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Abstract—Operational processes leave trails in the information
systems supporting them. Such event data are the starting point
for process mining — an emerging scientific discipline relating
modeled and observed behavior. Whereas an event log describes
example behavior of the underlying process, a process model
aims to describe an abstraction of the same process. Models may
be descriptive or normative. Descriptive models aim to describe
the underlying process and are used for discussion, performance
analysis, obtaining insights, and prediction. Normative models
describe the desired behavior and are used for workflow manage-
ment, system configuration, auditing, compliance management,
and conformance checking. Differences between modeled and
observed behavior may point to undesirable deviations or in-
adequate models. In this paper, we discuss challenges related to
finding the “right” process, i.e., the process model that describes
the real underlying process or a process that behaves as desired.

I. INTRODUCTION

Recently, process mining emerged as a new scientific
discipline on the interface between process models and event
data [1]. Conventional Business Process Management (BPM)
[2] and Workflow Management (WfM) [3] approaches and tools
are mostly model-driven with little consideration for event
data. Data Mining (DM) [4], Business Intelligence (BI), and
Machine Learning (ML) [5] focus on data without considering
end-to-end process models. Process mining aims to bridge the
gap between BPM and WfM on the one hand and DM, BI,
and ML on the other hand (cf. Figure 1).

The practical relevance of process mining is increasing as
more and more event data become available (cf. the recent
attention for “Big Data”). Process mining techniques aim to
discover, monitor and improve real processes by extracting
knowledge from event logs. The two most prominent process
mining tasks are: (i) process discovery: learning a process
model from example behavior recorded in an event log, and (ii)
conformance checking: diagnosing and quantifying discrepan-
cies between observed behavior and modeled behavior.

Starting point for any process mining task is an event log.
Each event in such a log refers to an activity (i.e., a well-
defined step in some process) and is related to a particular
case (i.e., a process instance). The events belonging to a case
are ordered, and can be seen as one “run” of the process. Such
a run is often referred to as a frace. It is important to note that
an event log contains only example behavior, i.e., we cannot
assume that all possible runs have been observed.

Given a process model (discovered or made by hand) and
an event log one can try to align modeled and observed
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Fig. 1. Process mining is on the interface between process model analysis

and data-oriented analysis and can be used to answer a variety of performance
and compliance-related questions.

behavior. An alignment relates a trace in a event log to its
corresponding path in the model. If there is not a direct match,
the trace is aligned with the closest or most likely path. Such
alignments can be used to answer performance-oriented and
compliance-oriented questions (cf. Figure 1). Alignments can
be used to show how often paths are taken and activities are
being executed. Moreover, events often bear a timestamp which
can be used to compute flow times, waiting times, service
times, etc. For example, alignments can be used to highlight
bottlenecks in the process model. Similarly, alignments can
be used to show where model and event log disagree. This is
commonly referred to as conformance checking.

This paper focuses on the relation between modeled and
observed behavior and considers two use cases: (i) evaluating
the results of process discovery (“How good is the model I
discovered?”) and (ii) comparing discrepancies between some
normative or descriptive model and an event log (“Where do
model and log disagree?”). The latter question is relevant
for compliance-related questions (e.g., auditing). Also note
that discrepancies between model and event log may point to
problems in the model (e.g., the model is a poor representation
of reality and as such has no predictive power) or problems in
the process described by the model (e.g., people deviate from
the desired process or cases are handled too late). The second



part of the title of this paper — The Quest for the ‘“Right”
Process — refers to both types of problems.
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Fig. 2. Process discovery and conformance checking relate a descriptive or
normative process model to an unknown process using event data.

Unlike existing approaches, we initially assume that the
“real process” is known to better understand the quality of pro-
cess discovery and conformance checking. Figure 2 provides
an overview of the problem investigated in this paper. The
real process is generally unknown. We can only see the event
data generated by this process (arrow record). These event
data can be used to discover a process model (arrow process
discovery). Moreover, the process model (discovered or man-
made) and the event log can be compared as illustrated by the
solid double-headed arrow conformance checking. However,
both process discovery and conformance checking aim to tell
something about the unknown real process rather than the
example traces in the event log (see the two dashed arrows
in Figure 2).

In the remainder we investigate the relationship between
the real process, the event log, and a given process model.
Section II reviews existing approaches and literature related to
conformance checking. Section III provides formal definitions
for processes, process models, and event logs. Using these
definitions and assuming that the real process is known, we
discuss various precision and recall notions in Section IV. In
Section V the assumption that the real process is known is
dropped and event data are used to “guess” the real process.
Section VI reflects on the findings in the previous sections and
discusses additional challenges. Related work is considered in
Section VII. Section VIII concludes the paper.

II. EXISTING CONFORMANCE CHECKING APPROACHES

To introduce conformance checking and to describe some
of the existing approaches, we use the process model shown
in Figure 3. A labeled Petri net is used to represent the
process. A Petri net is a bipartite graph consisting of places
and transitions. Transitions are the active components and
places are the passive components. Places may contain tokens.
The network structure does not change, but transitions may
consume and produce tokens. A transition may have a label
describing the corresponding activity. For example, transition
t1 models activity “register request” having short name a and

t2 models the skipping of activity “examine file” modeled by
transition ¢3. Transitions without a label, e.g., t2, are invisible
and do not correspond to actual activities.

The process starts with a token in place start and ends
with a token in place end. Figure 3 allows for traces such as
(a,e,b,d, f,9), (a,c,d,h),and {(a,b,c,d, e, c,d, g, ) (because
of the loop there are infinitely many possible traces). The
notation itself is not relevant: any other notation could have
been used (e.g., BPMN, UML activity diagrams, EPCs, BPEL,
etc.).

