can only be used to detect
trivial mistakes. Today’s workflow management are weak with respect to the verification of
workflow process definitions, because they often use an ad-hoc process modeling technique
(i.e. they have to invent their own verification techniques), the verification techniques are
difficult to implement, and the results are often difficult to interpret. To aid the user in
verifying a workflow process definition, we have developed Woflan. Woflan detects
potential errors such as deadlocks, lost cases, livelocks, and dangling references at design
time. In the architecture of the WfMC, Woflan is part of the process definition tools. Ideally,
Woflan should be able to use interface 1. Unfortunately, interface 1 has not been
standardized yet and the proposed standard for this interface is at a technical level with the
emphasis on syntax instead of semantics. There is no consensus at a conceptual level. In the
proposed standard, the syntax of the exchange format has been defined without formalizing
the meaning of states and essential building blocks such as the AND/OR-split/join.
Therefore, we have two choose between two approaches: (1) to integrate Woflan in a specific
workflow management system, or (2) to use a conceptual standard which clearly specifies the
semantics of the basic constructs needed. We have chosen for a mixture of these two
approaches. Woflan is based on a conceptual standard but can interface with a limited
number of workflow tools. The conceptual standard uses Petri nets (cf. [17]) as a starting
point. Petri nets are a well-founded process modeling technique and allow for a graphical
representation which is close to the representation in many workflow management systems
(cf. [1,3,11,12,16,21]). Moreover, many analysis techniques have been developed for Petri
nets (cf. [5,10,17]). These techniques have been put to work in Woflan.

3. Architecture of Woflan

As indicated in the introduction, Woflan (WOrkFLow ANalyzer) is a Petri-net-based tool to
analyze the correctness of a workflow. Woflan has been developed by members of the SMIS
group within the Department of Mathematics and Computing Science of Eindhoven
University of Technology. The tool is workflow management system independent, i.e., a
number of import functions to download workflow-scripts in Woflan (e.g. from COSA and
Protos) are provided. Woflan uses standard Petri-net-based analysis techniques. However, the
analysis results are presented in such a manner that end-users can understand the output of
Woflan. Moreover, Woflan guides the end-user in correcting an erroneous workflow.

Woflan consists of three main parts:
• parser

Woflan can analyze workflow process definitions specified in terms of a Petri net. The
Petri net is assumed to have a special structure: there is one input place denoting the entry
point of the workflow and one output place denoting the exit point of the workflow.
Moreover, every node in the Petri net should be on a path from the input place to the
output place. The parser reads the Petri net from an input file and builds up a data
structure for each workflow process definition that needs to be analyzed. If the Petri net
does not satisfy the requirements just mentioned, Woflan will warn the user.

• analysis routines
The data structure created by the parser is used as a starting point for all kinds of analysis.
On command, Woflan will provide the user with information about the structure of the
workflow process definition. For example, Woflan will warn for tasks without any input
or output condition, and detect potential errors by listing suspicious constructs, e.g.,
constructs violating the free-choice property, AND-split's complemented by OR-join's,

OR-split's complemented by AND-join's (well-structuredness), and parts of the net which
are not S-coverable. Woflan will also detect dynamic errors by listing unbounded places,
non-safe places, dead transitions and non-live transitions. For more advanced users,
Woflan can generate place and transition invariants. The absence or presence of certain
invariants may indicate the source of an error. Finally, Woflan will verify the soundness
property ([5]). Soundness is one of the key concepts Woflan is based on. Therefore, we
will elaborate on the soundness property in the next section.

• user interface
To present the analysis results to the user, Woflan is equipped with a graphical user
interface. The user interface has been built by using XVT. XVT is a software package to
build user interfaces which are portable. In Woflan, multiple workflow process definitions
can be analyzed at the same time. Each workflow process definition corresponds to a
separate window in the user interface. By pushing buttons the user can focus on certain
aspects of the process definition.

Figure 3 shows the architecture of Woflan.

parser

user
interface analysis routines

workflow
data

analysis
data

convertors

COSA
(COSA Solutions)

ExSpect
(Bakkenist)

Protos
(Pallas Athena)

workflow management
system simulation package BPR-tool

user

workflow
process

definition

Woflan

• Figure 3: The architecture of Wolfan and the workflow tools it can interface with.

In addition to the parser, the analysis routines and the user interface, there will be a module
for each WFMS which can interface with Woflan. At the moment there is one such module
which can convert COSA script files into the format used by Woflan. COSA (COSA
Solutions) is one of the leading products at the Dutch workflow market. COSA allows for the
modeling and enactment of complex workflow processes which use advanced routing
constructs. However, COSA does not support verification. Fortunately, Woflan can analyze
any workflow process definition constructed by using CONE (COSA Network Editor), the
design tool of the COSA system. Woflan can also import process definitions made with
Protos. Protos (Pallas Athena) is a so-called BPR-tool. Protos supports Business Process
Reengineering (BPR) efforts and can be used to model and analyze business processes. The
tool is very easy to use and is based on Petri nets. To facilitate the modeling of simple
workflows by users not familiar with Petri nets, it is possible to abstract from states.
However, Protos cannot detect subtle design flaws which may result in deadlocks or
livelocks. Therefore, it is useful to download workflows specified with Protos and analyze

them with Woflan. It is also possible to import process models made with ExSpect. ExSpect
is a general purpose simulation tool based on high-level Petri nets. Moreover, workflow
process definitions made with Protos or COSA can be simulated with ExSpect. Figure 3, also
shows the relation between Woflan, COSA, Protos and ExSpect.

