
Hierarchical Conformance Checking of
Process Models Based on Event Logs

Jorge Munoz-Gama1, Josep Carmona1, and Wil M.P. van der Aalst2

1 Universitat Politecnica de Catalunya, Barcelona (Spain)
2 Eindhoven University of Technology, Eindhoven (The Netherlands)

jmunoz@lsi.upc.edu, jcarmona@lsi.upc.edu , w.m.p.v.d.aalst@tue.nl

Abstract. Process mining techniques aim to extract knowledge from
event logs. Conformance checking is one of the hard problems in pro-
cess mining: it aims to diagnose and quantify the mismatch between
observed and modeled behavior. Precise conformance checking implies
solving complex optimization problems and is therefore computationally
challenging for real-life event logs. In this paper a technique to apply hi-
erarchical conformance checking is presented, based on a state-of-the-art
algorithm for deriving the subprocesses structure underlying a process
model. Hierarchical conformance checking allows us to decompose prob-
lems that would otherwise be intractable. Moreover, users can navigate
through conformance results and zoom into parts of the model that have
a poor conformance. The technique has been implemented as a ProM
plugin and an experimental evaluation showing the significance of the
approach is provided.

Keywords: Process Mining, Conformance Checking, Process Diagnosis

1 Introduction

Process mining emerged as a crucial discipline for addressing challenges related
to Business Process Management (BPM) and “Big Data”[1]. Information sys-
tems record an overwhelming amount of data representing the footprints left by
process executions. For example, Boeing jet engines can produce 10 terabytes
of operational information every 30 minutes, and Walmart logs may store one
million customer transactions per hour [2].

Process mining tackles three challenges relating event data (i.e., log files) and
process models: discovery of a process model from an event log, conformance
checking given a process model and a log, and enhancement of a process model
with the information obtained from a log. Process mining research has produced
a multitude of algorithms that demonstrated to be of great value for undertaking
small or medium-sized problem instances. However, it is well-accepted that most
of the existing algorithms are unable to handle problems of industrial size. In our
opinion, as has happened in other areas (VLSI, manufacturing, among others)
where the size of the input prevents from solving the problem straight away,
the next generation of algorithms for process mining must incorporate high-level

techniques that enable the problem decomposition in a divide-and-conquer style.
This paper proposes decomposition techniques for conformance checking.

In spite of its significance, few conformance checking algorithms exist in the
literature. The seminal work by Rozinat et al. [3] was the first in formalizing the
problem and enumerating the four dimensions to consider for determining the
adequacy of a model in describing a log: fitness, precision, generalization and
simplicity. In this paper we focus on the first two: fitness, that quantifies the
capability of the model in reproducing the traces of the log, and precision, that
quantifies how precise is the model in representing the log. In this paper, we will
decompose state-of-the-art approaches for conformance checking. On the one
hand, we will use alignment techniques. These provide a crucial step into relat-
ing model and log traces for unfitting models or models with duplicate/invisible
transitions [4,5]. On the other hand, a novel precision technique based on super-
posing log and model behavior and detecting accordingly model’s escaping points
will allow us to quantify precision [6]. Both approaches have been combined in
order to derive a robust estimation of precision [5]. The high-level technique
presented in this paper is grounded on the aforementioned work.

To decompose process models, we use a technique to create the so-called
Refined Process Structure Tree (RPST) originally proposed in [7]. This decom-
position computes fragments of the net that have a single-entry and a single-exit
node, thus intuitively resembling isolated subprocesses within the general model.
Remarkably, it is a structural decomposition that can be computed in linear
time on the underlying graph structure. Additionally, a tree-like structure may
be derived representing the hierarchy between the computed components. This
tree will be used in the strategy presented in this paper for hierarchical con-
formance checking: each component in the tree is processed in order to satisfy
the requirements for conformance checking of [5] (e.g., find an initial and final
marking, determine whereas it belongs to a cyclic part of the net), and finally a
conformance checking problem instance is solved on the component and the log
projected into the participating activities. Unlike the decomposition approaches
proposed in [8,9], our approach uses a hierarchy of semantically meaningful pro-
cess fragments. The RPST structure recursively splits the process into smaller
fragments that are understandable for the analyst. Moreover, the hierarchy can
be used to navigate to problematic parts of the process.

The approach has been implemented as a ProM plugin, and experiments have
been performed on different dimensions, ranging from a comparison between the
manual decomposition made by a human and the one presented in this paper,
to the application of the technique to a set of benchmarks. Also, experiments
illustrating the differences with the passage-based approach [8] are reported.

The paper is organized as follows: Sect. 2 presents the theoretical background
of the paper. Sect. 3 presents the main stages of the methodology for hierarchi-
cal conformance checking, while Sect. 4 describes how to apply the approach to
sound and safe workflow nets (a important class of Petri nets tailored towards
business processes). Sect. 5 describes related work. Sect. 6 shows several experi-

ments illustrating the usefulness of the suggested approach. Finally, conclusions
and future work are reported in Sect. 7.

2 Preliminaries

The starting point for conformance checking are an event log and a model. An
event log records the execution of all cases (i.e. process instances). Each case is
described by a trace, i.e., an activity sequence. Different cases may have exactly
the same trace, i.e., an event log is a multiset of traces. A model represents
the possible flows of the process. In this approach we use Petri net as a formal
model of processes. A Petri Net PN is a tuple (P, T,A,mi,mo) where P and
T represent finite sets of places and transitions, respectively, with P ∩ T = ∅.
Function A : (P × T) ∪ (T × P)→ N represents the weighted flow relation. The
markings over a Petri net are defined as multisets and we use multiset notation
accordingly, e.g., m = [p2, q] or m = [p, p, q] for a marking m with m(p) = 2,
m(q) = 1, and m(x) = 0 for all x 6∈ {p, q}. The initial and final markings of PN
are denoted as mi and mo respectively.3 Given a marking m and a set n, m↓n
denotes the projection of m on n, e.g., [a, a, b, c]↓[a,c] = [a, a, c].