An event log is a multiset of traces. Each trace is a
sequence of activities. Multiple cases may follow the same
trace. An example log is Ly = [{(a,c,d, f,9)'°, (a,c,d, h)5,
{a,b,c,d,e,c,d,g, f)°]. L1 contains information about 20
cases, e.g., 10 cases followed trace (a,c,d, f,g). Figure 3
shows only three of these 20 cases. There are 10 x 5+5 x4+
5x 9 = 115 events in total. Ly = [(a, c,d, f)1°, (a,c,d, c, h)®,
{a,b,d,e,c,d,g, f,h)%] is another event log also containing 20
cases.

Conformance checking techniques investigate how well an
event log L and a process model M fit together. Let M be the
labeled Petri net in Figure 3. Clearly, L, is perfectly fitting M
whereas L, is not.

A. Four Quality Dimensions for Comparing Model and Log

There are four quality dimensions for comparing model
and log: (1) fitness, (2) simplicity, (3) precision, and (4)
generalization [1]. A model with good fitness allows for most
of the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model
from beginning to end. The simplest model that can explain
the behavior seen in the log is the best model. This principle is
known as Occam’s Razor. Fitness and simplicity alone are not
sufficient to judge the quality of a discovered process model.
For example, it is very easy to construct an extremely simple
Petri net (“flower model”) that is able to replay all traces in an
event log (but also any other event log referring to the same
set of activities). Similarly, it is undesirable to have a model
that only allows for the exact behavior seen in the event log.
Remember that the log contains only example behavior and
that many traces that are possible may not have been seen yet.
A model is precise if it does not allow for “too much” behavior.
Clearly, the “flower model” lacks precision. A model that is not
precise is “underfitting”. Underfitting is the problem that the
model over-generalizes the example behavior in the log (i.e.,
the model allows for behaviors very different from what was
seen in the log). At the same time, the model should generalize
and not restrict behavior to just the examples seen in the log.
A model that does not generalize is “overfitting”. Overfitting
is the problem that a very specific model is generated whereas
it is obvious that the log only holds example behavior (i.e., the
model explains the particular sample log, but there is a high
probability that the model is unable to explain the next batch
of cases).

Figure 4 shows that the four quality dimensions may be
competing. Just like the four forces enabling a airplane to fly
(lift, gravity, drag, and thrust), one needs to balance fitness,
simplicity, precision, and generalization when discovering pro-
cess models from event logs.
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Fig. 4. The four forces of process mining: lift = fitness (ability to explain
observed behavior), gravity = simplicity (Occam’s Razor), drag = precision
(avoiding underfitting), and thrust = generalization (avoiding overfitting).

Many fitness notions have been defined in literature [1],
[6], [71, [8], [9], [10], [11], [12]. Independent of the notion
used, all approaches will indicate that L, is perfectly fitting
M whereas Lo is clearly not. Precision can be quantified by
counting “escaping edges” [13], [10], [11]. Also notions for
simplicity and generalization have been defined [1], [6], [14].
The problem is that many different conformance metrics can
be defined. These metrics all aim to capture an intuitive notion
and struggle with the problem that the real process is unknown.

B. Token Based Replay

A naive approach towards conformance checking would
be to simply count the fraction of cases that can be “parsed
completely”. In terms of Figure 3, this would be the fraction of
cases corresponding to firing sequences leading from the state
with a token in start to the state with a token in end. Let M be
the process model in Figure 3 and L; and L, as defined before.
100% of the cases in L are fitting M whereas 0% of the cases
in Lo are fitting M. However, the latter example shows that
such a naive approach is unable to distinguish between an
almost fitting trace and a trace that has little in common with
any path in the model.

Therefore, more sophisticated approaches have been devel-

f a = register request

b = examine file

¢ = check ticket

d = decide

e = reinitiate request

f = send acceptance letter
g = pay compensation

h = send rejection letter

a,c,d,f,g
a,b,c,d,e,c,d,qg,f
a,c,d,h

A process model represented using a labeled Petri net; the event log shows three example traces that could have been generated by this process.

oped. A good example is the token-based replay approach that
counts produced p, consumed c¢, missing m, and remaining
r tokens [1], [12]. Consider the perfectly fitting trace o1 =
(a,e,d, f,g) and the labeled Petri net in Figure 3. Initially,
all four counters are set to zero: p = ¢ = m = r = 0. Then
the environment produces token for place start to initialize the
process: p = 1. When firing transition ¢1 for the first activity
in o (a), one token is consumed and two tokens are produced:
p=14+2=3and ¢c =0+ 1 = 1. When executing ¢4 for
the second activity in o (c), one token is consumed and one
token is produced: p =3+ 1 =4 andc=1+1= 2. To
execute the third activity in o (d), we first need to execute ¢2:
p =441 =5and ¢ = 2+1 = 3. Then we can execute t5 which
consumes two tokens and produces one token: p =5+1 =6
and ¢ = 3+ 2 = 5. Etc. After replaying the entire trace,
the environment consumes the token from place end to close
the process. After this the total number of produced tokens is
p = 11 and the total number of consumed tokens is ¢ = 11.
Clearly, there are no problems when replaying the o1, i.e.,
there are no missing or remaining tokens (m = r = 0).

