
A Software Framework for
Risk-Aware Business Process Management

Raffaele Conforti1, Marcello La Rosa1,2, Arthur H.M. ter Hofstede1,4, Giancarlo
Fortino3, Massimiliano de Leoni4, Wil M.P. van der Aalst4,1, and Michael Adams1

1 Queensland University of Technology, Australia
{raffaele.conforti,m.larosa,a.terhofstede,mj.adams}@qut.edu.au

2 NICTA Queensland Lab, Australia
3 Università della Calabria, Italy
g.fortino@unical.it

4 Eindhoven University of Technology, The Netherlands
{m.d.leoni,w.m.p.v.d.aalst}@tue.nl

Abstract. With the large diffusion of Business Process Management (BPM)
automation suites, the possibility of managing process-related risks arises. This
paper introduces an innovative framework for process-related risk management
and describes a working implementation realized by extending the YAWL system.
The framework covers three aspects of risk management: risk monitoring, risk
prevention, and risk mitigation. Risk monitoring functionality is provided using a
sensor-based architecture, where sensors are defined at design time and used at
run-time for monitoring purposes. Risk prevention functionality is provided in the
form of suggestions about what should be executed, by who, and how, through
the use of decision trees. Finally, risk mitigation functionality is provided as a
sequence of remedial actions (e.g. reallocating, skipping, rolling back of a work
item) that should be executed to restore the process to a normal situation.

1 Introduction

Companies are exposed to risks on a daily basis. Some of these risks may eventuate
during the execution of business processes, for example due to a missed deadline or
because the accrued cost may have exceeded an estimated budget threshold. We call this
type of risk process-related risk. Ideally, every business process management system
(BPMS) would provide process-related risk management capabilities covering the three
main aspects of risk management: risk monitoring, risk prevention and risk mitigation.
However, while commercial BPMSs [5,8] already provide monitoring functionalities
that can be used for risk monitoring, nothing more than this is currently available. An
extensive literature review in the area of risk-aware BPM has been carried out in [7], from
it emerged how so far research on risk-aware BPM manly focuses on the design-time
phase.

In this paper we present a framework5 for risk management which not only provides
features for risk monitoring but also for risk prevention and risk mitigation. The frame-
work is composed of three main components, one for each aspect of risk management.

5 available at http://www.yawlfoundation.org

http://www.yawlfoundation.org


The idea behind this framework is to enrich the business process management (BPM)
life cycle with elements of risks management (see Fig. 1). Specifically, in the Process
Design phase a business process model will be mapped with risks identified during the
Risk Identification phase. During the Process Implementation phase these risks will be
linked to specific elements of the process, e.g. resources (also known as actors), tasks,
or data. In the Process Enactment phase, a risk-aware BPMS will execute the process,
allowing the identification and treatment of risks during the Process Diagnosis phase.

Process 

Implementation

Risk-aware workflow 

implementation

Risk 

Identification

Risk analysis

Risk-annotated

 models

Risk-annotated

workflows

Current

process data

Historical

process data
Risk prevention

changes

Process Design

Risk-aware 

process modelling

1

2

3

4Process Diagnosis

Risk monitoring and 

controlling

Process 

Enactment

Risk-aware 

workflow execution 

Risk mitigation

changes

Reporting

Risks

Fig. 1. Risk-Aware BPM Lifecycle

Risk monitoring features are pro-
vided through a sensor-based archi-
tecture. Sensors are defined at design
time by specifying a risk condition
that needs to be monitored, and are
activated at run-time by a sensor man-
ager. The sensor manager also noti-
fies the administrator when one of the
sensors detects a risk. A risk eventu-
ates if the risk likelihood associated
with it exceeds a risk threshold de-
fined at design time. The risk thresh-
old indicates the risk level that a company is willing to accept.

Risk prevention features are provided in the form of suggestions given to a resource
while performing a process instance. The system, using decision trees, produces an
estimation of the final risk level associated with each work item a resource may perform
at a given moment, suggesting the work item with the lowest risk level to be executed.
The system also provides support during the execution of a work item, by providing a
predicted risk level based on the data values provided by a resource.

Finally, risk mitigation features are provided in the form of a mitigation strategy.
When a notification is received, the administrator can request a mitigation strategy. In
this case, the system uses a simulated annealing algorithm to identify a sequence of
mitigation actions (e.g. reallocating, skipping, rolling back of a work item) that need
to be executed in order to bring the process instance to a situation in which the risk
likelihood is below the given threshold.

2 Risk Monitoring

Developed for flexibility, the sensor-based architecture provides for the monitoring of
business processes via the definition of sensors. While the use of sensors to monitor
business processes is not novel (see. e.g. [5]), the methodology behind the architecture is
original, as is the functionality provided by the definition language [2].

The architecture allows monitoring through two phases (see Fig. 2): a design time
phase, during which sensors are defined, and a run-time phase, during which a process
instance is monitored by an instance of each sensor defined for such a process.