3 Methodology for Hierarchical Conformance Checking

In this section we introduce the approach for decomposing a model in a hierar-
chical manner in order to perform conformance checking. Algorithm 1 presents
the approach, which has three stages: the Decomposition Stage (Sec. 3.1) where
the model is decomposed into components, the Post-processing Stage (Sec. 3.2)
where the components are processed to enable the analysis, and finally the Con-
formance Stage (Sec. 3.3) where conformance is analyzed for every component.

3.1 Decomposition Stage

The first stage corresponds with the decomposition phase: the model is decom-
posed into hierarchical components, i.e., the decomposition is not a partitioning
(which is the case in [8]) but instead for each component different of the net itself
there is always another component containing it. This enables the analysis at
different degrees of granularity and independence, similar to zooming in and out
using online maps, to get a better understanding of the underlying process. In
order to be able to navigate through different layers of the model properly, three
ingredients are needed: 1) a subprocesses decomposition, 2) a hierarchy relating
these subprocesses, and 3) a mechanism to enhance and propagate additional
information about the components within the hierarchy.

3 In some approaches such as [3,6] only an initial marking is considered. However, in
[5] (cornerstone of the conformance checking of this paper) the authors introduce
analogously the need of the final marking.

Algorithm 1 Decomposed Conformance algorithm

procedure Deconf(net, log,mi,mo)
{c1 . . . cn} ← decompose(net) . Decomposition Stage
h← build hierarchy({c1 . . . cn})
h∗ ← enrich hierarchy(h, net)

for all subprocess c ∈ h∗ do
pnc ← compute petri net(c, net) . Post-processing Stage
mic ← compute initial marking(c, net,mi)
moc ← compute final marking(c, net,mo)
logc ← compute log(log, pnc)

compute conformance(logc, pnc,mic,moc) . Conformance Stage
end for

end procedure

t1 t2

t3

t4

t5

t6

t7 t8 t9

t28

t10

t11

t12

t13 t18 t23 t26

t27 t29
t24

t25

t19t14

t15

t16 t17
t22

t20

t21

Fig. 1: Illustrative example of process modeled as a Petri net.

Subprocesses Decomposition Given that the final goal of this approach is
the conformance analysis and the diagnosis of potential deviations, we propose
a decomposition based on the identification of subprocesses within the main
process. In particular, these subprocesses that match the Single-Entry-Single-
Exit pattern, also known as SESE s [10], are detected. SESE represents a well-
defined part of a general process. Note that, this decomposition refers to the
structure of the model (not its behavior). Therefore, the SESE detection is not
performed directly over the model, but over the underlying graph of the model,
called workflow graph.

In our case, given a Petri net PN = (P, T,A) we define its workflow graph
simply as graph G = (V,E) with no distinction between places and transitions,
i.e., V = P ∪T and E = {(x, y) ∈ V ×V |A(x, y) > 0}. For example, considering
the example process of Fig. 1 modeled as a Petri net, its corresponding workflow
graph is shown in Fig. 2. Similar representations can be obtained for other mod-
eling notations such as BPMN, EPCs, or UML, and therefore, the hierarchical
conformance approach presented in this paper is fully generic and can be applied
to other notations. However, in this work, we focus on Petri nets.

In the remaining definitions, the following context is assumed: Let G be the
workflow graph of a given Petri net, and let GF = (VF , F) be a connected
subgraph of G formed by a set of edges F and the vertexes VF induced by F .

Definition 1 (Interior and Boundary nodes [7]). A node x ∈ VF is interior
with respect to GF iff it is connected only to nodes in VF ; otherwise x is a
boundary node of GF .

For instance, in the graph of Fig. 2, given the subgraph composed by the
edges in D and its induced vertexes, t2 and t8 are boundary nodes, while the
rest are interior nodes. A boundary node is an entry or exit node if additional
requirements are satisfied.

Definition 2 (Entry and Exit nodes [7]). A boundary node x of GF is an
entry of GF iff no incoming edge of x belongs to F or if all outgoing edges of x
belong to F . A boundary node x of GF is an exit of GF iff no outgoing edge of
x belongs to F or if all incoming edges of x belong to F .

Following with the example above, t2 would be an entry, and t8 an exit. Now
we can define a SESE as follows:

Definition 3 (SESE, Trivial SESE and Canonical SESE [7]). F ⊆ E is
a SESE (Single-Exit-Single-Entry) of graph G = (V,E) iff GF has exactly two
boundary nodes: one entry and one exit. A SESE is trivial if it is composed
by a single edge. F is a canonical SESE of G if it does not overlap with any
other SESE of G, i.e., given any other SESE F ′ of G, they are nested (F ⊆ F ′

or F ′ ⊆ F), or they are disjoint (F ∩ F ′ = ∅). By definition, the source of a
workflow graph is an entry to every fragment it belongs to and the sink of the
net is an exit from every fragment it belongs to.

For the sake of clarity and unless otherwise is stated, in the rest of the paper
we will refer to canonical SESEs simply as SESEs. Note also that the SESEs are
defined as a set of edges (not as subgraphs). However, for simplicity we will refer
also to the subgraph as SESE when the context is clear. Given that a single edge
is a SESE, in the remainder of the paper we will only consider SESEs above
a given threshold size4. Figure 2 shows the canonical SESEs of the example in
Fig. 1 having size greater than 4 nodes (i.e., A,. . . R).