The fitness of a case with trace o is defined as follows
[12]:
1 m 1 r
¢ ,M:f(l——) (1t
fitness (o, M) 5 c + 5 < p)
The first parts computes the fraction of missing tokens relative
to the number of consumed tokens. 1 — ™ = 1 if there are
no missing tokens (m = 0) and 1 — 2 = 0 if all tokens to
be consumed were missing (m = c¢). Similarly, 1 — £ =1 if
there are no remaining tokens and 1 — £ = 0 if none of the

produced tokens was actually consumed. fitness(oy, M) = 1
because there are no missing or remaining tokens.

Let us now consider a trace that cannot be replayed prop-
erly: oo = {(a,b,d, h). The first two activities can be executed
without any problems; fire ¢1 and ¢2. When trying to execute t5
for the third activity in o2 (d), we encounter a problem because
place c4 is empty. We record the missing token m = 1 and
continue. At the end a token remains in place ¢2. Hence, r = 1.
After replaying o5 completely: p = 6, ¢ = 6, m = 1, and

r = 1. Hence, fitness(o2, M) = $(1—3) + 1(1—-1) ~ 0.83.



The same approach can be used to compute the fitness
of an event log consisting of many cases: fitness(L,M).
Simply take the sums of all produced, consumed, missing,
and remaining tokens, and apply the same formula. If multiple
cases follow the same trace, the produced, consumed, missing,
and remaining tokens should be multiplied accordingly.

C. Aligning Event Log and Process Model

Token-based replay has problems when dealing with more
complex process models having duplicate and silent activities
and event logs with long traces. The results may be misleading
and there is no explicit relation between model and log.
Alignments were introduced to tackle these problems [6], [7],
[13], [15], [16]. Consider the following three alignments for
the traces in L; and model M in Figure 3:
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The top row of each alignment corresponds to “moves in the
log” and the bottom two rows correspond to “moves in the
model”. Moves in the model are represented by the transition
and its label. This is needed because there could be multiple
transitions having the same label. If a move in the model
cannot be mimicked by a move in the log, then a “>>” (“no
move”) appears in the top row. For example, in the third
position of v; the log cannot mimic the invisible transition
t2. The T above ?2 indicates that {2 does not correspond to
a visible activity. Note that all “no moves” (i.e., the seven >
symbols) in 3 — 3 are “caused” by invisible transitions.

Two example alignments for Ly and process model M in
Figure 3:

lalc|>]d|>]f]>]>]
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Alignment 4 shows a “>>” (“no move”) in the top row
that does not correspond to an invisible transition. The model
makes a g move (occurrence of transition t9) that is not in
the log. If a move in the log cannot be mimicked by a move
in the model, then a “>” (“no move”) appears in the bottom
row. For example, in 5 the second ¢ move in the log is not
mimicked by a move in the model. Note that the “no moves”
not corresponding to invisible transitions point to deviations
between model and log.

A move is a pair (z, (y,t)) where the first element refers
to the log and the second element refers to the model. For
example, (a, (a,t1)) means that both log and model make

an “a move” and the move in the model is caused by
the occurrence of transition ¢1. (>, (g,19)) means that the
occurrence of transition 9 with label g is not mimicked by
a corresponding move of the log. (¢,>>) means that the log
makes an “c move” not followed by the model.

An alignment is a sequence of legal moves such that after
removing all > symbols, the top row corresponds to a trace
in the log and the bottom row corresponds to a firing sequence
starting in the initial state (token in starf) and ending in the
final state (token in end). y;—ys are examples of alignments
for the traces in L; and their corresponding firing sequences
in Figure 3. v4 and 5 are examples of alignments for the first
two traces in Lo and complete firing sequences of the same
process model.

Given a log trace and a process model there may be many
(if not infinitely many) alignments. Consider the following two
alignments for (a,c,d, f) € Lo:

lalc|[>|d[>]|f[>]>|
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~4 seems to be better alignment than ~y, because it has only
one deviation (move in model only; (>>, (g,t9))) whereas 7}
has three deviations: (>, (b,t3)), (f,>), and (>>, (h,t10)).
To select the most appropriate one, we associate costs to
undesirable moves and select an alignment with the lowest total
costs. To quantify the costs of misalignments we introduce a
cost function §. Moves where log and model agree have no
costs, i.e., 0(z, (z,t)) = 0 for all z € A. Moves in model only
have no costs if the transition is invisible, i.e., 5>, (7,t)) = 0.
(>, (z,t)) > 0 is the cost when the model makes an “z
move” without a corresponding move of the log. 6(x,>) >0
is the cost for an “z move” in just the log. These costs may
depend on the nature of the activity, e.g., skipping a payment
may be more severe than sending too many letters. The cost
function can also be used to assign a penalty to events that are
executed too late or by the wrong person [17].

An optimal alignment has the lowest possible costs, i.e., the
observed trace is related to a path in the model that is “closest”
in terms of the cost function 4. If the optimal alignment has
non-zero costs, there was a deviation. The total cost of an
optimal alignment quantifies non-conformance. It is possible to
convert such misalignment costs into a fitness values between
0 (poor fitness, i.e., maximal costs) and 1 (perfect fitness, zero
costs). This can be done at the level of a single trace or at the
level of an entire event log. We refer to [6], [7] for details.

The notion of an optimal alignment can be used to create
a so-called oracle. Given a full or partial trace, the oracle
returns the most likely path in the model (or a set of paths).
The resulting aligned path(s) can be used to evaluate the full
or partial trace, e.g., to compute costs, time, risks, energy
consumption, etc. Hence, there may be different cost functions
to evaluate paths returned by the oracle. In fact, the cost
functions and oracle can also be used to make predictions about
the completion of cases.