Conditions are defined through the use of variables and operations that specify what
a sensor must monitor. These variables can be subdivided in three groups: i) status,
providing information about status, times, number of execution, etc. of a work item;



Sensor-based Architecture - PostCameraReady

Enact Process
Model

Process
model

Define sensor

Process
case

Process
logs

Sensor

Register sensor

Monitor sensor

Update sensor
data

Check sensor
condit ion

Send
notif icat ion

Trigger
occurred

Process instance
completed

For each sensor

Suff icient
data

Sensor
condit ion

fulf illed

Insuff icient
data Sensor condit ion

not fulf illed

Dr La Rosa Marcello 1 of 1 23.09.2011

Fig. 2. Realization of risk-aware BPM lifecycle via sensors.

ii) value, the value of a data variable used during the execution of a process instance
(for example the shipping cost of an order processed during the execution of an Issue
Shipment Payment Order); and iii) resource, supplying information about the availability
of a resource. Moreover, sensors are not limited to running instances, but can also collect
information from completed instances and group them together to obtain aggregate
information i.e. probabilities or frequencies. Finally, each sensor can have a trigger
defined, which could be an event, e.g. work item completion, or a timer, e.g. every 5
seconds.

Process engine

Sensor Manager

Monitor service

Process logs
Sensors

BPMS

DB
int.face

Engine
int.face

Monitor
int.face

Fig. 3. System-Engine interactions

The runtime phase verifies and
detects any changes to the process,
while monitoring for the violation of
specified conditions. Each condition
is evaluated against the values the rel-
evant variables have been assigned
during the execution of the process.

The architecture (see Fig. 3) is
realized as a custom service of the
YAWL Environment [9]. The YAWL
Editor (see Fig. 4) was extended to
provide new features that make it pos-
sible to easily identify variables and
create risk conditions for the defini-
tion of new sensors, or to edit existing sensors. The editor also provides the ability to
import risk conditions using a set, that can be extended by the user, of fourteen predefined
templates. Figure 5 provides a screenshot of the wizard used during the creation of a risk
sensor based on a template.

At the core of the architecture is the Sensor Manager, which provides for the creation
of sensors and the interaction between sensors and YAWL system. The Sensor Manager
contains three different interfaces, which interact with the YAWL engine, its logging
database and the YAWL monitor service respectively. Once registered with the YAWL
Engine, the Sensor Manager retrieves the process specification, initializes the sensors
and keeps track of the execution of process instances. Periodically, using the update time
specified at design time or whenever an event is triggered, the service notifies the sensors
of the changes that have occurred in the process instance and the relevant data values



Fig. 4. The Risk Sensor Editor

retrieved from the process logs. Every time a sensor receives an update, it verifies the
sensing condition. If the condition is violated the sensor notifies the Monitor Service
which will notify the administrator marking the instance as “Risky”. Similarly, if the
condition of an instance marked as “Risky” is no longer violated, the sensor will notify
the Monitor Service which will mark the instance as “Safe”.

Fig. 5. The Wizard for the use of templates

3 Risk Prevention

Risk prediction functionality is provided in the form of support for risk-informed deci-
sions during the execution of business processes. Each time a resource needs to execute
(or is executing) a work item, the system provides information about the level of risk
that will be reached at the completion of the process instance through the execution of
that particular work item.



Fig. 6. The integration of the implemented tools with the YAWL system.

The system predicts the final level of risk by using decision trees as described in [1].
Once started, the system analyzes the log of the BPMS and generates a decision tree for
each possible choice that may be taken (i.e. work item execution).

Figure 6 shows the architecture of this component. It is an independent service that
on the one hand communicates with the BPMS, in this case the YAWL system, to retrieve
the process model and its execution log, while on the other hand communicates with the
resource handler to provide suggestions in the form or risk level associated with each
work item. The process model is used to discover decision points (i.e. task), while the log
is used to mine a decision tree for each decision point discovered, where each leaf of a
decision tree represents a fault level that a process instance may reach at its completion.

Fig. 7. A screenshot of the Map Visualizer



Once the component is initialized and all decision trees are built they are used at
run-time to provide suggestions, which are visualized using a map-based workflow
handler [4] (see Fig. 7). The suggestion visualizations are based on the expected risk
level of each choice, based on the predicted fault level that will be reached by taking that
choice times the frequency with which the prediction has previously proven correct.

During the execution of a process, a resource will be exposed to two types of
suggestions. Figure 7 is a screenshot of the map-based workflow handler, where a
resource will choose which work item to execute. The map-based workflow handler
provides a graphical visualization of the process model, with dots on enabled work items.
These dots represent the final risk level expected if the work item is executed. The color
of each dot ranges from white, meaning a risk level equal to zero, to black, denoting a
certain fault. These dots also grow in size, where the size of the dots reflects the number
of work items actually enabled.

Fig. 8. A screenshot of the execution of a work item with risk prediction support

The second type of suggestion to which a resource can be exposed provides assistance
during the execution of a work item, in particular with the completion of its form-based
data fields. Figure 8 shows a screenshot taken during the completion of a form. By
clicking on the “Predict” button each time a new value is entered into a form field, the
system will update the graded bar on the right, indicating the revised final risk level.



To do so, the system will send the values entered on the form to the risk prevention
component of the service, which will then use this information to navigate the decision
tree associated with that particular work item and return the calculated risk level.

