
Enhancing Declare Maps Based on Event Correlations

R.P. Jagadeesh Chandra Bose1, Fabrizio M. Maggi2 and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands.
2 University of Tartu, Estonia.

Abstract. Traditionally, most process mining techniques aim at discovering pro-
cedural process models (e.g., Petri nets, BPMN, and EPCs) from event data.
However, the variability present in less-structured flexible processes complicates
the discovery of such procedural models. The “open world” assumption used by
declarative models makes it easier to handle this variability. However, initial at-
tempts to automatically discover declarative process models result in cluttered
diagrams showing misleading constraints. Moreover, additional data attributes in
event logs are not used to discover meaningful causalities. In this paper, we use
correlations to prune constraints and to disambiguate event associations. As a
result, the discovered process maps only show the more meaningful constraints.
Moreover, the data attributes used for correlation and disambiguation are also
used to find discriminatory patterns, identify outliers, and analyze bottlenecks
(e.g., when do people violate constraints or miss deadlines). The approach has
been implemented in ProM and experiments demonstrate the improved quality of
process maps and diagnostics.

1 Introduction

Processes executed in today’s world are often supported and controlled by information
systems, which record events, like messages and transactions, in so-called event logs.
Process mining aims at discovering, monitoring and improving real-life processes by
extracting knowledge from event logs. Process discovery, conformance checking, and
process enhancement are three main process mining tasks [3]. In particular, process
enhancement aims at enriching and extending existing process models with information
retrieved from logs, e.g., a process model can be extended with performance-related
information such as flow time and waiting time.

Choosing a suitable representational bias for process discovery, visualization, and
analysis is one of the challenges in process mining [11]. Process characteristics play
a significant role in the selection of a suitable representational bias. Processes work-
ing in stable environments are typically highly predictable, i.e., it is easy to determine
in advance the way how processes execute and behave (e.g., a process for handling
travel requests). Procedural languages, such as BPMN, UML ADs, EPCs, and Petri
nets, are suitable for describing such processes because it is easy to explicitly represent
all allowed behavior of the process at hand [4, 22]. In contrast, processes operating in
flexible/turbulent environments are often more complex and less predictable. Here, pro-
cess participants make decisions based on multiple (possibly conflicting) objectives and
have a lot of freedom in the process execution (e.g., a doctor in a healthcare process).

Declarative process modeling languages like Declare [4] are more suitable for such en-
vironments. Declarative models describe a process as a list of constraints that must be
satisfied during the process execution. In declarative languages, an “open world” is as-
sumed where everything is allowed unless it is explicitly forbidden. Declarative models
are widely used in domains and applications where processes cannot be “straightjack-
eted” into a procedural model [7, 15, 16, 25].

Declare is a declarative language introduced in [4] that combines a formal semantics
grounded in Linear Temporal Logic (LTL) with a graphical representation for users.3 A
Declare map is a set of Declare constraints each one with its own graphical represen-
tation and LTL semantics (see [4] for a full overview of Declare). In recent years, ap-
proaches to discover Declare models from event logs [17–19] and approaches to check
conformance of Declare models with respect to event logs [9, 13] have been proposed.

Although promising, these approaches face several challenges and limitations when
being applied to real-life event logs. First of all, discovery approaches typically generate
too many constraints resulting in incomprehensible Declare maps. Most of the gener-
ated constraints have no domain significance and are uninteresting for experts/analysts.
Second, when evaluating the satisfaction of a constraint, one often faces ambiguities
in connecting events that “activate” the constraint (activations) and events that “ful-
fill” it (target events). For example, consider trace t = 〈A,A,B,B〉 and the constraint
response(A,B).4 It is unclear which instance of activity B can be associated to the two
instances of activity A. Such ambiguities inhibit a correct evaluation of constraints in
terms of satisfaction/violation and the application of certain types of analysis such as
performance analysis (e.g., computing the response time of constraints).

One of the main reasons for these ambiguities and incomprehensible maps is the
exclusive focus on the control-flow perspective. Typically, event logs contain additional
information in the form of attributes and values. Let t = 〈A(x = 1, y = 2), A(x =
2, y = 1), B(x = 2, y = 0), B(x = 1, y = 4)〉 be the above trace with its data
attributes. The additional information suggests that the first instance of A is related to
the second instance of B and the second instance of A is related to the first instance of
B because they share the same value for attribute x.

In this paper, we propose an approach to automatically discover significant event
correlations between events involved in a constraint and use these correlations to (i)
enhance (annotate) a discovered Declare map and improve its comprehensibility (see
Fig. 1), (ii) prune discovered constraints that are uninteresting, (iii) disambiguate events
so that correct events are correlated, (iv) extend a Declare map with meaningful perfor-
mance information, and (v) improve the diagnostic abilities by finding discriminatory
patterns (if any) between different classes of behavior (e.g., patterns that may discrimi-
nate between conformant and non-conformant activations of a constraint).