Once the oracle established an optimal alignment for every
trace in the event log, these alignments can also be used
as a basis to quantify other conformance notations such as
precision and generalization [6]. For example, precision can
be computed by counting “escaping edges” as shown in [13],
[10], [11]. Alignments can also be used to project additional
information extracted from event logs onto the model. For
example, timestamps in the event log can be used to identify
bottlenecks in the process and to predict delays in running
processes [1], [18], [19].

D. Problem

The approaches based on replay and alignments illustrate
that there are various ways to quantify fitness. Literature
identifies four quality dimensions for comparing model and log
[1], [6], [14], [20]. Unfortunately, these do not seem orthogonal
and for each of the four dimensions different metrics can
be defined [21]. Even for an intuitively clear notion such as
replay fitness various metrics are possible [1], [6], [7], [8],
[9], [10], [11], [12], [20], [22]. Therefore, we take a step back
and reconsider the relation between modeled and observed
behavior. In order to do this we first assume that we know
the real process and use the concepts precision (the fraction of
retrieved items that are indeed relevant) and recall (the fraction
of relevant items that are indeed retrieved) from information
retrieval.

III. PROCESSES, EVENT LOGS AND MODELS

In this section, we formalize the basic concepts used
in the remainder. Process models, processes, and event logs
share common notions such as activity and trace (sequence of
activities).

Definition 1 (Universe of Activities, Universe of Traces):

A is the universe of activities, i.e., the set of all possible and
relevant activities. Other activities cannot be observed (or are
abstracted from). Elements of A may have attributes, e.g.,
costs, resource information, duration information, etc. A trace
o € A* is a sequence of activities found in an event log or
corresponding to a run of some process model. & = A* is
the universe of traces.

We assume that an activity is identified by attributes
relevant for learning, i.e., irrelevant attributes are removed
and attribute values may be coarsened. |.A| is the number of
unique activities. Process models with hundreds of activities
(or more) tend to be unreadable. In the remainder we will refer
to activities using a single letter (e.g. a), however, an activity
could also be decide(gold, manager, reject) to represent a
decision to reject a gold customer’s request by a manager.

In a process a trace 0 € U has a likelihood (o). We
assume the process is in steady state and that cases do not
influence each other.

Definition 2 (Process): A process is a discrete probability
function m € U — [0, 1] which assigns a probability 7(o) to
any trace o € U.

Note that ., ,m(0) = 1. An event log is similar to a
process, but each trace has a frequency L(o) rather than a
likelihood (). Formally, an event log is a multiset of sample
traces from a known or unknown process.

Definition 3 (Event Log): An event log L € B(U) is a
multiset of observed traces.

The same trace may appear multiple times. For ex-
ample in event log Li = [(a,¢,d, f,9)'° (a,c,d,h)>,
{a,b,c,d,e,c,d, g, f)°], trace (a,c,d, f,g) appears 10 times.

T(X) = D ,ex (o) for a set or multiset of traces X
(counting elements multiple times if needed). For example,
m(L1) = 10 x 7({a, ¢, d, f,9)) + 5 x 7({a,c,d, h)) + 5 x
7r(<a7 b’ C? d’ e’ C7 d7 g? f>)

Like any process model, the labeled Petri net in Figure 3
defines a set of possible traces. In this paper, a process model
is defined as a set of traces, i.e., we abstract from the concrete
notation.

Definition 4 (Process Model): A process model is a set of
traces M C U.

A process model splits the universe of traces U into two
classes: M (all traces possible according to the model) and M
(all traces impossible according to the model).

Definition 5 (Complement): M = U \ M is the comple-
ment of some model M.

In Figure 2 we used the terms real process, event data,
and process model. The real process is represented by process
mo € U — [0,1]. The event data are represented by event
log L € B(U). The process model obtained through process
discovery or used for conformance checking is represented by
M, CU.

Let us assume that we also have My C U as the “ideal” or
“desired” model derived from the real process 7. For example,
My could be based on my and some predefined threshold.
Consider the following two exemplary model derivations:

o My={oelU|my(c) > €} for some trace probability
threshold ¢ € [0, 1].

e My C U such that M is the smallest set that satisfies:

mo(Mo) > 7 and Voen, ¥, 57, m0(0) > mo(o”) for

some threshold T € [0, 1].

The latter way of computing M, can be explained intuitively,
e.g., if 7 = 0.8, then M is the so-called “80% model”
covering at least 80% of the process behavior with a preference
for more likely traces. The 80—20 rule (also known as the
Pareto principle) informally states that often 80% of the
behavior can be explained by 20% of the most frequent traces.

From a more philosophical point of view one could argue
that anything is possible (just wait long enough and it will
happen): Murphy’s law for process mining. Taking this view-
point, it is not interesting to look for an My with mo(My) = 1,
because My = U as a consequence (i.e., the model does not
contain any information).

In the remainder, m € U — [0, 1] defines the probability of
a trace according to the model. In a stochastic process model
(e.g., a generalized stochastic Petri net or Markov chain [23])
such probabilities are defined explicitly. If the model does not
contain such information, 7; is estimated (e.g., assume equal
probabilities for all choices or use domain knowledge and/or
historic information).



