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Abstract. We investigate whether a running implementation of a ser-
vice conforms to its formal specification in a setting, where only recorded
behavior of that implementation is given. Existing conformance check-
ing techniques can be used to measure the degree of conformance of the
recorded behavior and its public view but may produce “false negatives”,
because a correct implementation (i.e., private view) may deviate signif-
icantly from its specification. The private view may, for example, reorder
some activities without introducing any problems, yet traditional confor-
mance checking would penalize such changes unjustifiably. To overcome
this problem, we present a novel approach that determines a best match-
ing private view. We show that among the infinitely many private views,
there is a canonical best matching private view. While the represented
theory is general and can be applied to arbitrary service models, the
implementation is currently limited to acyclic service models.

1 Introduction

Service-oriented computing (SOC) [17] aims at building complex systems by ag-
gregating less complex, independently-developed building blocks called services.
A service encapsulates a business functionality and has an interface to interact
with its environment—that is, other services—via asynchronous message passing.
Aggregating services results again in a service. This modular design of complex
systems requires a notion of service conformance to safely replace one service
(the specification) by another one (the implementation).

Service conformance has been extensively studied in literature (e.g., [6,19]),
but most approaches can hardly be used in practice, because they assume that
the implementation and the specification of a service are given as formal models
which do not change over time. However, it is often not realistic to assume that
there exists an up-to-date formal model of the implementation. Even if there ex-
ists a formal model of the implementation, it can differ significantly from the
actual implementation: The formal model may have been implemented incor-
rectly, or the implementation may have been changed over time. Nevertheless,
most implementations provide some kind of recorded behavior, also referred to as
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Fig. 1: Illustration of our conformance checking approach

event log, transaction log, or audit trail [3]. Therefore, in this paper, we assume
the implementation to be unknown. We only rely on a formal model of the speci-
fication and an event log of the unknown implementation. To this end, we answer
the question whether there exists a conforming implementation which may have
produced the event log. Hence, our approach yields a necessary condition for
conformance of the unknown implementation with the given specification.

In this paper, we focus on conformance checking based on historic data (“of-
fline” conformance checking). However, the approach can be applied on-the-fly
(“online” conformance checking or monitoring); that is, streaming event data
can be monitored at runtime and conformance can be checked immediately.

We investigate conformance checking in the setting of a contract among ser-
vices. A contract is a (formal) specification of a complex service that involves
several cooperating enterprises [1,6]. Later on, each involved party implements
its share of the contract. A party’s share of the contract—that is, the public
view—and the implementation thereof may differ significantly but the overall
implementation has to conform to the contract. Correctness of a contract (i.e.,
in our setting, the possibility to always terminate) has been formalized by the
accordance relation [19]: If every implementation accords with its public view,
then the correctness of the contract is preserved and the overall implementation
is correct. A party’s implementation that accords with the party’s public view is
a private view. Accordance thereby guarantees that any environment that coop-
erates with a party’s public view can cooperate with its respective private view.
Instead of checking accordance of the public view and the implementation, we
check whether the event log of the implementation conforms to the public view.
Figure 1 illustrates a contract involving four parties and its implementation. We
use recorded behavior in form of an event log of a running private view to check
conformance with its public view.

The main contribution of this paper is an approach to check conformance
of service in the setting of a contract when the public view of a party’s share
is a given as a formal model and only observed behavior of its running imple-



mentation is known. We show that it is not sufficient to check conformance of
the observed behavior with its public view: Accordance allows parties to reorder
some activities of their share, but traditional conformance checking would pe-
nalize such changes unjustifiably. Therefore, we need to check conformance of
the observed behavior with all possible private views instead. However, as there
are infinitely many private views in general, this approach is not tractable. We
overcome this by proving the existence of a best matching private view. If a best
matching private view does not conform to L, then no private view does. We
present an approach to construct a canonical best matching private view from
a given public view using existing work on maximal and most-permissive con-
trollers. Moreover, we show how to use a best matching private view not only
to check, but to measure conformance of an event log with an unknown private
view by using existing trace alignment-based techniques from the field of process
mining. We have implemented the construction of the canonical best matching
private view, yet restricted to acyclic service models, and use the implementation
to provide first experimental results.

The remainder is organized as follows. To clarify our setting and our problem
statement, we continue with a motivating example in Sect. 2. In Sect. 3, we
provide background information on a formal model for services, contracts, and
conformance checking. In Sect 4, we show our main result, the existence of a best
matching private view. Experimental results on how to compute a canonical best
matching private view in Sect. 5 validate our approach. In Sect. 6, we review
related work and close with a conclusion.

2 Motivating Example

As a motivating example, consider the public view in Fig. 2a, which is modeled as
an open net [21,10]—that is, a Petri net extended with interface places positioned
on a dashed frame around the net. The open net Public either sends message
b and then receives d or sends message a and then receives c or d. A token on
place p3 models successful termination, also indicated by the thicker bound of
place p3.