We evaluate the proposed approach using a real-life event log provided for the 2011
BPI Challenge [2], which pertains to the treatment of patients diagnosed with cancer
in a large Dutch academic hospital. Fig. 2 depicts the Declare maps obtained using
the hospital’s event log for the response and precedence constraints with and with-
out correlations (the correlations used are A.org:group = B.org:group and A.Producer

3 In the remainder, LTL refers to the version of LTL tailored towards finite traces.
4 response(A,B) = If A occurs, then eventually B follows after A.

2

A
First outpatient consultation

B
administrative fee-the first polresponse

A.org : group = B.org : group
A.Producercode = B.Producercode

C
unconjugated bilirubin

D
bilirubin - totalresponse

|C.time : timestamp− D.time : timestamp| ≤ 4 days

E
rhesus factor d-Centrifuge method

F
red cell antibody screeningprecedence

E.time : timestamp = F.time : timestamp

Fig. 1. A Declare map annotated with correlations.

(a) without correlations

(b) with correlations

Fig. 2. Declare maps discovered for a hospital’s event log [2] using the response and precedence
constraints with and without correlations.

code = B.Producer code). We can clearly see that the map obtained using correlations
(Fig. 2(b)) is much simpler and more comprehensible than the map using the conven-
tional approach (Fig. 2(a)).

3

The remainder of this paper is organized as follows. Section 2 presents some pre-
liminaries on event logs and the Declare language. Section 3 presents some of the issues
in contemporary approaches in the discovery of Declare maps and highlights how cor-
relations can help address them. Section 4 presents our approach to discovering event
correlations and discriminatory patterns between different classes of constraint behav-
ior. Section 5 presents and discusses the experimental results. Related work is presented
in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce some preliminary notions. In particular, in Section 2.1, we
summarize what an event log is and, in Section 2.2, we give an overview of the Declare
language.

2.1 Event Logs

An event log captures the manifestation of events pertaining to the instances of a single
process. A process instance is also referred to as a case. Each event in the log corre-
sponds to a single case and can be related to an activity or a task. Events within a case
need to be ordered. An event may also carry optional additional information like times-
tamp, transaction type, resource, costs, etc. For analysis, we need a function that maps
any event e onto its class e. In this paper, we assume that each event is classified based
on its activity. We use the following notations:

– A denotes the set of activities. A+ is the set of all non-empty finite sequences of
activities from A.

– A process instance (i.e., a case) is described as a trace overA, i.e., a finite sequence
of activities. Examples of traces are t1 = 〈A,B,C,D〉 and t2 = 〈A,B,B,B,A,D〉.

– Let t = 〈t(1), t(2), . . . , t(n)〉 ∈ A+ be a trace over A. |t| = n denotes the length
of trace t. t(k) represents the kth activity in the trace.

– An event log, L, corresponds to a multi-set (or bag) of traces from A+. For ex-
ample, L = [〈A,B,C,D〉, 〈A,B,C,D〉, 〈A,B,B,B,A,D〉] is a log consisting
of three cases. Two cases follow trace 〈A,B,C,D〉 and one case follows trace
〈A,B,B,B,A,D〉.

2.2 Declare: Some Basic Notions

Declare is a declarative process modeling language introduced by Pesic and van der
Aalst in [4]. A Declare map is a set of constraints that must hold in conjunction during
the process execution. Declare constraints are equipped with graphical notations and
LTL semantics. The most frequently used Declare constraints are shown in Table 1.
However, the language is extensible and new constraints can be added by providing
a graphical representation and corresponding LTL semantics. The results discussed in
this paper only refer to positive relation constraints and not to negative relations (last
three rows in Table 1). Indeed, since negative relation constraints forbid the occurrence
of events, it is less natural to define the notion of correlation for these constraints.

4

Table 1. Graphical notation and textual description of some Declare constraints.

Constraint Meaning LTL semantics Graphical notation

responded existence(A,B)
if A occurs then

♦A→ ♦BB occurs before
or after A

co-existence(A,B)
if A occurs then B occurs

♦A↔ ♦Bbefore or after A
and vice versa

response(A,B)
if A occurs then

�(A→ ♦B)eventually B occurs
after A

precedence(A,B)
if B occurs then

(¬B tA) ∨�(¬B)A occurs
before B

succession(A,B)
for A and B �(A→ ♦B)
both precedence and ∧
response hold (¬B tA) ∨�(¬B)

alternate response(A,B)
if A occurs then eventually

�(A→©(¬A tB))B occurs after A without other
occurrences of A in between

alternate precedence(A,B)
if B occurs then ((¬B tA) ∨�(¬B))
A occurs before B without ∧
other occurrences of B in between �(B →©((¬B tA) ∨�(¬B)))

alternate succession(A,B)
for A and B �(A⇒©(¬A UB)) ∧
both alternate precedence (((¬B tA) ∨�(¬B)) ∧
and alternate response hold �(B →©((¬B tA) ∨�(¬B))))

chain response(A,B)
if A occurs then

�(A→©B)B occurs in the next
position after A

chain precedence(A,B)
if B occurs then

�(©B → A)A occurs in the next
position before B

chain succession(A,B)
for A and B �(A→©B)
both chain precedence ∧
and chain response hold �(©B → A)