The following table summarizes the conventions used in
the remainder:

process model
(probability) (selection)
real process (“ideal” || mp e U — [0,1] | My CU
or “desired”)
descriptive or norma- || 73 €U — [0,1] | M; CU
tive process

IV. PRECISION AND RECALL OF MODELS ASSUMING AN
A PRIORI DISTRIBUTION

In reality we do not know the real process my and only
see event log L as a reflection of the actual process. However,
assuming that 7y, My, w1, and M; are known, we can use
standard information retrieval notions such as precision and
recall.! To illustrate this consider Figure 5. The area TP
(True Positives) corresponds to all traces that are possible
according to both the ideal/desired model M, and the de-
scriptive/normative model M. The area F'IN (False Negatives)
corresponds to all traces that are not possible according to
the descriptive/normative model M;, but that are possible
according to the ideal/desired model M. T'N (True Negatives)
and F'P (False Positives) are defined in a similar fashion. TP,
EFN, TN, and FP can be used to define precision and recall.
However, since there are infinitely many possible traces in i/
and also models may describe infinitely many traces, we cannot
simply count the number of traces in the four classes. There-
fore, we assign weights to traces based on their likelihood.
However, there are two ways to determine the likelihood: based
on mq (real likelihood) or 77 (modeled/estimated likelihood).
Therefore, there are multiple precision and recall notions.

ideal or desired model based on descriptive or normative model
perfect knowledge of real process (man-made or discovered)

Mo
M;
FN P
Mo FP
™
Fig. 5. Comparing My and My: TP = Mo N My, TN = Mo N My,

FP=MoN M, and FN = Mo N M;.

Definition 6 (Precision and Recall): Let mg € U — [0, 1]
be the real process having My C U as its “ideal” or “desired”
model. Let My C U be the “descriptive” or “normative” model,
and (optionally) 71 € U — [0,1] a function determining the

INote that the notion of precision used here (i.e., the fraction of retrieved
items that are indeed relevant) is different from the notion of precision used
in Figure 4 and Section II-A.

likelihood of traces according to the model. TP = My N My,
TN = MQﬂMl,FP Moli,andFN M()ﬂMl
Precision and recall are defined as follows:

recision _ R _ il
p o Mo My = VY T 1o (TP) + o (FP)
recall~ no, My = TolTP) - uSes
o, Mo, M (MO) W(](TP) +7T0(FN)
N _ m(TP) m(TP)
DPrecision . aro My, = m(My)  m (TP)+ m(FP)

recally, Mo, My = -

7T1(TP) +7T1(FN)

09) a d Ko1
i1 3 R _,Q
0.9
starto1 b cl c c2 t5 end
t2 t4

Fig. 6. My = {(a,c,e), (b,c,€),(a,c,d,c,e),...} and the probabilities are
as shown, e.g., mo({a, c,e)) = 0.9x0.9 = 0.81, mo((b,c,e)) = 0.1x0.9 =
0.09, mo((a, ¢, d,c,e)) = 0.9 x 0.1 x 0.9 = 0.081, etc.

09 C
OROSO@a) O DEe
start t1 cl oy b c2 t4 end
t3

Ei%. 7. My ={{a,c,e),{a,b,e)}, m1({a,c,e)) = 0.9, and 71 ({a, b, e)) =

To illustrate these notions consider 7wy and M, shown in
Figure 6 and 7 and M; shown in Figure 7. TP = {{a,c, e)},
mo(TP) = 0.81, and 71 (TP) = 0.9.

.. 7T0(TP) 0.81
Precision .,y v, = 77r0(M1) =08
mo(TP)  0.81
lx = — =081
reCatlmy, Mo, My 7T()( )) 1
TP 0.9
PTECISION 1 ppo My = M =0T = 0.9
m(TP) 0.9
- = — =1
reca 1Mo, My 7T1(M0) 0.9
Next to precision and recall, related notions such as er-
ror (7“(123(;?1\[) = 7(FP U FN)), accuracy (7“(TPUTN) =

m(TP UTN)), and Fl-measure can be defined. The FI-

measure is the harmonic mean of ?recision and recall:

Precision . oy XTecalle vy, M
Frvonn, = 2 X —— 20, M ©~L  Note that 7
»AVio, M1 DTECISION 1 Ao Ay “+recall Mg, My

may refer to my or 7.




At first it may seem odd to consider both my (real but
generally unknown probabilities) and 7; (modeled and possi-
bly inaccurate probabilities). However, both views are needed.
This can be illustrated as follows.

If M; allows for many traces that rarely or never hap-
pen in reality, then precision . ag p, 18 hardly affected by
this because the contribution of these traces to mo(FP) is
marginal. Extending M; with behavior that is impossible
according to 7, does not increase precisionm Mo, M - In fact,
if mo(Mo) = 0, then precision . y; n, = 1 by definition.
Hence, precision . s, p, is unable to detect the loss of
precision. However, adding behavior to M; that is impossi-
ble according to mo will impact precision,, np ar, @S T is
likely to reflect the extra behavior allowed by M;. Hence,
precision., a, v, Will be able to signal the loss of precision.

Similarly, it seems reasonable to assume that (Hl) =
0 (i.e., traces that are impossible according to the model
have a model-based probability of 0). Hence, 71 (F'N) = 0
and recally, amy.ar, = 1. This illustrates that recall based
on m; tends to give optimistic values. It is better to use
recally, vy, v, instead.

We cannot avoid using a weight function 7 because there
may be infinitely many traces (due to loops) and we need to
quantify the surfaces in Figure 5 in some way. It is essential to
distinguish between highways (frequent paths) and dirt roads
(infrequent paths). From a conformance point of view, it is
more relevant that both models agree on the highways than
their consensus on insignificant paths. However, using a weight
function complicates matters as g is unknown and 7; may not
be given.