We illustrate the idea of service conformance checking based on observed
behavior using open net Public and the event log L in Fig. 2c. The event log
L thereby represents the recorded behavior of the unknown implementation of
Public. L contains information of 120 traces, partitioned into three cases. A trace
is a sequence of messages sent or received by the implementation. We assume
that each event x in a trace of a log corresponds to the sending or receiving of
x of the environment of Public. We can model this environment of an open net
by adding to each x-labeled input place an x-labeled transition that produces
tokens on this place and for each x-labeled output place an x-labeled transition
that consumes tokens from this place. All other transitions of this environment
are internal and, therefore, labeled by τ . Figure 2b illustrates this construction
for the public view Public; for convenience, we omit all τ labels of transitions.
We present a formal definition in Sect. 3.3.
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Fig. 2: The public view Public and its asynchronous environment enva(Public).
The event log L represents recorded behavior of the implementation of Public.

To check whether L conforms to the (environment of the) public view Public,
we need to replay the traces of L on the model in Fig. 2b. More precisely, we
align [2] each trace in L to a trace (i.e., a firing sequence) of the model in Fig. 2b.
Some example alignments for L and the environment of Public are:

γ1 =
� a d �
τ a d τ
t1 t

a td t3

γ2 =
� b �� c
τ b d τ �
t0 t

b td t2

γ3 =
c d � a �
c � τ a τ
tc t1 t

a t4

The top row of each alignment corresponds to “moves in the log” and the
bottom two rows correspond to “moves in the model”. There are two bottom
rows because multiple transitions may have the same label; the upper bottom
row consists of transition labels, and the lower bottom row consists of transitions.
If a move in the log cannot be mimicked by a move in the model, then a “�”
(“no move”) appears in the upper bottom row. For example, in γ2 the model
in Fig. 2b cannot do the last c-move, because c is not connected to the locally
enabled transition t2. If a move in the model cannot be mimicked by a move in
the log, then a “�” (“no move”) appears in the top row. For example, all “silent
moves” (occurrences of τ -labeled transitions) in the model in Fig. 2b cannot be
mimicked by L. Moreover, L did not do a d-move in γ2 whereas the model in
Fig. 2b has to make this move to reach the end. By using this notation, we
distinguish between a possible but silent move (depicted by τ) and no move at
all (depicted by �).

Informally, conformance checking of an event log L and a public view N
measure “how good” each case in L can be replayed in the environment of N .
Thereby, the smaller the number of mismatches in an alignment of a case is, the
better this case can be replayed. A mismatch is a move in the log which cannot
be mimicked by the model, or a non-silent move in the model which cannot be
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Fig. 3: A private view Private and its asynchronous environment enva(Private).

mimicked by the log. Clearly, the more traces we can replay on the model the
better the implementation conforms to the public view.

However, even an implementation that accords with its public view may allow
for traces that cannot be replayed on the public view, because the accordance
relation allows parties to reorder activities of their share, for instance. As an
illustration, consider the possible implementation Private in Fig. 3a. It is de-
rived from the public view Public by parallelizing the sending and receiving of
messages. In contrast to the public view, the implementation can, therefore, re-
ceive c after having sent b. In this paper, we define correctness of a contract as
a finite state-space and the possibility to always terminate. For this definition
of correctness, the open net Private accords with open net Public; that is, the
implementation Private is a private view of the public view Public. Intuitively,
every cooperating environment of Public knows by receiving either a or b whether
Public is in the left or the right branch. Therefore, no cooperating environment
of Public will send c after having received b, as otherwise the cooperation may
get stuck. Public may operate in such an environment. In fact, it even allows for
environments that send c after having received b.

We can replay the event log L on the model of the environment of this open
net, which is depicted in Fig. 3b. Some resulting alignments are:

γ4 =
�� a d ��
τ τ a d τ τ
t0 t1 t

a td t3 t5

γ5 =
�� b c ��
τ τ b c τ τ
t0 t2 t

b tc t4 t5

γ6 =
c d �� a ��
� d τ τ a τ τ
td t0 t1 t

a t3 t5

Clearly, we can replay more traces on Private than on Public; that is, the con-
formance check with the private view gives a better result than the conformance
check with the public view. The example clearly shows that, in general, it is not
sufficient to check conformance of an event log and the model of the public view.
Checking conformance on the public view may generate “false negatives”—that



is, acceptable behavior may be diagnosed as non-conforming. As there may exist
a private view such that the conformance check with that model gives a better
result, we need to check conformance of a log with all private views. The chal-
lenge thereby is that there exist infinitely many private views. In this paper, we
investigate this challenge and present an approach to determine a best matching
private view for a given public view.

3 Background

In this section, we provide the basic notions of Petri nets and open nets for mod-
eling services and formalize private view conformance. Suitability of open nets
as service model has been demonstrated by feature-complete open net semantics
for languages such as BPMN and WS-BPEL [12], and the application of open
nets in existing conformance checking techniques [18].

3.1 Petri Nets

As a basic model, we use place/transition Petri nets extended with a set of final
markings and transition labels.

Definition 1 (Net). A net N = (P, T, F,mN , Ω) consists of a finite set P of
places, a finite set T of transitions such that P and T are disjoint, a flow relation
F ⊆ (P × T ) ∪ (T × P ), an initial marking mN , where a marking m ∈ B(P ) is
a multiset over P , and a set Ω of final markings.