4 Risk Mitigation

The last component of our framework is the risk mitigation component, which interacts
with the risk monitoring component and it is invoked by an administrator whenever a
risk sensor detects a risk and the administrator considers it necessary to start a mitigation
strategy.

Once a mitigation strategy is requested, this component will retrieve the status of
each risk sensor involved in the monitoring of that specific process instance. These
statuses are used to create a “virtual” environment in which mitigation strategies can be
simulated in order to discover the optimal mitigation strategy. A mitigation strategy is
composed of a sequence of mitigation actions that need to be executed in order to restore
the process instance to a situation in which the risk no longer exceeds the tolerance
threshold. These mitigation actions are atomic operations that work on the level of the
single work item. Examples of mitigation actions are the rollback of a work item or the
reallocation of a work item to another resource (for the complete list of mitigation action
we refer to [3]).

To evaluate the best mitigation strategy, the risk mitigation component uses a simu-
lated annealing algorithm [6]. The algorithm finds the sequence of mitigation actions
that minimizes the risk level of each risk defined for that particular process, and the cost
of the mitigation strategy (each mitigation action has a behavioral cost that needs to be
considered). Finally, the best five solutions discovered are returned to the administrator
who can then decide which one to apply.

5 Tool Maturity

The framework proposed in this paper has been tested with business process models from
different domains, such as logistics, insurance and movie making processes, and with
real and artificial logs. Each component of the framework exposes a different level of
maturity. The monitoring component is the most advanced component. Tests have shown
good results in terms of time performance, in general between a few milliseconds and a
few seconds for the time required to identify a potential risk (based on the complexity
of the risk condition) [2]. It was also used by several students in Italy and Australia
in the context of university courses on process automation. This component was also
tested with a sample of users in order to measure its usability and easy of use [2]. The
results showed that the component helps modelers to understand the risks involved with
a process, particularly when the modelers have limited experience. A limitation that
arose from the study is that the language used for defining risk conditions was perceived
as being too complex.

The risk prevention component was tested with artificial data and, at the time of
writing, is being tested with real data. The utility of the visualization framework was
tested in a separate work [4].



Finally, the risk mitigation component is the least mature one. It is currently not
possible to automatically execute all the potential mitigation actions proposed as part of
a mitigation strategy, and in particular a rollback on the system. This limitation means
the component may propose a solution that cannot actually be executed. We are currently
addressing this limitation.

6 Demo Script

This demo will provide an overview of the tool, showing each of the available features.
The demo targets BPMS users such as business analysts and process participants, as
well as researchers interested in the intersection between risk management and process
management. The demo will show how to define a risk sensor from scratch using one of
the available templates, and how to create a new template. After the definition of a risk
sensor, a process instance will be executed to show how the system can support process
participants in making risk-informed decisions by offering contextual suggestions, and
how it is be able to detect potential risks and trigger warnings for process administrators.
The demo will conclude with the discovery of a possible mitigation strategy.

Acknowledgments This research is funded by the ARC Discovery Project “Risk-aware
Business Process Management” (DP110100091).

References

1. R. Conforti, M. de Leoni, M. La Rosa, and W.M.P. van der Aalst. Supporting risk-informed
decisions during business process execution. In Proc. of CAiSE, LNCS. Springer, 2013. To
appear.

2. R. Conforti, M. La Rosa, A. H. M. ter Hofstede, J. Recker, and M. Adams. Real-time risk
monitoring in business processes: A sensor-based approach. BPM Center Report BPM-12-23,
BPMcenter.org, 2012.

3. R. Conforti, A. H. M. ter Hofstede, M. La Rosa, and M. Adams. Automated risk mitigation in
business processes. In Proc. of CoopIS, volume 7565 of LNCS. Springer, 2012.

4. M. de Leoni, M. Adams, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Visual support
for work assignment in process-aware information systems: Framework formalisation and
implementation. Decision Support Systems, 54(1):345–361, 2012.

5. Oracle. BPEL Process Manager Developer’s Guide, http://download.oracle.com/docs/cd/

E15523 01/integration.1111/e10224/bp sensors.htm. Accessed: Jun. 2011.
6. K.I. Smith, R.M. Everson, J.E. Fieldsend, C. Murphy, and R. Misra. Dominance-based

multiobjective simulated annealing. Evolutionary Computation, IEEE Trans. on, 12(3), 2008.
7. S. Suriadi, B. Weiß, A. Winkelmann, A. ter Hofstede, M. Wynn, C. Ouyang, M.J. Adams,

R. Conforti, C. Fidge, M. La Rosa, and A. Pika. Current research in risk-aware business
process management - overview, comparison, and gap analysis. BPM Center Report BPM-12-
13, BPMcenter.org, 2012.

8. Sybase. Sybase CEP Implementation Methodology for Continuous Intelligence,
http://www.sybase.com.au/files/White Papers/Sybase CEP Implementation Methodology
wp.pdf. Accessed: Jun. 2011.

9. Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams, and Nick Russell. Modern
Business Process Automation: YAWL and its Support Environment. Springer, 2010.