not co-existence(A,B)
A and B

¬(♦A ∧ ♦B)cannot occur
together

not succession(A,B)
if A occurs then

�(A→ ¬(♦B))B cannot eventually occur
after A

not chain succession(A,B)
if A occurs then

�(A→©(¬B))B cannot occur in the next
position after A

Consider the response constraint �(A → ♦B). This constraint indicates that if
A occurs, B must eventually follow. Therefore, this constraint is satisfied for traces
such as t1 = 〈A,A,B,C〉, t2 = 〈B,B,C,D〉, and t3 = 〈A,B,C,B〉, but not for
t4 = 〈A,B,A,C〉 because t4(3), i.e., the second instance of A, is not followed by
a B. Note that, in t2, the response constraint is satisfied in a trivial way because A
never occurs. In this case, we say that the constraint is vacuously satisfied [12]. In [9],
the authors introduce the notion of behavioral vacuity detection according to which a
constraint is non-vacuously satisfied in a trace when it is activated in that trace. An
activation of a constraint in a trace is an event whose occurrence imposes, because of
that constraint, some obligations on other events in the same trace. For example, A is
an activation for the response constraint because the execution of A forces B to be
executed eventually.

An activation of a constraint results in either a fulfillment (the obligation is met) or
a violation (e.g., A is not followed by B in a response constraint). A trace is perfectly

5

compliant if there are no violations. Consider, again, the response constraint. In trace t1,
the constraint is activated and fulfilled twice, whereas, in trace t3, the same constraint
is activated and fulfilled only once. When a trace is not compliant w.r.t. a constraint,
at least one activation leads to a violation. In trace t4, for example, the response con-
straint is activated twice (at t4(1) and t4(3)): the activation at t4(1) leads to a fulfillment
(eventually B occurs), but the activation at t4(3) leads to a violation (B does not occur
subsequently). An algorithm to discriminate between fulfillments and violations for a
constraint in a trace is presented in [9].

3 Correlations as a Means of Enhancing Declare Maps

Techniques for the automated discovery of Declare maps from event logs have been
proposed in [17–19]. These approaches, although promising, typically generate maps
with too many constraints, have difficulties in correctly associating events, and do not
provide diagnostic information. This can be attributed to the fact that these techniques
exploit only the control-flow perspective. Several of today’s event logs contain rich
information in the form of (event) attributes pertaining to the data, resource, and time
perspectives.

In this paper, we advocate the use of these additional perspectives and investigate
the correlations between event attributes as a means of addressing some of the above
mentioned issues. Correlations are defined over event attributes and linked through re-
lationship operators between them. For example, two events are correlated if they act
upon common data elements of the process or if they are executed by the same re-
source etc. Such correlations can be used in conjunction to the control-flow relationship
between events (defined in the form of Declare constraints) to further assess the rele-
vance/significance of a constraint. Correlations can help us to:

– prune uninteresting constraints: we conjecture that constraints involving activities
are interesting from a domain point of view only in cases where they share some
common (data) elements of a process. For example, consider an insurance claim
process where, apart from the handling of a claim application, applicants are asked
to fill out a regular questionnaire. Clearly, in this process, the portion soliciting
feedback does not interfere with the claim handling. Subsequently, the control-flow
constraints between the activities involved in the claim handling and the activities
involved in the questionnaire handling are less interesting to experts. This might be
reflected in the activities in these two portions of the process sharing no or very few
attributes (and thereby there are not significant correlations between them). Pruning
such constraints will help reduce the number of uncovered constraints and improve
the comprehensibility of a Declare map.

– disambiguate events: event associations that are ambiguous purely from a control-
flow point of view can be disambiguated with additional conditions on their at-
tributes. For example, consider trace t1 = 〈A,B,C,B〉 and the response constraint
�(A → ♦B). Let us assume that activities A and B have a common attribute x
and that we have an additional condition A.x = B.x correlating these attributes
for this constraint, i.e., the constraint now reads as “if A occurs, then B eventually
follows and the value of attribute x is the same for both A and B”. Now let us

6

assume that t1(1).x = 1, t1(2).x = 2, and t1(4).x = 1. Using the correlation, we
can now clearly identify that the instance of B at t1(4) is the one to be associated
to the activation at t1(1). Disambiguation of events facilitates a correct association
of events involved in a constraint and thereby helps in performance analysis of a
process (e.g., computing the response time more accurately).

– improve diagnostic capabilities: event correlations can be used for a plethora of di-
agnostic insights on process execution. One may use the discovered correlations to
identify any potential exceptional executions/outliers. For example, let us assume
that the correlation A.x = B.x holds for 98% of the fulfillments of a response
constraint �(A → ♦B). The 2% of the activations where the correlation does not
hold (but considered as fulfillments purely from a control-flow perspective) may
potentially be outliers or can be considered as a fulfillment due to wrong associa-
tion of events for the constraint. Similarly, one may try to find if any discriminatory
correlation patterns exist between different classes of behavior, e.g., between acti-
vations that are fulfillments and activations that are violations. For example, in an
insurance claim, one may learn that a constraint is violated if the claim amount is
greater than 1000 euros.