A labeled net is a net N together with an alphabet A of actions and a labeling
function l ∈ T → A∪ {τ}, where τ /∈ A represents an invisible, internal action.

Graphically, a circle represents a place, a box represents a transition, and
the directed arcs between places and transitions represent the flow relation. A
marking is a distribution of tokens over the places. Graphically, a black dot
represents a token. We write transition labels beside τ into the respective boxes.

Let x ∈ P ∪ T be a node of a net N . As usual, •x = {y | (y, x) ∈ F} denotes
the preset of x and x• = {y | (x, y) ∈ F} the postset of x. We interpret presets
and postsets as multisets when used in operations also involving multisets. For
markings, we define + and − for the sum and the difference of two markings in
the standard way; for example, [p1, 2p2] denotes a marking m with m(p1) = 1,
m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}. If m1 ∈ B(P1) and m2 ∈ B(P2),
then m1 +m2 ∈ B(P1∪P2) (i.e., the underlying set of elements is adjusted when
needed).

The behavior of a net N relies on changing the markings of N by firing
transitions of N . A transition t ∈ T is enabled at a marking m, denoted by

m
t−→ , if for all p ∈ •t, m(p) > 0. If t is enabled at m, it can fire, thereby

changing the marking m to a marking m′ = m − •t + t•. The firing of t is

denoted by m
t−→ m′; that is, t is enabled at m and firing it results in m′.



The behavior of N can be extended to sequences: m1
t1−−→ . . .

tk−1−−−→ mk

is a run of N if for all 0 < i < k, mi
ti−→ mi+1. A marking m′ is reachable

from a marking m if there exists a (possibly empty) run m1
t1−−→ . . .

tk−1−−−→ mk

with m = m1 and m′ = mk; for w = 〈t1 . . . tk−1〉, we also write m
w−→ m′.

Marking m′ is reachable if it is reachable from initial marking mN . The set
MN = {m′ | ∃w : mN

w−→ m′} represents all reachable markings of N .

In the case of labeled nets, we lift runs to traces: If m
w−→ m′ and v is obtained

from w by replacing each transition by its label and removing all τ -labels, we
write m

v
=⇒ m′. For example, if w = 〈t1t1t2t1t2t3〉, l(t1) = a, l(t2) = τ , and

l(t3) = b, and m
w−→ m′, then m

v
=⇒ m′ with v = 〈aaab〉. The behavior of a

labeled net N is described by the runs of N leading from the initial marking to
a final marking. The set of final runs of a labeled net N = (P, T, F,mN , Ω, l) is

R(N) = {σ ∈ T ∗ | ∃mf ∈ Ω : mN
σ−→ mf}, and Tr(N) = {σ ∈ A∗ | ∃mf ∈ Ω :

mN
σ

==⇒ mf} is the set of final traces.
A net N is bounded if there exists a bound b ∈ IN such that for all reachable

markings m ∈ MN and all places p ∈ P , m(p) ≤ b. A reachable marking m /∈ Ω
of N is a deadlock if no transition t ∈ T of N is enabled at m. If N has no
deadlock, then it is deadlock free. A net is weakly terminating if from every
reachable marking it is always possible to reach a final marking.

3.2 Open Nets

We model services as open nets [21,10], thereby restricting ourselves to the com-
munication protocol of a service. In the model, we abstract from data and identify
each message by the label of its message channel. An open net extends a net
by an interface. An interface consists of two disjoint sets of input and output
places corresponding to asynchronous input and output channels. An input place
has an empty preset, and an output place has an empty postset. In the initial
marking and the final markings, interface places are not marked.

Definition 2 (Open net). An open net N is a tuple (P, T, F,mN , I, O,Ω) with

– (P ∪ I ∪O, T, F,mN , Ω) is a net such that P , I, O are pairwise disjoint;
– for all p ∈ I ∪O, mN (p) = 0, and for all m ∈ Ω and p ∈ I ∪O, m(p) = 0;
– the set I of input places satisfies for all p ∈ I, •p = ∅; and
– the set O of output places satisfies for all p ∈ O, p• = ∅.

Open net N is sequentially communicating if each transition is connected to at
most one interface place. If I = O = ∅, then N is a closed net. Two open nets
are interface-equivalent if they have the same sets of input and output places.

Graphically, we represent an open net like a net with a dashed frame around
it. The interface places are positioned on the frame. If an open net has at most
one final marking, we indicate places marked in that final marking with a thicker
bound.



For the composition of open nets, we assume that the sets of transitions are
pairwise disjoint and that no internal place of an open net is a place of any
other open net. In contrast, the interfaces overlap intentionally. We require that
all communication is bilateral and directed ; that is, every shared place p has
only one open net that sends into p and one open net that receives from p. We
refer to open nets that fulfill these properties as composable. We compose two
composable open nets N1 and N2 by merging shared interface places and turn
these places into internal places. The definition of composable thereby guarantees
that an open net composition is again an open net (possibly a closed net).