Component Hierarchical Structure Next we construct the Refined Process
Structure Tree (RPST) between canonical SESEs. This tree-like structure will
group all non-overlapping siblings at the same level that give rise, in an upper
level, to the canonical SESE that includes all of them. This will allow us to
navigate through the different levels of the tree thus providing views at different
level of granularity.

Definition 4 (Refined Process Structure Tree (RPST) [7]). The Refined
Process Structure Tree (RPST) of G is the tree composed by the set of all its
canonical SESEs, such that, the parent of a canonical SESE F is the smallest
canonical SESE that strictly contains F. The root of the tree is the entire graph,
the leaves are the trivial SESEs.
4 On Sect. 6.1 we provide an experiment to estimate this threshold size based on

manual decompositions.

A

B

C D E

F

G

H
I

J

K

L

M

O

P

Q

R

P

M

I L
O

R
Q

K
J

H

E

F
G

D

CBA

t2 t8 p10

Fig. 2: Workflow graph of the example in Fig. 1, and its canonical SESEs with
size greater than 4 nodes. On the bottom-right corner we show the corresponding
RPST.

Figure 2 shows the RPST for the SESEs found in example of the same figure.
Note that, due to the definition of canonical SESE, all siblings of a tree node
will never have overlapping edges. However, it is not required that the union of
all the siblings results in the entire parent canonical fragment (i.e., the parent
of a SESE may have arcs not included in any of its children). For example, the
edge (t8,p10) belonging to C is neither included on D nor H. The computation
of the canonical SESEs and it’s corresponding RPST of a workflow graph is a
well studied problem in the literature, and can be computed in linear time. In
[11], the authors proposed the original algorithm for constructing an RPST. In
[7,10], the computation of the RPST is considerably simplified by introducing
a pre-processing step that reduces the implementation effort considerably. The
existence of RPST is guaranteed, i.e., the trivial RPST with the net as root and
the trivial SESEs as leaves is always possible. Besides providing an explicit hi-
erarchy among SESEs, the RPST structure satisfies additional properties useful
for our approach: the RPST is unique (i.e., same graph will always result in the
same RPST) and modular (i.e., a local change in the workflow graph only results
in a local change of the tree).

Structure Enhancement Next, we enrich the hierarchical structure obtained
(the RPST) with additional information that may be used to improve the confor-
mance checking result. In this step we detect when a subprocess can be repeated
more than once in a process execution. The idea behind this is that in order
to perform the conformance checking analysis correctly, one must determine
whether the subprocess reflected in a component can appear more than once
within the same trace, i.e., within the same instance of the whole process, this
subprocess can be executed several times. Such knowledge is highly relevant for
the conformance evaluation.

In order to incorporate this information, first we must determine the cyclic
behavior of the model. We will use this information to determine if a compo-
nent may be iterated to reproduce a trace. Finally, this information is going to
be transmitted to the RPST, and propagated through the tree. We will use the

structural theory of Petri nets to determine potential iterative behaviors. In par-
ticular, we will use T-invariants [12] to determine potential repetitive behavior
(see Sect. 4 for further details).

3.2 Component Post-Processing Stage

To perform a multilayer fine-grained conformance checking as the one presented
in this paper, we must first derive the log and the net for each one of the sub-
processes considered. For the log, the complete log refers to actions of the whole
model. Therefore, we must project it only over the actions involved in the com-
ponent we are analyzing, i.e., to analyze a component x that models only the set
of tasks Tx, we must remove from the log all events not in Tx. Besides the net
itself, we must determine also the initial and final markings of the Petri net for
analyzing conformance. This step, and how it is performed, depends on the type
of Petri net considered. In Sect. 4 we will show how to perform this processing
for a well-known class of Petri nets used to model business processes.

3.3 Conformance Stage

Finally, the last stage is the actual conformance checking, i.e., ultimate goal of the
approach presented in this paper. In process mining, checking the conformance
refers to the procedure of analyzing if the model considered is an appropriate
and faithful representation of the reality reflected in the log. Literature clearly
shows that conformance of a model with respect to a log is a multidimensional
property. There is consensus on four orthogonal dimensions: fitness, precision,
generalization and simplicity [1,3,13]. In this paper, we will focus on the first two:
fitness and precision. However, we would like to stress that the whole approach
presented in this paper is not restricted to any particular conformance algorithm,
i.e., it can be used in combination with any other conformance technique for the
four dimensions.

Fitness measures if the model is able to represent all the behavior in the log.
For example, consider the models and event log shown in Fig 3. Model a) fits
perfectly the log d) because it is able to reproduce both traces. However, model
b) fails to reproduce the second trace. Precision, on the other hand, measures if
the model is precise modeling the log. For instance, a) models the log precisely
(i.e., no more behavior is allowed than the one reflected), while c) is completely
imprecise (it allows much more behavior than the one in the log, and therefore,
it underfits the process it is meant to describe).

The difference between the hierarchical conformance checking (as presented
in this paper) and existing approaches is that the conformance analysis is com-
puted at different levels (not only in the complete model and log). By combining
the conformance results of the different layers, we will be able to navigate and
perform a complete diagnosis analysis of our system in both a top-down and
bottom-up way. The fitness and precision checking proposed in this paper is
based on cost-optimal alignment between traces in the log and possible runs of
the model. Such alignments are then used as reference to compute fitness and

C

B

A

DE
BA C D E

Log Traces

A B C D E
A B D C E

C

D
B EA

a)

b)

c)
d)

Fig. 3: Illustrative examples of fitness and precision with respect to a log d).
Model a) fits better than b), and is more precise than c).

precision (cf. Fig 4). The technique presented in [5] only requires a log and a
Petri Net with an initial and final marking.