Furthermore, correlations can be used in defining conceptual groupings of activities.
Different correlations between events can be used to define different conceptual group-
ings. For example, one may define equivalence classes based on a common attribute
and consider all activities in that equivalence class as one conceptual group, e.g., the
activities involving all events that are executed within the same department can be de-
fined as one conceptual group. Such conceptual groupings of activities can be used for
guiding the discovery of Declare maps towards results that are more significant from an
application domain point of view [18].

For a categorization of correlations we refer to [6]. In this paper we use:

– Property-based correlation, i.e., events are classified based on a function operat-
ing on their attributes. For example, all claim applications referring to an amount
greater than 1000 euros are grouped together.

– Reference-based correlation, i.e., two events are correlated if an attribute of the first
event (identifier attribute) and an attribute of the second event (reference attribute)
have the same value.

– Moving time-window correlation, i.e., two events are correlated if they occur within
a given duration of one another (e.g., one hour).

We use an extended definition of reference-based correlation according to which two
events are correlated if there is a function connecting an attribute of the first event
with an attribute of the second event. This function can include not only equality but
also operators such as greater than, less than, and not equal to. For example, an event
of producing a document is correlated to an event of checking it if the resource that
produces the document is different from the resource that checks it.

4 Discovering Correlations from Event Logs

Correlations can be provided by a domain expert, or alternatively, one can try to learn
these correlations automatically from event logs. In this section, we focus on the auto-

7

mated discovery of correlations and discriminatory (correlation) patterns between dif-
ferent classes of behavior from event logs.

The XES standard [1] for event logs allows for events having attributes. XES sup-
ports data types such as string, date, boolean, int, and float (henceforth, we consider
int and float types as continuous). Depending on the type, standard operators are sup-
ported. For example, we use the ≤,≥, <,>,=, 6= operators for continuous attributes
and =, 6= for string and boolean attributes. Timestamp (date) attributes are related using
before, after operators in addition to all relation operations (i.e.,≤,≥, <,>,=, 6=) over
the time difference between two events.

We are interested in correlations between comparable attributes of different events,
e.g., in an insurance claim process, attribute amount claimed is comparable to amount
issued, but not to, say, location. If a priori knowledge about the domain is available, we
can use that knowledge to identify/group attributes that are comparable. In the absence
of prior domain knowledge, we consider attributes having the same data type to be
comparable. Standard event attributes in XES are handled differently, e.g., although the
attributes concept:name and org:group are of string type, they are not comparable.

Using the above correlation notion, we generate all feasible correlations for a given
constraint. For discovering significant correlations, we partition the constraint activa-
tions into ambiguous activations and non-ambiguous activations. The definition of what
constitutes an ambiguous activation is specific for each constraint type. We consider a
fulfilled activation as non-ambiguous if there is only one possible target that can be
associated to it. For example, for the response constraint �(A → ♦B), the activations
in traces t1 = 〈A,C,B〉 and t2 = 〈A,A,C,B〉 are non-ambiguous whereas the acti-
vations in traces t3 = 〈A,B,C,B〉 and t4 = 〈A,A,B,B〉 are ambiguous. One may
argue that the activations in trace t2 are also ambiguous because B can be associated
to either of the two A’s. We consider the scenario in t1 as strongly non-ambiguous and
the scenario in t2 as weakly non-ambiguous. For each feasible correlation, we evaluate
its support considering only non-ambiguous activations. The support of a correlation is
defined as the ratio between the number of activations in which that correlation is true
and the total number of non-ambiguous activations. We consider a feasible correlation
as significant if its support is greater than a (user-specified) threshold. For correlations
involving an attribute and a constant value, e.g., B.timestamp − A.timestamp < δ, δ
is derived based on the mean µ and standard deviation σ time difference of all non-
ambiguous activations (for example δ can be set to µ+ σ).

Significant correlations thus discovered from non-ambiguous activations of a con-
straint can then be used to address the issues highlighted before, e.g., to disambiguate
ambiguous activations. For each significant correlation, its degree of disambiguation is
defined as the ratio between the number of ambiguous activations that can be disam-
biguated and the total number of ambiguous activations. Furthermore, different correla-
tions can be combined using conjunctions or disjunctions to form complex correlations.
Fig. 3 depicts the block diagram of discovering constraint correlations.