Definition 3 (Open net composition). Open nets N1 and N2 are compos-
able if (P1 ∪ T1 ∪ I1 ∪ O1) ∩ (P2 ∪ T2 ∪ I2 ∪ O2) = (I1 ∩ O2) ∪ (I2 ∩ O1).
The composition of two composable open nets N1 and N2 is the open net
N1 ⊕N2 = (P, T, F,mN , Ω, I, O) where

– P = P1 ∪ P2 ∪ (I1 ∩O2) ∪ (I2 ∩O1),
– T = T1 ∪ T2,
– F = F1 ∪ F2,
– mN = mN1

+mN2
,

– I = (I1 ∪ I2) \ (O1 ∪O2),
– O = (O1 ∪O2) \ (I1 ∪ I2), and
– Ω = {m1 +m2 | m1 ∈ Ω1,m2 ∈ Ω2}.

We want the composition of a set of services to be correct. Correctness refers
to boundedness and weak termination. A user that communicates with a service
such that the composition is correct can be seen as a controller of this service.

Definition 4 (Controller). Let b ∈ IN. An open net C is a b-controller of an
open net N if the composition N ⊕ C is a closed net, b-bounded, and weakly
terminating.

In the remainder of the paper, we abstract from the actual bound chosen
and, therefore, use the term controller rather than b-controller for convenience.

Example 1. Consider open nets Public in Fig. 2a and Controller in Fig. 4b.
Public has the initial marking mPublic = [p0], final markings Ω = {[p3]}, output
places a and b, and input places c and d. Controller has the initial marking
mController = [q0], final markings Ω = {[q3]}, output places c and d, and input
places a and b. Clearly, Public and Controller are composable and their com-
position Public ⊕ Controller is the closed net in Fig. 4a with initial marking
[p0, q0] and final markings {[p3, q3]}. As Public ⊕ Controller is 1-bounded and
weakly terminating, we conclude that Controller is a controller of Public, and
vice versa.

3.3 Private View Conformance

We see a contract as a closed net N , where every transition is assigned to one
of the involved parties X1, . . . , Xk. We impose only one restriction: If a place is
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Fig. 4: The open net Controller and its composition with the open net Public.

accessed by more than one party, it should act as a directed bilateral communi-
cation place. This restriction reflects the fact that a party’s public view of the
contract is a service again. A contract N can be cut into parts N1, . . . , Nk, each
representing the agreed public view of a single party Xi (1 ≤ i ≤ k). Hence, we
define a contract as the composition of the open nets N1, . . . , Nk.

Definition 5 (Contract). Let X = {X1, . . . , Xk} be the set of parties and
let {N1, . . . , Nk} be a set of pairwise interface-compatible open nets such that
N = N1⊕· · ·⊕Nk is a closed net. Then, N is a contract for X . For i = 1, . . . , k,
open net Ni is the public view of Xi in N and open net N−1i =

⊕
j 6=iNj is the

environment of Xi in N .

Each Party Xi can independently substitute its public view Ni by a private
view N ′i if the environment of Xi cannot distinguish between Ni and N ′i [5],
which is formalized by the accordance relation [19].

Definition 6 (Accordance). Let Ni and N ′i be interface-equivalent open nets.
Open net N ′i accords with open net Ni, denoted by N ′i vacc Ni, if every controller
of Ni is also a controller of N ′i .

Example 2. An example of a contract involving only two parties is the closed
net in Fig. 4a. In Sect. 2, we have motivated that open net Private accords
with open net Public. Thus, we can safely replace Public with Private without
violating the contract.

Sending or receiving a message is an activity. Let A denote the set of all
activities. We define an event log as a multiset of traces over A. Each trace
describes the life-cycle of a particular case in terms of the activities executed.

Definition 7 (Event log). An event log Li of the observed behavior of party
Xi in contract N is a multiset of traces over A, i.e., Li ∈ B(A∗).
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For conformance checking of party Xi, we compare the observed behavior
(event log Li) with the modeled behavior (Ni or N ′i). We can take two viewpoints
depending on what/when events are recorded in Li. If events are recorded when
party Xi consumes a message from N−1i or produces a message for N−1i , then we
can use the synchronous environment envs(Ni) for conformance checking. Here,
we label each transition with the adjacent interface places—if possible—and re-
move the interface places. To simplify the labeling of transitions connected to
interface places, we only consider sequentially communicating nets. That way,
each transition is labeled by a single label rather than by a set of labels. This
restriction is not significant, as every open net can be transformed into an equiv-
alent sequentially communicating open net [10].

Definition 8 (Synchronous environment). The synchronous environment
of a sequentially communicating open net N = (P, T, F,mN , Ω, I, O) is the la-
beled net envs(N) = (P, T, F ∩ ((P × T ) ∪ (T × P )),mN , Ω, l) with l(t) = p
where p is the unique interface place p ∈ I ∪ O adjacent to t ∈ T , or l(t) = τ if
no such adjacent interface place exists.

Example 3. Figure 5 shows the synchronous environments of open nets Public
and Private. A transition label is depicted inside a transition with bold font to
distinguish it from the transition’s identity.