Model

Log

Alignments
A

C

B

D

0.9

0.8

fitness

precision

a b c d e f g h i
b a c d g g h

a c c b g
Fitness Analysis

Precision Analysis

Fig. 4: Conformance checking based on Cost-Optimal Alignment

Cost-Optimal Alignment In order to check conformance, given a trace in
the log, we need to find the model execution (trace) that best represents such
log trace. This is done by aligning the trace with all possible executions of the
model, assigning a cost to each alignment, and choosing the optimal one. An
alignment is defined as sequence of pairs (called moves), where each pair can
be: a) a ’move’ in the model b) a ’move’ in the log, and c) a ’move’ both in the
model and the log. For example, here are two possible alignments between the
only two traces of the model in Fig.3a (ABCDE and ABDCE) and the log trace
ABCDE:

γ1 =
A B C D E

A B C D E
γ2 =

A B C D ⊥ E

A B ⊥ D C E

For each alignment γ1 and γ2, the upper row represents moves in the log, and
the lower row represents moves in the model. The alignment between the trace
and the execution ABCDE (shown as γ1) is composed of synchronized moves
(i.e., moves in both model and log), whereas the other alignment (γ2) contains
both a move on the log (C,⊥) and a move on the model (⊥, C) to be able to
align the model execution and the trace. To measure the cost of an alignment,
we define a cost function. For instance, we define a function that, for each pair,
assigns a cost of ’0’ when it is a synchronized pair, and ’1’ otherwise (model and
log disagree). The total cost of the alignment is the sum of the costs of individual

t2 t4 t5 t3 t6 t8

t4 t3 t7t5

t7t3

t8

t3

t3 t6

t2 t4 t8 t2 t5 t8

t2 t3 t6 t8

t8
t7

D

F
E

G

b)

t2 t4 t5 t3 t6 t8

t4 t3 t7t5

t7t3
t1

t8

t3

t3 t6

...

a)

Fig. 5: Imprecisions for the example: a) Prefix automaton for the model of Fig. 1,
b) Prefix automata for SESEs F , E and G.

moves5. Given such function, the costs of the alignments in the example above
are 0 for γ1 and 2 for γ2. In [4,14], the authors propose various approaches to
efficiently compute an optimal alignment for a given log trace.

Precision In order to compute precision from the optimal alignments, the bot-
tom rows of all optimal alignments are used to build a prefix automaton de-
scribing the modeled behavior observed in reality. Note that the alignments help
to squeeze observed behavior into the model even in case of deviations. Then,
this prefix automaton describing the actual observed behavior is compared with
the modeled behavior, leading to the detection of the so called imprecisions, i.e.,
points in the process where the model allows for more behavior that actually
observed in the event log. Due to space constraints, we refer to [5] for further
details. The main difference between the approach in the literature, and the one
proposed here, is that precision checking is performed for every subprocess (i.e.,
SESE), not only for the complete system.

The differences are illustrated using the following example: imagine the initial
model of Fig.1, and consider a log composed of two traces: t1t2t4t5t3t6t8[. . .] and
t1t2t5t4t3t7t8[. . .] and the model of Fig.1 (for sake of simplicity in this example
we focus only on the part of the model between t2 and t8). The correspond-
ing prefix automaton shown Fig. 5 reflects two main imprecisions: those nodes
marked in dark gray represent the possibility in the model of executing concur-
rently the three branches (the branch starting at t4, the one at t5 and the one
at t3). The other imprecision (in light gray) is derived from the choice between
t6 and t7. The process has three concurrent branches (notice that the log only
reflects the concurrency among the t4 and t5 ones), and all the behavior modeled

5 For the sake of simplicity, we use the default unit cost function. However, arbitrary
complex user-defined cost functions can be used [4].

in each individual branch is reflected in the log (including the the choice between
t6 and t7 where both options appear in the log). And this is precisely what we
can see in a precision analysis using the hierarchical approach: the conformance
analysis of SESE D (cf. Fig. 2) is similar to the previous approach, i.e., will derive
a similar prefix automaton. However, in the hierarchical approach the analysis
will also be done for the interior SESEs E, F and G, which will reflect a perfect
precision, e.g., E precisely represents the projected log for (traces t2t3t6t8[. . .]
and t2t3t7t8[. . .]). A process-analyst can see that the conformance problems in
D are not within any of its interior subprocesses but instead is a problem related
to the sequencing of the subprocesses.

Fitness Once the optimal alignment for each trace is found, the non-sync moves
are used to detect the fitness anomalies, i.e., points where the model does not
reflect the log, or points where the log does not reflect the model. Various fitness
metrics have been proposed, penalizing such anomalies. Due to space constraints,
we refer to [4] for further details. Similar to the precision case, our hierarchical
helps to diagnose of the process: one can navigate through the hierarchy, dis-
carding subprocesses that are perfectly fitting, and focusing the analysis only on
those that have fitness problems. For example, given long and repetitive traces
such as t1t2t3t4t5t6t7t8 [. . .] t28t2t3t4t5t6t7t8 [. . .] t28t2t3t4t5t6t7t8 [. . .] t29,
note that t6 and t7 are sequential in this trace. Looking at component E, one
may clearly diagnose the fitness problem i.e., t6 and t7 are in conflict in the
model.

4 The Case of Business Processes

In this section we apply the approach on a particular subclass of Petri nets
tailored towards business processes: sound and safe workflow nets [15].