Discovering Discriminant Correlations An event log may exhibit several classes of
behavior. For example, certain activations of a constraint may be eventually fulfilled
while others may not. As another example, one may observe differences in the response

8

Event Log

Constraint

Identify
activations

Identify
Feasible

Correlations

constraint
activations

feasible
correlations

fulfilled
activations

violated
activations

non-ambiguous
activations

ambiguous
activations

Assess
Significance

significant
correlations

Disambiguate

Fig. 3. Correlations are discovered for non-ambiguous activations and are subsequently used to
disambiguate other (ambiguous) activations.

time for different activations of a constraint (one may distinguish the activations into
slow, medium, and fast based on their response time). Such differences in behavior may
be attributed to some of the characteristics of the events/traces, e.g., one may perceive
differences in the response time of a constraint based on the resources involved in the
execution of the activities or based on the attribute values (such as the claim amount
or geography in a loan handling process). An analyst would be interested in uncov-
ering any significant discriminatory correlations that can explain the different classes
of behavior among the activations. We find such discriminatory correlations using the
following three classification steps:

Step 1: Class Labeling. First, we select all the activations of a constraint and asso-
ciate a class label to them. Different strategies for labeling can be adopted. For example,
one can classify them as conformant or non-conformant based on whether they corre-
spond to a fulfillment or to a violation. One can also consider all the fulfilled activations
of a constraint and classify them as slow, medium, and fast based on their response time.

Step 2: Feature Extraction and Selection. The attributes of the events involved in a
constraint and the process instance (case) attributes are considered as primitive features
for finding discriminatory patterns. If all activations of a constraint (i.e., both fulfilled
and violated) are selected in the previous step, then we only consider the correlations
between attributes of the activations. If only fulfilled activations of a constraint are
selected, then the correlations between attributes of the activations and attributes of the
target events are also considered. This is due to the fact that a correlation involving
an attribute of an activation and a target event can only be defined if the constraint is
fulfilled (only in this case both activation and target event occur).5

Let C = {c1, c2, . . . , cn} be the set of feasible correlations for a constraint, A =
{a1, a2, . . . , am} be the set of attributes of the activation of a constraint, and P =
{p1, p2, . . . , pk} be the set of case attributes corresponding to an activation. Each acti-
vation of a constraint can be translated into a vector where the dimensions correspond
to C ∪ A ∪ P ∪ {Cl}; Cl is a special feature called the class label. The values of the
features for each activation correspond to:

5 This is true only for positive relation constraints (which are the ones considered in this paper).
For negative relations the opposite applies (i.e., a correlation involving an attribute of an acti-
vation and a target event can only be defined if the constraint is violated because only in this
case both activation and target event occur).

9

– {true, false} if the feature is a correlation feature. The value is true if the correlation
holds in the activation and false if it does not hold,

– the value of the attribute in the event corresponding to the activation of the con-
straint if the feature corresponds to ai ∈ A,

– the value of the case attribute corresponding to the process instance of the activation
if the feature corresponds to pi ∈ P , and

– the class label of the activation if the feature is the class label.

The set of all activations upon transformation into a vector space can be seen as a dataset
as depicted in Table 2.

Table 2. A labeled dataset defined by features.

Activation c1 c2 . . . cn a1 a2 . . . am p1 p2 . . . pk Cl

1 true false . . . true 50 xyz . . . 1.5 1000 p . . . r conformant
2 true false . . . false 110 abc . . . 3.25 500 q . . . s non-conformant
3 false true . . . true 64 ted . . . 0.2 275 p . . . t non-conformant
4 false true . . . true 15 xyz . . . 0.87 1255 u . . . s conformant
...

...
...

...

Step 3: Discovering Discriminatory Patterns. Given a dataset as depicted in Table 2,
the goal of this step is to discover the patterns over the features, which are strongly cor-
related to the class label (e.g., conformant and non-conformant). We adopt standard data
mining techniques, i.e., decision tree learning [23] and association rule mining [5, 14].
For the association rule mining, we adopt the special subset called the class associa-
tion rules [14], which is an integration of classification rule mining and association rule
mining. The details of these algorithms are beyond the scope of this paper. The result
of this step are rules such as:

If cn = true AND a1 ≤ 50 AND a2 = xyz AND p1 ≥ 1000 then conformant;
If a1 ≥ 60 AND a2 6= xyz AND p1 ≤ 500 then non-conformant.

Each rule can be associated with metrics such as the number of true positives (TP),
false positives (FP), support and confidence. The quality of the entire set of discrim-
inatory patterns uncovered can be assessed using standard metrics such as accuracy,
sensitivity, specificity, precision, and F1-score.

5 Experiments and Results

The concepts presented in this paper have been implemented as the Extend Declare
Map with Correlations and Extend Declare Map with Time Information plug-ins
in ProM6. The former deals with the discovery and evaluation of correlations while
the latter deals with performance analysis of Declare constraints (e.g., computing the

6 ProM is an extensible framework that provides a comprehensive set of tools/plug-ins for the
discovery and analysis of process models from event logs. See www.processmining.org
for more information and to download ProM.

10

response times). The plug-ins take a Declare map and an event log as input and pro-
duce an enhanced Declare map annotated with data correlations and/or performance
information. The input Declare map can either be discovered using the Declare Maps
Miner plug-in or provided by a domain expert.