If events are recorded when the environment N−1i of party Xi consumes
a message from party Xi or produces a message for party Xi, then we can
use the asynchronous environment enva(Ni) for conformance checking. The net
enva(N) is a net that can be constructed from N by adding to each interface
place p ∈ I∪O a p-labeled transition tp in enva(N). Intuitively, the construction
translates the asynchronous interface of N into a synchronous interface with
unbounded buffers described by the transition labels of enva(N).



Definition 9 (Asynchronous environment). The asynchronous environment
of an open net N = (P, T, F,mN , I, O,Ω) is the labeled net enva(N) = (P ∪ I ∪
O, T ∪ T ′, F ∪ F ′,mN , Ω, l) where

– T ′ = {tx | x ∈ I ∪O},
– F ′ = {(tx, x) | x ∈ I} ∪ {(x, tx) | x ∈ O}, and

– l(t) =

{
x, tx ∈ T ′

τ, t ∈ T.

Example 4. Figures 2b and 3b show the asynchronous environments of the open
nets Public and Private from Figs. 2a and 3a. A transition label is depicted
inside a transition with bold font to distinguish it from the transition’s identity.

Thus, the choice of environment depends on what is actually logged. In the re-
mainder, we will abstract from these subtle differences and simply write env(N).

To check conformance, we need to align traces in the event log to traces
of the service (environment); that is, we need to relate “moves” in the log to
“moves” in the model. However, there may be some moves in the log that cannot
be mimicked by the model, and vice versa. For convenience, we introduce the set
AL = A ∪ {�} where x ∈ AL \ {�} refers to “move x in the log” and �∈ AL
refers to “no move in the log”. Similarly, for a labeled net N , we introduce the
set AN = {(a, t) ∈ (A ∪ {τ}) × T | l(t) = a} ∪ {�} where (a, t) ∈ AN refers to
“move a in the model” and �∈ AN refers to “no move in the model”. A “move
τ in the model” (τ, t) is a silent move, as it is only observable by party Xi.

Definition 10 (Alignment). For an event log L and a labeled net N , one
move in an alignment is represented by a pair (x, y) ∈ AL ×AN such that

– (x, y) is a move in the log if x ∈ A and y =�,
– (x, y) is a move in the model if x =� and y ∈ AN \ {�},
– (x, y) is a move in both if x ∈ A and y ∈ AN \ {�},
– (x, y) is an illegal move x =� and y =�.

We refer to a move in the model (x, (a, t)) with a = τ as a silent move. ALN =
{(x, y) ∈ AL ×AN | x 6=� ∨ y 6=�} is the set of all legal moves.

An alignment of σ ∈ L and w ∈ R(N) is a sequence γ ∈ ALN ∗ such that
the projection on the first element (ignoring �) yields σ and the projection on
the second element (ignoring �) yields w. The set of alignments for σ in N is
Γσ,N = {γ ∈ ALN ∗ | ∃w ∈ R(N) : γ is an alignment of σ and w}.

Example 5. For an example of an alignment of a trace of an event log and a
trace of an open net, consider the six alignments γ1, . . . , γ6 in Sect. 2.

Given a log trace, there may be many possible alignments. To measure the
quality of an alignment, we define a distance function on legal moves.

Definition 11 (Distance function). A distance function δ : ALN → IN as-
sociates costs to legal moves in an alignment. We define a standard distance
function δS as δS(a,�) = 1; δS(�, (b, t)) = 1, for b 6= τ ; δS(�, (τ, t)) = 0;
δS(a, (b, t)) = 0, for a 6=� and a = b; and δS(a, (b, t)) =∞, for a 6=� and a 6= b.



We generalize a distance function δ to alignments by taking the sum of the
costs of all individual moves: δ(γ) =

∑
(x,y)∈γ δ(x, y). In δS , only moves where

log and model agree on the activity, and silent moves of the model have no
associated costs. Moves in only the log or model have cost 1, moves where both
log and model make a move but disagree on the activity have high costs; thereby,
∞ should be read as a number large enough to discard the alignment. Note that
δS is just an example cost function; various cost functions can be defined.

Thus far, we considered a specific trace of the model. However, our goal is to
identify for each log trace the best matching trace of the model. Therefore, we
define the notion of an optimal alignment.

Definition 12 (Optimal alignment). An alignment γ ∈ Γσ,N is optimal for
a log trace σ ∈ L and a labeled net N if for any γ′ ∈ Γσ,N : δ(γ′) ≥ δ(γ).

If R(N) is not empty, there is at least one (optimal) alignment for any given
log trace σ. However, there may be multiple optimal alignments for σ. Since our
goal is to align traces in the event log to traces of the model, we nondetermin-
istically select an arbitrary optimal alignment. Therefore, we can construct a
function λN that provides an “oracle”.

Definition 13 (Oracle). Given a log trace σ and a labeled net N , the oracle
λN produces one optimal alignment λN (σ) ∈ Γσ,N .