Workflow nets are a well studied model in the Business Process Management
literature, and therefore, they are the target of various conformance approaches,
(e.g., [3]). This section instantiates the methodology presented in the previous
section to this class of nets. In the remainder we consider Petri nets satisfying the
following seven conditions. The process models used for conformance checking
must be a workflow net: 1) there is a single source place in, i.e., {p ∈ P |•p =
∅} = {in}, 2) there is a single sink place out , i.e, {p ∈ P |p• = ∅} = {out}, 3)
every node is on a path from in to out. The workflow net must be sound : 4)have
the option to complete, i.e., starting from the initial marking (just a token in
place in), it is always possible to reach the marking with one token in place out
(marking [out]), 5) have proper completion, i.e., at the moment a token is put in
place out, all the other places should be empty, 6) there are no dead transitions
starting from the initial state [in]. And finally, the sound workflow net must be
safe: 7) the number of tokens of any place at any time must be at most one.

We now present the details of the post-processing stage for safe and sound
workflow nets. In particular, given GF = (VF , F), a SESE obtained during the
decomposition phase, we describe how to build a SESE-Net SN ′ from it, and

how to determine its initial and final markings. In other words, we aim to build
a Petri net SN ′ = (P ′, T ′, A′, i′, o′, p′i, p

′
o,m

′
i,m

′
o), where P ′, T ′, A′ define the

net, p′i, p
′
o are the source and sink places of the net, m′i,m

′
o are its initial and

final markings, and o′, i′ define the nodes of the Petri net (transition or place)
representing the single-entry and the single-exit of the SESE.

In the remainder of this section the following context is assumed: Let WF =
(P, T,A, pi, po,mi,mo) be the workflow net to be analyzed, and G = (V,E) its
corresponding workflow graph. Let GF = (VF , F) define a canonical SESE of G,
and let i, o ∈ VF be the entry and exit nodes of GF , respectively.

Given that the SESE decomposition is performed over the workflow graph,
the first step is to determine which nodes of the original net WF are included in
SN ′. In other words, for all x ∈ VF : x ∈ P =⇒ x ∈ P ′ and x ∈ T =⇒ x ∈ T ′.
Similar, the projection over the arcs is done, i.e., if x ∈ F then x ∈ A′. For
example, given the SESE D of the running example, shown in Fig. 6a, t2 . . . t8
and p3 . . . p9 are the transitions and places of the original net included in this
SESE-net, respectively.

t2

p3

p4

p5 t5 p8

t4

t3 p6

t6

t7

p9

p7 t8

ε

a)

b)

i o

pi' i' o' po'

Fig. 6: a) SESE and b) its corresponding SESE-Net

Note that, by definition, GF contains a single start and end node: i and o.
Therefore, we define i′, o′ as i′ = i and o′ = o. The existence of such single-entry
and single-exit is an appropriate property in order to determine the source and
sink places of the SN ′. Since the SESE decomposition is performed over the
workflow graph (where there is no distinction between places and transitions),
it is not guaranteed that i′ and o′ are places (they may be transitions). This
is the case of the component D of Fig. 6. In such cases where the entry (or
the exit) node is a transition, a pre-processing of the SN ′ is required, i.e., an
artificial place is created and linked with an artificial arc to such transition. The
transformation is informally illustrated in Fig. 7. An example is shown in Fig. 6a,
where both the entry and the exit nodes are transitions. Therefore, two artificial
places are created (and its corresponding arcs) to represent the p′i and p′o of the
SESE-net, as it is shown in Fig. 6b.

As discussed in the previous section, a net can contain cyclic behavior, i.e.,
subprocesses that are repeated several times within the main process execution.
In the decomposition phase, the cyclic behavior is detected by determining those
SESEs that are covered by T-invariants (i.e., if all transitions in a SESE belong
to some T-invariant, we assume that the component can be repeated) and the

A

A

Z

Z

Fig. 7: Pre-processing of the SESE-net to guarantee a place-bordered net.

hierarchical structure is enhanced with this information. Formally, a T-invariant
is a vector x : T → Z such that C ·x = 0, where C is the incidence matrix of the
net [12]. Intuitively, a T-invariant is a set of transitions such that the marking
reached after executing them is the same as the one before its execution. Clearly,
T-invariants provide only an approximation of the real repetitive behavior, but
we have seen in practice that this heuristic approximation works fine. Moreover,
if repetition is possible, a corresponding T-invariant exists.

Potential cyclic behavior has to be transferred to the subprocess level, i.e.,
SN ′ has to reflect the possibility of being executed more than once. In order
to do that, the SN ′ is short-circuited using a silent transition ε, i.e., when the
execution of the subprocess reaches the end, there is the possibility to re-start,
though the firing of a transition that leaves no track on the log (i.e., it is silent).
Formally, if GF is detected as cyclic, then ε ∈ T ′ and (p′o, ε), (ε, p

′
i) ∈ A′, where

ε 6∈ T . This is the case for the subprocess in Fig. 6a: the two minimal T-invariants
{{t2, t3, t4, t5, t6, t8, t9, t10, t11, t12, t13, t15, t16, t17, t18, t20, t22, t23, t25, t26, t27,
t28}, {t2, t3, t4, t5, t7, t8, t9, t10, t11, t12, t13, t15, t16, t17, t18, t20, t22, t23, t25, t26,
t27, t28}} of the initial net (Fig.1) include the transitions of the SESE and there-
fore it is tagged as cyclic. Hence, a silent transition short-circuit is created as it
is shown in Fig. 6b.

Next, we need to determine the initial and final markings (m′i and m′o) of the
subprocess. Given the workflow net nature of the subprocess and the original
workflow net, we define the initial and final markings as [p′i] and [p′i] respectively
(cf. Fig. 6b).

After post-processing we obtain a new Petri net SN ′ modeling the subprocess
behavior. When iteration is detected, due to the type of nets we are restricting
in this section (safe and sound workflow nets), the modification done to the
original SESE-net enables the iterative behavior in the modified SESE-net. The
final SESE-net (with or without iteration), is used to do conformance analysis.