We have applied the proposed approach to the BPI challenge 2011 event log [2]
pertaining to the treatment of patients diagnosed with cancer in a large Dutch academic
hospital. The event log contains 1143 cases and 150, 291 events distributed across
623 event classes (activities). The event log contains domain specific attributes, e.g.,
Producer code, Section, Activity code, Number of executions, and Specialism code in
addition to the standard XES attributes for events: concept:name, lifecycle:transition,
time:timestamp, and org:group. We considered attributes with the same name to be
comparable (i.e., an attribute x of the activation event is comparable only to attribute x
of the target event) and explored the feasible correlations for various attributes.

We first generated a Declare Map from this event log using the Declare Maps
Miner plug-in and considered constraints with a support of 50%. Activations that are
fulfillments are further partitioned into ambiguous and non-ambiguous activations. Ta-
ble 3 depicts the number of ambiguous and non-ambiguous activations for some con-
straints. Using the non-ambiguous activations we evaluated the support for the various
correlations. Some significant correlations are depicted in Table 3 (refer columns cor-
relation and support (correl.)).

From the table, we can see that for the response constraint �(A → ♦B) (where
A corresponds to First outpatient consultation and B corresponds to administrative
fee - the first pol), there are 559 ambiguous activations. Correlation A.org:group =
B.org:group (i.e., both activities A and B are performed in the same department) holds
for 94% of the 517 non-ambiguous activations. It is expected that the fee is decided and
collected by the same department that performed the activation activity. However, it is
interesting to see that 6% of the activations do not satisfy this correlation. It could be the
case that by considering only the control-flow perspective, we have wrongly associated
some administrative fee events thereby incorrectly evaluating the constraint as fulfill-
ment for these activations. This correlation is able to disambiguate 57.96% of the 559
ambiguous activations. There exists another correlation A.Producer code = B.Producer
code for this constraint, whose support is 93.61% in the non-ambiguous activations.
This correlation is able to disambiguate 61.53% of the ambiguous activations.

For the response constraint �(C → ♦D) (where C corresponds to unconjugated
bilirubin and D corresponds to bilirubin - total), we discover the correlation
| C.time:timestamp−D.time:timestamp| ≤ 4 days (i.e., activityD should be performed
within 4 days of performing activity C). This event log exhibits coarse granular times-
tamps (recorded at the level of a day). The threshold of 4 days corresponds to µ + σ
where µ and σ correspond to the mean and standard deviation time difference for all
non-ambiguous activations of this constraint. This correlation holds in 99.63% of the
non-ambiguous activations. The remaining 0.37% are most likely outliers. This corre-
lation is able to disambiguate 81.61% of the ambiguous activations.

As another example, for the precedence constraint (¬FtE)∨�(¬F) (whereE cor-
responds to rhesus factor d - Centrifuge method and F corresponds to red cell antibody
screening), there are 603 and 932 non-ambiguous and ambiguous activations respec-

11

Table 3. Correlations discovered for some constraints and their support and degree of disam-
biguation. The encoded activities correspond to A = First outpatient consultation, B = adminis-
trative fee - the first pol, C = unconjugated bilirubin, D = bilirubin - total, E = rhesus factor d -
Centrifuge method, F = red cell antibody screening.

constraint support #non- #ambig. correlation support degree of
(constr.) ambig. inst. (correl.) disambig-

(%) inst. (%) uation(%)

response (A,B) 57.39 517 559
A.org:group =
B.org:group

94.00 57.96

A.Producer code =
B.Producer code

93.61 61.53

response (C,D) 52.40 542 359 |C.time:timestamp −
D.time:timestamp| ≤
4 days

99.63 81.61

precedence (E,F) 54.85 603 932 E.time:timestamp =
F.time:timestamp

100.00 96.45

tively. We discover that the correlation E.time:timestamp = F.time:timestamp holds in
all the non-ambiguous activations (i.e., both these activities are performed on the same
day). Using this correlation, we are able to disambiguate 96.45% of the ambiguous
activations.

Although we discussed the applicability of correlations in disambiguation for the
response and precedence templates, correlations exhibit a similar behavior for other
templates too. Table 4 depicts the average and maximum degree of disambiguation
across various constraints (with a support of 50%) for different templates. From the
table, we can see that the approach proposed above is able to assist in disambiguation
significantly.

Table 4. Degree of disambiguation for different templates.

Template #Constraints Avg #Activations Deg. of Disamb.
per constraint Avg. (%) Max. (%)

non-ambi. ambi.
response 86 402 1321 51.68 95.76
precedence 250 842 1536 32.17 96.45
alternate response 53 733 601 70.67 100.00
alternate precedence 52 807 715 41.86 100.00
responded existence 584 682 2365 20.52 97.62

The discovered correlations can be used to reassess the fulfillment of constraint ac-
tivations. For example, a response constraint �(A → ♦B) can be compounded with
a correlation condition, A.org:group = B.org:group (i.e., in addition to B eventually
following A, it is also required that they are executed by the same resource/department
for an activation to be considered as fulfilled). Some activations that were deemed to be
fulfilled when considering only the control-flow perspective, may no longer be fulfilled
thereby impacting the support of the constraint, whose value, if less than a threshold,
renders the constraint insignificant and a candidate for pruning. Table 5 illustrates how

12

correlations assist in pruning constraints. The first row in each constraint type depicts
the number of constraints for varying support thresholds and without considering cor-
relations, e.g., 371 response constraints have a support of at least 30% in the event log.
The subsequent rows show the effect of adding correlations. For example, by adding a
correlation based on org:group, the number of response constraints with a support of
at least 30% reduces from 371 to 229 (a reduction of 38.3%). Adding the correlation
requirement A.Producer code = B.Producer code results in a reduction from 371 to 100
response constraints.