The alignments produced by the “oracle” λN can be used to quantify confor-
mance of a log L and a model N . Conformance checking involves the interplay of
four orthogonal dimensions: fitness, precision, generalization, and simplicity [2].
Fitness indicates how much of the behavior in the event log is captured by the
model. A model with good fitness allows for most of the behavior seen in the
event log. Precision indicates whether the model is not too general. To avoid
“underfitting” we prefer models with minimal behavior to represent as closely
as possible the behavior seen in the event log. Generalization penalizes overly
precise models which “overfit” the given log. In general, a process model should
not restrict behavior to just the behavior seen in the event log. Simplicity refers
to models minimal in structure, which clearly reflect the log’s behavior. This di-
mension is related to Occam’s Razor, which states that “one should not increase,
beyond what is necessary, the number of entities required to explain anything.”

In the remainder, we abstract from the dimensions involved in conformance
checking: We assume a function conf that computes the conformance of an
event log L and a labeled net N based on the alignments produced by the oracle
λN ; that is, conf (L,N) yields a number between 0 (poor conformance) and 1
(perfect conformance) [2]. We define private view conformance as the maximal
conformance of all private views of a given public view.

Definition 14 (Private view conformance). Let N = N1 ⊕ · · · ⊕ Nk be a
contract for X = {X1, . . . , Xk}. Let Ni be the public view of Xi, and let Li be
an event log of Xi. Let Pr(Ni) = {M |M vacc Ni} denote the set of all private
views that accord with Ni. Then



– M ∈ Pr(Ni) is a best matching private view for Ni and Li if for any M ′ ∈
Pr(Ni): conf (Li, env(M)) ≥ conf (Li, env(M ′)); and

– conf (Li, env(M)) is the private view conformance for party Xi where M ∈
Pr(Ni) is a best matching private view for Ni and Li.

Definition 14 provides a well-defined conformance notion that can be param-
eterized with different correctness notions (e.g., deadlock freedom, weak termi-
nation) and different environments (e.g., envs(N), enva(N)). However, Def. 14
cannot easily be transformed into an algorithm. There may be many (if not in-
finitely many) private views that accord with Ni. So far, no algorithm has been
implemented to select a best matching private view. In the next section, we show
how private view conformance for party Xi can be decided.

4 Deciding Private View Conformance

In the previous section, we introduced a notion of private view conformance
that is independent from the conformance checking dimensions involved. In this
section, we decide private view conformance w.r.t. the fitness dimension.

A model with good fitness allows for most of the behavior seen in the event
log. Therefore, it is natural to define conf (L,N) inversely proportional to the
sum of the costs of aligning all traces of L to traces of N ; that is, conf (L,N)
should be maximal if

∑
σ∈L δ(λN (σ)) is minimal. If a trace appears multiple

times in the event log, the associated costs should be counted multiple times.

Definition 15 (Fitness). Conformance conf (L,N) w.r.t. fitness of an event
log L and a labeled net N yields a number between 0 (poor fitness) and 1 (perfect
fitness) and is maximal if the alignment-based costs δ(L,N) =

∑
σ∈L δ(λN (σ))

are minimal.

Our approach for deciding private view conformance does not rely on a spe-
cific fitness measure; any fitness measure is suitable as long as it meets the cri-
teria in Def. 15. Our approach relies on the existence of two specific controllers
of any open net N : a maximal controller maxC (N) [14,8] and a most permissive
controller mpC (N) [22]. A maximal controller is maximal w.r.t. the accordance
relation; that is, every controller of N accords with maxC (N). A most permis-
sive controller mpC (N) is maximal w.r.t. behavior; that is, N can visit all the
states in composition with mpC (N) that can be visited in composition with any
controller of N . For technical details of maximal and most permissive controllers
we refer to [14] and [22], respectively; here, we only summarize their properties.

Proposition 1 ([14]). For any open net N , there exist controllers maxC (N)
and mpC (N) such that for any controller C of N , we have C vacc maxC (N)
and Tr(env(C)) ⊆ Tr(env(mpC (N))).

Given a contract N = N1⊕· · ·⊕Nk, we show that Bi = mpC (maxC (Ni)) is
a canonical best matching private view for Ni and event log Li. In other words,
open net Bi accords with Ni and has minimal costs and, hence, maximal fitness.



Theorem 2 (Main result). Let N = N1 ⊕ · · · ⊕ Nk be a contract for X =
{X1, . . . , Xk}. Let Ni be the public view of Xi, and let Li be an event log of Xi.
Then Bi = mpC (maxC (Ni)) is a best matching private view for Ni and Li.

Proof. Let N ′i ∈ Pr(Ni) be a private view of Ni. We prove δ(Li, N
′
i) ≥ δ(Li, Bi),

which implies conf (Li, env(N ′i)) ≤ conf (Li, env(Bi)) for conformance w.r.t. fit-
ness according to Def. 15. By the choice of N ′i and Prop. 1, we conclude that
R(env(N ′i)) ⊆ R(env(Bi)). Let σ ∈ Li be a trace in the event log Li. Then, we
have Γσ,env(N ′i) ⊆ Γσ,env(Bi) by Def. 10 and δ(λenv(N ′i)(σ)) ≥ δ(λenv(Bi)(σ)) by
Defs. 11 and 12. Thus, δ(Li, N

′
i) ≥ δ(Li, Bi) by Def. 15. ut

Theorem 2 gives a theoretical solution for deciding private view conformance
w.r.t. fitness. In addition, Thm. 2 gives a necessary condition for the question
whether the implementation accords with the given public view Ni: If the best
matching private view Bi does not conform to the event log Li, then no private
view of Ni conforms to Li.