Likewise it is done in [9] for fitness, it should be possible to establish formal
guarantees relating both fitness and precision metrics evaluated in the subpro-
cesses with respect to the ones of the original net. However, since neither fitness
nor precision are monotonic with respect to subprocess inclusion, the weakest
conditions under which a formal guarantee relating model and subprocesses fit-
ness/precision can be given will be investigated in the future. The example in
Fig. 8 illustrates the non-monotonic nature of the hierarchical approach.

E

G

Event Log

A B C D F G
A E G

A B C D F E G
A B C D G

C

D
B F

A

a)

b) c)A

B

C
D
E

F
C

E
F

D

B
A (0.95 / 0.89)

(0.92 / 0.85)

(0.97 / 0.80)

(0.97 / 0.80)

(0.96 / 1.0)

(0.96 / 1.0)

Fig. 8: The hierarchical approach is non-monotonic with respect to subprocess
inclusion. Each node in the hierarchy c) of the SESEs detected in b) is annotated
with a pair of real numbers, representing the fitness and precision of the corre-
sponding SESE-net for the log obtained after projecting the event log of a) for
the participating activities. For instance, the fitness (first number in the nodes)
for nodes A (0.95), B (0.92) and C (0.97) is neither increasing nor decreasing.

5 Related Work

As it was mentioned in Sec.1, few conformance checking algorithms exists in
the literature, e.g., [16,3,4,6,5,17]. However, given the complexity of the confor-
mance analysis, recently a technique for decomposed conformance checking has
appeared: in [8] the authors propose a non-hierarchical decomposition based on
passages, also meant to be applied to the same class of Petri nets as the one
considered in this paper. A passage is a pair of two non-empty sets of transitions
(X,Y) such that the set of direct successors of X is Y , whilst the set of direct
predecessors of Y is X. Any graph can be decomposed into minimal passages rep-
resenting a partitioning of its transition set, and in [8] authors demonstrate how
both discovery and conformance problems can be decomposed using passages.

There are significant differences between the passage decomposition approach
and the one presented in this paper. We enumerate here the most important ones:

1. The passages approach computes a 1-level partitioning, whereas our ap-
proach derives a hierarchy of components. Note that once 1-level passages are
obtained, they may be united to form higher-level passages, since the union
of passages is a passage. However, algorithms for this high-level post-process
to form a hierarchy have not been proposed nor implemented.

2. The components in the passages approach represent causality fragments be-
tween two sets of transitions, whilst components in our approach denote
parts of the model which interface with the rest of the system only through
two boundary nodes. In other words, components derived by each one of
the approaches are incomparable, i.e., a typical passage cannot be obtained
through our approach whilst a typical SESE (like the one shown in Fig. 6a)
is not a passage.

In the next section an empirical comparison for a set of benchmarks is pro-
vided that witness the previous claims.

6 Experimental Results

In this section we present the experimental results supporting the claims made in
earlier sections. Most of the models have been generated with the PLG tool [18].
Two main type of experiments are provided in two subsections: Sect. 6.1 is
structured in two parts: in part I we compare the hierarchical approach presented
in this paper with manual decompositions performed by some persons, and in
part II we test the approach through a set of experiments, comparing it with
the approaches in the literature and especially with the one presented in [8].
Sect. 6.2 describes an experiment illustrating how the approach can be applied
for a large example, where it is not possible to handle large subprocesses and
therefore only nodes of the RPST that have a size less than a certain value can
be analyzed in practice. An implementation of the approach presented in this
paper can be found as a plugin within the ProM Framework6.

6.1 Empirical evaluation

Part I: Similarities with human-made model decomposition
The first set of experiments is designed to study one of the strong points of
the approach proposed: the process-like decomposition (based on Single Entry
Single Exit components) and its intuitive relation with the mental schema of
process analyst. A set of process models (man01 to man06) has been prepared
in order to be manually decomposed by possible actors of the approach, and
the resulting components have been compared with the ones obtained by the
approach of this paper. The set of benchmarks is composed by six Petri nets
modeling plausible processes. Each model contains the most common patterns
found on process modeling: choice, concurrency, sequencing, invisible tasks, and
loops. The manual decomposition has been performed by 7 persons, all them
with complete liberty to decide their own decomposition. The results of the
experiments are shown in Table 17. The table shows, the number of transitions
and places of the initial Petri net, whether all persons used hierarchy in the
decomposition (hierarchy ?), the (average of the 7 persons) maximum number
of levels in the hierarchy (h- max), and the corresponding maximum number of
levels in the hierarchy computed by our approach (with a 4-nodes threshold).
Also, the number of components computed by all the persons is shown (|C|), and
the percentage of components having less than 5 nodes reported (|Size(C) < 5|).
Finally, we provide the percentage of the components that satisfy the SESE
property (column % SESE-like).

The first conclusion raised from the experiment is related with the intuitive
use of hierarchy for decomposition. This is one of the main differences of the
approach proposed in this paper compared with other approaches such as [8].
The results show that in all benchmarks, all persons use hierarchy. Second, the

6 Under the package JorgeMunozGama.
7 In the link http://www.lsi.upc.edu/~jmunoz/files/PN2013benchmarks.zip the

reader can inspect the manual decompositions.

Table 1: Manual decomposition compared with the hierarchical approach.
|T | |P | hierarchy ? h-max h-SESE |C| |Size(C) < 5| % SESE-like

man01 44 45 Yes 3.4 8 63 14% 91%
man02 16 16 Yes 2.4 5 28 7% 97%
man03 31 34 Yes 3.3 6 50 16% 89%
man04 31 31 Yes 3.3 7 51 16% 96%
man05 48 50 Yes 3.7 7 79 14% 92%
man06 45 51 Yes 3.6 8 71 3% 94%

average number of levels in the hierarchy used by the 7 persons is smaller than
the one computed by our approach. The main reasons for that is that the persons
have not considered components that differ from each other of very few nodes
which is the case for a parent and sibling having a high degree of overlapping.
For instance, in Fig. 2, the only difference between SESE A and SESE B is the
four edges in A not in B. This suggests to refine the SESE detection algorithm
to collapse in the RPST nodes that differ on very few edges, in order to remove
this type of redundancy, e.g., collapse nodes A and B as one single SESE in the
example.