V. PRECISION AND RECALL BASED ON EVENT DATA

In the previous section we did not consider the event log
and assumed that my, My, m1, and M; are known. Typically,
mo and M, are unknown. The only things that are known
are event log L, model M;, and (optionally) 7. Therefore,
we use event log L to approximate my, My, and possibly 7.
Given approximate values 7y, and M, we can apply the earlier
definitions of precision and recall.

Figure 8 relates L to the unknown M, and the known
M. The larger event log L is, the more it will cover M.
Moreover, more likely traces in the real process tend to appear
more frequently in event log L. This observation can be used
to approximate the real process.

Definition 7 (Estimator Based on Log): Let L € B(U) be
an event log. m;, € U — [0, 1] is an estimator of my based on

L:7p(o) = IT\) for o e Y.

Just like My can be derived from 7y, My, can be derived
from 7. For example, My C U such that M7, is the smallest
set that satisfies: w (M) > 7 and VgeMLVU 137, (o) >
7 (o") for some threshold 7 € [0,1]. My is the estimator
model for M, based on L.

If there is no information about 7 in the “descriptive” or
“normative” model, we can use replay algorithms to estimate
probabilities for choices [1], [24]. For example, for a choice
between a and b in the model we can measure the fraction of

times a (and b) occurs in the event log and use this to extend
the model with stochastic information.

In the remainder we assume that (1) 77, is an estimator for
T, (2) M, is an estimator for My, (3) M; is given, and (4)
71 is known (either it is given or estimated based on replaying
log L on Mj).

Now we can apply all of the earlier computations using
these estimators: TPy, = M NM,, TNy, = M NM,, FPr =
MpnNM,, FNp, =M, N M,

B 7w (TPp)
DPTecision ., nr, v, = m
recall - @

mr,Mp,M WL(ML)
N _ m(TPy)
pT‘@CZSZOnﬂl,J\/[L*IMl - m
B ™ (TPL)
T@Ca/llTr17ML)M1 o m

Consider again the process shown in Figure 6 and m;
and M; shown in Figure 7. However, now assume that
mo and My are unknown. Instead, we have an event log

L = [<a’ ¢, 6> agbaca €>27<Q,C,d7c, €>1,<CL,C,d,C, da C»€>1}~
m({a,ce)) = 35 = 08, 7((bce)) = & = 0.1,
((acdce)):—*005 and 71 ({a,c,d,c,d,c,e)) =

% = 0.05. Assume My = {0 € L}, i.e., the process model

able to reproduce all observed traces. TPy, = {{a,c,e)},

WL(TPL) = 08, and 7T1(TPL) =0.9.

recision ENACLEY) (TPe) = % =1
p ™z, Me, My 7TL(M1) 0.8
WL(TPL) 0.8
- =— 2 =—=038
Trecbbyy My M, WL(ML) 1
.. 7T1(TPL) 0.9
=——==—=09
Precision v, (M) 1
m(TPy) 0.9
- =———=—=1
TeCblsy My , M, 7T1 (ML) 9

Let L = {0 € U | o ¢ L}. By definition 71(L) = 0,
so things outside the event log are assumed to be impossible.
If M, = {oc € U | mr(0) > 0}, then 7 (M) = 1 and
7 (M) = 0. As a result 77 (FPr) = 7 (TNy) = 0 and
precision, nr, p, = 1. This is a concern as precision is not
affected by adding non-observed behavior to M;.

If My = {oc € U | mi(o) > 0}, then 71 (M;) = 1 and
m (M) = 0. As a result m (T'N) = m(FNg) = 0 and
recally, vy v, = 1.

Hence, in practice the only two meaningful metrics are
recally, ap v, and precision . ar, g, -

If we assume 7y, (M) = 1 (all observed observed behavior
is possible in M) and m(M;) = 1 (behavior that is not
modeled is considered to be impossible), these two metrics
can be simplified as follows:

’/Tl(TPL)

mon) ~ MO =m)

PTECISION ., np, ppy =



ideal or desired model based on
perfect knowledge of real process

descriptive or normative model
(man-made or discovered)

4event log

Mo

regular behavior in log not
covered by model

Problem I: event log does
not provide information
about the whole universe of
traces only a selected part

regular behavior in log
covered by model

M,
L
7P

\
\

xceptional behavior in log

‘ E
\
\

| Problem II: in practice it is
unclear where this line is

covered by model

\ exceptional behavior in log
not covered by the model

Fig. 8. Event log L is finite and contains only samples of the real process. A trace o € L typically fits into the unknown ideal or desired model Mp. However,
o may be infrequent in reality and not part of My. Trace o may fit the descriptive or normative model M7 (or not).

WL(TPL)
WL(ML)

recall, vy v, = =7(TP) =7 (M)
These correspond to the traditional precision and fitness
notions [1], [6] discussed in Section II-A. The notion of
fitness (ability to replay event log) in Figure 4 corresponds
to recallr, ar, m, and the notion of precision (not allowing
for too much behavior unrelated to event log) in Figure 4
corresponds to precision .. ar, -

Interestingly, in Section IV we already concluded that
precision based on m; and recall based on 7y seem to be
the only two notions that make sense. Hence, whether we
approximate my by 7z, or not, we come to the same conclusion.

VI. BEYOND PRECISION AND RECALL

In the previous section we concluded that recall., ar,
and precision,, nr, py, are the only two meaningful metrics.
As indicated, recallr, ar, ., refers to the classical notion of
fitness and precision ., ar, , refers to the classical notion of
precision described in Section II-A. However, Figure 4 shows
two additional quality dimensions: simplicity and generaliza-
tion.