Corollary 3. Let N be a public view, L be an event log of an implementation
of N , and B be the best matching private view of N . If B does not conform to
L, then no private view of N conforms to L.

Of course, we are interested in calculating the best matching private view
Bi for a given open net Ni. Here, we reuse existing theory on maximal con-
trollers [14,8]. Interestingly, the environment (i.e., envs or enva) we consider
when replaying the log file matters only for the construction of Bi. In the next
section, we show that Bi = mpC (maxC (Ni)) can actually be calculated, yet for
acyclic open nets only. The reason for this restriction is that for acyclic open
nets, the correctness notions weak termination and deadlock freedom coincide.
The theory for maximal controllers in case of weak termination exists [8], but
has not been implemented so far.

5 Experimental Results

Based on a prototypical implementation, we show first experimental results on
computing a canonical best matching private view according to Thm. 2. We
assume weak termination as a correctness criterion, use the asynchronous envi-
ronment enva, and employ the standard distance function δS to find the best
matching alignments.

For the running example, γ1 – γ3 are best matching alignments for L and
env(Public) with costs δS(γ1) = 0, δS(γ2) = 2, and δS(γ3) = 1, yielding
alignment-based costs δ(L, env(Public)) = 30 · 0 + 40 · 2 + 50 · 1 = 130. Likewise,
γ4 – γ6 are best matching alignments for L and env(Private) with costs δS(γ4) =
δS(γ5) = 0, and δS(γ6) = 1. Thus, δ(L, env(Private)) = 30 ·0+40 ·0+50 ·1 = 50.

We compute the canonical best matching private view B of Public in three
steps: (1) compute the maximal controller maxC (Public), (2) compute the most
permissive controller B = mpC (maxC (Public)), and (3) calculate δ(L, env(B)).
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Fig. 6: Conformance checking using the best matching private view.

Figure 6 shows the three steps and the tools involved. Our toolchain consists of a
Bash script for deriving a best matching private view using the tools Wendy [13],
Maxis1, the PNapi [11], and ProM.2 We illustrate our approach in the following.

Step 1: Calculating maxC (Public)

The open net maxC (Public) has 34 places and 45 transitions and was constructed
following the approach presented in [14]: Using the tool Wendy, we constructed
an annotated automaton that represents all controllers of Public. Subsequent,
we derived the behavior of maxC (Public) from this annotated automaton using
the tool Maxis. Finally, we transformed the behavior into an open net using
the PNapi. Figure 7 illustrates a part of maxC (Public). As maxC (Public) is a
controller of Public, it has the same interface as Public with input and output
interchanged. Initially, this service fires nondeterministically one of the five tran-
sitions tabd, . . . , td. Depending on the state reached, it can perform a number
of sending or receiving events. For example, after firing tabd, the open net can
receive a or b or send d.

Step 2: Deriving B

In the second step, we calculated the most permissive controller of maxC (Public),
resulting in the open net B = mpC (maxC (Public)). We constructed the behav-
ior of B using the tool Wendy and transformed it into open net B using the
PNapi. The resulting open net has 12 places and 22 transitions and is partly
depicted in Fig. 8. The open nets B and Public are interface-equivalent. Con-
sider the place empty. A token on empty corresponds to a marking that is not
reachable in the composition of B and any controller of Public. As no controller
of Public initially sends a message c, transition t8 and t9 encode such “mis-
behavior” by producing a token on empty. When empty contains a token and
hence the composition will not be weakly terminating, every possible sending

1 http://svn.gna.org/viewcvs/service-tech/trunk/maxis/
2 http://www.promtools.org/

http://svn.gna.org/viewcvs/service-tech/trunk/maxis/
http://www.promtools.org/
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and receiving of messages is possible; thus, transitions ta, tb, tc, td are connected
to the correspondingly labeled interface places (indicated by the respective arcs
without source or target). What we can see is that the behavior of Private can
be replayed on B. This shows that it is not wrong to implement a specification
such that the resulting implementation has more controllers than the specifi-
cation. However, the added behavior cannot be used by any controller of the
specification. In our example, no controller of Public will initially send message
c although there exist implementations such as open net Private that allow such
behavior.