Note that persons prefer larger and process-like components instead of small
and oversimple ones. For example, from column |C|, the percentage of small
components ranges from 3% to 16% (and in most of the cases they correspond
with components of size four: a choice of two transitions). This motivates the
use of a threshold in the approach proposed in this paper. And finally, there
is a direct relation between the components suggested manually and the ones
provided by the approach, i.e., the vast majority of the components correspond
with SESEs, as it is shown in % SESE-like column.

Part II: Evaluation through a set of benchmarks
This second set of experiments focuses on the actual hierarchical conformance
checking. The experiment is composed by six models of different sizes, and their
corresponding logs. For each of the benchmark model and log combinations, the
decomposition is obtained and the conformance analysis is performed per com-
ponent. The results are shown in Table 2 (comparison with respect to the passage
approach), and Table 3, where the results for approaches in the literature [4,5,6]
are provided. Notice that the conformance checking performed in this paper
provides metrics for SESE components. Therefore in Table 2 we present some
intuitive metrics that combine the individual metrics into one single metric, to
have an intuitive estimation of the conformance of the whole model. In Table 2
the number of places and transitions per benchmark are reported, and for each
one of the decomposition approaches (passages or hierarchical), the number of
components obtained (column |C|) is reported. The table also provides the av-
erage fitness/precision with respect to the number of components (comp), and
with respect to the size of the components (node), i.e., in node larger compo-
nents have larger weight on the average fitness/precision computation. The table

Table 2: Conformance Results: passages vs. hierarchical
Passages Hierarchical
Fitness Fitness Precision

|T | |P | |C| comp node max min |C| comp node max min comp node max min

lu01 81 74 50 1 1 1 1 48 1 1 1 1 .958 .761 1 .293
lu02 45 51 29 .897 .898 .942 .84 34 .926 .912 1 .883 .978 .899 1 .649
lu03 86 80 50 1 1 1 1 55 1 1 1 1 .918 .719 1 .327
lu04 43 38 23 1 1 1 1 27 1 1 1 1 .837 .710 1 .343
lu05 91 82 50 .976 .977 1 .939 59 .914 .915 1 .480 .955 .789 1 .362
lu06 59 54 36 .988 .988 1 .955 28 .992 .989 1 .98 .92 .689 1 .272

Table 3: Conformance Results: results for non-decomposition approaches in the
literature.

Fitness Precision
[4] [5] [6]

lu01 1 .301 .301
lu02 .884 .65 .72
lu03 1 .335 .335
lu04 1 .35 .35
lu05 .965 .22 .22
lu06 .988 .283 .295

provides the maximum and minimum fitness/precision value obtained for each
benchmark (max and min)8. Finally, Table 3 reports the conformance analysis
(fitness and precision) by other approaches in the literature.

Regarding the comparison between the passages approach and the hierar-
chical, it should be noted that there is a tendency for the passages approach
to derive less components, which in fact are considerably small. On the fitness
reported, both approaches report perfect fitness for the fitting models lu01, lu03
and lu04, and some differences for the rest. Interestingly, in lu05 a component
with a fitness value of 0.480 is detected, representing the diagnosis of a fitness
problem in a particular subprocess of the model.

By comparing the values in Table 3 of the non-decomposition approaches in
the literature with the ones in Table 2, a clear tendency of the decomposition
techniques to provide higher average values (both in the comp and the node
columns) is detected. This is especially manifested in the precision dimension,
where although the precision problems are still detected and equally evaluated
as in the non-decomposition approaches (see column min for the hierarchical
precision), they are reported at the level of the subprocess, thus identifying the
real portion of the model that represents the conformance problem.

Hence, the results for the hierarchical approach, divided into components,
provide an useful tool for diagnosis. This is complemented by the tree visual-

8 Only the fitness calculation is implemented in the approach [8].

ization provided by the implementation, where the conformance results of each
component are displayed over its corresponding node in the hierarchy using a
intuitive code of colors, aiming at localizing problems within the process (see
Fig. 9). As an example, in some processes such as lu03 (shown in Fig. 9), the
differences in precision between comp and node is considerable, reflecting that
while the vast majority of components have a high precision, the larger compo-
nents have a low one. This is confirmed in the conformance results obtained for
each particular component: while the two largest components have a precision
of 0.33 and 0.32 respectively (shown in the figure as nodes in red in the RPST),
the rest of components (of significant smaller size) have precisions close to or
exactly 1.0. An introspective view of this conformance problem shows that a
big component allows the concurrent execution of three subprocesses, each one
having no conformance problems. However, in the log there is a real sequencing
on these three components, and therefore a precision problem has been identified
between these three subprocesses.

6.2 Handling a large conformance problem

The hierarchical approach presented in this paper can be used to limit the com-
plexity of the conformance analysis by bounding the size of the conformance
instances to solve. This may be done by selecting a partitioning in the RPST
selecting those SESEs whose size do not exceed a given threshold size. This sec-
tion illustrates how this strategy can be used to perform conformance analysis
for problems of industrial size.