The current version of Woflan runs under Solaris (PC and UNIX workstations), Windows
3.11 and Windows 95 (PC). The system requirements are limited. The minimal configuration
under Windows 95 is a Pentium PC with 8MB memory and 4MB free disk space).

4. Analysis techniques supported by Woflan

Two of the key concepts Woflan is based on, are the definition of a workflow net and the
soundness property. For a formal definition of these two key concepts the reader is referred
to [5]. The purpose of this paper is to illustrate the functionality of Woflan, not to review
state-of-the-art results in Petri-net theory.

A Petri net which models a workflow process definition (i.e. the life-cycle of one case in
isolation) is called a workflow net (WF-net). A workflow net satisfies two requirements. First
of all, a workflow net has one input place (i) and one output place (o). A token in i
corresponds to a case which needs to be handled, a token in o corresponds to a case which
has been handled. Secondly, in a workflow net there are no dangling tasks and/or conditions.
Every task (transition) and condition (place) should contribute to the processing of cases.
Therefore, every transition (place) should be located on a path from place i to place o. The
latter requirement corresponds to strongly connectedness if o is connected to i via an
additional transition t*. The Petri net shown in Figure 1 is a workflow net: start is the input
place and ready is the output place. Note that the definition of a workflow net is a syntactical
definition, the requirements can verified statically because they only relate to the structure of
the Petri net.

The soundness property relates to the dynamics of the workflow process definition. A
workflow net is sound if the following requirements are satisfied:
• For any case, it is possible to terminate, i.e., it is possible to reach a state with at least one

token in the output place o.
• The moment the case terminates (i.e. a token appears in o), there are no tokens left behind

in the workflow net. This means that there will be no dangling references.
• There are no dead tasks, i.e., starting with a token in the input place i, it should be

possible to execute an arbitrary task by following the appropriate route through the WF-
net.

Soundness is the minimal property any workflow process definition should satisfy. Note that
soundness implies the absence of livelocks and deadlocks. Consider for example Figure 1.
Clearly, the workflow net is not sound. Figure 4 shows a modified version of the workflow
process definition shown in Figure 1. This modified workflow net is sound.

For a given workflow net, Woflan is able to decide whether it is sound. For this purpose
Woflan uses an interesting relation between soundness on the one hand and liveness and
boundedness on the other hand. A workflow net is sound, if and only if, the net obtained by
connecting o and i via an additional transition t* is live and bounded (see [5]). Although
soundness can be decided in polynomial time for certain subclasses (e.g. by using the Rank
theorem for free choice nets), Woflan constructs the reachability graph to verify whether the
workflow net is live and bounded. For normal workflow process definitions, the size of the
reachability graph is not a restricting issue. Woflan can cope with workflow process
definitions with more than 200.000 states.

If a workflow process definition is sound, there is often no real reason to analyze it in more
detail. Nevertheless, Woflan warns for constructs which look suspicious. Consider for
example the workflow net shown in Figure 4. Woflan will give two warnings:
• The non-free-choice construct which involves place c5 is reported. Woflan warns for non-

free-choice constructs because they cannot be handled by many workflow management
systems and they often correspond to a mixture of choice and synchronization.

• Woflan also warns for the fact that the AND-split register is complemented by the OR-
join c5, i.e., there are two disjoint paths leading from the transition register to the place
c5. Such a construct may result in two parallel flows which are not synchronized properly.

Despite these warnings the workflow net shown in Figure 4 is sound. However, Woflan
warns for the use of the advanced construct involving process_complaint and c5.

If the workflow process definition is not sound, Woflan guides the user in finding and
correcting the error. Consider for example the definition shown in Figure 1. For this
workflow net, Woflan gives the following diagnostics:
• Woflan points out the fact that place c8 is not bounded in the net extended with the

transition t* which connects the output place ready with the input place start. This means
that it is possible to terminate and leave a token in c8 (i.e. a dangling reference).

• The OR-split c3 is complemented by the AND-join archive, i.e., there are two disjoint
paths (one via c8) leading from the place c3 to the transition archive. Such a construct
may lead to a potential deadlock. In this case it does!

• Woflan reports that the workflow net is not covered by state machines (S-components),
i.e., the net is not S-coverable. In fact, Woflan indicates that c8 is the only place not in any
S-component.