Step 3: Checking Conformance of L with B

According to Thm. 2, B is a best matching private view of Public. Therefore, in
the last step, we calculate the alignment-based cost for the log L and the labeled
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Fig. 9: Our evaluation process with synthetic nets.

net env(B) using the latest PNAlignmentAnalysis plug-in from the TU/e SVN
repository.3 We use the A∗-algorithm for cost-based fitness with default options.
Some best matching alignments for L and env(B)—as they are not unique—are

γ7 =
� a d �
τ a d τ
t2 t

a td t6

γ8 =
� b c �
τ b c τ
t1 t

b tc t9

γ9 =
c � d �� a
c τ d τ τ a
tc t8 t

d td ta ta

with δ(γ7) = δ(γ8) = δ(γ9) = 0 yielding alignment-based costs δ(L, env(B)) =
30 · 0 + 40 · 0 + 50 · 0 = 0. We see that δ(L, env(B)) is indeed lower than
δ(L, env(Public)) = 130 and even lower than δ(L, env(Private)) = 50.

We also evaluated our approach with synthetic open nets. Figure 9 shows a
BPMN model of our evaluation process. First, we generated a random public
view N using a modified version of the Process Log Generator4. Afterward, we
computed the canonical best matching private view B from N and generated a
random event log L from B, which additionally contains random errors. Finally,
we checked conformance of B to L and compared it with the conformance of
N and L. We analyzed five random public views. This time, we used the syn-
chronous environment envs for computing the private view conformance with
ProM. All experiments were conducted on a MacBook Pro, Intel Core i5 CPU
with 2.4 GHz and 8 GB of RAM.

The results of our evaluation process in Table 1 show that the average cost
δS(B,L) for each case (using the standard distance function) for conformance
checking the log L with the best matching private view B (column 13) is signifi-
cantly lower than the average cost δS(N,L) for conformance checking L with the

3 https://svn.win.tue.nl/repos/prom/
4 http://www.processmining.it/sw/plg

https://svn.win.tue.nl/repos/prom/
http://www.processmining.it/sw/plg


Table 1: Fully automatic private view conformance checking of synthetic nets.

public view N best matching B event log L δS(N,L) time δS(B,L) time
|P | |I| |O| |T | |P | |I| |O| |T | cases events δS/case ms/case δS/case ms/case

14 4 2 6 35 4 2 132 100 605 6.21 3.47 0.20 0.34

16 5 3 8 41 5 3 190 100 541 7.53 3.31 0.20 0.88

30 6 3 18 106 6 3 681 100 540 8.26 6.21 0.19 1.41

38 6 4 32 32 6 4 168 100 507 4.89 7.10 0.05 0.17

88 6 5 74 806 6 5 6, 060 100 528 7.24 33.93 0.03 45.60

public view N (column 11). This detail justifies Thm. 2. However, the lower cost
come at a price of an exponentially larger size of B compared to N (columns 1
and 5), which is caused by the construction of B [14]. Accordingly, the larger
net size resulted in a higher runtime of the A∗-algorithm (last row).

6 Related Work

Research on conformance checking of services follows two lines. One research
line assumes a model of the implementation to be given (e.g., [20,6]) or that it is
discovered from the event log (e.g., [15]). The former assumption is not always
realistic. Furthermore, the result of conformance checking relies on the quality
of the (discovered) model.

The second research line assumes recorded behavior of the implementation to
be given. Here, techniques are adapted from process mining [18,2]. Our contribu-
tion follows this research line. Van der Aalst et al. [4] map a contract specified in
BPEL onto workflow nets (which can be seen as the synchronous environment)
and employ conformance checking techniques from process mining [18]. In con-
trast, we measure the deviation of an implementation from its specification and
all possible private views.

Comuzzi et al. [7] investigate online conformance checking using a weaker
refinement notion than accordance. Different conformance relations on a concur-
rency-enabled model have been studied by De León et al. [9]. As their considered
conformance relations differ from accordance, their work is not applicable in our
setting (because maximal controllers have not been studied yet).

Motahari-Nezhad et al. [16] investigate event correlation; that is, they try
to find relationships between events that belong to the same process execution
instance. In contrast to event correlation, we do not vary the service instances,
but refine the public view to a private view.

7 Conclusion

Given a formal model of a public view of a service and recorded behavior of
its running implementation, conformance checking requires to check the confor-



mance of the recorded behavior with all (infinitely) private views of the spec-
ification. To overcome these infinitely many checks, we presented an approach
to calculate a best matching private view for a given event log and a public
view. Moreover, checking conformance of a best matching private view and a
given event log from an implementation gives a necessary condition for accor-
dance of this implementation with its public view. We proved the existence of a
canonical best matching private view and showed that it can be automatically
constructed—in the case of acyclic services and weak termination—using exist-
ing theory and tools on maximal controllers controllers. Although it is possible
to construct maximal controllers for cyclic services and weak termination [8],
this has not been implemented yet. For the actual conformance check, we used
existing alignment-based techniques from the field of process mining.

A canonical best matching private view may become exponentially large in
net size compared to its public view. Therefore, it is an open question whether
the current cost-based conformance checking techniques can be used for private
view conformance checking for industrial service models. In general, there exist
many best matching private views for a public view w.r.t. the fitness dimension.
Our approach computes a canonical best matching private view. There is a
trade-off between the fitness dimension and the other quality dimensions (i.e.,
precision, generalization, simplicity) in conformance checking [2]; thus, it is an
open question how to generalize our approach to these other dimensions.
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