Simplicity (often referred to as Occam’s Razor) is a concern
not addressed by precision and recall. Simplicity seems only
indirectly related to the notions used before (i.e., my, My, 7,
My, m, and M;). For example, the complexity of process
model M; C U should not be defined as the number of
possible traces. A simple process model having a loop has
infinitely many possible traces. Concurrency may introduce a
factorial number of possible interleavings, but does not need
to be more complex than a model with choices instead of
concurrency. Hence, |M;| is a bad indicator for a model’s
perceived simplicity. Consider for example the “flower model”
that is able to generate any trace over some alphabet. The

model is easy to understand and can be represented compactly,
but is the “largest model” in terms of corresponding traces.

There are various techniques to quantify model complexity.
The complexity of the model could be defined by the num-
ber of nodes and arcs in the underlying graph. Also more
sophisticated metrics can be used, e.g., metrics that take the
“structuredness” or “entropy” of the model into account. A
detailed discussion of these complexity metrics is outside the
scope of this paper. We refer to [25] for pointers to over twenty
metrics described in literature.

The notion of generalization described in Section II-A
seems to be related to the quality of 7, as an estimator for 7.
A model that does not generalize is “overfitting”. Overfitting
is the problem that a very specific model is generated whereas
it is obvious that the log only holds example behavior. Gen-
eralization can be defined as the probability that the next, not
yet observed, case can be replayed by the process model. In
other words, the probability that for the next observed trace
on: oy € M. It is difficult to reason about generalization
because the notion refers to unseen examples. In [6], [14]
possible metrics are discussed.

If we have an event log L with just a few traces and most
traces are unique, then 7y, is a poor estimator for 7y. In this
case, the next trace oy is likely to be different from all traces
seen before. Hence, a model allowing for just the traces in L
will not allow for o . If we have an event log with many traces
and most traces appear many times, then 77, is a much better
estimator for my due to the strong law of large numbers that
states that the sample average converges to the expected value
(assuming independence between the different cases). Hence,
a model allowing for the traces in L will, most likely, also
allow for o . These extreme examples illustrate the connection
between generalization in Figure 4 and the quality of 7 as
an estimator for the unknown 7.



In the context of discovery algorithms, often a notion of
completeness is defined. An event log is complete if it contains
enough example behavior to discover the underlying process.
For example, in the context of the « algorithm [26] a log is
complete if all direct successions have been observed, i.e., if
a can be followed by b in the process it should be observed
at least once in the event log. Clearly, completeness is related
to generalization and the quality of 77, as an estimator for 7.

The above reasoning reconfirms the necessity of the four
conventional quality dimensions described in Section II-A.
This is quite surprising since a completely different starting
point was used. Unlike existing process mining literature, our
reasoning is based on the assumption that we know the real
process my and we consider probabilities explicitly (rather
than considering only the possibility of a trace). Yet, we
come to the same conclusion. Nonetheless, the new insights
may help to provide more objective metrics for precision and
generalization.

Moreover, we advocate the use of a so-called Pareto front
for process discovery. Rather than aggregating the four quality
dimensions into a single value and selecting the best model
according to an aggregate value, we suggest building a set of
process models that are Pareto-efficient. A process model is
Pareto-efficient if there is no other model that scores better
with respect to one dimension (e.g., fitness) and not worse
with respect to the other three dimensions (e.g., simplicity,
generalization, and precision). The Pareto front is very natural
in the context of genetic process mining [9], [14] where many
different possible models are explored.

The Achilles’ heel of the precision and recall metrics
defined in Section V is the definition of 7: my is unknown,
7y, is just an approximation, and m; may be very different
from reality. Moreover, depending on the choice of 7 the
interpretation of recallr arar, and precision, p gy, changes.
It would be interesting to investigate hybrid approaches using
an estimator 7' € U — [0,1] that uses both model and log,
e.g., the likelihood of a trace is based on the frequency in the
log and the likelihood of the corresponding path in the model.
The weight of the log-based part could be based on the log’s
size or completeness.

Function 7 can be used to select the desired perspective
(model or log). Moreover, it is interesting to think of a
parameterized function m. where c is a timestamp or some
context attribute. For example, in December, when it is raining,
the probability of trace o is higher than in June when the sun
shines. The probability of o may depend on the month, the
day of the week, the weather, the workload, etc. This relates
to notions such as concept drift [27] and contextual process
mining [28].

VII. RELATED WORK

See [1] for an introduction to process mining and the
Process Mining Manifesto [29] for the main challenges in
process mining.

Cook et al. [30], [31] were among the first to quantify the
relationship between event logs and process model. They com-
pare event streams of the model with event steams generated
from the event log.

Several authors proposing process discovery algorithms
also provide a quality metric (often related to fitness). For
example, in [9] the authors define a fitness function for search-
ing for the optimal model using a genetic approach. In [32]
a “process mining evaluation framework” for benchmarking
process discovery algorithms is proposed.

The first comprehensive approach to conformance analysis
was proposed in [12] by Rozinat and Van der Aalst. Two
different types of metrics are proposed: (a) fitness metrics,
i.e., the extent to which the log traces can be associated
with valid execution paths specified by the process model,
and (b) appropriateness metrics, i.e., the degree of accuracy
in which the process model describes the observed behavior,
combined with the degree of clarity in which it is represented.
Fitness in [12] is measured by “replaying the event log”
and counting the number of missing and remaining tokens.
This typically results in rather high fitness values as also
pointed out in [16], [21]. In [12] four appropriateness metrics
are defined. Simple behavioral appropriateness looks at the
average number of enabled transitions. If most transitions are
continuously enabled, the model is likely to lack precision (i.e.,
underfitting). Advanced behavioral appropriateness compares
the “footprint” of the log (follows and precedes relationships)
to the “footprint” of the model. Simple structural appropri-
ateness and advanced structural appropriateness quantify the
complexity of the model.