Table 5. Pruning of constraints using correlations. The number of constraints reported are without
filtering transitive reductions.

constraint correlation #constraints
supp=30 supp=35 supp=40 supp=45

response(A,B)

〈〈 no correlation 〉〉 371 286 225 125
A.org:group = B.org:group 229 180 163 114
A.Producer code = B.Producer
code

100 85 83 71

|A.time:timestamp −
B.time:timestamp| ≤ 4 days

226 172 139 112

precedence(A,B)

〈〈 no correlation 〉〉 458 403 352 261
A.org:group = B.org:group 274 249 240 237
A.Producer code = B.Producer
code

113 106 104 104

|A.time:timestamp −
B.time:timestamp| ≤ 4 days

325 281 274 217

We further analyzed the log for discriminatory patterns that may exist between ful-
fillments and violations of some constraints. Here, we present one such example of
the response(A,B) constraint (where A corresponds to First outpatient consultation and
B corresponds to administrative fee - the first pol). The event log contains 517 (non-
ambiguous) fulfillments and 60 violations of this constraint. We considered the event
attributes of First outpatient consultation, correlations involving these attributes, and
the case attributes pertaining to the traces involving these activations.

The event log contains several case level attributes such as diagnosis and treatment
codes (the reader is referred to [8] for a detailed description on these case attributes).
We have grouped different variants of similar case attributes into a single attribute (e.g.,
the 16 diagnosis code attribute values are captured as a set of values under a single
attribute). We have transformed the 577 activations into vector space using these at-
tributes and their correlations and applied the J48 [23] decision tree learning algorithm.
Out of the 60 non-conformant activations, we could find discriminant patterns covering
23 activations using these features. For example, five of the six activations whose value
of A.Section is Section 5 and C.DiagnosisCodeSet is {106, 823} are non-conformant,
i.e., TP=5 and FP=1 (C signifies a case-level attribute). Similarly, three of the four acti-
vations whose value of A.Section is not equal to Section 5 and A.Producercode is SGSX
are non-conformant, i.e., TP=3 and FP=1.

13

Fig. 4 depicts the annotation of a Declare map with performance information using
the Extend Declare Map with Time Information plug-in. The map is color coded to
easily pin-point bottlenecks based on flow times and the plug-in allows for the interac-
tive exploration of a wealth of diagnostic information e.g., #activations, #fulfillments,
etc. on the constraints.

histogram showing the
distribution of flow
time of activations of
the selected constraint

statistics (mean,
std.dev, min, and max)
on the flow time of the
selected constraint

diagnostic information
(#activations, #fulfill-
ments, #violations) on
the selected constranit

color coding of constraints
helps us identify bottlenecks

Fig. 4. Interactive visualization of a Declare map with diagnostic information such as flow time
and bottlenecks.

6 Related Work

Techniques for the automated discovery of Declare maps from event logs have been pro-
posed in [17–19]. In [19], the authors rely on a combinatorial exploration of all feasible
constraint activations and evaluate the constraints’ goodness based on their activation
ratio, i.e., the percentage of traces where a constraint is activated. In [17], the authors
adopt the classic apriori algorithm [5] to find frequent item sets in data mining to iden-
tify significant activations and propose several metrics such as support and confidence to
prune uninteresting constraints. In [18], the authors extend the work of [17] through the
incorporation of domain knowledge and techniques for pruning redundant constraints
to uncover interesting constraints. None of these approaches exploit the availability of
rich information in the form of data attributes in event logs.

Correlation is a critical topic when applying process mining techniques to event
data recorded by non-BPM/WFM systems. Indeed, these systems just generate a list
of events without providing a properly structured event log. To generate an event log,
it is necessary to correlate events into process instances. In [21], the authors present
an event correlation algorithm to discover the best correlation conditions from a set of
candidates. This algorithm is used to generate an event log from a set of uncorrelated
events. A probabilistic approach based on the Expectation-Maximization (EM) princi-
ple has been proposed in [10] for correlating events from unlabeled event logs (where
case ids are not available).

14

In [20], the authors identify different types of correlations and investigate the prob-
lem of discovering event correlation from data recorded by service oriented systems.
The authors also introduce the concept of process view to represent the process result-
ing from a certain way of event correlation. They argue that correlation is subjective and
that multiple views are possible. For example, in a process for customer order handling,
in one view, orders can be considered from the viewpoint of order lines and, in another
view, the same orders can be considered from the viewpoint of deliveries. A collection
of process views is called the process space.