With the PLG tool, we have created a model of 693 nodes, depicted in Fig. 10,
and its corresponding log9. Then we have used the approach in [4] to estimate
the fitness of the model with respect to the log, establishing a time limit of 1
hour. Within this limit, the aforementioned approach did not completed the fit-
ness computation. If instead the hierarchical approach is applied together with
a restriction on the size of subprocesses to consider (we have set 200 nodes as
maximum SESE size), we have been able to analyze conformance for the sub-
processes forming the partitioning shown in Fig. 10 in less than 2 minutes. This
conformance analysis revealed, for instance, that the subprocess in green (lef-
most) has a poor precision (0.318) and therefore it may be inspected in isolation
to determine the causes of the conformance problem, while the process in pink
has a perfect precision of 1.0.

9 To ease subprocess identification, we have used colors in Fig. 10 which will only be
visible in the electronic version or in a colored printed version of the paper.

F
ig

.9
:

T
h

e
h

ie
ra

rc
h

ic
al

v
ie

w
of

co
n

fo
rm

a
n

ce
ch

ec
k
in

g
:

th
e

tr
ee

-v
ie

w
(l

ef
t

p
a
n

el
)

p
ro

v
id

es
th

e
R

P
S
T

to
g
et

h
er

w
it

h
th

e
co

n
fo

r-
m

an
ce

re
su

lt
s.

F
it

n
es

s
an

d
p

re
ci

si
on

m
et

ri
cs

fo
r

ea
ch

S
E

S
E

(n
o
d

e
in

th
e

R
P

S
T

)
a
re

p
ro

v
id

ed
a
s

tw
o

co
lo

re
d

sq
u

a
re

s,
fo

ll
ow

in
g

a
se

m
ap

h
or

e
co

d
e:

gr
ee

n
(1

00
-9

0%
),

ye
ll

ow
(8

9
-7

5
%

),
o
ra

n
g
e

(7
4
-5

0
%

)
a
n
d

re
d

(4
9
-0

%
).

B
y

se
le

ct
in

g
a

p
a
rt

ic
u

la
r

n
o
d

e
in

th
e

R
P

S
T

,
th

e
co

rr
es

p
on

d
in

g
S

E
S

E
is

h
ig

h
li

g
h
te

d
in

th
e

ri
g
h
t

p
a
n

el
.

Fig. 10: Partitioning based on SESEs for conformance analysis: we have high-
lighted in colors the SESEs for which a conformance analysis has been done.

7 Conclusions and Future Work

In this paper we presented a hierarchical approach for conformance checking that
enables process analysts to investigate deviations between modeled and observed
behavior. The technique combines previous work on conformance checking and
model decomposition techniques in order to identify subprocesses within a given
model for which an isolated conformance checking can be done, offering a hier-
archical structure that can be used to navigate through the conformance results.
The experiments show both the usefulness of the approach and the difference
with related techniques.

The future work aims to extend the result in various directions. We plan to
investigate the theoretical guarantees and extend the proposed technique to a
larger class of Petri nets. Regarding algorithms, we plan to study new algorithms
to improve both the quality and the performance of the proposed methodology,
e.g., proposing a reduction of the RPST to avoid too much overlapping between
SESEs and finding ways to propagate in a bottom-up manner the conformance
results. The latter is very important to be able for real-life conformance checking
where performance is an issue. Finally, although the approach as been proved to
handle models of industrial size, further experiments considering real-life models
and logs will reveal the real diagnosis value of the contribution presented in this
paper.

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Educación
(AP2009-4959) and by the projects TIN-2011-22484 and TIN-2007-66523.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (May 2011)

2. Rogers, S.: Big data is scaling BI and analytics-data growth is about to accelerate
exponentially. Information and Management - Brookfield 21(5) (2011) 14

3. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1) (2008) 64–95

4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: EDOC, IEEE Computer Society (2011) 55–64

5. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: Business Process Management
Workshops. (2012)

6. Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking.
International Journal of Innovative Computing, Information and Control (IJICIC)
8(7B) (July 2012) 5317–5339

7. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generaliza-
tion of the refined process structure tree. In Bravetti, M., Bultan, T., eds.: WS-FM.
Volume 6551 of Lecture Notes in Computer Science., Springer (2010) 25–41

8. van der Aalst, W.M.P.: Decomposing process mining problems using passages.
In Haddad, S., Pomello, L., eds.: Petri Nets. Volume 7347 of Lecture Notes in
Computer Science., Springer (2012) 72–91

9. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic
approach. Technical Report BPM-12-20, BPM Center (September 2012)

10. Polyvyanyy, A.: Structuring process models. PhD thesis, University of Potsdam
(2012)

11. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In
Dumas, M., Reichert, M., Shan, M.C., eds.: BPM. Volume 5240 of Lecture Notes
in Computer Science., Springer (2008) 100–115

12. Silva, M., Teruel, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place or transition net systems. In Reisig, W., Rozenberg,
G., eds.: Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer
(1996) 309–373

13. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The need for a process mining evaluation framework in research
and practice. In ter Hofstede, A.H.M., Benatallah, B., Paik, H.Y., eds.: Busi-
ness Process Management Workshops. Volume 4928 of Lecture Notes in Computer
Science., Springer (2007) 84–89

14. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In Caillaud, B., Carmona, J., Hiraishi, K., eds.: ACSD, IEEE (2011) 57–
66

15. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Asp. Comput. 23(3) (2011) 333–363

16. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Cor-
respondence of a Process to a Model. ACM Transactions on Software Engineering
and Methodology 8(2) (1999) 147–176

17. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Multi-Dimensional
Quality Assessment of State-of-the-Art Process Discovery Algorithms Using Real-
Life Event Logs. Information Systems 37(7) (2012) 654–676

18. Burattin, A., Sperduti, A.: Plg: A framework for the generation of business process
models and their execution logs. In zur Muehlen, M., Su, J., eds.: Business Process
Management Workshops. Volume 66 of Lecture Notes in Business Information
Processing., Springer (2010) 214–219