• The fact that something is wrong with c8 is also highlighted by the fact that place c8 is not
in the support of any of the semi-positive place invariants generated by Woflan.

start register

send_form

evaluate

process_complaint

check_proc

process_form

time-out
archive

ready

c1

c2

c3

c4

c5

c6

c7

• Figure 4: A sound workflow process definition.

The above diagnostics clearly show that the optional synchronization of the two parallel
flows via place c8 is the source of the error. Removing c8 or replacing c8 by the construct
shown in Figure 4 solves this problem and results in a sound workflow process definition.
For a small workflow with only 8 tasks these results may seem trivial. However, workflows
encountered in practice may have up to a 100 tasks. Experience shows that for workflows
with more than 20 tasks it is not easy to locate the source of the error if the workflow net is
not sound. Therefore, the support offered by Woflan is of the utmost importance for the
verification of workflow process definitions.

To assist the user in repairing the error, Woflan offers an on-line help facility. The on-line
help is based on a step-wise approach to locate and remove constructs which violate the
soundness property. This enables users without a background in Petri nets to operate the tool
and repair an erroneous workflow process definition.

For more information on the analysis techniques supported by Woflan, the reader is referred
to [4] and [5]. For more information on the technical aspects of the tool Woflan, see [7] and
[14].

5. Conclusion

In this paper we presented a tool based on Petri nets: Woflan. Woflan is an analysis tool
which can be used to verify the correctness of a workflow procedure. The analysis tool uses
state-of-the-art techniques to find potential errors in the definition of a workflow procedure
and gives workflow designers a handle to construct correct workflows. Woflan is both from a
theoretical and a practical point of view an interesting tool. On the one hand, Woflan uses
advanced analysis techniques. On the other hand, it interfaces with some of leading workflow
tools on the Dutch market (COSA/Protos). Woflan clearly shows that the workflow market is
a challenging application domain for Petri-net-based technology.

Acknowledgements

The author would like to thank all the people involved in the development of Woflan, in
particular Eric Verbeek and Dirk Hauschildt.

References

1. W.M.P. van der Aalst. Petri-net-based Workflow Management Software. In A. Sheth,

editor, Proceedings of the NFS Workshop on Workflow and Process Automation in
Information Systems, pages 114-118, Athens, Georgia, May 1996.

2. W.M.P. van der Aalst. Structural Characterizations of Sound Workflow Nets. Computing
Science Reports 96/23, Eindhoven University of Technology, Eindhoven, 1996.

3. W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based Workflow
Management System. In S. Navathe and T. Wakayama, editors, Proceedings of the
International Working Conference on Information and Process Integration in Enterprises
(IPIC'96), pages 179-201, Camebridge, Massachusetts, Nov 1996.

4. W.M.P. van der Aalst. Exploring the Process Dimension of Workflow Management.
Computing Science Reports 97/13, Eindhoven University of Technology, Eindhoven,
1997.

5. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407-426. Springer-Verlag, Berlin, 1997.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Modellen, Methoden
en Systemen (in Dutch). Academic Service, Schoonhoven, 1997.

7. W.M.P. van der Aalst, H.M.W. Verbeek and D. Hauschildt. A Petri-net-based Tool to
Analyze Workflows. In B. Farwer, D.Moldt, and M.O. Stehr, Petri Nets in System
Engineering (PNSE’97), pages 78-89, FBI-HH-B-205/97, University of Hamburg, Sept.
1997.

8. Bakkenist Management Consultants. ExSpect 5.0 User Manual, 1996.
9. K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended Non Self-

Controlling Nets. In G. De Michelis and M. Diaz, editors, Application and Theory of
Petri Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 25-44.
Springer-Verlag, Berlin, 1995.

10. J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge, 1995.

11. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In N.
Comstock and C. Ellis, editors, Conf. on Organizational Computing Systems, pages 10 -
21. ACM SIGOIS, ACM, Aug 1995. Milpitas, CA.

12. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes
in Computer Science, pages 1-16. Springer-Verlag, Berlin, 1993.

13. J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages
210-242. Springer-Verlag, Berlin, 1990.

14. D. Hauschildt, H.M.W. Verbeek, and W.M.P. van der Aalst. WOFLAN: a Petri-net-based
Workflow Analyzer. Computing Science Reports 97/12, Eindhoven University of
Technology, Eindhoven, 1997.

15. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

16. G. De Michelis, C. Ellis, and G. Memmi, editors. Proceedings of the second Workshop
on Computer-Supported Cooperative Work, Petri nets and related formalisms, Zaragoza,
Spain, June 1994.

17. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541-580, April 1989.

18. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Netherlands,
1997.

19. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1996.
20. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-

1011). Technical report, Workflow Management Coalition, Brussels, 1996.
21. M. Wolf and U. Reimer, editors. Proceedings of the International Conference on

Practical Aspects of Knowledge Management (PAKM'96), Workshop on Adaptive
Workflow, Basel, Switzerland, Oct. 1996.

	Woflan: A Petri-net-based Workflow Analyzer
	Introduction
	The need for a workflow verification tool
	Architecture of Woflan
	Analysis techniques supported by Woflan
	Conclusion