Rozsnyai et al [24] propose approaches for automatically deriving correlations from
arbitrary sources of data. An interesting part of their work is the automatic identification
of attributes that might be correlated based on properties such as their type, cardinality
and the domain of values. In this paper, we used the heuristic of considering attributes
of similar type as comparable. It would be interesting to explore the applicability of the
concepts proposed in [24] for correlating events for Declare map discovery.

7 Conclusions and Future Work

Declarative process maps discovered from event logs without any consideration for
event and case attributes tend to result in inaccurate and incomprehensible results. In
this paper, we exploited the data present in event logs to discover process maps only
showing relevant and accurate constraints. We proposed a means of discovering sig-
nificant correlations that exist between events and use these correlations to prune con-
straints, to disambiguate event associations, and to provide additional diagnostic in-
formation. Our evaluation using real-life logs demonstrates that the proposed approach
is very promising, e.g., we are able to disambiguate up to 96.45% of events in a hos-
pital log. In this paper, we focused only on positive relation constraints involving two
activities. In the future, we would like to extend this to also cover constraints involv-
ing multiple activities and negative relations (e.g., not co-existence and not succession
in Table 1). Also, the proposed approach relies on some heuristics such as the use of
µ ± σ of time difference for temporal correlations and the correlations of like attribute
types. As future work, we would like to study the trade-off between completeness and
efficiency of mining. Furthermore, we would like to evaluate our approach using more
case studies.

References

1. XES Standard Definition (2009), www.xes-standard.org
2. 3TU Data Center: BPI Challenge 2011 Event Log (2011), doi:10.4121/uuid:d9769f3d-0ab0-

4fb8-803b-0d1120ffcf54
3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-

ness Processes. Springer (2011)
4. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Be-

tween Flexibility and Support. Computer Science - R&D pp. 99–113 (2009)
5. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB. pp.

487–499 (1994)

15

6. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-Oriented Ar-
chitectures. In: FASE. LNCS, vol. 4422, pp. 245–259. Springer, Berlin (2007)

7. Binder, M., Dorda, W., Duftschmid, G., Dunkl, R., Fröschl, K.A., Gall, W., Grossmann,
W., Harmankaya, K., Hronsky, M., Rinderle-Ma, S., Rinner, C., Weber, S.: On Analyzing
Process Compliance in Skin Cancer Treatment: An Experience Report from the Evidence-
Based Medical Compliance Cluster (EBMC2). In: CAiSE. LNCS, vol. 7328, pp. 398–413
(2012)

8. Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of Patient Treatment Procedures: The BPI
Challenge Case Study. Technical Report BPM-11-18, BPMCenter.org (2011)

9. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori
Analysis of Declarative Processes. In: EDOC. pp. 41–50 (2012)

10. Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In:
BPM. LNCS, vol. 5701, pp. 143–158. Springer, Berlin (2009)

11. IEEE Task Force on Process Mining: Process Mining Manifesto. In: BPM 2011 Workshops.
LNBIP, vol. 99, pp. 169–194. Springer, Berlin (2011)

12. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. International
Journal on Software Tools for Technology Transfer pp. 224–233 (2003)

13. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning Event Logs and Declarative
Process Models for Conformance Checking. In: BPM. LNCS, vol. 7841, pp. 82–97. Springer
(2012)

14. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: KDD.
pp. 80–86. The AAAI Press (1998)

15. Ly, L.T., Indiono, C., Mangler, J., Rinderle-Ma, S.: Data Transformation and Semantic Log
Purging for Process Mining. In: CAiSE. LNCS, vol. 7328, pp. 238–253 (2012)

16. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring Business Process Compli-
ance Using Compliance Rule Graphs. In: OTM Conferences (1). LNCS, vol. 7044, pp. 82–99
(2011)

17. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient Discovery of Understandable
Declarative Models from Event Logs. In: CAiSE. LNCS, vol. 7328, pp. 270–285. Springer,
Berlin (2012)

18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A Knowledge-Based Integrated Ap-
proach for Discovering and Repairing Declare Maps. In: CAiSE (2013), to appear

19. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declarative
Process Models. In: IEEE Symposium on Computational Intelligence and Data Mining. vol.
2725, pp. 192–199. IEEE Computer Society (2011)

20. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for Pro-
cess Discovery from Web Service Interaction Logs. The VLDB Journal 20(3), 417–444
(2011)

21. Perez-Castillo, R., Weber, B., Guzmn, I.R., Piattini, M., Pinggera, J.: Assessing Event Corre-
lation in Non-Process-Aware Information Systems. Software & Systems Modeling pp. 1–23
(2012)

22. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative Versus
Declarative Process Modeling Languages: An Empirical Investigation. In: BPM Workshops.
LNBIP, vol. 99, pp. 383–394 (2011)

23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
24. Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering Event Correlation Rules for

Semi-structured Business Processes. In: DEBS. pp. 75–86 (2011)
25. Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-Play Virtual Factories. IEEE

Internet Computing 16(5), 78–82 (2012)

16