One of the drawbacks of the approach in [12] and most
other approaches that “play the token game”, is that fitness
is typically overestimated. When a model and log do not fit
well together, replay will overload the process model with
superfluous tokens. As a result, the model will allow for too
much behavior. Approaches such as the one in [12] also have
problems when the model has “invisible activities” (silent steps
that are not recorded in the event log) or “duplicate activities”
(multiple transitions bearing the same label). To deal with such
phenomena state-space exploration and heuristics are needed
to replay the event log. In fact, most conformance techniques
give up after the first non-fitting event or simply “guess” the
corresponding path in the model. Therefore, Adriansyah et al.
formulated conformance checking problems as an optimization
problem [16], [7].

Lion’s share of attention in conformance checking has
been devoted to checking fitness. However, in recent papers
researchers started to explore the other quality dimensions [6],
[14]. For example, Munoz-Gama et al. quantified additional
precision notions [13], [10], [11].

As shown in this paper, it is difficult to use classical
quality notions such as precision and recall for process mining.
The main reason is that event logs only contain positive
examples, i.e., one can see what “did happen” but not what
“could not happen”. Therefore, some authors suggest inserting
artificially generated “negative events” [8], [33]. Goedertier
et al. proposed such events for both process discovery and
conformance checking [8]. De Weerdt et al. defined a so-called
F-measure based on artificially generated negative events [33].
The authors of the latter paper also conducted a comparative
analysis of several conformance metrics [21], [20].

In [34] a so-called completeness metric and soundness
metric are defined. These metrics compare the traces of the



model with the traces in the log. This approach suffers from
several drawbacks. First of all, only complete traces are
compared. Second, it is assumed that the model’s behavior
can be enumerated. Finally, it is assumed that the log contains
all possible traces.

In [35], the techniques presented in [16], [7] are general-
ized to artifact-centric processes (the so-called Proclets). The
conformance notions in [35] also take interactions between
process instances into account.

Several approaches create so-called behavioral footprints
to compare event log and model [1]. The key idea is that a
footprint can be based on observed behavior and modeled be-
havior as described in [1]. Another example of such a footprint
is the so-called “behavioral profile” [36]. The problem of this
approach is that it cannot handle loops properly (unlike [1],
[12]).

All techniques discussed thus far, compare model and log.
There are also many compliance approaches that compare a
model and another model or a model and a set of rules [37],
[38], [39], [40]. These approaches are very different from the
techniques discussed in this paper as they do not take the actual
observed behavior into account. In fact, these approaches
do not even take the likelihood of traces into account. This
problem is discussed in [41], [42] where process equivalence
is quantified based on observed behavior.

Although not shown in this paper, alignments can also
be used for performance analysis as most event logs contain
timestamps [1]. Replaying event logs with timestamps allows
for bottleneck analysis and prediction as demonstrated in [18],
[19].

VIII. CONCLUSION

In this paper, we investigated the relation between observed
and modeled behavior. This topic is highly relevant as torrents
of event data have become available. As a result, models can be
discovered using process mining techniques and it is possible
to reflect on existing process models using real event data.

In literature typically four quality dimensions for compar-
ing model and log are considered: fitness, simplicity, precision,
and generalization [1]. At a first glance these dimensions seem
arbitrary and not well defined. Therefore, this paper used well-
known notions from information retrieval (precision and recall)
to compare observed and modeled behavior. Unlike existing
papers we started from the assumption that the real process
is known. Moreover, we also take the likelihood of traces into
account.

As shown, it is crucial to consider the likelihood of traces
when comparing the ideal/desired model and the descrip-
tive/normative model. There are two main reasons. There may
be infinitely many traces (e.g., in case of loops). Therefore,
it does not make sense to count traces without considering
their likelihood. Moreover, some traces may be very frequent
(highways) whereas other traces occur rarely (dirt roads). If
observed and modeled behavior disagree on a “highway”, this
is more severe than disagreement on some infrequent trace.

In case the real process my and the desired process model
My are known, precision,, ap a, and recally, ar, ar, make

most sense. If only an event log L is available and 7y and
My are unknown, then precision., ar, ar, and recallz, a,
are the two obvious metrics to consider. Surprisingly these
correspond to the traditional precision and fitness notions.

nr, is a log-based estimate of my. The quality of such
an approximation is an important factor when comparing
observed and modeled behavior using precision and recall.
The approximation’s quality is closely related to the notion
of generalization. Simplicity is another obvious concern that
is not covered by precision and recall. Hence, despite taking
a completely different starting point, we end up with the
conventional four quality dimensions for analyzing the relation
between observed and modeled behavior [1].

The second part of the title of this paper — The Quest
for the “Right” Process — can be viewed from two angles.
When the process model and the real process (reflected in the
event log) disagree, one can “blame” (1) the model or (2) the
actual process. When evaluating process discovery techniques,
the real process is always “right” and the discovered process
model is “wrong” in case of deviations. For other applications,
the process model and/or the real process may be “wrong”. For
example, if people often deviate from the normative process
model, then conformance analysis may trigger measures to
influence the behavior of these people. However, deviations
may also point to inefficiencies in the normative process. For
example, people may bypass activities for good reasons. In this
case the model need to be repaired based on observed behavior
[43]
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